JP5061670B2 - Laser welding method - Google Patents

Laser welding method Download PDF

Info

Publication number
JP5061670B2
JP5061670B2 JP2007066232A JP2007066232A JP5061670B2 JP 5061670 B2 JP5061670 B2 JP 5061670B2 JP 2007066232 A JP2007066232 A JP 2007066232A JP 2007066232 A JP2007066232 A JP 2007066232A JP 5061670 B2 JP5061670 B2 JP 5061670B2
Authority
JP
Japan
Prior art keywords
laser
laser beam
welding
frequency
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007066232A
Other languages
Japanese (ja)
Other versions
JP2008221314A (en
Inventor
守章 小野
功一 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007066232A priority Critical patent/JP5061670B2/en
Publication of JP2008221314A publication Critical patent/JP2008221314A/en
Application granted granted Critical
Publication of JP5061670B2 publication Critical patent/JP5061670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明は、鋼板の突合せ部をキーホールを形成して溶接を行うレーザ溶接方法に関する。   The present invention relates to a laser welding method in which a butt portion of a steel plate is welded by forming a keyhole.

レーザ光は、非常に強い集光性がありエネルギー密度の極めて高い集中熱源となるので、溶接に適用すれば溶け込み深さが深く、高速溶接を行うことができる。   The laser beam has a very strong light condensing property and becomes a concentrated heat source with an extremely high energy density. Therefore, when applied to welding, the penetration depth is deep and high-speed welding can be performed.

レーザ溶接は、薄板を突き合わせて固定し、その突合せ部にレーザビームを照射し、キーホール溶接によって薄板のビーム照射の裏側まで貫通させて溶接する。   In laser welding, a thin plate is butted and fixed, a laser beam is irradiated to the butted portion, and welding is performed by penetrating the back side of the thin plate beam irradiation by keyhole welding.

レーザ溶接の場合、レーザビームの集束径は0.2mm直径程度と小さく、突合せ溶接の場合、許容されるギャップは0.08mmと狭いため、薄板の突合せ面を機械加工したり、フィラーを送給しながら溶接するなど、種々の溶接法が提案されている。   In the case of laser welding, the focused diameter of the laser beam is as small as about 0.2 mm, and in the case of butt welding, the allowable gap is as narrow as 0.08 mm, so the butt surface of the thin plate is machined or filler is fed. Various welding methods have been proposed, such as welding.

特許文献1は、溶接の信頼度を向上させるレーザ溶接法に関し、レーザビームを集光レンズで集光し、回転しているミラーで反射させて、ワークの合わせ目方向にワークまたはレーザビームを相対的に移動させ、レーザビームをコニカル状に走査させ、合わせ面に隙間があったり、レーザスポットと合わせ面の相対的位置決め精度が悪くても良好な溶接品質を得ることが記載されている。   Patent Document 1 relates to a laser welding method for improving the reliability of welding, and a laser beam is collected by a condensing lens, reflected by a rotating mirror, and the workpiece or the laser beam is made relative to the workpiece joint direction. The laser beam is scanned conically, and there is a gap between the mating surfaces, and it is described that good welding quality can be obtained even if the relative positioning accuracy between the laser spot and the mating surface is poor.

特許文献2は、レーザ溶接する際、溶接用レーザビームを用いて予熱および後熱の少なくとも一方を行う方法に関し、レーザビームを開先線に対して走査させることなく、溶接トーチをレーザ光の光軸に沿って上下に移動させ、開先面にレーザスポットをインフォーカス、アウトフォーカスさせることが記載されている。   Patent Document 2 relates to a method of performing at least one of preheating and postheating using a laser beam for welding when laser welding is performed, and a laser beam is scanned with respect to a groove line without scanning the laser beam with respect to a groove line. It is described that the laser spot is moved in the vertical direction along the axis, and the laser spot is in-focused and out-focused on the groove surface.

特許文献3は、金属薄板のレーザ突合せ溶接に関し、溶接ゾーンの手前または溶接ゾーン内で少なくとも一方の薄板にマッシュローラによる塑性変形を施して、板厚を減少させ、薄板間のギャップを減少させる際、塑性変形部の幅や深さを薄板の板厚に応じて適正に規定することにより、溶接後のプレス加工などの二次加工で良好な加工性の得られることが記載されている。   Patent Document 3 relates to laser butt welding of a thin metal plate, in which at least one thin plate is subjected to plastic deformation by a mash roller before or within the welding zone to reduce the plate thickness and reduce the gap between the thin plates. It is described that good workability can be obtained by secondary processing such as press working after welding by appropriately defining the width and depth of the plastic deformation portion according to the thickness of the thin plate.

また、特許文献4には、薄板をレーザ溶接する際、溶接の安定性をブルーフレーム(プラズマ)の発生の有無で判定し、当該ブルーフレームの光線が検出されるまで溶接を繰り返して行うことが記載されている。
特開昭54−116356号公報 特開平6−304772号公報 特開2006−218499号公報
Also, in Patent Document 4, when laser welding a thin plate, the stability of welding is determined by the presence or absence of the generation of a blue frame (plasma), and welding is repeatedly performed until the light beam of the blue frame is detected. Are listed.
JP 54-116356 A JP 6-304772 A JP 2006-218499 A

ところで5kW超えの大出力レーザを用いて高速溶接或いは厚鋼板を溶接する場合、溶接の高速化或いは板厚の増加に伴いキーホールが不安定になることが溶接の高速化や溶接可能な最大板厚に制限をもたらしている。   By the way, when high-speed welding or thick steel plates are welded using a high-power laser exceeding 5 kW, the key plate becomes unstable as the welding speed increases or the plate thickness increases. This is limiting the thickness.

すなわち、キーホールが不安定になると1.溶融金属がキーホールを封鎖してブローホール等の欠陥が生成される。また、2.被溶接材料の裏側の溶接ビード幅が狭くなりオフシーム欠陥が発生しやすくなるなど溶接品質が低下する。   That is, if the keyhole becomes unstable: Molten metal seals the keyholes, creating defects such as blowholes. In addition, 2. The weld bead width on the back side of the material to be welded becomes narrower and off-seam defects are more likely to occur, resulting in poor weld quality.

レーザビームを被溶接材料に照射すると被溶接材料が溶融・蒸発し、キーホールが形成されるが、キーホールを広げる力として蒸発粒子の反張力が有り、キーホールを収縮させる力として溶融金属の重力と表面張力が有り、両者のバランスによってキーホールは保持される。   When the material to be welded is irradiated with the laser beam, the material to be welded melts and evaporates, and a keyhole is formed, but there is an anti-tension of the evaporated particles as the force to expand the keyhole, and the molten metal There is gravity and surface tension, and the keyhole is held by the balance between the two.

キーホールが不安定になる要因として、蒸発粒子および蒸発粒子の一部が電離して生成されるプラズマ(レーザ誘起プラズマと呼ぶ)とレーザビームの干渉が指摘されている。   As a factor that makes the keyhole unstable, interference between a laser beam and plasma (referred to as laser-induced plasma) generated by ionizing a part of the evaporated particles and the evaporated particles has been pointed out.

レーザビームが、キーホールから噴出する蒸発粒子やレーザ誘起プラズマに照射されると、レーザが蒸発粒子或いはプラズマに反射されたり吸収される。   When the laser beam is applied to the evaporated particles or laser-induced plasma ejected from the keyhole, the laser is reflected or absorbed by the evaporated particles or plasma.

レーザエネルギーが反射・吸収されると、キーホール底部に到達するエネルギーが減少するため、蒸発粒子或いはプラズマが発生しなくなる。   When the laser energy is reflected / absorbed, the energy reaching the bottom of the keyhole is reduced, so that no vaporized particles or plasma is generated.

そのため、レーザエネルギーは再び増加して、レーザビームがキーホール底部に到達するようになり蒸発粒子やプラズマが発生する。   Therefore, the laser energy increases again, the laser beam reaches the bottom of the keyhole, and vaporized particles and plasma are generated.

このように蒸発粒子やプラズマは間欠的に発生・消失を繰り返し、キーホールの深さを不均一とし、溶接欠陥を誘発したり、溶け込み深さを不均一とする。   In this way, the vaporized particles and plasma are repeatedly generated and disappeared intermittently, making the keyhole depth non-uniform, inducing welding defects and making the penetration depth non-uniform.

キーホールを安定化させ溶接欠陥を抑制する技術として、パルス化したレーザを用いて溶接する際、間欠的にキーホールから噴出する蒸発粒子或いはプラズマの周波数とレーザのパルス周波数とを同期させて、蒸発粒子或いはプラズマが発生した時にレーザをOFFし、それらが消失時にレーザをONする技術が提案されている。   As a technique to stabilize the keyhole and suppress welding defects, when welding using a pulsed laser, the frequency of the evaporated particles or plasma that is intermittently ejected from the keyhole and the pulse frequency of the laser are synchronized, A technique has been proposed in which the laser is turned off when evaporated particles or plasma is generated, and the laser is turned on when they disappear.

被溶接材料の裏側の溶接ビード幅が狭くなりオフシーム欠陥が発生しやすくなることは、溶接速度を遅くして単位溶接長さ辺りの熱量を増加させることが有効である。   The fact that the weld bead width on the back side of the material to be welded is narrowed and off-seam defects are likely to occur is effective to reduce the welding speed and increase the amount of heat per unit weld length.

しかしながら、レーザをパルス化することは平均エネルギーを低くし、連続発振のレーザと比較すると同じ溶け込み深さを得るためには溶接速度が低下する。   However, pulsing the laser reduces the average energy and reduces the welding speed to obtain the same penetration depth compared to a continuous wave laser.

また、溶接速度を遅くして単位溶接長さ当りの熱量を増加させる方法は溶接の高品質化には貢献するものの実操業における生産性を考慮した場合、採用できない。   Moreover, although the method of increasing the heat per unit weld length by slowing the welding speed contributes to improving the quality of welding, it cannot be adopted in consideration of productivity in actual operation.

そこで、本発明は、金属薄板の突合せ溶接で安定したキーホール溶接が可能な、レーザビーム溶接法を提供することを目的とする。   Therefore, an object of the present invention is to provide a laser beam welding method capable of stable keyhole welding by butt welding of thin metal plates.

本発明の課題は以下の手段で達成可能である。
1.金属薄板の突合せ継手を前記突合せ継手の突合せ部にビームスポットの焦点を合わせたレーザビームでキーホール溶接するレーザ溶接方法であって、前記レーザビームが溶接進行方向の前後方向に、振幅を少なくとも前記ビームスポットの径の大きさとして振動しつつ、前記溶接進行に移動し、前記レーザビームが振動する周波数が、予め、前記レーザビームのレーザ出力と前記レーザビームにより発生するレーザ誘起プラズマの周波数との関係より求めたレーザ誘起プラズマ周波数と同一の周波数であることを特徴とするレーザ溶接方法。
2.前記振幅が前記ビームスポットの径の1倍以上、3倍未満であることを特徴とする1記載のレーザ溶接方法。
3.前記レーザビームが振動する周波数が、100〜300Hzであることを特徴とする1または2記載のレーザ溶接方法。
4.前記レーザビームが、その振幅の中心に照射される際、溶接進行方向に対して垂直または後方に傾斜して照射され、前記レーザビームが振幅の中心に照射される際に金属板面の法線となす角度が、0〜15degの範囲にあることを特徴とする1乃至3のいずれか一つに記載のレーザ溶接方法。
The object of the present invention can be achieved by the following means.
1. A laser welding method in which a butt joint of a thin metal plate is keyhole welded with a laser beam in which a beam spot is focused on a butt portion of the butt joint , wherein the laser beam has at least an amplitude in the front-rear direction of the welding progress direction. The frequency at which the laser beam vibrates as the beam spot diameter vibrates and the laser beam vibrates in advance is the laser output of the laser beam and the frequency of the laser-induced plasma generated by the laser beam. A laser welding method characterized by having the same frequency as the laser-induced plasma frequency obtained from the relationship .
2. 2. The laser welding method according to 1, wherein the amplitude is at least 1 and less than 3 times the diameter of the beam spot.
3. The laser welding method according to 1 or 2, wherein a frequency at which the laser beam vibrates is 100 to 300 Hz.
4). When the laser beam is radiated to the center of the amplitude, the laser beam is radiated perpendicularly or rearwardly with respect to the welding progress direction, and when the laser beam is radiated to the center of the amplitude, the normal of the metal plate surface The laser welding method according to any one of 1 to 3, wherein an angle between the two is in a range of 0 to 15 deg.

本発明によれば、自動車の車体構造で多用される、レーザビームによる金属薄板の突合せ溶接で安定したキーホール溶接が可能で産業上極めて有用である。   INDUSTRIAL APPLICABILITY According to the present invention, stable keyhole welding is possible by butt welding of a metal thin plate using a laser beam, which is frequently used in a vehicle body structure of an automobile, which is extremely useful industrially.

本発明では、突合わせ部に焦点を合わせた、レーザビームのビームスポットを溶接線方向の前後方向に振動させ、かつ予め、レーザ出力とプラズマ周波数との関係より求めたプラズマ周波数と同一の周波数で走査させながらキーホール溶接する。   In the present invention, the beam spot of the laser beam focused on the abutting portion is vibrated in the front-rear direction of the welding line direction, and at the same frequency as the plasma frequency obtained in advance from the relationship between the laser output and the plasma frequency. Keyhole welding while scanning.

レーザビーム照射により蒸発粒子或いはプラズマが生成されるが、これらは当該レーザビームのビーム照射された部分:スポット径に相当する部分から発生し、照射から発生まで時間的ズレがあるので、レーザビームを振動させ、溶接進行方向に照射すれば、蒸発粒子或いはプラズマにレーザビームは照射されない。   Evaporated particles or plasma is generated by laser beam irradiation, but these are generated from the portion of the laser beam irradiated with the beam: the portion corresponding to the spot diameter, and there is a time lag from irradiation to generation. When oscillated and irradiated in the welding direction, the laser beam is not irradiated to the evaporated particles or plasma.

一般的に、溶接に適用されるレーザビーム径は0.1mm〜1.0mmである。したがって、キーホール径はほぼレーザビーム径0.1mm〜1.0mmに等しい。したがって、レーザビームの振幅はほぼビームスポット径の1倍以上、および3倍未満の範囲が好適である。   Generally, the laser beam diameter applied for welding is 0.1 mm to 1.0 mm. Therefore, the keyhole diameter is approximately equal to the laser beam diameter of 0.1 mm to 1.0 mm. Therefore, it is preferable that the amplitude of the laser beam is in the range of about 1 time or more and less than 3 times the beam spot diameter.

すなわち、レーザビーム振幅がビームスポット径の1倍未満であれば、レーザビームはキーホールから噴出する蒸発粒子或いはプラズマを常時照射するためキーホールが不安定になり溶接欠陥が発生しやすくなる。   That is, if the laser beam amplitude is less than 1 times the beam spot diameter, the laser beam is always irradiated with evaporated particles or plasma ejected from the keyhole, so that the keyhole becomes unstable and welding defects are likely to occur.

一方、レーザビーム振幅がビームスポット径の3倍超えの場合は、レーザビームはキーホールから噴出する蒸発粒子或いはプラズマを照射しないため、溶接欠陥の発生は抑制できるがレーザビームの振幅が大きすぎるため平均レーザエネルギーが低くなり溶け込み深さが浅くなる。走査無しの場合と同じ溶け込み深さを得ようとすれば溶接速度を下げなければならず生産性が低下する。   On the other hand, when the laser beam amplitude exceeds three times the beam spot diameter, the laser beam does not irradiate the vaporized particles or plasma ejected from the keyhole, so the generation of welding defects can be suppressed, but the laser beam amplitude is too large. The average laser energy becomes lower and the penetration depth becomes shallower. In order to obtain the same penetration depth as in the case without scanning, the welding speed has to be reduced and the productivity is lowered.

レーザビームは、予め、レーザ出力とプラズマ周波数との関係より求めたプラズマ周波数と同一の周波数で走査させる。   The laser beam is scanned in advance at the same frequency as the plasma frequency obtained from the relationship between the laser output and the plasma frequency.

キーホールから噴出するプラズマの周波数は、レーザ出力、レーザビーム径などによって異なるため、実操業と同じ溶接条件を用いた予備試験により求めておく。   Since the frequency of the plasma ejected from the keyhole varies depending on the laser output, the laser beam diameter, etc., it is determined by a preliminary test using the same welding conditions as in actual operation.

図1は、レーザ出力と発生したレーザ誘起プラズマの周波数の関係を示す。図はレーザ波長10.6μmの炭酸ガスレーザとレーザ波長800nmの半導体レーザの出力を1kWから10kWまで変化させて、レーザ誘起プラズマの周波数を求めた結果で、レーザ出力の増加とともにレーザ誘起プラズマ周波数が増加する。   FIG. 1 shows the relationship between the laser output and the frequency of the generated laser-induced plasma. The figure shows the result of obtaining the laser-induced plasma frequency by changing the output of the CO2 laser with the laser wavelength of 10.6 μm and the semiconductor laser with the laser wavelength of 800 nm from 1 kW to 10 kW. To do.

また、レーザ周波数が長い程、逆制動輻射作用によりレーザエネルギーが吸収されやすくなり、レーザ誘起プラズマが増幅し、同時に電離度が高くなり膨張するため、キーホール中から高速で噴出するためレーザ誘起プラズマの周波数が増加することが認められる。   Also, the longer the laser frequency, the more easily the laser energy is absorbed by the reverse bremsstrahlung action, the laser-induced plasma is amplified, and at the same time the degree of ionization increases and expands. It can be seen that the frequency of increases.

図1より、通常のレーザ溶接では、レーザ波長10.6μmの炭酸ガスレーザまたはレーザ波長800nmの半導体レーザを用いることが多いので、レーザビームの走査周波数を、レーザ出力に応じて変化するプラズマ周波数と同じ100Hz以上、300Hz未満とすると、レーザビームとプラズマとの干渉がなく好ましい。   As shown in FIG. 1, in ordinary laser welding, a carbon dioxide laser with a laser wavelength of 10.6 μm or a semiconductor laser with a laser wavelength of 800 nm is often used, so the scanning frequency of the laser beam is the same as the plasma frequency that changes according to the laser output. 100 Hz or more and less than 300 Hz is preferable because there is no interference between the laser beam and the plasma.

本発明で、被溶接材3にレーザビーム1を照射する際は、レーザビーム1の走査の振幅中心と被溶接材3の板面の法線となす角度θは、溶接方向2に対してレーザビーム1が後傾するように0〜15degとすることが好ましい。図2にレーザビームの照射角度を説明する。 In the present invention, when the material to be welded 3 is irradiated with the laser beam 1, the angle θ 2 formed between the center of the scanning amplitude of the laser beam 1 and the normal of the plate surface of the material to be welded 3 is relative to the welding direction 2. It is preferable to set to 0 to 15 deg so that the laser beam 1 tilts backward. FIG. 2 illustrates the irradiation angle of the laser beam.

レーザビームの走査の振幅中心を、溶接方向の後ろ側に金属板面の法線方向に対して角度θだけ傾斜させると溶接欠陥が抑制される。しかし、角度θが大き過ぎる場合には溶け込み深さが低下する。従って、レーザビームの走査の振幅の中心方向と金属板面の法線となす角度θは0〜15degとすることが好ましい。 If the amplitude center of the scanning of the laser beam is inclined at an angle θ 2 with respect to the normal direction of the metal plate surface to the rear side in the welding direction, welding defects are suppressed. However, when the angle theta 2 is too large depth penetration decreases. Therefore, the angle theta 2 formed by the normal of the center direction and the metal plate surface in the amplitude of the scanning of the laser beam is preferably set to 0~15Deg.

本発明に適用できる金属薄板の材質には,炭素鋼,アルミニウム,アルミニウム合金,マグネシウム,マグネシウム合金等があげられる。レーザとしてはCOレーザ、COレーザ、スラブレーザ、Nd−YAGレーザ、ガラスレーザ、エキシマレーザ、ファイバーレーザ、半導体レーザ等、熱加工に使用できる全てのレーザ方式が適用できる。 Examples of the material of the metal thin plate applicable to the present invention include carbon steel, aluminum, aluminum alloy, magnesium, magnesium alloy and the like. As the laser, any laser system that can be used for thermal processing, such as CO 2 laser, CO laser, slab laser, Nd-YAG laser, glass laser, excimer laser, fiber laser, and semiconductor laser can be applied.

板厚10mmの炭素鋼板にレーザビームを照射してビードオンプレート溶接した。溶接
はビームスポットを板面に集束させ、溶接速度を2m/minと3m/minとし、それ
ぞれの溶接速度において、溶接進行方向にビームスポットをビーム振幅、溶接線方向にビームスポットが移動(走査)する周波数を変化させて走査した。表1、表2に溶接条件を示す。
A carbon steel plate having a thickness of 10 mm was irradiated with a laser beam and subjected to bead-on-plate welding. Welding focuses the beam spot on the plate surface and sets the welding speed to 2 m / min and 3 m / min. At each welding speed, the beam spot moves in the welding direction and the beam spot moves in the welding line direction (scanning). The scanning frequency was changed. Tables 1 and 2 show the welding conditions.

ビードオンプレート溶接部をX線非破壊検査法を用いて検査し、直径0.15mm以上のブローホールを検出した。溶接線長さ100mm当りのブローホールの個数を計測し、30個以下の場合を『品質良好』と判定した。次いで、溶接線直角方向に切断して溶込み深さを測定した。   The bead-on-plate welded portion was inspected using an X-ray nondestructive inspection method, and a blow hole having a diameter of 0.15 mm or more was detected. The number of blow holes per 100 mm weld line length was measured, and the case of 30 or less was judged as “good quality”. Next, the depth of penetration was measured by cutting in the direction perpendicular to the weld line.

表1より、レーザ出力、レーザ波長、溶接速度およびビーム周波数が一定の場合には、ビーム振幅が0.5mm以上、3.0mm以下の領域において、ブローホールが少なく『品質良好』であり、加えて溶込み深さも深くなることが認められる(試験No.3〜6)。   From Table 1, when the laser output, laser wavelength, welding speed, and beam frequency are constant, there are few blow holes and “good quality” in the region where the beam amplitude is 0.5 mm or more and 3.0 mm or less. It is recognized that the penetration depth also increases (Test Nos. 3 to 6).

表2より、レーザ波長、溶接速度およびビーム振幅が一定の場合において、レーザ出力が5kWの場合は、ビーム周波数が200Hz以上、225Hz以下の領域においてブローホールが少なく『品質良好』であり、加えて溶込み深さも深くなることが認められる(試験No.3,4)。   From Table 2, when the laser wavelength, welding speed, and beam amplitude are constant, when the laser output is 5 kW, there are few blowholes in the region where the beam frequency is 200 Hz or more and 225 Hz or less, and “good quality”. It is recognized that the penetration depth also becomes deep (Test Nos. 3 and 4).

レーザ出力が10kWの場合は、ビーム周波数が250Hz以上、300Hz以下の領域においてブローホールが少なく『品質良好』であり、加えて溶込み深さも深くなる(試験No.8.9)。   When the laser output is 10 kW, there are few blowholes in the region where the beam frequency is 250 Hz or more and 300 Hz or less, “quality is good”, and in addition, the penetration depth becomes deep (Test No. 8.9).

以上の試験結果より、ブローホールの発生が抑制されて品質が良好となるビーム周波数がレーザ出力によって異なることが明らかである。   From the above test results, it is clear that the beam frequency at which the generation of blowholes is suppressed and the quality is good differs depending on the laser output.

表3は、ビーム照射角(図2に示す、θ1またはθ2)の溶接品質に及ぼす影響を示し、レーザビームが溶接進行方向に対して後傾(ビーム照射角がθ2)であって、且つ、0〜15°の場合(試験No.4〜7)、ブローホールが少なく『品質良好』であり、加えて溶込み深さも深くなることが認められる。   Table 3 shows the effect of the beam irradiation angle (θ1 or θ2 shown in FIG. 2) on the welding quality, the laser beam is tilted backward (the beam irradiation angle is θ2) with respect to the welding progress direction, and In the case of 0 to 15 ° (Test Nos. 4 to 7), it is recognized that there are few blow holes and “good quality”, and in addition, the penetration depth becomes deep.

Figure 0005061670
Figure 0005061670

Figure 0005061670
Figure 0005061670

Figure 0005061670
Figure 0005061670

レーザ出力と発生したレーザ誘起プラズマの周波数の関係を示す図。The figure which shows the relationship between the laser output and the frequency of the laser induced plasma which generate | occur | produced. レーザビームの照射角度を説明する図。The figure explaining the irradiation angle of a laser beam.

符号の説明Explanation of symbols

1 レーザビーム
2 溶接方向
3 被溶接材
1 Laser beam 2 Welding direction 3 Material to be welded

Claims (4)

金属薄板の突合せ継手を前記突合せ継手の突合せ部にビームスポットの焦点を合わせたレーザビームでキーホール溶接するレーザ溶接方法であって、前記レーザビームが溶接進行方向の前後方向に、振幅を少なくとも前記ビームスポットの径の大きさとして振動しつつ、前記溶接進行に移動し、前記レーザビームが振動する周波数が、予め、前記レーザビームのレーザ出力と前記レーザビームにより発生するレーザ誘起プラズマの周波数との関係より求めたレーザ誘起プラズマ周波数と同一の周波数であることを特徴とするレーザ溶接方法。 A laser welding method in which a butt joint of a thin metal plate is keyhole welded with a laser beam in which a beam spot is focused on a butt portion of the butt joint , wherein the laser beam has at least an amplitude in the front-rear direction of the welding progress direction. The frequency at which the laser beam is vibrated while oscillating as the diameter of the beam spot and the laser beam oscillates in advance is the laser output of the laser beam and the frequency of the laser-induced plasma generated by the laser beam. A laser welding method characterized by having the same frequency as the laser-induced plasma frequency obtained from the relationship . 前記振幅が前記ビームスポットの径の1倍以上、3倍未満であることを特徴とする請求項1記載のレーザ溶接方法。 The laser welding method according to claim 1, wherein the amplitude is not less than 1 and not more than 3 times the diameter of the beam spot. 前記レーザビームが振動する周波数が、100〜300Hzであることを特徴とする請求項1または2記載のレーザ溶接方法。 The laser welding method according to claim 1 or 2, wherein a frequency at which the laser beam vibrates is 100 to 300 Hz. 前記レーザビームが、その振幅の中心に照射される際、溶接進行方向に対して垂直または後方に傾斜して照射され、前記レーザビームが振幅の中心に照射される際に金属板面の法線となす角度が、0〜15degの範囲にあることを特徴とする請求項1乃至3のいずれか一つに記載のレーザ溶接方法。 When the laser beam is radiated to the center of the amplitude, the laser beam is radiated perpendicularly or rearwardly with respect to the welding progress direction, and when the laser beam is radiated to the center of the amplitude, the normal of the metal plate surface The laser welding method according to any one of claims 1 to 3, wherein the angle formed is in a range of 0 to 15 deg.
JP2007066232A 2007-03-15 2007-03-15 Laser welding method Active JP5061670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066232A JP5061670B2 (en) 2007-03-15 2007-03-15 Laser welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066232A JP5061670B2 (en) 2007-03-15 2007-03-15 Laser welding method

Publications (2)

Publication Number Publication Date
JP2008221314A JP2008221314A (en) 2008-09-25
JP5061670B2 true JP5061670B2 (en) 2012-10-31

Family

ID=39840508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066232A Active JP5061670B2 (en) 2007-03-15 2007-03-15 Laser welding method

Country Status (1)

Country Link
JP (1) JP5061670B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161506A (en) * 2010-02-15 2011-08-25 Toyota Motor Corp Welding method
JP5827454B2 (en) 2010-03-08 2015-12-02 株式会社神戸製鋼所 Laser / arc combined welding method and welded member manufacturing method using the welding method
EP2594357A1 (en) * 2011-11-16 2013-05-22 Optec S.p.A. Device for and process of laser welding with a calibration unit with refraction means
CN103205750B (en) * 2013-05-08 2014-11-19 南昌航空大学 Method for quantitatively evaluating burning loss degree of Al in laser-induction composite fused NiCrAlY coating layer
JP5805138B2 (en) * 2013-05-17 2015-11-04 本田技研工業株式会社 Manufacturing method of rotating electrical machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475192A (en) * 1987-09-14 1989-03-20 Ueno Hiroshi Method and equipment for welding by laser beam
JP3635199B2 (en) * 1997-03-28 2005-04-06 新日本製鐵株式会社 Laser welding nozzle for butt welding of hot rolled steel slabs
JPH11138280A (en) * 1997-11-10 1999-05-25 Kinki Ko Energie Kako Gijutsu Kenkyusho Laser welding method

Also Published As

Publication number Publication date
JP2008221314A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
Kawahito et al. Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry
JP3762676B2 (en) Work welding method
JP5827454B2 (en) Laser / arc combined welding method and welded member manufacturing method using the welding method
JP4612076B2 (en) Laser welding method for metal plated plate
JP2008126315A (en) Laser welding process with improved penetration
JPH08300172A (en) Manufacture of welded steel tube
JP2014073526A (en) Optical system and laser beam machining apparatus
JP5061670B2 (en) Laser welding method
RU2547987C1 (en) Laser welding method
JP6089323B2 (en) Laser welding method for differential thickness materials
JP4797659B2 (en) Laser welding method
JP2017124422A (en) Laser arc hybrid welding method
JP4153218B2 (en) Laser combined AC MIG pulse arc welding method
JP2009166080A (en) Laser beam welding method
JP2007090397A (en) Lap fillet welding method
JPH0919778A (en) Laser welding method for aluminum alloy without exposing molten metal on the rear surface
JPH06198472A (en) High-speed laser beam welding method
JP2003126978A (en) Method for butt welding of different thickness plate materials using laser
JP4942958B2 (en) Method of laser welding at least two parts and associated apparatus applying this method
JP2019051521A (en) Butt laser welding method of plate material and laser welding member
JP2001246485A (en) Laser/arc composite welding equipment
JP2014024078A (en) Laser welding apparatus
JP2012228716A (en) Laser welding apparatus and laser welding method
JP2017209700A (en) Joining method of metal plate
JP2010207875A (en) Composite welding equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Ref document number: 5061670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250