JP5061286B2 - Sensitizing dye used for dye-sensitized photoelectric conversion element and solar cell using the sensitizing dye - Google Patents

Sensitizing dye used for dye-sensitized photoelectric conversion element and solar cell using the sensitizing dye Download PDF

Info

Publication number
JP5061286B2
JP5061286B2 JP2006014605A JP2006014605A JP5061286B2 JP 5061286 B2 JP5061286 B2 JP 5061286B2 JP 2006014605 A JP2006014605 A JP 2006014605A JP 2006014605 A JP2006014605 A JP 2006014605A JP 5061286 B2 JP5061286 B2 JP 5061286B2
Authority
JP
Japan
Prior art keywords
dye
photoelectric conversion
conversion element
sensitizing dye
sensitized photoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006014605A
Other languages
Japanese (ja)
Other versions
JP2007103338A (en
Inventor
一正 船曳
正樹 松居
司 吉田
淳弘 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu University
Sekisui Jushi Corp
Original Assignee
Gifu University
Sekisui Jushi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University, Sekisui Jushi Corp filed Critical Gifu University
Priority to JP2006014605A priority Critical patent/JP5061286B2/en
Publication of JP2007103338A publication Critical patent/JP2007103338A/en
Application granted granted Critical
Publication of JP5061286B2 publication Critical patent/JP5061286B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、色素増感型光電変換素子に用いられる増感色素と、該増感色素が用いられた光電変換素子ならびに太陽電池に関する。   The present invention relates to a sensitizing dye used for a dye-sensitized photoelectric conversion element, a photoelectric conversion element using the sensitizing dye, and a solar cell.

従来、環境に優しく資源枯渇のおそれもない発電方法として、太陽光などの光エネルギーを電気エネルギーに変換させる光電変換素子が用いられた太陽電池が広く用いられるようになってきている。このような、太陽電池としては、従来、シリコン単結晶やアモルファスシリコンなどを用いたものが知られているが、近年、このシリコン製太陽電池よりも低コストで製造可能な色素増感型太陽電池が注目されるようになってきている。   2. Description of the Related Art Conventionally, solar cells using a photoelectric conversion element that converts light energy such as sunlight into electrical energy have been widely used as a power generation method that is environmentally friendly and does not cause resource depletion. As such a solar cell, those using a silicon single crystal, amorphous silicon, or the like are conventionally known, but in recent years, a dye-sensitized solar cell that can be manufactured at a lower cost than the silicon solar cell. Is getting attention.

このような、太陽電池に用いられる光電変換素子には光電変換特性に優れたものが求められている。このようなことから、色素増感型太陽電池の光電変換素子にも光電変換特性に優れたものが求められている。例えば、この色素増感型太陽電池の光電変換素子は、従来、焼成された多孔質酸化チタン半導体にルテニウム系色素を吸着させた光電極層が用いられたりしており、光電変換特性を高めるべく光電極層について種々の材料が検討されたりしている。この光電極層については、特許文献1には、カソード電析により析出させた酸化亜鉛に増感色素を吸着させたものを用いることで光電変換特性に優れたものとし得ることが記載されている。   Such photoelectric conversion elements used for solar cells are required to have excellent photoelectric conversion characteristics. For these reasons, a photoelectric conversion element for a dye-sensitized solar cell is also required to have excellent photoelectric conversion characteristics. For example, in the photoelectric conversion element of this dye-sensitized solar cell, a photoelectrode layer in which a ruthenium-based dye is adsorbed on a fired porous titanium oxide semiconductor has been conventionally used to improve photoelectric conversion characteristics. Various materials have been studied for the photoelectrode layer. Regarding this photoelectrode layer, Patent Document 1 describes that it is possible to achieve excellent photoelectric conversion characteristics by using a sensitizing dye adsorbed on zinc oxide deposited by cathode electrodeposition. .

ところで、太陽電池は、卓上計算機など種々の電気製品に用いられており、しかも、この電気製品に用いられる太陽電池は、受光を行うために電気製品の表面に配されている。そのため、近年は、太陽電池自体の美観を高めることも求められている。このような要望に対して、電気製品のデザインに応じて種々の色合いの増感色素を用意することも考え得るが、従来の増感色素は、光電変換特性の点から用い得る色素が限られており、特に青色系統の色素では光電変換特性を満足させるものが見出されていない。例えば、青色系色素であるスクアリリウム系色素を用いた検討(特許文献2及び3参照)では青色系色素として比較的良好なる光電変換特性を示す結果が得られたりもしているが、この従来のスクアリリウム系色素で得られている光電変換特性も赤色系統の色素などで得られている値に比べるといまだ不十分なもので、さらなる向上が求められている。
すなわち、従来の光増感型色素においては、青色系色素の光電変換特性の向上が十分なされていないという問題を有しており、太陽電池の美観を高める要望を満足させることが困難であるという問題を有している。
なお、この青色系増感色素の光電変換特性の向上が十分なされていないという問題は、電気製品用太陽電池の美観の向上目的のみならず色素増感型光電変換素子に用いられる青色系増感色素全てに共通する問題である。
By the way, the solar cell is used in various electric products such as a desk calculator, and the solar cell used in the electric product is arranged on the surface of the electric product to receive light. Therefore, in recent years, it has also been demanded to enhance the beauty of the solar cell itself. In response to such demands, it may be possible to prepare sensitizing dyes of various shades according to the design of the electrical product, but conventional sensitizing dyes are limited in usable dyes in terms of photoelectric conversion characteristics. In particular, no blue colorant has been found that satisfies photoelectric conversion characteristics. For example, in a study using a squarylium dye that is a blue dye (see Patent Documents 2 and 3), a result showing a relatively good photoelectric conversion characteristic as a blue dye may be obtained. The photoelectric conversion characteristics obtained with the dyes are still insufficient as compared with the values obtained with the red dyes, and further improvements are required.
That is, the conventional photosensitizing dye has a problem that the photoelectric conversion characteristics of the blue dye are not sufficiently improved, and it is difficult to satisfy the demand for enhancing the aesthetics of the solar cell. Have a problem.
The problem that the photoelectric conversion characteristics of the blue sensitizing dye are not sufficiently improved is not only for the purpose of improving the aesthetics of the solar cell for electric products but also for the blue sensitizing dye used for the dye sensitized photoelectric conversion element. It is a problem common to all pigments.

特開2004− 6235号公報Japanese Patent Laid-Open No. 2004-6235 特開2003−109676号公報JP 2003-109676 A 特開2004−319309号公報JP 2004-319309 A

本発明は、光電変換特性の向上された青色系増感色素の提供を課題としている。   An object of the present invention is to provide a blue sensitizing dye having improved photoelectric conversion characteristics.

本発明者らは、青色系増感色素の光電変換特性向上について鋭意検討を実施した結果、特定の構造を有するスクアリリウム系色素が従来のスクアリリウム系色素に比べて優れた光電変換特性を有していることを見出し、本発明の完成に到ったのである。
すなわち、本発明は、前記課題を解決すべくなされたもので、増感色素にかかる請求項1記載の発明は、色素増感型光電変換素子に用いられ、下記一般式(1)で表される構造を有していることを特徴としている。

Figure 0005061286
(なお、R11、R12は炭素数1〜10のアルキル基であり、R11、R12の炭素数は、同じであっても異なっていてもよい。R13、R14は、同じ炭素数あるいは異なる炭素数を有するアルキル基がそれぞれ独立しているか、R13、R14が互いに結合して脂環族構造を形成しているかのいずれかであり、R13、R14の合計炭素数は、2〜25である。また、nは1〜3の整数を表す。) As a result of intensive studies on improving the photoelectric conversion characteristics of blue sensitizing dyes, the present inventors have found that squarylium dyes having a specific structure have superior photoelectric conversion characteristics compared to conventional squarylium dyes. As a result, the present invention has been completed.
That is, the present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 relating to a sensitizing dye is used for a dye-sensitized photoelectric conversion element and is represented by the following general formula (1). It is characterized by having a structure.
Figure 0005061286
(Note that R 11 and R 12 are alkyl groups having 1 to 10 carbon atoms, and the carbon numbers of R 11 and R 12 may be the same or different. R 13 and R 14 are the same carbon. The alkyl groups having different numbers or different carbon numbers, or R 13 and R 14 are bonded to each other to form an alicyclic structure, and the total number of carbon atoms of R 13 and R 14 Is 2 to 25. Moreover, n represents an integer of 1 to 3.)

また、増感色素にかかる請求項2記載の発明は、色素増感型光電変換素子に用いられ、下記一般式(2)で表される構造を有していることを特徴としている。

Figure 0005061286
(なお、R21、R22は炭素数1〜10のアルキル基、R23、R24は炭素数1〜5のアルキル基でありR21、R22の炭素数は、同じであっても異なっていてもよく、R23、R24の炭素数は、同じであっても異なっていてもよい。また、nは1〜3の整数を表す。) The invention according to claim 2 relating to a sensitizing dye is used for a dye-sensitized photoelectric conversion element and has a structure represented by the following general formula (2).
Figure 0005061286
(Note that R 21 and R 22 are alkyl groups having 1 to 10 carbon atoms, R 23 and R 24 are alkyl groups having 1 to 5 carbon atoms, and the carbon numbers of R 21 and R 22 are the same or different. And the carbon number of R 23 and R 24 may be the same or different, and n represents an integer of 1 to 3.)

また、増感色素にかかる請求項3記載の発明は、色素増感型光電変換素子に用いられ、下記一般式(3)で表される構造を有していることを特徴としている。

Figure 0005061286
(なお、R31、R32は炭素数1〜10のアルキル基、R33、R34は炭素数1〜5のアルキル基でありR31、R32の炭素数は、同じであっても異なっていてもよく、R33、R34の炭素数は、同じであっても異なっていてもよい。また、nは1〜3の整数を表す。) The invention according to claim 3 relating to a sensitizing dye is used for a dye-sensitized photoelectric conversion element and has a structure represented by the following general formula (3).
Figure 0005061286
(Note that R 31 and R 32 are alkyl groups having 1 to 10 carbon atoms, R 33 and R 34 are alkyl groups having 1 to 5 carbon atoms, and the carbon numbers of R 31 and R 32 are the same or different. And the carbon number of R 33 and R 34 may be the same or different, and n represents an integer of 1 to 3.)

また、色素増感型光電変換素子にかかる請求項4に記載の発明は、請求項1乃至3のいずれかに記載の増感色素が用いられてなる光電極層を備えていることを特徴としている。   The invention according to claim 4 relating to a dye-sensitized photoelectric conversion element includes a photoelectrode layer using the sensitizing dye according to any one of claims 1 to 3. Yes.

また、色素増感型光電変換素子にかかる請求項5記載の発明は、請求項4に記載の色素増感型光電変換素子において、前記光電極層が、請求項1乃至3のいずれかに記載の増感色素を含有するアルコール溶液がデオキシコール酸共存下で酸化亜鉛多孔質体に含浸されて形成されていることを特徴としている。   The invention according to claim 5 relating to the dye-sensitized photoelectric conversion element is the dye-sensitized photoelectric conversion element according to claim 4, wherein the photoelectrode layer is any one of claims 1 to 3. An alcohol solution containing the sensitizing dye is impregnated into the porous zinc oxide in the presence of deoxycholic acid.

さらに、色素増感型太陽電池にかかる請求項6記載の発明は、請求項4または5に記載の色素増感型光電変換素子が用いられてなることを特徴としている。   Furthermore, the invention according to claim 6 relating to the dye-sensitized solar cell is characterized in that the dye-sensitized photoelectric conversion element according to claim 4 or 5 is used.

本発明によれば、前記一般式(1)〜(3)に示されたようなスクアリリウム系色素を用いることから、増感色素を、従来の青色系増感色素に比べて光電変換特性の向上された青色系増感色素とし得る。   According to the present invention, since the squarylium dyes as shown in the general formulas (1) to (3) are used, the sensitizing dye is improved in photoelectric conversion characteristics as compared with the conventional blue sensitizing dye. Blue-based sensitizing dye.

以下に、本発明の好ましい実施の形態について光電変換素子を例に図1を参照しつつ説明する。   A preferred embodiment of the present invention will be described below with reference to FIG. 1 by taking a photoelectric conversion element as an example.

本実施形態における色素増感型光電変換素子10(以下、単に「光電変換素子」ともいう)には、透明電極により形成された第一の導電性皮膜3を備えた透明板状に形成された電極基材2と、第二の導電性皮膜5を備えた対向基板6とが用いられ、これら電極基材2と対向基板6とは、互いに導電性皮膜を対向させて配されている。また、この対向する導電性皮膜の間には、光電極層1と電解質層4とが形成されており、この光電極層1は一面側を前記第一の導電性皮膜3に接するように配され、他面側を前記電解質層4に接するように配されている。また、前記電解質層4は、一面側を前述のように光電極層1に接するように配され、他面側を前記第二の導電性皮膜5に接するように配されている。
この色素増感型の光電変換素子10は、主に太陽Sからの光が電極基材2を透過して光電極層1に照射されることで光電極層1が励起されて電子の移動が起こることで起電力を発生させている。
The dye-sensitized photoelectric conversion element 10 (hereinafter also simply referred to as “photoelectric conversion element”) in the present embodiment was formed in a transparent plate shape having the first conductive film 3 formed by a transparent electrode. An electrode base 2 and a counter substrate 6 provided with a second conductive film 5 are used. The electrode base 2 and the counter substrate 6 are arranged with their conductive films facing each other. In addition, a photoelectrode layer 1 and an electrolyte layer 4 are formed between the opposing conductive films, and the photoelectrode layer 1 is arranged so that one side is in contact with the first conductive film 3. The other side is in contact with the electrolyte layer 4. The electrolyte layer 4 is arranged so that one surface side is in contact with the photoelectrode layer 1 as described above and the other surface side is in contact with the second conductive film 5.
In the dye-sensitized photoelectric conversion element 10, light from the sun S is transmitted through the electrode substrate 2 and irradiated to the photoelectrode layer 1, whereby the photoelectrode layer 1 is excited and electrons move. An electromotive force is generated by what happens.

前記電極基材2の基体7は、透明性の高いガラス、強化ガラスや、ポリカーボネート樹脂、アクリル樹脂、ポリアリレート樹脂、ポリメタクリレート、ポリ塩化ビニルなどの透明性の高い合成樹脂などを用いて形成することができる。   The substrate 7 of the electrode substrate 2 is formed using highly transparent glass, tempered glass, or a highly transparent synthetic resin such as polycarbonate resin, acrylic resin, polyarylate resin, polymethacrylate, or polyvinyl chloride. be able to.

前記電極基材2の第一の導電性皮膜3を形成する透明電極に用いられる材料としては、スズドープ酸化インジウム(ITO)、フッソドープ酸化スズ(FTO)、金、白金、などやこれらを複数組み合わせたもの用いることができ、これらを真空蒸着法、スパッタ蒸着法、イオンプレーティング法、化学気相成長(CVD)法、泳動電着法などの方法により前記透明板の表面に直接形成させたり、あるいは、これらが形成されたフィルムを前記基体7に貼着させたりすることにより透明板の表面に第一の導電性皮膜3を形成させた電極基材2とすることができる。   As a material used for the transparent electrode for forming the first conductive film 3 of the electrode substrate 2, tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), gold, platinum, etc., or a combination of these These can be directly formed on the surface of the transparent plate by a method such as vacuum deposition, sputter deposition, ion plating, chemical vapor deposition (CVD), or electrophoretic deposition, or The electrode substrate 2 in which the first conductive film 3 is formed on the surface of the transparent plate can be obtained by sticking the film on which these are formed to the substrate 7.

前記対向基板6の基体8は、例えば、透明性が要求される場合などは、前記電極基材2の透明板と同じ材料を用いて形成することができるが、この基体8が電解質層4の電解液などに直接接触するよう配される場合には、電解液に対する耐久性を高め得る点において、ポリエステル樹脂やポリオレフィン樹脂を用いて形成することが好ましい。
このポリエステル樹脂としては、ポリエチレンテレフタレート樹脂やポリエチレンナフタレート樹脂などを例示することができ、ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン、環状ポリオレフィン樹脂などを例示することができる。
The base 8 of the counter substrate 6 can be formed using the same material as the transparent plate of the electrode base 2 when, for example, transparency is required. When arranged so as to be in direct contact with the electrolytic solution, it is preferable to use a polyester resin or a polyolefin resin in that the durability against the electrolytic solution can be improved.
Examples of the polyester resin include polyethylene terephthalate resin and polyethylene naphthalate resin. Examples of the polyolefin resin include polyethylene, polypropylene, and cyclic polyolefin resin.

前記対向電極6の第二の導電性皮膜5を形成する電極材料については、例えば、透明性が必要とされる場合などは、前記第一の導電性皮膜3を形成する透明電極と同様の材料を用いて同様に形成させることができる。また、透明性などを必要としない場合には、カーボンや、導電性ポリマー、一般的な金属などを用いて形成させることができる。   For the electrode material forming the second conductive film 5 of the counter electrode 6, for example, when transparency is required, the same material as the transparent electrode forming the first conductive film 3 is used. Can be formed in the same manner. Moreover, when transparency etc. are not required, it can form using carbon, a conductive polymer, a general metal, etc.

前記光電極層1は、例えば、Fe23、Cu2O、In23、WO3、Fe2TiO3、PbO、V25、FeTiO3、Bi23、Nb23、SrTiO3、ZnO、BaTiO3、CaTiO3、KTaO3、SnO2、ZrO2などの半導体材料を用いて形成された半導体層に増感色素を担持させることで形成させることができる。
なお、前記半導体層としては、コスト、作業性ならびに半導体層の透明性を高め、薄層化させることが容易である点においてZnO(酸化亜鉛)を用いることが好ましい。
The photoelectrode layer 1 is made of, for example, Fe 2 O 3 , Cu 2 O, In 2 O 3 , WO 3 , Fe 2 TiO 3 , PbO, V 2 O 5 , FeTiO 3 , Bi 2 O 3 , Nb 2 O 3. , SrTiO 3 , ZnO, BaTiO 3 , CaTiO 3 , KTaO 3 , SnO 2 , ZrO 2, etc., can be formed by supporting a sensitizing dye on a semiconductor layer.
As the semiconductor layer, it is preferable to use ZnO (zinc oxide) in terms of increasing cost, workability, and transparency of the semiconductor layer and facilitating thinning.

前記増感色素としては、前記一般式(1)〜(3)で表される構造を有しているものを用いることができ、例えば、下記一般式(1)、(3)、(4)〜(7)で表される構造を有しているものを用いることができる。

Figure 0005061286
(なお、R11、R12は炭素数1〜10のアルキル基であり、R11、R12の炭素数は、同じであっても異なっていてもよい。R13、R14は、同じ炭素数あるいは異なる炭素数を有するアルキル基がそれぞれ独立しているか、R13、R14が互いに結合して脂環族構造を形成しているかのいずれかであり、R13、R14の合計炭素数は、2〜25である。また、nは1〜3の整数を表す。) As the sensitizing dye, those having the structures represented by the general formulas (1) to (3) can be used. For example, the following general formulas (1), (3), (4) What has the structure represented by (7) can be used.
Figure 0005061286
(Note that R 11 and R 12 are alkyl groups having 1 to 10 carbon atoms, and the carbon numbers of R 11 and R 12 may be the same or different. R 13 and R 14 are the same carbon. The alkyl groups having different numbers or different carbon numbers, or R 13 and R 14 are bonded to each other to form an alicyclic structure, and the total number of carbon atoms of R 13 and R 14 Is 2 to 25. Moreover, n represents an integer of 1 to 3.)

なお、優れた光電変換特性を示す点から、前記R11、R12の位置がともにC817であることが好ましい。しかも、R13、R14の位置がともに下記一般式(4)に示されているようにCH3か、下記一般式(5)に示されているようにともにC49か、R13とR14との位置が下記一般式(6)に示されているように、互いに結合してシクロヘキサン構造を形成していか、あるいは、下記一般式(7)に示されているようにともにC817のいずれかであることが好ましい。特に、一般式(5)に示されているようにR13、R14の位置がともにC49であることが好ましい。
また、R13、R14の位置が芳香族基または、アルキル基置換芳香族基である場合には、フェニル基、トリル基、ナフチル基のいずれかであることが好ましい。
Incidentally, the point indicating the excellent photoelectric conversion characteristics, it is preferable that the position of the R 11, R 12 is C 8 H 17 together. Moreover, the positions of R 13 and R 14 are both CH 3 as shown in the following general formula (4), C 4 H 9 as shown in the following general formula (5), or R 13. And R 14 are bonded to each other to form a cyclohexane structure as shown in the following general formula (6), or they are both C as shown in the following general formula (7). it is preferable for 8 H 17 either. In particular, as shown in the general formula (5), it is preferable that both positions of R 13 and R 14 are C 4 H 9 .
Moreover, when the position of R < 13 >, R < 14 > is an aromatic group or an alkyl group substituted aromatic group, it is preferable that they are any of a phenyl group, a tolyl group, and a naphthyl group.

Figure 0005061286
(なお式4中の、nは1〜3の整数を表す。)
Figure 0005061286
(In formula 4, n represents an integer of 1 to 3)

Figure 0005061286
(なお式5中の、nは1〜3の整数を表す。)
Figure 0005061286
(In formula 5, n represents an integer of 1 to 3)

Figure 0005061286
(なお式6中の、nは1〜3の整数を表す。)
Figure 0005061286
(In formula 6, n represents an integer of 1 to 3.)

Figure 0005061286
(なお式7中の、nは1〜3の整数を表す。)
Figure 0005061286
(In formula 7, n represents an integer of 1 to 3)

Figure 0005061286
(なお、R31、R32は炭素数1〜10のアルキル基、R33、R34は炭素数1〜5のアルキル基でありR31、R32の炭素数は、同じであっても異なっていてもよく、R33、R34の炭素数は、同じであっても異なっていてもよい。また、nは1〜3の整数を表す。)
Figure 0005061286
(Note that R 31 and R 32 are alkyl groups having 1 to 10 carbon atoms, R 33 and R 34 are alkyl groups having 1 to 5 carbon atoms, and the carbon numbers of R 31 and R 32 are the same or different. And the carbon number of R 33 and R 34 may be the same or different, and n represents an integer of 1 to 3.)

このような増感色素を前記半導体層に担持させる方法としては、例えば、前記半導体層を多孔質に形成させて、増感色素を含有する溶液をこの多孔質半導体層に含浸させて形成させることができる。
特に、半導体層を酸化亜鉛多孔質体で形成させた場合には、前記一般式(1)〜(3)で表される増感色素をアルコール溶液として、この酸化亜鉛多孔質体に、デオキシコール酸共存下で含浸させることで光電変換効率をさらに高めることができる。
As a method for supporting such a sensitizing dye on the semiconductor layer, for example, the semiconductor layer is formed to be porous, and the porous semiconductor layer is impregnated with a solution containing the sensitizing dye. Can do.
In particular, when the semiconductor layer is formed of a zinc oxide porous body, the sensitizing dye represented by the general formulas (1) to (3) is used as an alcohol solution, and deoxychol is added to the zinc oxide porous body. The impregnation in the presence of an acid can further increase the photoelectric conversion efficiency.

前記電解質層4は、アセトニトリルとエチレンカーボネートの混合液や、メトキシプロピオニトリルなどを溶媒として、金属ヨウ素やヨウ化リチウムなどのヨウ化物からなる電解質を加えたものなどの液体電解質や、高分子ゲル電解液などの擬固体化電解質、p型半導体、ホール輸送剤などの固体電解質を用いて形成することができる。   The electrolyte layer 4 is a liquid electrolyte such as a mixture of acetonitrile and ethylene carbonate, a liquid electrolyte such as methoxypropionitrile or the like to which an electrolyte made of iodide such as metal iodine or lithium iodide is added, or a polymer gel. It can be formed using a quasi-solidified electrolyte such as an electrolytic solution, a solid electrolyte such as a p-type semiconductor and a hole transport agent.

また、このような光電変換素子を用いて太陽電池を形成することで、美観と光電変換特性に優れた太陽電池を得ることができる。
なお、本実施形態においては、増感色素を、上記材料が用いられた上記部材と組み合わせて光電変換素子に用いる場合を例に説明したが、本発明の増感色素は、上記材料が用いられた上記部材と組み合わせて光電変換素子に用いる場合にその用途を限定するものではない。
In addition, by forming a solar cell using such a photoelectric conversion element, a solar cell excellent in aesthetics and photoelectric conversion characteristics can be obtained.
In the present embodiment, the case where the sensitizing dye is used for a photoelectric conversion element in combination with the above-described member using the above-described material has been described as an example. However, the above-described material is used for the sensitizing dye of the present invention. In addition, the use thereof is not limited when used in a photoelectric conversion element in combination with the above members.

次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
(実施例1〜5、比較例1〜4)
各実施例、比較例のスクアリリウム系色素として、以下のようなものを用意した。
EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these.
(Examples 1-5, Comparative Examples 1-4)
The following were prepared as squarylium pigments for the examples and comparative examples.

Figure 0005061286
Figure 0005061286

なお、実施例1のスクアリリウム色素は、以下のように合成した。

Figure 0005061286
上記中間体1(0.049g)、中間体2(0.059g)、トルエン/n−ブタノール(v/v=1:1)混合溶媒3mLを混合し、Dean−stark管を用いて2時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール9:1の混合溶液)を用いて精製し、実施例1のスクアリリウム色素を0.016g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この実施例1のスクアリリウム色素のエタノール中での極大吸収波長は620nmであった。 In addition, the squarylium pigment | dye of Example 1 was synthesize | combined as follows.
Figure 0005061286
Intermediate 1 (0.049 g), Intermediate 2 (0.059 g), and 3 mL of toluene / n-butanol (v / v = 1: 1) mixed solvent are mixed and refluxed using a Dean-stark tube for 2 hours. Reacted. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 9: 1) to obtain 0.016 g of the squarylium dye of Example 1. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. Further, the maximum absorption wavelength of the squarylium dye of Example 1 in ethanol was 620 nm.

Figure 0005061286
Figure 0005061286

なお、実施例2のスクアリリウム色素は、以下のように合成した。

Figure 0005061286
上記中間体3(0.411g)、中間体2(0.414g)、キノリン0.1mL、トルエン/n−ブタノール(v/v=1:1)混合溶媒10mLを混合し、Dean−stark管を用いて6時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール9:1の混合溶液)を用いて精製し、実施例2のスクアリリウム色素を0.047g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この実施例2のスクアリリウム色素のエタノール中での極大吸収波長は635nmであった。 In addition, the squarylium pigment | dye of Example 2 was synthesize | combined as follows.
Figure 0005061286
The above intermediate 3 (0.411 g), intermediate 2 (0.414 g), quinoline 0.1 mL, toluene / n-butanol (v / v = 1: 1) mixed solvent 10 mL are mixed, and a Dean-stark tube is connected. And refluxed for 6 hours. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 9: 1) to obtain 0.047 g of the squarylium dye of Example 2. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. In addition, the maximum absorption wavelength of the squarylium dye of Example 2 in ethanol was 635 nm.

Figure 0005061286
Figure 0005061286

なお、実施例3のスクアリリウム色素は、以下のように合成した。

Figure 0005061286
上記中間体4(0.137g)、中間体2(0.128g)、トルエン/n−ブタノール(v/v=1:1)混合溶媒3mLを混合し、Dean−stark管を用いて2時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール9:1の混合溶液)を用いて精製し、実施例3のスクアリリウム色素を0.080g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この実施例3のスクアリリウム色素のエタノール中での極大吸収波長は623nmであった。 In addition, the squarylium pigment | dye of Example 3 was synthesize | combined as follows.
Figure 0005061286
The above intermediate 4 (0.137 g), intermediate 2 (0.128 g), and toluene / n-butanol (v / v = 1: 1) mixed solvent 3 mL are mixed and refluxed using a Dean-stark tube for 2 hours. Reacted. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 9: 1) to obtain 0.080 g of the squarylium dye of Example 3. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. Further, the maximum absorption wavelength of the squarylium dye of Example 3 in ethanol was 623 nm.

Figure 0005061286
Figure 0005061286

なお、実施例4のスクアリリウム色素は、以下のように合成した。

Figure 0005061286
上記中間体5(0.120g)、中間体2(0.124g)、トルエン/n−ブタノール(v/v=1:1)混合溶媒3mLを混合し、Dean−stark管を用いて2時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール9:1の混合溶液)を用いて精製し、実施例4のスクアリリウム色素を0.085g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この実施例4のスクアリリウム色素のエタノール中での極大吸収波長は624nmであった。 In addition, the squarylium pigment | dye of Example 4 was synthesize | combined as follows.
Figure 0005061286
The above intermediate 5 (0.120 g), intermediate 2 (0.124 g), and toluene / n-butanol (v / v = 1: 1) mixed solvent 3 mL are mixed and refluxed using a Dean-stark tube for 2 hours. Reacted. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 9: 1) to obtain 0.085 g of the squarylium dye of Example 4. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. Further, the maximum absorption wavelength of the squarylium dye of Example 4 in ethanol was 624 nm.

Figure 0005061286
Figure 0005061286

なお、実施例5のスクアリリウム色素は、以下のように合成した。

Figure 0005061286
上記中間体6(0.104g)、中間体2(0.079g)、トルエン/n−ブタノール(v/v=1:1)混合溶媒3mLを混合し、Dean−stark管を用いて2時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール9:1の混合溶液)を用いて精製し、実施例5のスクアリリウム色素を0.041g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この実施例5のスクアリリウム色素のエタノール中での極大吸収波長は625nmであった。 In addition, the squarylium pigment | dye of Example 5 was synthesize | combined as follows.
Figure 0005061286
The above intermediate 6 (0.104 g), intermediate 2 (0.079 g), and toluene / n-butanol (v / v = 1: 1) mixed solvent 3 mL are mixed and refluxed using a Dean-stark tube for 2 hours. Reacted. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 9: 1) to obtain 0.041 g of the squarylium dye of Example 5. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. Further, the maximum absorption wavelength in ethanol of the squarylium dye of Example 5 was 625 nm.

Figure 0005061286
Figure 0005061286

なお、比較例1のスクアリリウム色素は、以下のように合成した。

Figure 0005061286
上記中間体1(0.179g)、中間体7(0.261g)、キノリン0.1mL、トルエン/n−ブタノール(v/v=1:1)混合溶媒10mLを混合し、Dean−stark管を用いて5時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール9:1の混合溶液)を用いて精製し、比較例1のスクアリリウム色素を0.066g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この比較例1のスクアリリウム色素のエタノール中での極大吸収波長は621nmであった。 In addition, the squarylium pigment | dye of the comparative example 1 was synthesize | combined as follows.
Figure 0005061286
The above intermediate 1 (0.179 g), intermediate 7 (0.261 g), quinoline 0.1 mL, toluene / n-butanol (v / v = 1: 1) mixed solvent 10 mL are mixed, and a Dean-stark tube is connected. And refluxed for 5 hours. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 9: 1) to obtain 0.066 g of the squarylium dye of Comparative Example 1. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. Further, the maximum absorption wavelength in ethanol of the squarylium dye of Comparative Example 1 was 621 nm.

Figure 0005061286
Figure 0005061286

なお、比較例2のスクアリリウム色素は、以下のように合成した。

Figure 0005061286
上記中間体1(0.102g)、中間体8(0.092g)、キノリン0.1mL、トルエン/n−ブタノール(v/v=1:1)混合溶媒3mLを混合し、Dean−stark管を用いて5時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール9:1の混合溶液)を用いて精製し、比較例2のスクアリリウム色素を0.051g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この比較例2のスクアリリウム色素のエタノール中での極大吸収波長は642nmであった。 In addition, the squarylium pigment | dye of the comparative example 2 was synthesize | combined as follows.
Figure 0005061286
The above intermediate 1 (0.102 g), intermediate 8 (0.092 g), quinoline 0.1 mL, toluene / n-butanol (v / v = 1: 1) mixed solvent 3 mL are mixed, and a Dean-stark tube is connected. And refluxed for 5 hours. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 9: 1) to obtain 0.051 g of the squarylium dye of Comparative Example 2. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. Further, the maximum absorption wavelength in ethanol of the squarylium dye of Comparative Example 2 was 642 nm.

Figure 0005061286
Figure 0005061286

なお、比較例3のスクアリリウム色素は、以下のように合成した。

Figure 0005061286
上記中間体9(0.337g)、中間体2(0.414g)、キノリン0.1mL、トルエン/n−ブタノール(v/v=1:1)混合溶媒10mLを混合し、Dean−stark管を用いて5時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール9:1の混合溶液)を用いて精製し、比較例3のスクアリリウム色素を0.085g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この比較例3のスクアリリウム色素のエタノール中での極大吸収波長は630nmであった。 In addition, the squarylium pigment | dye of the comparative example 3 was synthesize | combined as follows.
Figure 0005061286
The above intermediate 9 (0.337 g), intermediate 2 (0.414 g), quinoline 0.1 mL, toluene / n-butanol (v / v = 1: 1) mixed solvent 10 mL are mixed, and a Dean-stark tube is connected. And refluxed for 5 hours. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 9: 1) to obtain 0.085 g of the squarylium dye of Comparative Example 3. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. The maximum absorption wavelength in ethanol of the squarylium dye of Comparative Example 3 was 630 nm.

Figure 0005061286
Figure 0005061286

なお、比較例4のスクアリリウム色素は、以下のように合成した。

Figure 0005061286
上記中間体1(0.587g)、化合物a(0.201g)、キノリン0.6mL、トルエン/ベンゼン(v/v=1:1)混合溶媒10mLを混合し、Dean−stark管を用いて19時間還流反応させた。反応溶液を冷却して沈澱物を得た。該沈殿物をシリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール9:1の混合溶液)を用いて精製し、比較例4のスクアリリウム色素を0.544g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認がなされている。また、この比較例4のスクアリリウム色素のエタノール中での極大吸収波長は630nmであった。 In addition, the squarylium pigment | dye of the comparative example 4 was synthesize | combined as follows.
Figure 0005061286
The above intermediate 1 (0.587 g), compound a (0.201 g), quinoline 0.6 mL, toluene / benzene (v / v = 1: 1) mixed solvent 10 mL were mixed, and 19 using a Dean-stark tube. The reaction was refluxed for an hour. The reaction solution was cooled to obtain a precipitate. The precipitate was purified using silica gel column chromatography (the developing solvent was a mixed solution of dichloromethane and methanol 9: 1) to obtain 0.544 g of the squarylium dye of Comparative Example 4. In addition, it is confirmed by identification by 1 H-NMR that the obtained dye has the above structure. Moreover, the maximum absorption wavelength in ethanol of the squarylium dye of Comparative Example 4 was 630 nm.

(光電変換素子の作成)
(光電極層の作成)
電極基材として片面にFTO電極皮膜が形成されたFTOガラスを用いて、該FTOガラスの電極面に、電析により厚さ3μmの酸化亜鉛多孔質体膜を形成した。
この酸化亜鉛多孔質体膜が形成されたFTOガラスを各実施例、比較例の増感色素溶液に1時間浸漬し光電極層を作成した。
なお、このFTOガラスには旭硝子株式会社製「SnO2導電基板:A110U80」(厚さ:1.1mm、表面抵抗9Ω/□、透過率82%)を用いた。
またこのとき、増感色素溶液としては下記の3通りのものを用いた。
増感色素溶液1:増感色素100μM/エタノール10mL
増感色素溶液2:(増感色素100μM+DCA1mM)/エタノール10mL
増感色素溶液3:(増感色素100μM+DCA0.5mM)/エタノール10mL
(DCA:デオキシコール酸)
(Creation of photoelectric conversion element)
(Create photoelectrode layer)
Using an FTO glass having an FTO electrode film formed on one side as an electrode substrate, a zinc oxide porous film having a thickness of 3 μm was formed on the electrode surface of the FTO glass by electrodeposition.
The FTO glass on which this zinc oxide porous body film was formed was immersed in the sensitizing dye solution of each example and comparative example for 1 hour to prepare a photoelectrode layer.
As this FTO glass, “SnO 2 conductive substrate: A110U80” (thickness: 1.1 mm, surface resistance 9Ω / □, transmittance 82%) manufactured by Asahi Glass Co., Ltd. was used.
At this time, the following three types of sensitizing dye solutions were used.
Sensitizing dye solution 1: Sensitizing dye 100 μM / ethanol 10 mL
Sensitizing dye solution 2: (sensitizing dye 100 μM + DCA 1 mM) / ethanol 10 mL
Sensitizing dye solution 3: (sensitizing dye 100 μM + DCA 0.5 mM) / ethanol 10 mL
(DCA: deoxycholic acid)

(電解質層の形成)
アセトニトリルとエチレンカーボネートとを体積比でアセトニトリル:エチレンカーボネート=1:4の割合で混合した溶液に、ヨウ化テトラプロピルアンモニウムとヨウ素とをヨウ化テトラプロピルアンモニウム0.5mol/L、ヨウ素0.05mol/Lとなるように混合し電解質液とした。
この電解質液を上記電極基材と同じFTOガラスを用いた対向基板と先述の光電極層との間に配し電解質層を形成させた。
(Formation of electrolyte layer)
To a solution in which acetonitrile and ethylene carbonate are mixed at a volume ratio of acetonitrile: ethylene carbonate = 1: 4, tetrapropylammonium iodide and iodine are mixed with tetrapropylammonium iodide at 0.5 mol / L and iodine at 0.05 mol / L. An electrolyte solution was prepared by mixing so as to be L.
This electrolyte solution was disposed between the counter substrate using the same FTO glass as the electrode base material and the above-mentioned photoelectrode layer, thereby forming an electrolyte layer.

(評価)
各実施例、比較例の増感色素を用いた光電変換素子(受光面積4mm×5mm)に分光計器株式会社製「CEP−2000」を用いて100mW/cm2の照射強度で光を当てて、光電変換素子の短絡電流I0(mA/cm2)と開放電圧E0(V)とを測定した。
ついで、光電変換素子の電極間に接続する抵抗値を変化させて最大電力Wmaxを観測し、フィルファクタと光電変換効率とを計算により求めた。
各実施例、比較例の増感色素を増感色素溶液1、増感色素溶液2として用いた場合のフィルファクタ(ff)、光電変換効率(η)を表1に示す。
(Evaluation)
Applying light at an irradiation intensity of 100 mW / cm 2 using a “CEP-2000” manufactured by Spectrometer Co., Ltd. to a photoelectric conversion element (light receiving area 4 mm × 5 mm) using a sensitizing dye of each example and comparative example, The short-circuit current I 0 (mA / cm 2 ) and the open circuit voltage E 0 (V) of the photoelectric conversion element were measured.
Subsequently, the maximum power Wmax was observed by changing the resistance value connected between the electrodes of the photoelectric conversion element, and the fill factor and the photoelectric conversion efficiency were obtained by calculation.
Table 1 shows the fill factor (ff) and photoelectric conversion efficiency (η) when the sensitizing dyes of Examples and Comparative Examples are used as the sensitizing dye solution 1 and the sensitizing dye solution 2.

Figure 0005061286
Figure 0005061286

表1の増感色素溶液1の結果においては、実施例1〜5の光電変換効率は、全ての比較例に対して大きな値を示し、特に実施例1や3では、比較例に対し最小で約2倍、最大で15倍以上もの光電変換効率を示した。また、増感色素溶液2、3の結果においては、実施例1〜5が、全ての比較例に対して約1.5倍以上の優れた光電変換効率を示した。   In the results of the sensitizing dye solution 1 in Table 1, the photoelectric conversion efficiencies of Examples 1 to 5 show large values for all the comparative examples, and in Examples 1 and 3, the photoelectric conversion efficiency is the smallest for the comparative examples. The photoelectric conversion efficiency was about twice, and a maximum of 15 times or more. Moreover, in the result of the sensitizing dye solutions 2 and 3, Examples 1-5 showed the outstanding photoelectric conversion efficiency of about 1.5 times or more with respect to all the comparative examples.

このことからも前記式(1)〜(3)の構造を有するスクアリリウム系増感色素は、従来のスクアリリウム系色素に比べて光電変換効率において優れたものとさせ得ることがわかる。特に、前記式(5)の構造を有するスクアリリウム系増感色素は、光電変換効率において優れていることがわかる。
したがって、増感色素を前記式(1)〜(3)の構造とすることで、従来の青色系増感色素に比べて光電変換特性の向上された青色系増感色素とし得ることがわかる。
This also shows that the squarylium-based sensitizing dye having the structures of the above formulas (1) to (3) can be made superior in photoelectric conversion efficiency as compared with the conventional squarylium-based dye. In particular, it can be seen that the squarylium-based sensitizing dye having the structure of the formula (5) is excellent in photoelectric conversion efficiency.
Therefore, it turns out that it can be set as the blue sensitizing dye by which the photoelectric conversion characteristic was improved compared with the conventional blue sensitizing dye by making a sensitizing dye into the structure of said Formula (1)-(3).

一実施形態の色素増感型光電変換素子を示す部分断面図。The fragmentary sectional view which shows the dye-sensitized photoelectric conversion element of one Embodiment.

符号の説明Explanation of symbols

1:光電極層、2:電極基材、3:第一の導電性皮膜、4:電解質層、5:第二の導電性皮膜、6:対向基板、10:色素増感型光電変換素子   1: photoelectrode layer, 2: electrode base material, 3: first conductive film, 4: electrolyte layer, 5: second conductive film, 6: counter substrate, 10: dye-sensitized photoelectric conversion element

Claims (6)

色素増感型光電変換素子に用いられ、下記一般式(1)で表される構造を有していることを特徴とする増感色素。
Figure 0005061286
(なお、R11、R12は炭素数1〜10のアルキル基であり、R11、R12の炭素数は、同じであっても異なっていてもよい。R13、R14は、同じ炭素数あるいは異なる炭素数を有するアルキル基がそれぞれ独立しているか、R13、R14が互いに結合して脂環族構造を形成しているかのいずれかであり、R13、R14の合計炭素数は、2〜25である。また、nは1〜3の整数を表す。)
A sensitizing dye that is used in a dye-sensitized photoelectric conversion element and has a structure represented by the following general formula (1) .
Figure 0005061286
(Note that R 11 and R 12 are alkyl groups having 1 to 10 carbon atoms, and the carbon numbers of R 11 and R 12 may be the same or different. R 13 and R 14 are the same carbon. The alkyl groups having different numbers or different carbon numbers, or R 13 and R 14 are bonded to each other to form an alicyclic structure, and the total number of carbon atoms of R 13 and R 14 Is 2 to 25. Moreover, n represents an integer of 1 to 3.)
色素増感型光電変換素子に用いられ、下記一般式(2)で表される構造を有していることを特徴とする増感色素。
Figure 0005061286
(なお、R21、R22は炭素数1〜10のアルキル基、R23、R24は炭素数1〜5のアルキル基でありR21、R22の炭素数は、同じであっても異なっていてもよく、R23、R24の炭素数は、同じであっても異なっていてもよい。また、nは1〜3の整数を表す。)
A sensitizing dye that is used in a dye-sensitized photoelectric conversion element and has a structure represented by the following general formula (2) .
Figure 0005061286
(Note that R 21 and R 22 are alkyl groups having 1 to 10 carbon atoms, R 23 and R 24 are alkyl groups having 1 to 5 carbon atoms, and the carbon numbers of R 21 and R 22 are the same or different. And the carbon number of R 23 and R 24 may be the same or different, and n represents an integer of 1 to 3.)
色素増感型光電変換素子に用いられ、下記一般式(3)で表される構造を有していることを特徴とする増感色素。
Figure 0005061286
(なお、R31、R32は炭素数1〜10のアルキル基、R33、R34は炭素数1〜5のアルキル基でありR31、R32の炭素数は、同じであっても異なっていてもよく、R33、R34の炭素数は、同じであっても異なっていてもよい。また、nは1〜3の整数を表す。)
A sensitizing dye which is used in a dye-sensitized photoelectric conversion element and has a structure represented by the following general formula (3) .
Figure 0005061286
(Note that R 31 and R 32 are alkyl groups having 1 to 10 carbon atoms, R 33 and R 34 are alkyl groups having 1 to 5 carbon atoms, and the carbon numbers of R 31 and R 32 are the same or different. And the carbon number of R 33 and R 34 may be the same or different, and n represents an integer of 1 to 3.)
請求項1乃至3のいずれかに記載の増感色素が用いられてなる光電極層を備えていることを特徴とする色素増感型光電変換素子。   A dye-sensitized photoelectric conversion element comprising a photoelectrode layer in which the sensitizing dye according to claim 1 is used. 前記光電極層が、請求項1乃至3のいずれかに記載の増感色素を含有するアルコール溶液がデオキシコール酸共存下で酸化亜鉛多孔質体に含浸されて形成されている請求項4に記載の色素増感型光電変換素子。   5. The photoelectrode layer is formed by impregnating a porous zinc oxide with an alcohol solution containing the sensitizing dye according to any one of claims 1 to 3 in the presence of deoxycholic acid. Dye-sensitized photoelectric conversion element. 請求項4または5に記載の色素増感型光電変換素子が用いられてなることを特徴とする色素増感型太陽電池。   A dye-sensitized solar cell, wherein the dye-sensitized photoelectric conversion element according to claim 4 or 5 is used.
JP2006014605A 2005-09-06 2006-01-24 Sensitizing dye used for dye-sensitized photoelectric conversion element and solar cell using the sensitizing dye Active JP5061286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014605A JP5061286B2 (en) 2005-09-06 2006-01-24 Sensitizing dye used for dye-sensitized photoelectric conversion element and solar cell using the sensitizing dye

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005258036 2005-09-06
JP2005258036 2005-09-06
JP2006014605A JP5061286B2 (en) 2005-09-06 2006-01-24 Sensitizing dye used for dye-sensitized photoelectric conversion element and solar cell using the sensitizing dye

Publications (2)

Publication Number Publication Date
JP2007103338A JP2007103338A (en) 2007-04-19
JP5061286B2 true JP5061286B2 (en) 2012-10-31

Family

ID=38030062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014605A Active JP5061286B2 (en) 2005-09-06 2006-01-24 Sensitizing dye used for dye-sensitized photoelectric conversion element and solar cell using the sensitizing dye

Country Status (1)

Country Link
JP (1) JP5061286B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5156271B2 (en) * 2006-12-20 2013-03-06 国立大学法人岐阜大学 Sensitizing dye used for dye-sensitized photoelectric conversion element and solar cell using the sensitizing dye
JP5285873B2 (en) * 2007-06-15 2013-09-11 国立大学法人岐阜大学 Sensitizing dye used in dye-sensitized photoelectric conversion element, dye-sensitized photoelectric conversion element using the sensitizing dye, and solar cell using the dye-sensitized photoelectric conversion element
JPWO2022230625A1 (en) * 2021-04-26 2022-11-03

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058891A (en) * 1998-08-11 2000-02-25 Fuji Photo Film Co Ltd Electrolyte, electrolyte for photoelectric chemical cell, photoelectric chemical battery and pyridinium compound
JP2000228233A (en) * 1999-02-04 2000-08-15 Fuji Photo Film Co Ltd Pigment adsorbing semiconductor fine grain, pigment adsorbing method to semiconductor fine grain, optoelectronic transducer element and optoelectronic chemical cell
JP2000235874A (en) * 1999-02-15 2000-08-29 Fuji Photo Film Co Ltd Photoelectric conversion element and photo electrochemical battery
JP4999334B2 (en) * 2005-02-28 2012-08-15 住友化学株式会社 Dye compound, photoelectric conversion element and photoelectrochemical cell using the compound

Also Published As

Publication number Publication date
JP2007103338A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
KR100696529B1 (en) Electrode for photoelectric conversion device including metal elements and dye sensitized solar cell using the same
CN101235214B (en) Organic ruthenium dye and dye sensitization solar battery
US7790980B2 (en) Dye for dye sensitized photovoltaic cell and dye sensitized photovoltaic cell prepared using the same
JP5171810B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
US9419318B2 (en) Method of producing photoelectric conversion element, photoelectric conversion element and photoelectrochemical cell
JP4945873B2 (en) Semiconductor for photoelectric conversion material, photoelectric conversion element and solar cell
JP6224003B2 (en) Photoelectric conversion element
JP5055638B2 (en) Sensitizing dye used for dye-sensitized photoelectric conversion element and dye-sensitized solar cell using the sensitizing dye
JP5285873B2 (en) Sensitizing dye used in dye-sensitized photoelectric conversion element, dye-sensitized photoelectric conversion element using the sensitizing dye, and solar cell using the dye-sensitized photoelectric conversion element
JP5156271B2 (en) Sensitizing dye used for dye-sensitized photoelectric conversion element and solar cell using the sensitizing dye
WO2005024992A1 (en) Electrolyte composition and photoelectric converter using same
US8680336B2 (en) Dyes for dye sensitized solar cell
JP5061286B2 (en) Sensitizing dye used for dye-sensitized photoelectric conversion element and solar cell using the sensitizing dye
JP2009076369A (en) Dye-sensitized solar cell
US7910821B2 (en) Photoelectrode of dye-sensitized solar cell containing glass powder
JP4420645B2 (en) Low temperature organic molten salt, photoelectric conversion element and photovoltaic cell
JP5702394B2 (en) Additive for electrolyte composition, electrolyte composition using this additive, and dye-sensitized solar cell
TW201238968A (en) Metal complex dye composition, photoelectric transducing element and photoelectrochemical cell, and method for preparing metal complex dye
EP2683019B1 (en) Dye-sensitized solar cell for low light intensities
JP2013122875A (en) Photoelectric conversion element, method for manufacturing the same, counter electrode for photoelectric conversion element, electronic device, and building
WO2018061983A1 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and oxide semiconductor electrode
JP2013122874A (en) Photoelectric conversion element, method for manufacturing the same, electronic device, counter electrode for photoelectric conversion element, and building
KR20110032490A (en) The dye for dye-sensitized solar cells and dye-sensitized solar cells of applying the same
KR20100058996A (en) Dye-sensitized solar cells using the dye
JP2003022846A (en) Photoelectric transducing element and photochemical battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5061286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250