JP5059458B2 - Conductive powder, conductive paste, conductive sheet, circuit board and electronic component mounting circuit board - Google Patents

Conductive powder, conductive paste, conductive sheet, circuit board and electronic component mounting circuit board Download PDF

Info

Publication number
JP5059458B2
JP5059458B2 JP2007076945A JP2007076945A JP5059458B2 JP 5059458 B2 JP5059458 B2 JP 5059458B2 JP 2007076945 A JP2007076945 A JP 2007076945A JP 2007076945 A JP2007076945 A JP 2007076945A JP 5059458 B2 JP5059458 B2 JP 5059458B2
Authority
JP
Japan
Prior art keywords
powder
conductive
conductive powder
particles
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007076945A
Other languages
Japanese (ja)
Other versions
JP2008235198A5 (en
JP2008235198A (en
Inventor
豊治 永野
欽司 大野
尚子 ▲くわ▼島
Original Assignee
アルファーサイエンティフィック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルファーサイエンティフィック株式会社 filed Critical アルファーサイエンティフィック株式会社
Priority to JP2007076945A priority Critical patent/JP5059458B2/en
Publication of JP2008235198A publication Critical patent/JP2008235198A/en
Publication of JP2008235198A5 publication Critical patent/JP2008235198A5/ja
Application granted granted Critical
Publication of JP5059458B2 publication Critical patent/JP5059458B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、導電或いは熱伝導などに使用される導電粉、導電ペースト、導電シートあるいは導電ペーストを使用した回路板および電子部品実装回路板に関する。   The present invention relates to a conductive powder, a conductive paste, a conductive sheet or a circuit board using a conductive paste used for conductivity or heat conduction, and an electronic component mounting circuit board.

従来、電気及び熱伝導に使用される導電ペーストや導電シートは、球状若しくは略球状粒子やフレーク状粒子などを組み合わせた導電粉が使用されていた。(例えば、非特許文献1参照)。特に高導電性或いは高熱伝導性が要求される分野では、金粉、銀粉、銅粉、アルミニウム粉、パラジウム粉又はこれらの合金粉が導電粉として用いられており、導電性や熱伝導性を高くするために、導電粉の配合量を高くしていた。   Conventionally, conductive powders combined with spherical or substantially spherical particles or flaky particles have been used as conductive pastes and conductive sheets used for electricity and heat conduction. (For example, refer nonpatent literature 1). In particular, in fields where high conductivity or high thermal conductivity is required, gold powder, silver powder, copper powder, aluminum powder, palladium powder or alloy powders thereof are used as conductive powder to increase conductivity and thermal conductivity. For this reason, the blending amount of the conductive powder has been increased.

上記の非特許文献1に記載されている高充填化導電粉を作製する方法は、大小の球状粒子を組み合わせて、これを均一混合する方法であり、鱗片状粒子と球状粒子あるいは塊状粒子を組み合わせることで高充填化導電粉を得ることについては記述されていない。また、球状粒子を規則的に配列させ、さらに異なる粒径の球状粒子を組み合わせることで、理論的には80%以上の相対充填密度が得られると記載されている。しかし、市販されている球状の銀粉は、粒子が一部凝集しており、粒径が5〜20μmの銀粉では、その相対充填密度は約60%前後であり、粒径が1μm前後の銀粉では相対充填密度は高くても50%前後であり、これらを混合しても、相対充填密度は60%前後にとどまる。
日刊工業新聞社刊 粉体工学会編 粉体工学便覧 初版1刷 昭和61年2月号(第101〜107頁)
The method for producing the highly filled conductive powder described in Non-Patent Document 1 is a method in which large and small spherical particles are combined and uniformly mixed, and the scaly particles and spherical particles or massive particles are combined. There is no description about obtaining highly filled conductive powder. Further, it is described that a relative packing density of 80% or more is theoretically obtained by arranging spherical particles regularly and further combining spherical particles having different particle diameters. However, the spherical silver powder that is commercially available has some aggregated particles. The silver powder having a particle size of 5 to 20 μm has a relative packing density of about 60%, and the silver powder having a particle size of about 1 μm. The relative packing density is about 50% at the highest, and even if they are mixed, the relative packing density remains around 60%.
Nikkan Kogyo Shimbun Co., Ltd., Powder Engineering Society Edition, Powder Engineering Handbook, First Edition, 1st Edition, February 1986 (Pages 101-107)

一般的に導電シートを使用して発熱するICチップを接着する場合、熱伝導性や接着力を高める必要がある。そのため、従来この用途に使用する導電ペーストでは、導電粉の配合量を高くして導電性を高めていた。しかし、通常の導電粉の場合、配合量を高くすると導電性ペーストの粘度が高くなり印刷性などのパターン形成性が悪化してしまう。一方、導電ペースト中のバインダの比率を高くすると粘度が低くなりパターン形成性は向上するが、導電性が悪化してしまうという欠点が生じる。   In general, when an IC chip that generates heat is bonded using a conductive sheet, it is necessary to increase thermal conductivity and adhesive strength. Therefore, in the past, the conductive paste used for this purpose has been increased in conductivity by increasing the blending amount of the conductive powder. However, in the case of a normal conductive powder, if the blending amount is increased, the viscosity of the conductive paste is increased and pattern forming properties such as printability are deteriorated. On the other hand, when the ratio of the binder in the conductive paste is increased, the viscosity is decreased and the pattern formability is improved, but there is a disadvantage that the conductivity is deteriorated.

また、導電ペーストを熱伝導性接着剤として使用し、貫層方向の熱伝導性を高くする場合、導電粉が球状粒子のみからなるペーストでも導電粉の充填密度が低いと、熱伝導率も低くなってしまう欠点があった。   In addition, when conductive paste is used as a heat conductive adhesive to increase the thermal conductivity in the penetration direction, even if the conductive powder is a paste made only of spherical particles, if the packing density of the conductive powder is low, the thermal conductivity is also low. There was a drawback that would become.

これらの用途に球状導電粉を使用すると、粒子が球であるため、電気電導的或いは熱伝導的に、接続する平面との接触が点接触になり、粒子と平面との接触効率が悪かった。これを回避するために粒子形状を鱗片状にすると、ペーストの粘度が上昇し易く、ペーストの印刷性が悪くなる欠点があった。また基材上に形成したペースト中の鱗片状の導電粒子が、印刷中にペーストの粘性挙動により、その鱗片状の面を基材のZ軸(導通方向)に対して垂直に配向しやすいため、Z軸方向の導電性や熱伝導性が予想より大幅に低くなる欠点も生じる。   When spherical conductive powder is used in these applications, the particles are spheres, so that contact with the plane to be connected becomes point contact due to electrical conductivity or thermal conductivity, and the contact efficiency between the particles and the plane is poor. In order to avoid this, if the particle shape is scale-like, the viscosity of the paste tends to increase, and the printability of the paste becomes poor. Also, the scale-like conductive particles in the paste formed on the base material tend to orient the scale-like surface perpendicular to the Z-axis (conducting direction) of the base material due to the viscous behavior of the paste during printing. Also, there is a disadvantage that the conductivity and thermal conductivity in the Z-axis direction are significantly lower than expected.

また、これら球状の導電粉を使用すると、粒子層をプレスなどで押し潰した場合、等方的に圧力が加わり、粒子同士が相互に滑りやすく、導電粉のしめる体積が減少してしまい、粒子同士が強く押しつけられにくくなる欠点もあった。このような問題を回避するには、導電粉の充填されやすさを測定する方法が必要で、流動しながら充填される状態に対応する特性としてタップ密度をその尺度にすることは適するが、導電粉層を押しつけたり、プレスして使用する用途の場合、タップ密度で判断することは必ずしも適切ではない。したがって、タップ密度以外に、導電粉のつまり易さあるいは限界までつめた時の充填状態を把握する尺度が有用と考えた。   Also, when these spherical conductive powders are used, when the particle layer is crushed by a press or the like, isotropic pressure is applied, the particles are slidable with each other, and the volume of the conductive powder is reduced. There was also a drawback that it was difficult to press against each other. In order to avoid such problems, it is necessary to have a method for measuring the ease with which conductive powder is filled, and it is suitable to measure the tap density as a characteristic corresponding to the state of filling while flowing, but the conductive In the case of an application in which the powder layer is pressed or pressed, it is not always appropriate to judge based on the tap density. Therefore, in addition to the tap density, it was considered that a measure for grasping the filling state when the conductive powder was clogged to the limit or the limit was useful.

また銀粉を導電粉として使用すると、導電性は良好であるが、耐マイグレーション性が悪く、金粉、パラジウム粉、或いは銀パラジウム合金粉を使用すると、耐マイグレーション性は良好であるが、銀粉使用に比べて、コストが大幅に高くなる欠点がある。   In addition, when silver powder is used as conductive powder, the conductivity is good, but migration resistance is poor, and when gold powder, palladium powder, or silver palladium alloy powder is used, migration resistance is good, but compared to using silver powder. Therefore, there is a drawback that the cost is significantly increased.

さらに、導電性ペーストを導電性接着剤として使用する場合、自動機で注射器状のシリンジを押して導電性接着剤を所望の位置に所望量供給し、次いで別の位置に移動して、繰り返しシリンジから供給することが行われている。この場合、導電性接着剤のチキソ性が低いと、ペーストが糸引き状態になり、不要な部分に導電性接着剤を塗布してしまう問題点も起こる。   Furthermore, when using a conductive paste as a conductive adhesive, the syringe-like syringe is pushed by an automatic machine to supply a desired amount of the conductive adhesive to a desired position, then moved to another position, and repeatedly from the syringe. Supply is done. In this case, if the thixotropy of the conductive adhesive is low, the paste is in a stringing state, and there is a problem that the conductive adhesive is applied to unnecessary portions.

一般に、導電性接着剤のチキソ性を高くするには、微粉の鱗片状粒子を併用している。しかし、鱗片状の微粉粒子を併用すると微粒子が凝集しているため、これを添加したペーストでは、粘度上昇が大きく、高充填化された導電性接着剤が製造できないという欠点があった。また充填密度の低い混合導電粉を使用してペーストを製造する場合、混合導電粉を高い含有率で含有するペーストを製造しようとしても、バインダに混合導電粉を添加すると粘度が極めて高いぼさぼさの状態になり、3本ロールミル、らいかい機等の混合・分散装置を使用してもその粘度が高すぎて、ぼさぼさ状態となってしまう。このため、分散させてペーストにすることができないという問題点がある。   In general, in order to increase the thixotropy of the conductive adhesive, fine flaky particles are used in combination. However, when scale-like fine powder particles are used in combination, the fine particles are aggregated. Therefore, the paste to which these particles are added has a disadvantage that the viscosity increase is large and a highly filled conductive adhesive cannot be produced. In addition, when manufacturing a paste using mixed conductive powder with a low packing density, even when trying to manufacture a paste containing a high content of mixed conductive powder, adding mixed conductive powder to the binder causes the viscosity to be extremely high. Even if a mixing / dispersing device such as a three-roll mill or a raking machine is used, the viscosity is too high and the state becomes rugged. For this reason, there is a problem that it cannot be dispersed to form a paste.

塊状もしくは低アスペクト比の略鱗片状の大粒子及び小粒子からなる導電粉を作製するには、粒径の大きな塊状、略球状粒子を弱く粉砕して塊状もしくは低アスペクト比の略鱗片状の大粒子を作製し、これとは別に粒径の小さい塊状あるいは略球状粒子の凝集を解粒したのち、塊状もしくは鱗片状に加工した小粒子を作製し、両者を所望の比率で混合する方法によって作製していたが、大粒子と小粒子を別個に作製し、両者を混合するという手間のかかる欠点を有していた。また、小粒子の製造が難しい場合には、大きい粒子と小さい粒子からなる混合粉を分級して小さい粒子を回収する方法で製造されるため、この場合には小さい粒子のコストが高くなる欠点もあった。   In order to produce a conductive powder composed of large particles or small particles having a large scale or low aspect ratio, large particles having a large particle size or a substantially spherical particle are weakly pulverized to roughly form large particles having a large particle shape or a low aspect ratio. Separately, after agglomeration of agglomerated small particles or nearly spherical particles, the small particles processed into a lump or scaly shape are produced, and both are mixed in the desired ratio. However, it has the trouble of making the large particles and the small particles separately and mixing them. In addition, when it is difficult to produce small particles, it is produced by a method of classifying a mixed powder consisting of large particles and small particles and collecting small particles. In this case, there is a disadvantage that the cost of the small particles is increased. there were.

またフィルムなどの基材上に所望の回路パターンを形成し、この回路パターン上にチップ部品を接続する場合、回路パターンを予め形成し、この回路パターン上に導電性接着剤を塗布した後、その導電性接着剤を介してチップ部品を接続するため、工程が増える欠点があった。また、導電性接着剤の供給位置のずれや、回路パターンの段差などに起因する滲みが起きるなどの欠点もあった。   When a desired circuit pattern is formed on a substrate such as a film and chip components are connected on the circuit pattern, the circuit pattern is formed in advance, and after applying a conductive adhesive on the circuit pattern, Since chip components are connected via a conductive adhesive, there is a drawback that the number of processes increases. In addition, there are disadvantages such as deviation of the supply position of the conductive adhesive and bleeding due to a step of the circuit pattern.

このような情況のもと、本発明者は、上記課題を解決するために鋭意検討した結果、以下の構成要件により、本発明を完成するに至った。
[1] 多面体形状粒子および略鱗片状粒子からなる分散導電粉、および塊状微粉を含み、かつプレス密度が80%乃至99.5%の金粉、白金粉、パラジウム粉、銀粉、銅粉、銀めっき銅粉、アルミニウム粉およびこれらの合金粉からなる導電粉。
[2] [1]の導電粉とバインダとを含むことを特徴とする導電ペースト。
[3] ペースト中の前記導電粉が95乃至99.5重量%の範囲にあり、バインダが0.5乃至5重量%の範囲にある[2]の導電ペースト。
[4] バインダが熱軟化性樹脂であり、常温常圧下で接着性を有する[2]または[3]の導電ペースト。
[5] [1]の導電粉とバインダとを含む導電シート。
[6] シート中の前記導電粉が95乃至99.5重量%の範囲にあり、バインダが0.5乃至5重量%の範囲にある[5]の導電シート。
[7] バインダが熱軟化性であり、常温常圧下で接着性を有する[5]または[6]の導電シート。
[8] [2]〜[4]の導電ペーストで基材の上に所望の回路パターンが形成されてなる回路板。
[9] 回路パターンが複数形成されてなり、基材上に形成された該回路パターン間が接続されてなる[8]の回路板。
[10] [2]〜[4]の導電ペーストで基材の上に所望の回路パターンが形成されてなり、かかる基材上に形成された回路パターンの一部を介して電子部品が接続されてなる電子部品実装回路板。
[11]回路パターンが複数形成されてなり、基材上に形成された該回路パターン間が接続されてなる[10]の電子部品実装回路板。
Under such circumstances, the present inventor has intensively studied to solve the above-mentioned problems, and as a result, has completed the present invention with the following constitutional requirements.
[1] Gold powder, platinum powder, palladium powder, silver powder, copper powder, silver plating containing a dispersed conductive powder composed of polyhedral particles and substantially scaly particles, and bulk fine powder, and having a press density of 80% to 99.5% Conductive powder composed of copper powder, aluminum powder and alloy powder thereof.
[2] A conductive paste comprising the conductive powder of [1] and a binder.
[3] The conductive paste according to [2], wherein the conductive powder in the paste is in the range of 95 to 99.5% by weight and the binder is in the range of 0.5 to 5% by weight.
[4] The conductive paste according to [2] or [3], wherein the binder is a thermosoftening resin and has adhesiveness at normal temperature and pressure.
[5] A conductive sheet comprising the conductive powder of [1] and a binder.
[6] The conductive sheet according to [5], wherein the conductive powder in the sheet is in the range of 95 to 99.5% by weight and the binder is in the range of 0.5 to 5% by weight.
[7] The conductive sheet according to [5] or [6], wherein the binder is heat-softening and has adhesiveness at normal temperature and pressure.
[8] A circuit board in which a desired circuit pattern is formed on a substrate with the conductive paste of [2] to [4].
[9] The circuit board according to [8], wherein a plurality of circuit patterns are formed, and the circuit patterns formed on the substrate are connected.
[10] A desired circuit pattern is formed on a substrate with the conductive paste of [2] to [4], and an electronic component is connected via a part of the circuit pattern formed on the substrate. Electronic component mounting circuit board.
[11] The electronic component mounting circuit board according to [10], wherein a plurality of circuit patterns are formed, and the circuit patterns formed on the substrate are connected.

なお、本発明で使用される高いプレス密度を有する導電粉は従来知られていなかった。   In addition, the electroconductive powder which has the high press density used by this invention was not known conventionally.

本発明の導電粉は、プレス密度が高いという特性を有する。このため、少量のバインダで、高比率の導電粉を含む導電ペーストや導電シートを形成できる。またバインダ量を少なく制限した該導電ペーストで形成した回路パターンは、導電性が良く、プレスすることでさらに導電性が高くなる特性を有する。   The conductive powder of the present invention has a characteristic that the press density is high. For this reason, a conductive paste or conductive sheet containing a high proportion of conductive powder can be formed with a small amount of binder. In addition, a circuit pattern formed with the conductive paste in which the amount of the binder is limited is good in conductivity, and has a characteristic that the conductivity becomes higher when pressed.

また、バインダ自体に接着性を示すものを使用しているので、基材上に形成した回路そのものが接着性を示し、該回路上に直接チップ部品等を導電接続することが出来る。このため、本発明によれば回路形成とチップ部品の接着剤塗布を同時に行うことが可能となり、工程が簡略化できる。また複数の回路形成基板の層間接続と、最表面の回路形成も同時に行うことができるので、工程の簡略化も可能である。   In addition, since the binder itself is used that exhibits adhesiveness, the circuit itself formed on the base material exhibits adhesiveness, and the chip components and the like can be directly conductively connected to the circuit. For this reason, according to the present invention, it is possible to simultaneously perform circuit formation and adhesive application of chip parts, and the process can be simplified. Further, since the interlayer connection of a plurality of circuit formation substrates and the formation of the outermost circuit can be simultaneously performed, the process can be simplified.

また、前記導電粉は、密に充填しやすいので、均一なバインダ溶液をあらかじめ作製しておき、これに導電粉を添加して短時間混合するだけで、導電粉が均一に分散されている導電ペーストが作製可能であり、これをシート上に印刷あるいは塗布することで平面状の導電シートが簡便に作製できる。   In addition, since the conductive powder is easily packed densely, the conductive powder is uniformly dispersed simply by preparing a uniform binder solution in advance, adding the conductive powder to this, and mixing for a short time. A paste can be produced, and a planar conductive sheet can be easily produced by printing or coating the paste on the sheet.

導電性の微粒子は変形しやすく、かつ凝集しやすい欠点を有するため、凝集を解粒するために長時間の混合が必要になり、特に柔らかい銀などの微粉が変形してしまう。このため再現性良く導電ペーストを作製することが困難であり、粘度、色調、導電性などの特性がばらつきやすいという欠点もあったが、本発明の導電性ペーストは、短い混合時間で製造されるので、微粒子や小粒子の変形を最小限に抑制されている。このため、高い導電性を保持できる。   Since the conductive fine particles are easily deformed and have the disadvantage of being easily agglomerated, mixing for a long time is necessary to break up the agglomeration, and fine powder such as soft silver is particularly deformed. For this reason, it is difficult to produce a conductive paste with good reproducibility, and there are drawbacks in that the properties such as viscosity, color tone, and conductivity are likely to vary, but the conductive paste of the present invention is manufactured in a short mixing time. Therefore, the deformation of fine particles and small particles is suppressed to the minimum. For this reason, high conductivity can be maintained.

また凹凸を有する金属表面とシリコン基板などを導電ペーストで接着する場合、金属板表面の細かい凹凸に、前記導電粉が密に充填されるため、接触効率が高くなり、導電性や熱伝導性が高くなる。   In addition, when a metal surface having irregularities and a silicon substrate are bonded with a conductive paste, the conductive powder is densely filled into fine irregularities on the surface of the metal plate, so that the contact efficiency is increased, and the conductivity and thermal conductivity are improved. Get higher.

以下、本発明を実施するための最良の形態について説明する。
[導電粉]
本発明の導電粉は、プレス密度が80%乃至99.5%のプレス密度が80%乃至99.5%の金粉、白金粉、パラジウム粉、銀粉、銅粉、銀めっき銅粉、アルミニウム粉およびこれらの合金粉である。
Hereinafter, the best mode for carrying out the present invention will be described.
[Conductive powder]
The conductive powder of the present invention has a press density of 80% to 99.5%, a press density of 80% to 99.5%, a gold powder, a platinum powder, a palladium powder, a silver powder, a copper powder, a silver-plated copper powder, an aluminum powder, These alloy powders.

本発明の導電粉のプレス密度は、80%乃至99.5%であり、好ましくは85%乃至99.5%である。プレス密度がこの範囲の場合、バインダ量を少なくしても印刷可能な導電ペーストや、導電シートを作製することが容易にできる。   The press density of the conductive powder of the present invention is 80% to 99.5%, preferably 85% to 99.5%. When the press density is within this range, it is possible to easily produce a printable conductive paste or conductive sheet even if the binder amount is reduced.

本発明の導電粉は、プレス密度が80%乃至99.5%の導電粉であり、好ましくはプレス密度が85%乃至99.5%である。プレス密度がこの範囲の場合、バインダ量を少なくしても印刷可能な導電ペーストを作製することが容易にできる。   The conductive powder of the present invention is a conductive powder having a press density of 80% to 99.5%, and preferably has a press density of 85% to 99.5%. When the press density is within this range, it is possible to easily produce a printable conductive paste even if the binder amount is reduced.

導電粉としては、金粉、白金粉、パラジウム粉、銀粉、銅粉、これらの合金粉や、銀めっき銅粉、あるいはこれらの加工粉が使用され、本発明では、パラジウム粉、銀粉、銅粉、銀めっき銅粉、アルミニウム粉が好適である。   As the conductive powder, gold powder, platinum powder, palladium powder, silver powder, copper powder, alloy powder thereof, silver-plated copper powder, or processed powder thereof is used. In the present invention, palladium powder, silver powder, copper powder, Silver-plated copper powder and aluminum powder are suitable.

導電性や熱伝導性を生かした導電ペーストあるいは導電シートなどに使用する場合には、これらの導電粉が単独で、あるいは組み合わされて使用される。本発明のプレス密度が所定の範囲にある導電粉は、多面体形状粒子及び略鱗片状粒子からなる分散導電粉と、塊状の微粉の組み合わせが好ましく、一部凝集した塊状あるいはフレーク状の微粉が併用されていてもよい。このような場合導電粉同士あるいは導電ペーストと被接着物を接着する際に、導電粉と被接着物表面の接触状態を良好に出来るので好適である。 When used for a conductive paste or a conductive sheet that takes advantage of conductivity and thermal conductivity, these conductive powders are used alone or in combination. The conductive powder having a press density in the predetermined range of the present invention is preferably a combination of a dispersed conductive powder composed of polyhedral particles and substantially scaly particles, and a lump of fine particles, and a combination of partially agglomerated lump or flakes. May be. In such a case, when the conductive powder or the conductive paste and the adherend are bonded, the contact state between the conductive powder and the adherend surface can be improved, which is preferable.

本発明において、略単分散されているとは、粒子の凝集の大部分が解粒されている状態を示す。多面体形状粒子とは表面が微小平面からなる多面体や、複数の平面及び曲面からなる多面体や、立方体もしくは直方体に近似できる多面体をいう。   In the present invention, being substantially monodispersed indicates a state in which most of the aggregated particles are pulverized. Polyhedron-shaped particles refer to polyhedrons whose surfaces are minute planes, polyhedrons composed of a plurality of planes and curved surfaces, and polyhedrons that can approximate a cube or a rectangular parallelepiped.

このような多面体形状粒子は、球状粒子や略球状粒子及びティアードロップ状などの原料導電粉を、ビーズと一緒に回転流動させるなどの方法でそれらの粒子の凝集を解粒すると共に、形状加工することで得られる。略単分散された粒径の大きい導電粉とこれより粒径が小さく、凝集が大半解粒されている導電粉を組み合わせることで高いプレス密度が実現できる。また導電粉には、一部凝集している微粉を含んでいてもよい。導電粉の大きさは用途に応じて選択されるが、スクリーン印刷法で回路を形成する目的で使用する場合には、大きい粒子の平均粒径が約30μm以下が好ましく、20μm以下がより好ましい。なお、大きい粒子のみからなる場合、プレス密度が低くなり、少ないバインダでペーストにするとスムースな印刷ができないことがある。   Such polyhedral particles are pulverized and processed into shapes by agglomeration of raw conductive particles such as spherical particles, substantially spherical particles, and teardrop particles together with beads. Can be obtained. A high press density can be realized by combining a substantially monodispersed conductive powder having a large particle size and a conductive powder having a smaller particle size and agglomerated most of the particles. Moreover, the conductive powder may contain fine powder that is partially agglomerated. The size of the conductive powder is selected according to the application, but when used for the purpose of forming a circuit by a screen printing method, the average particle size of the large particles is preferably about 30 μm or less, more preferably 20 μm or less. In addition, when it consists only of large particle | grains, a press density becomes low, and when it is made a paste with few binders, smooth printing may be unable to be performed.

このため、略単分散した大きい粒子と略単分散の小さい粒子を組み合わせ、プレス密度が前記範囲にある導電粉は、少ないバインダでペースト化が可能であり、しかも、スムースに印刷できる。   For this reason, the conductive powder having a press density in the above-described range by combining substantially monodispersed large particles and small monodispersed particles can be made into a paste with a small amount of binder, and can be printed smoothly.

塊状またはフレーク状の微粉の粒径は、接触性を改良する用途に使用する場合、平均粒径が2μm以下、好ましくは1.5μm以下、さらに好ましくは1μm以下の微粉を併用することが望ましく、数十nmレベルあるいは百nmレベルのナノ粒子を併用してもよい。これらのナノ粒子を併用する場合には、あらかじめナノ粒子をバインダに添加し、均一に分散した後導電粉を添加する方法で作製するとナノ粒子と導電粉が均一混合し易い。特にスラリー状のナノ粒子を使用する場合にはこの混合方法が好適である。   The particle size of the lumpy or flaky fine powder is desirably used in combination with fine powder having an average particle size of 2 μm or less, preferably 1.5 μm or less, more preferably 1 μm or less, when used for applications that improve contactability. You may use together the nanoparticle of several tens nm level or a hundred nm level. When these nanoparticles are used in combination, it is easy to uniformly mix the nanoparticles and the conductive powder if the nanoparticles are added to the binder in advance, and then dispersed by uniform dispersion and then the conductive powder is added. This mixing method is particularly suitable when slurry-like nanoparticles are used.

平均粒径の測定方法は、レーザー回折法で測定できる。
このような粒径の微粉を使用することで、導電粉中の微細な導電粉が、被接着物表面の凹凸にフィットするように再配列し、略単分散状態の多面体形状粒子及び略鱗片状粒子からなる導電粉同士の形成する隙間を埋める役割を果たす。このため、電極と導電回路の導電接続が低い接触抵抗で実現でき、また熱伝導接着剤でも接着界面の熱抵抗を小さくする
ことが出来る。
The measurement method of the average particle diameter can be measured by a laser diffraction method.
By using the fine powder having such a particle size, the fine conductive powder in the conductive powder is rearranged so as to fit the irregularities of the surface of the adherend. It plays a role of filling gaps formed by conductive powders composed of particles. For this reason, the conductive connection between the electrode and the conductive circuit can be realized with a low contact resistance, and the thermal resistance of the adhesive interface can be reduced even with a heat conductive adhesive.

導電粉(略単分散状態の多面体形状粒子及び略鱗片状粒子)と微粉(前記導電粉より粒径が小さく、凝集が大半解粒されている塊状などの微粉)の比は、重量で95:5乃至55:45であり、95:5乃至60:40が好ましく、95:5乃至70:30がより好ましい。前記導電粉がさらに超微粉の凝集粉を含み、凝集粉を構成する超微粉はその平均一次粒径が0.3μm以下であり、導電粉と微粉と超微粉の凝集粉の比が重量比で94.525:4.975:0.5乃至52.25:42.75:5.00であってもよい。超微粉の凝集粉の比がこの範囲より多いと、粒子同士の接触点が多くなりすぎてしまうとともに、超微粉の凝集粉が導電粉のタップ密度を低下させてしまうので、導電性や熱伝導性を低下させてしまう。超微粉の凝集粉の比がこれらの範囲より少ないと、形状加工導電粉同士の隙間を十分に埋めることができず、粒子同士の接触不足から導電性や熱伝導性を低下させてしまう場合がある。凝集粉を構成する超微粉の平均一次粒径が0.3μm以下であり、0.2μm以下がさらに好ましく、0.15μm以下であればより好ましい。凝集粉を構成する超微粉の平均一次粒径がこれより大きいと、微粉や略単分散している大粒子、小粒子の粒子間に生成している隙間に該銀超微粉が入っても、充填密度を高くすることができず、かえって充填密度を低下させることになってしまうことがある。   The ratio of conductive powder (polyhedrally shaped particles and substantially scaly particles in a substantially monodispersed state) to fine powder (a fine powder such as a lump having a smaller particle size than that of the conductive powder and agglomerated mostly) is 95: 5 to 55:45, preferably 95: 5 to 60:40, and more preferably 95: 5 to 70:30. The conductive powder further includes an agglomerated powder of ultrafine powder, and the ultrafine powder constituting the agglomerated powder has an average primary particle size of 0.3 μm or less, and the ratio of the agglomerated powder of the conductive powder, the fine powder, and the ultrafine powder is by weight ratio. It may be 94.525: 4.975: 0.5 to 52.25: 42.75: 5.00. If the ratio of ultrafine powder aggregated powder is larger than this range, the number of contact points between particles will increase, and the aggregated powder of ultrafine powder will reduce the tap density of the conductive powder. It will reduce the sex. If the ratio of the ultrafine powder agglomerated powder is less than these ranges, the gap between the shape-processed conductive powders cannot be sufficiently filled, and the conductivity and thermal conductivity may be reduced due to insufficient contact between the particles. is there. The average primary particle size of the ultrafine powder constituting the aggregated powder is 0.3 μm or less, more preferably 0.2 μm or less, and even more preferably 0.15 μm or less. If the average primary particle size of the ultrafine powder constituting the agglomerated powder is larger than this, even if the silver ultrafine powder enters the gap formed between the fine powder, the large monodispersed particles, and the small particles, In some cases, the packing density cannot be increased, and instead the packing density is lowered.

なお、微粉、超微粉を構成する材質は前記導電粉で例示されたものが挙げられる。なお、微粉、超微粉は、大粒子・小粒子と同一であっても、異なるものであってもよい。
本発明においてプレス密度は以下の方法で測定される。
In addition, the material which comprises fine powder and ultra fine powder can be exemplified by the conductive powder. Note that the fine powder and the ultrafine powder may be the same as or different from the large particles / small particles.
In the present invention, the press density is measured by the following method.

導電粉を予め精秤し、断面が一定の円筒内にいれ(円筒の内径は10乃至20mm)、その円筒に入れた導電粉の上下を、その直径が該円筒の内径とほぼ等しく、導電粉が漏れなく、可動な厚めの円盤(厚さ3乃至5mm位)で挟み込み、その円盤をマイクロメータで締め付ける。   Precisely weigh the conductive powder, put it in a cylinder with a constant cross section (the inner diameter of the cylinder is 10 to 20 mm), and the upper and lower sides of the conductive powder placed in the cylinder are approximately equal in diameter to the inner diameter of the cylinder. Is clamped with a movable thick disc (thickness of about 3 to 5 mm) and the disc is tightened with a micrometer.

精秤した導電粉の質量と、マイクロメータで測定した導電粉の厚さ及び測定に使用した円盤の直径から、プレス密度を算出する。計算した密度を、導電粉の真密度で除し、算出した値を%表示したものである。   The press density is calculated from the mass of the conductive powder precisely weighed, the thickness of the conductive powder measured with a micrometer, and the diameter of the disk used for the measurement. The calculated density is divided by the true density of the conductive powder, and the calculated value is expressed in%.

本発明の導電粉は、その表面が脂肪酸処理或いはカップリング剤で処理されていてもよい。
脂肪酸としては、ステアリン酸、ラウリン酸、カプリン酸、パルミチン酸等の飽和脂肪酸又はオレイン酸、リノール酸、リノレン酸、ソルビン酸の等の不飽和脂肪酸が挙げられる。カップリング剤としては、チタネート系、シラン系カップリング剤などが挙げられる。これらの表面処理剤量が多いと、表面処理剤が核となり粒子同士が凝集を起こす場合もあるので、量としては少ない方が好ましい。具体的な表面処理量は、導電粉に対して0.5重量%以下0.02重量%以上、より好ましくは0.3重量%以下0.02重量%以上、さらに好ましくは0.25重量%以下0.02重量%以上であることが望ましい。
The surface of the conductive powder of the present invention may be treated with a fatty acid treatment or a coupling agent.
Examples of the fatty acid include saturated fatty acids such as stearic acid, lauric acid, capric acid, and palmitic acid, and unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid, and sorbic acid. Examples of the coupling agent include titanate and silane coupling agents. If the amount of these surface treatment agents is large, the surface treatment agent may serve as a nucleus and the particles may aggregate together. The specific surface treatment amount is 0.5 wt% or less, 0.02 wt% or more, more preferably 0.3 wt% or less, 0.02 wt% or more, further preferably 0.25 wt%, based on the conductive powder. Below 0.02% by weight or more is desirable.

導電粉の製造
本発明のプレス密度の高い導電粉は、略単分散した多面体形状及び略鱗片状の大粒子及び小粒子と微粒子を容器内に入れ、容器を運動させて導電粉を流動させ、略単分散した多面体形状及び略鱗片状の大粒子及び小粒子で凝集せる微粒子を解粒すると同時に均一混合することで容易に得られる。たとえば以下の製造方法で製造できる。
Production of conductive powder The conductive powder with high press density of the present invention is a substantially monodispersed polyhedral shape and substantially scaly large particles and small particles and fine particles placed in a container, and the container is moved to cause the conductive powder to flow, It can be easily obtained by pulverizing fine particles that are aggregated with substantially monodispersed polyhedral shapes and substantially scaly large particles and small particles and simultaneously mixing them. For example, it can be manufactured by the following manufacturing method.

具体的には、原料導電粉と微小粒径のビーズを容器内に入れ、容器を運動させて原料導電粉とビーズを流動させて、導電粉を単分散状態に解粒すると共に多面体形状粒子及び略鱗片状粒子に形状加工する。この形状加工された粒子と、これに比べて相対的に小さい凝
集性の粒子を同一容器にいれ、ビーズなどを入れずに、導電粉のみを入れた容器を回転させ、導電粒子のみで混合させ、大きい略単分散された粒子が小さい粒子の凝集を解粒しながら均一混合させることで得られる。プレス密度の高い導電粉は、大きい粒子と小さい粒子の粒径比や粒子同士の体積比を適宜制御することで得ることが出来る。
Specifically, raw material conductive powder and beads having a small particle diameter are placed in a container, the container is moved to cause the raw material conductive powder and beads to flow, the conductive powder is pulverized into a monodispersed state, and polyhedral shaped particles and Shapes into substantially scaly particles. Put the shaped particles and relatively small cohesive particles in the same container, rotate the container containing only conductive powder without beads, etc., and mix only with the conductive particles. Large, substantially monodispersed particles can be obtained by uniformly mixing while pulverizing the aggregation of small particles. The conductive powder having a high press density can be obtained by appropriately controlling the particle size ratio between large particles and small particles and the volume ratio between particles.

また粒子同士あるいは粒子と被接着物の表面との接触確率を高くするために、粒子の形状を多面体あるいはアスペクト比の小さい略鱗片状にすることが好ましく、粒子の形状とともに、微粉の併用も効果がある。この際、導電粉中の大きい粒子の形状を、アスペクト比の大きい鱗片状に加工すると、導電ペーストの粘度上昇をきたすので、大きい粒子に関してはアスペクト比の小さい略鱗片状が好ましい。微粉としては鱗片状や、塊状のものが用途に応じて適宜選択され、粒子同士の接触を高めるには鱗片状微粒子の併用が効果的であり、表面の凹凸に追随させるには、塊状微粒子が適し、用途に応じてこれらの粒子が単独でもしくは組み合わされて添加されて使用できる。   In addition, in order to increase the contact probability between particles or between the particle and the surface of the adherend, it is preferable that the shape of the particle is a polyhedron or a substantially scaly shape with a small aspect ratio. There is. At this time, if the shape of the large particles in the conductive powder is processed into a scaly shape having a large aspect ratio, the viscosity of the conductive paste is increased. Therefore, a large scaly shape having a small aspect ratio is preferable for the large particles. As the fine powder, a scaly or a lump is appropriately selected according to the use, and the combined use of the scaly fine particles is effective for improving the contact between the particles. Depending on the application, these particles can be used alone or in combination.

本発明において、形状加工するには、原料導電粉と微小粒径のビーズを容器内に入れ、容器を回転させて原料導電粉とビーズを流動させると、ビーズで原料導電粉を解粒すると共に原料導電粉中の大きい粒子を多面体形状或いはアスペクト比の小さい略鱗片状粒子に形状加工させ、原料導電粉中の小粒子を大粒子よりアスペクト比の大きい略鱗片状粒子に形状加工させる。使用する微小粒径のビーズとしては、平均粒径10mm以下が良く、5mm以下であればより好ましく、3mm以下であればさらに好ましい。ビーズの材質としては、ビーズ質量の小さいことが好ましいので、金属粒子より密度の小さい、ガラスやジルコニア、アルミナなどのセラッミックスが適する。   In the present invention, in order to process the shape, when the raw material conductive powder and beads having a small particle diameter are put in a container, and the container is rotated to flow the raw material conductive powder and the beads, the raw material conductive powder is pulverized with the beads. Large particles in the raw material conductive powder are processed into polyhedral shapes or substantially scaly particles having a small aspect ratio, and small particles in the raw material conductive powder are processed into substantially scaly particles having a larger aspect ratio than the large particles. The fine particle size beads to be used preferably have an average particle size of 10 mm or less, more preferably 5 mm or less, and even more preferably 3 mm or less. As the material of the beads, since it is preferable that the mass of the beads is small, a ceramic such as glass, zirconia, or alumina having a density lower than that of the metal particles is suitable.

ビーズと原料導電粉を入れる容器の直径が大きいと、ビーズの落下距離が大きくなるため、ビーズ同士の衝突エネルギーが大きすぎて、十分に解粒されないままに形状加工されてしまうため、アスペクト比の高い小粒子を得ることは困難になる。   If the diameter of the container containing the beads and the raw material conductive powder is large, the falling distance of the beads will increase, so the collision energy between the beads will be too large, and the shape will be processed without being sufficiently crushed. It is difficult to obtain high small particles.

また、容器の回転速度が速すぎると、容器内で起きるビーズ同士の衝突エネルギーが大きくなりすぎて、形状加工が進みすぎて、上記同様にアスペクト比の高い小粒子を得ることが困難となる。回転速度が小さいと、解粒および形状加工処理に時間がかかりすぎるので好ましくない。好適な回転速度は、10〜100rpm、好ましくは30〜80rpmである。   If the rotational speed of the container is too high, the collision energy between beads occurring in the container becomes too large, and the shape processing proceeds too much, making it difficult to obtain small particles with a high aspect ratio as described above. A low rotation speed is not preferable because it takes too much time for pulverization and shape processing. A suitable rotation speed is 10 to 100 rpm, preferably 30 to 80 rpm.

ビーズと原料導電粉を入れる容器の内径は、直径が10cm乃至80cmが好ましく、10cm乃至60cmがより好ましく、10cm乃至40cmであればさらに好ましい。また、ビーズの充填体積は、容器の有効体積の約20乃至80%が好ましく、30乃至70%がより好ましく、40乃至70%がさらに好ましい。ビーズの充填体積がこれより多いと、ビーズによる凝集した原料導電粉の解粒がスムースに出来ず、また原料導電粉の形状加工もうまく進まないことがある。また、ビーズの体積がこれより少ないと、原料導電粉の解粒や形状加工も効率よく出来ないことがある。   The inner diameter of the container containing the beads and the raw conductive powder is preferably 10 cm to 80 cm, more preferably 10 cm to 60 cm, and even more preferably 10 cm to 40 cm. The bead filling volume is preferably about 20 to 80%, more preferably 30 to 70%, and still more preferably 40 to 70% of the effective volume of the container. If the filling volume of the beads is larger than this, the aggregated raw material conductive powder by the beads cannot be crushed smoothly, and the shape processing of the raw conductive powder may not proceed well. If the volume of the beads is smaller than this, the pulverization and shape processing of the raw material conductive powder may not be performed efficiently.

ビーズの充填体積と原料導電粉の体積比は、ビーズ:原料導電粉で50:50乃至96:4が好ましく、60:40乃至96:4がより好ましく、さらに好ましくは70:30乃至95:5である。なお、ビーズ及び原料導電粉の体積は、嵩密度で算出する。原料導電粉の割合がこれ以下の場合、処理の効率が悪いという欠点がある。また、原料導電粉がこの割合を超えると、原料導電粉の解粒や形状加工が効率よくできないことがある。   The volume ratio of the filled volume of the beads to the raw material conductive powder is preferably 50:50 to 96: 4, more preferably 60:40 to 96: 4, and even more preferably 70:30 to 95: 5. It is. In addition, the volume of a bead and raw material electroconductive powder is calculated by a bulk density. When the ratio of the raw material conductive powder is less than this, there is a disadvantage that the processing efficiency is poor. Moreover, when raw material conductive powder exceeds this ratio, pulverization and shape processing of the raw material conductive powder may not be performed efficiently.

本発明において、容器にビーズと原料導電粉を入れ、容器を回転して原料導電粉を加工する際の処理時間は、容器の大きさ、ビーズの投入量、原料導電粉の投入量や容器の回転速度等によって変わり,得られた導電粉のタップ密度や粒子形状の変化をチェックしながら最適値を求めるが、大略1時間乃至100時間くらいであればよい。   In the present invention, the processing time when the beads and raw conductive powder are put into the container and the raw conductive powder is processed by rotating the container is the size of the container, the amount of beads charged, the amount of raw conductive powder charged, The optimum value is obtained while checking the tap density and particle shape change of the obtained conductive powder depending on the rotation speed and the like, but it may be about 1 hour to 100 hours.

形状加工された多面体形状粒子及び略鱗片状粒子からなる分散導電粉と、塊状の一部凝集微粒子との混合方法は特に制限しないが、粒子の変形を避けられる方法が好ましく、たとえばVブレンダー、ボール(メディア)無しのボールミル、プラネタリーミキサー等の方法が例として挙げられる。ボール(メディア)無しのボールミルとは、ボールミルの容器に混合する粉末のみを投入し、粉砕用のボールをいれることなく容器を回転させ、導電粉同士を混合させる方法である。また、各粉を混合する場合に、逐次に混合してもよく、その順番は特に制限されない。 There is no particular limitation on the method of mixing the dispersed conductive powder composed of processed polyhedral particles and substantially scaly particles and massive partially aggregated fine particles, but a method that avoids deformation of the particles is preferable, for example, V blender, ball Examples of the method include a ball mill without a (media) and a planetary mixer. The ball mill without a ball (media) is a method in which only the powder to be mixed is put into a ball mill container, the container is rotated without putting a ball for grinding, and the conductive powders are mixed. Moreover, when mixing each powder | flour, you may mix sequentially and the order in particular is not restrict | limited.

混合時間は、装置の形式、容量、原料の投入量等によって適宜選択される。
[導電ペースト]
本発明の導電ペーストは、プレス密度が80%乃至99.5%のパラジウム粉、銀粉、銅粉、銀めっき銅粉、アルミニウム粉からなる群から選ばれる少なくとも1種の導電粉と
バインダとを含むことを特徴としている。かかる導電粉は上記したものである。
The mixing time is appropriately selected depending on the apparatus type, capacity, input amount of raw materials, and the like.
[Conductive paste]
The conductive paste of the present invention comprises at least one conductive powder selected from the group consisting of palladium powder, silver powder, copper powder, silver-plated copper powder, and aluminum powder having a press density of 80% to 99.5% and a binder. It is characterized by that. Such conductive powder is as described above.

導電ペースト中の導電粉とバインダの割合は、該導電粉95乃至99.5重量%であり、バインダ0.5乃至5重量%からなり、好ましくは、導電粉96乃至99.5重量%、バインダ0.5乃至4重量%であり、さらに好ましくは、導電粉97乃至99.5重量%と、バインダ0.5乃至3重量%からなる。導電粉とバインダからなる導電材料をプレスして使用する場合などではバインダ量をさらに少なくすることも可能であり、導電粉98乃至99.5重量%と、バインダ0.5乃至2重量%からなる導電材料でも基材上に印刷回路が形成できる。また剥離性を有する基材上に該導電材料を形成した後これを剥離して接着用のシートとして使用することもできる。   The ratio of the conductive powder to the binder in the conductive paste is 95 to 99.5% by weight of the conductive powder, and is composed of 0.5 to 5% by weight of the binder. Preferably, the conductive powder is 96 to 99.5% by weight. 0.5 to 4% by weight, more preferably 97 to 99.5% by weight of conductive powder and 0.5 to 3% by weight of binder. In the case where a conductive material composed of conductive powder and a binder is pressed and used, the amount of the binder can be further reduced. The conductive powder is composed of 98 to 99.5 wt% and the binder is 0.5 to 2 wt%. A printed circuit can be formed on a substrate even with a conductive material. Moreover, after forming this electrically conductive material on the base material which has peelability, this can be peeled and it can also be used as a sheet | seat for adhesion | attachment.

従来プレス密度で導電粉を管理する事は知られておらず、また、プレス密度が高い導電粉を作製し、この特徴を生かし、バインダ含有率が少なくしてペースト化し、これで回路パターンを印刷し、さらに該パターンをプレスして導電性を高めたり、該パターンをチップ部品の接着剤として利用するなど種々の方法が実用レベルで出来ることは知られていなかったが、本発明の高いプレス密度の導電粉を使用することで、これらが実現できるようになった。
バインダ
本発明のバインダとしては、エポキシ、フェノール、ポリエステル、ポリウレタン、フェノキシ、ポリエステル、アクリルなどの熱硬化性樹脂あるいは熱可塑性樹脂がカップリング剤、硬化剤、希釈剤などとともに目的に応じて選択して使用されるが、特に制限されない。このうち、熱軟化性樹脂を選択すると、バインダで導電ペーストを作製し、基材上に回路パターンを形成した後、この回路パターンを熱プレス処理することで、回路抵抗値を低くすることが出来る。
Conventionally, it is not known to control conductive powder at press density. Also, conductive powder with high press density is produced, and this feature is utilized to make a paste with a low binder content, thereby printing a circuit pattern. However, it has not been known that various methods such as pressing the pattern to enhance conductivity or using the pattern as an adhesive for chip parts can be performed at a practical level. These can be realized by using the conductive powder.
Binder As the binder of the present invention, a thermosetting resin or thermoplastic resin such as epoxy, phenol, polyester, polyurethane, phenoxy, polyester, and acrylic is selected according to the purpose together with a coupling agent, a curing agent, a diluent, and the like. Used, but not particularly limited. Among these, when a heat-softening resin is selected, a conductive paste is produced with a binder, a circuit pattern is formed on a substrate, and then the circuit resistance is subjected to a hot press treatment, whereby the circuit resistance value can be lowered. .

このような接着性を有する熱軟化性樹脂からなるバインダは、室温近傍(20〜30℃)で接着性を示し、60乃至150℃近傍で少なくとも一時的に軟化する樹脂を意味し、熱可塑性あるいは熱硬化性の樹脂が該当する。   A binder made of a thermosoftening resin having such an adhesive property means a resin that exhibits adhesiveness near room temperature (20 to 30 ° C.) and softens at least temporarily near 60 to 150 ° C. This corresponds to a thermosetting resin.

例えば軟化温度が60℃乃至120℃の固形エポキシ樹脂と、室温で液状エポキシ樹脂を混合したものをバインダとして使用できる。この際の接着性は、液状樹脂と固形樹脂の比率等で調整可能である。   For example, a solid epoxy resin having a softening temperature of 60 ° C. to 120 ° C. and a liquid epoxy resin mixed at room temperature can be used as the binder. The adhesiveness at this time can be adjusted by the ratio of the liquid resin to the solid resin.

本発明のペーストでは、常態での接着性は強い必要が無く、チップ部品等を一時的に接着出来る接着強度であればよい。この接着力は、例えば常態で粘着性のある樹脂と、常態で固体の樹脂で、加熱軟化する樹脂を組み合わせて適宜作製出来る。   The paste of the present invention does not need to have strong adhesiveness in a normal state, and may have any adhesive strength that can temporarily bond chip parts and the like. This adhesive force can be suitably prepared by combining, for example, a resin that is sticky in a normal state and a resin that is a solid resin in a normal state and is softened by heating.

なお、導電粉とバインダとを混合すれば、本発明の導電ペーストは調製可能であるが、通常、熱硬化性樹脂あるいは熱可塑性樹脂を、硬化剤、カップリング剤等とともに溶剤に溶解・混合してバインダ溶液とし、これと混合導電粉を混合して導電ペーストとすると、表面処理と混合が一度にできるので、導電粉にかかるエネルギーが少なく、粉の変形を抑制できる。ペーストを、基材表面に印刷して溶剤を揮発させると、接着性を呈する導電ペースト印刷物が形成出来る。この導電ペーストを、剥離性の基材上に塗布した後に加熱乾燥して溶剤を揮発させると所望の形態の導電材料が得られる。   Note that the conductive paste of the present invention can be prepared by mixing conductive powder and a binder, but usually a thermosetting resin or thermoplastic resin is dissolved and mixed in a solvent together with a curing agent, a coupling agent, and the like. When the binder solution is mixed with the mixed conductive powder to form a conductive paste, the surface treatment and mixing can be performed at a time, so that less energy is applied to the conductive powder and deformation of the powder can be suppressed. When the paste is printed on the substrate surface and the solvent is volatilized, a conductive paste printed matter exhibiting adhesiveness can be formed. When this conductive paste is applied on a peelable substrate and then dried by heating to volatilize the solvent, a conductive material having a desired form can be obtained.

硬化剤はバインダがエポキシ樹脂、フェノール樹脂などの硬化剤を必要とする熱硬化樹脂の場合、アミン類、イミダゾール類等の硬化剤が必要に応じて添加される。具体的には、2−フェニル−4−メチル−イミダゾールなどの公知の硬化剤を特に制限なく使用できる。   When the binder is a thermosetting resin that requires a curing agent such as an epoxy resin or a phenol resin, a curing agent such as an amine or an imidazole is added as necessary. Specifically, a known curing agent such as 2-phenyl-4-methyl-imidazole can be used without particular limitation.

またカップリング剤としてはチタネート系、シラン系、アルミネート系などが、バインダと導電粉との濡れ性を高めるために使用される。硬化剤の使用量は硬化剤の種類によって異なるが、熱硬化樹脂100重量部当たり3重量部乃至30重量部くらいが適当である。また、カップリング剤の使用量は、ペースト重量に対し1%以下、好ましくは0.5%以下であればよい。   Further, titanate-based, silane-based, aluminate-based, etc. are used as coupling agents in order to improve the wettability between the binder and the conductive powder. The amount of the curing agent used varies depending on the type of the curing agent, but about 3 to 30 parts by weight per 100 parts by weight of the thermosetting resin is appropriate. Moreover, the usage-amount of a coupling agent should just be 1% or less with respect to paste weight, Preferably it is 0.5% or less.

液状樹脂の割合を高くすると、常態で接着性を有する回路パターンが形成できるので、かかるパターン上に直接チップ部品を接着することが出来る。また、熱溶着性を示す導電シートを作製するには、液状樹脂を使用せず、熱軟化温度が40℃乃至80℃近傍の固形樹脂を使用してバインダ溶液を作製すれば、熱溶着可能な導電シートが作製出来る。   When the ratio of the liquid resin is increased, a circuit pattern having adhesiveness can be formed in a normal state, and thus the chip component can be directly bonded onto the pattern. Further, in order to produce a conductive sheet exhibiting heat-weldability, it is possible to perform heat-welding if a binder solution is produced using a solid resin having a heat softening temperature of 40 ° C. to 80 ° C. without using a liquid resin. A conductive sheet can be produced.

また、液状樹脂の割合を0もしくは低く設定し、常態で接着性を示さない固形樹脂をバ
インダとして使用することも、用途に応じて可能である。
溶剤
本発明のペーストは上記した導電粉とバインダとを含むものであるが、必要に応じて、溶剤を含んでいてよい。適当量の溶剤を併用することで、印刷性の大幅な改良が出来、2重量%未満という極端に少ないバインダでもスムースな印刷が可能な導電ペーストが出来る。
It is also possible to set the ratio of the liquid resin to 0 or low and use a solid resin that does not exhibit adhesiveness in a normal state as a binder depending on the application.
Solvent The paste of the present invention contains the above-described conductive powder and binder, but may contain a solvent as necessary. By using an appropriate amount of solvent in combination, the printability can be greatly improved, and a conductive paste that can be printed smoothly even with an extremely small amount of binder of less than 2% by weight can be obtained.

本発明で使用される溶剤として、沸点が150℃以上のものが好ましく、好適には175℃以上のものである。具体的にはカルビトール類、高級アルコール類やこれらのエステル類、テルピネオールなどが使用できる。   The solvent used in the present invention preferably has a boiling point of 150 ° C. or higher, and preferably 175 ° C. or higher. Specifically, carbitols, higher alcohols, esters thereof, terpineol and the like can be used.

本発明で使用される導電粉は、均一な分散状態になっているので、ペーストを作製する場合に、導電粉とバインダ組成物を均一混合するのが容易で、混合・分散に要する時間が短くかつ簡便にペーストの製造が可能となる。このため、変形しやすい微粉を含んでいるが、混合工程中の微粉の変形を防止出来るため、導電ペーストの粘度、色調あるいは特性も安定し、再現し易い。およその混合時間としては混合器の容量にもよるが、1〜10分
程度である。特に導電粉が銀のように軟らかいものである場合、混合時間は短いほど好ましく、その微粉の形状変形抑制効果は大きい。
Since the conductive powder used in the present invention is in a uniformly dispersed state, when preparing a paste, it is easy to uniformly mix the conductive powder and the binder composition, and the time required for mixing and dispersing is short. In addition, the paste can be easily manufactured. For this reason, fine powder that easily deforms is contained, but since the deformation of the fine powder during the mixing process can be prevented, the viscosity, color tone, or characteristics of the conductive paste are stable and easy to reproduce. The approximate mixing time is about 1 to 10 minutes depending on the capacity of the mixer. In particular, when the conductive powder is as soft as silver, the shorter the mixing time, the better, and the effect of suppressing the shape deformation of the fine powder is great.

本発明で使用される導電粉のうち、タップ密度が比較的高いわりに、プレス密度の相対的に低いという特性を有するものを使用すると、ペースト化して充填するときに、導電粉の充填量を比較的高くできる。さらにこのペーストを充填したスルーホールなどをプレスすると、プレス密度が相対的に低いため導電粉充填部分を簡単に押しつぶされ、導電粉同士の接触を高くすることができるので、導電性、熱伝導性に優れた充填物を得ることができる。   Of the conductive powders used in the present invention, when the tap density is relatively high but the one having the property of relatively low press density is used, the filling amount of the conductive powder is compared when the paste is filled. Can be high. Furthermore, when pressing through holes filled with this paste, the press density is relatively low, so the conductive powder filling part can be easily crushed and the contact between the conductive powders can be increased. Can be obtained.

このような本発明の導電ペーストは、回路形成用に、さらには、複数の基材上に形成された回路パターン間が層間接続されている回路板の回路形成あるいは層間接続に好適に使用できる。   Such a conductive paste of the present invention can be suitably used for circuit formation, and further for circuit formation or interlayer connection of circuit boards in which circuit patterns formed on a plurality of substrates are interlayer-connected.

さらに本発明のペーストを平面間に供給し、両平面を狭くするように挟み込むと、導電粉は両平面間に残るが、バインダ組成物は押し出されるために、両平面間の導電粉同士の接触も強くなる。したがって両平面間の熱伝導を高めるために使用する熱伝導グリースなどに、プレス密度の高い導電粉を使用したペーストとしても有益である。   Furthermore, when the paste of the present invention is supplied between planes and sandwiched so that both planes are narrowed, the conductive powder remains between both planes, but the binder composition is extruded, so that the conductive powders between the planes contact each other. Also become stronger. Therefore, it is also useful as a paste using a conductive powder having a high press density as a thermal conductive grease used for increasing the thermal conductivity between both planes.

前記したように充填もしくは塗工したペーストをプレスによって潰して導通性を高める場合には、タップ密度が高く、プレス密度の低い導電粉が好ましい。このような特性は、導電粉を調製する際に原料導電粉を選択し、形状加工の際に、適宜形状を制御することによって制御可能である。なお、タップ密度(%)とは、タッピングして測定した密度を、その粒子の真密度で除した値を%で表示したものである。なお、本発明で粒子のタップ密度を求める方法は、25mmのストロークでタッピングを1,000回行い、その体積と質量から算出したタップ密度を充填密度とし、これをその粒子の真密度又は理論密度で除することで算出した。
導電ペーストの製造方法
本発明に係る導電ペーストは、溶剤中に、バインダ成分、形状加工された多面体形状粒子及び略鱗片状粒子からなる分散導電粉と塊状の一部凝集微粒子とからなる混合導電粉を添加して分散させたのち、該分散スラリーに剪断力を加えて均一混合することで製造できる。また、該分散液に剪断力を加える装置としては、三本ロール、プラネタリーミキサー、攪拌羽、らいかい機、あるいは容器を自転と公転させて遠心力で容器内の材料を混合する装置などがあげられ、あらかじめバインダに溶剤を適当量添加しておいても良いし、また混合の際に必要に応じて、溶剤を添加してもよい。混合時の粘度が高すぎる場合には混合操作がスムースにできないので、あらかじめ溶剤をバインダに添加する方が好ましい。
導電ペーストの用途
本発明の導電シートは、プレス密度が80%乃至99.5%の導電粉とバインダとを含むことを特徴としている。このような導電シートは、上記導電ペーストを基材表面に印刷したのち、必要に応じて乾燥・硬化させたり、プレスすることによって製造される。
When the paste filled or applied as described above is crushed by a press to enhance conductivity, conductive powder having a high tap density and a low press density is preferable. Such characteristics can be controlled by selecting the raw material conductive powder when preparing the conductive powder and appropriately controlling the shape during the shape processing. The tap density (%) is a value obtained by dividing the density measured by tapping by the true density of the particle in%. In the present invention, the tap density of the particles is obtained by tapping 1,000 times with a stroke of 25 mm, and the tap density calculated from the volume and mass is taken as the packing density, which is the true density or theoretical density of the particles. It was calculated by dividing by.
Method for Producing Conductive Paste The conductive paste according to the present invention is a mixed conductive powder composed of a dispersed conductive powder composed of a binder component, shape-processed polyhedral-shaped particles and substantially scale-like particles, and massive partially aggregated fine particles in a solvent. Can be produced by adding a shearing force to the dispersed slurry and mixing them uniformly. As a device for applying a shearing force to the dispersion, there are a three-roll, a planetary mixer, a stirring blade, a raking machine, or a device for revolving and revolving the container to mix the material in the container with centrifugal force. An appropriate amount of a solvent may be added to the binder in advance, or a solvent may be added as necessary during mixing. If the viscosity at the time of mixing is too high, the mixing operation cannot be performed smoothly, so it is preferable to add a solvent to the binder in advance.
Use of conductive paste The conductive sheet of the present invention is characterized by containing a conductive powder having a press density of 80% to 99.5% and a binder. Such a conductive sheet is produced by printing the conductive paste on the surface of the substrate, and then drying, curing, or pressing as necessary.

基材としては公知のものを特に制限なく使用できる。たとえば、ガラスエポキシ基板であったり、離型フィルムであってもよい。離型フィルム表面に導電ペーストを印刷し、乾燥・硬化させたのち、離型フィルムを剥離させると、導電シートのみを得ることが可能であり、こうして得られた導電シートを他の基材と密着させてもよい。   A well-known thing can be especially used as a base material without a restriction | limiting. For example, it may be a glass epoxy substrate or a release film. After printing the conductive paste on the surface of the release film, drying and curing it, and peeling the release film, it is possible to obtain only the conductive sheet. The conductive sheet thus obtained is in close contact with other substrates. You may let them.

本発明の導電シートは、常温で接着性を示すので、ICチップなどを容易に接着でき、るので、たとえば、配線板上に該導電シートを接着し、加熱・硬化させれば、配線板上に導電シートを介してICチップを接着することが可能となる。   Since the conductive sheet of the present invention exhibits adhesion at room temperature, an IC chip or the like can be easily bonded. For example, if the conductive sheet is bonded on a wiring board and heated and cured, It becomes possible to adhere the IC chip through the conductive sheet.

このように本発明の導電シートを使用すれば、従来煩雑な工程が必要であったものが容易に製造可能となる。
また、導電ペーストを、回路形成用とくに、実装回路形成用に使用することも可能である。たとえば、また凹凸を有する金属表面とシリコン基板などを導電ペーストで接着する場合、金属板表面の細かい凹凸に該当する粒径の銀微粉を併用すると、この銀微粉が金属表面の凹凸にうまく充填されるため、接触効率が高くなり、導電性や熱伝導性が高くなる。
Thus, if the electrically conductive sheet of this invention is used, what has conventionally required a complicated process can be easily manufactured.
The conductive paste can also be used for circuit formation, particularly for mounting circuit formation. For example, when a metal surface having irregularities and a silicon substrate are bonded with a conductive paste, if the silver fine powder having a particle size corresponding to the fine irregularities on the surface of the metal plate is used together, the silver fine powder is successfully filled into the irregularities on the metal surface. Therefore, the contact efficiency is increased, and the conductivity and thermal conductivity are increased.

本発明の回路板は、上記導電ペーストで基材の上に所望の回路パターンが形成されてなるものであり、回路パターンが複数形成されてなり、基材上に形成された該回路パターン間が接続されてなるものであってもよい。本発明の電子部品実装回路板は、上記導電ペーストで基材の上に所望の回路パターンが形成されてなり、かかる基材上に形成された回路パターンの一部を介して電子部品が接続されてなり、回路パターンが複数形成されてなり、基材上に形成された該回路パターン間が接続されてなるものであってもよい。これらの回路パターンは上記導電ペーストを使用して、公知の方法で作成することができる。
[実施例]
以下、本発明を実施例により説明するが本発明はこれらの実施例に何ら限定されるものではない。
実施例1
導電粉の調製
平均粒径が5.0μmの銀粉を原料として使用した。この充填密度は51%であった。
この銀粉の表面にステアリン酸を0.1重量%処理し、これを500g秤量して、内容積2リットルのボールミルに入れた。該ボールミルには、直径が約2mmのアルミナビーズが1リットル充填してある。ビーズと導電粉の体積比はビーズ:導電粉=11:1であった。ボールミルの直径は約12cmであった。該ボールミルを60min-1の回転速度で6
時間処理して、略単分散導電粉である形状加工銀粉を得た。
The circuit board of the present invention is formed by forming a desired circuit pattern on a substrate with the conductive paste, and a plurality of circuit patterns are formed between the circuit patterns formed on the substrate. It may be connected. In the electronic component mounting circuit board of the present invention, a desired circuit pattern is formed on a substrate with the conductive paste, and the electronic component is connected via a part of the circuit pattern formed on the substrate. Thus, a plurality of circuit patterns may be formed, and the circuit patterns formed on the base material may be connected. These circuit patterns can be prepared by a known method using the conductive paste.
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples at all.
Example 1
Preparation of conductive powder Silver powder having an average particle diameter of 5.0 μm was used as a raw material. This packing density was 51%.
The surface of the silver powder was treated with 0.1% by weight of stearic acid, and 500 g of this was weighed and placed in a ball mill having an internal volume of 2 liters. The ball mill is filled with 1 liter of alumina beads having a diameter of about 2 mm. The volume ratio of the beads to the conductive powder was beads: conductive powder = 11: 1. The diameter of the ball mill was about 12 cm. The ball mill is rotated at a rotational speed of 60 min -1
After time treatment, a shape-processed silver powder that is a substantially monodispersed conductive powder was obtained.

得られた形状加工導電粉を粒度分布測定器及びSEMで観察した結果、平均粒径は6.2μmであり、累積30%径以上の大粒子の平均アスペクト比は2.5であり、累積30%径は2.6μmであり、その小粒子のアスペクト比は平均で7.2であった。処理済みの導電粉の充填密度は63%であった。   As a result of observing the obtained shaped processed conductive powder with a particle size distribution measuring instrument and SEM, the average particle diameter is 6.2 μm, the average aspect ratio of large particles having a cumulative 30% diameter or more is 2.5, and the cumulative 30 The% diameter was 2.6 μm, and the average aspect ratio of the small particles was 7.2. The packing density of the treated conductive powder was 63%.

上記略単分散導電粉400gと、平均粒径が1.5μmでタップ密度から算出した充填密度が52%の易分散性の塊状銀粉100gを、内容積が2リットルの上記ボールミルと同一のボール無しの容器にいれ、50min-1の回転速度で72時間処理して混合導電粉を
得た。タップ密度から算出した混合導電粉の充填密度は、71%であり、プレス密度は89%であった。
400 g of the above substantially monodispersed conductive powder and 100 g of easily dispersible bulk silver powder having an average particle diameter of 1.5 μm and a packing density calculated from the tap density of 52%, without the same balls as the ball mill having an internal volume of 2 liters The mixture was treated for 72 hours at a rotation speed of 50 min −1 to obtain mixed conductive powder. The filling density of the mixed conductive powder calculated from the tap density was 71%, and the press density was 89%.

導電ペーストの調製
上記とは別に、エポキシ当量が170g/eqのビスフェノールF型エポキシ樹脂(三井化学(株)製、商品名エポミックR110)50重量部、エポキシ当量が325g/eqで軟化温度が60℃のビスフェノールA型エポキシ樹脂45重量部、2−フェニル−4−メチル−イミダゾール(四国化成(株)製、商品名キュアゾール2P4MZ)4.5重量部、チタネート系カップリング剤0.5重量部及びエチルカルビトール100重量部を均一に混合してバインダ溶液を得た。
Preparation of conductive paste Separately from the above, 50 parts by weight of bisphenol F type epoxy resin (trade name Epomic R110, manufactured by Mitsui Chemicals, Inc.) having an epoxy equivalent of 170 g / eq, an epoxy equivalent of 325 g / eq, and a softening temperature of 60 ° C. Bisphenol A type epoxy resin 45 parts by weight, 2-phenyl-4-methyl-imidazole (trade name Curesol 2P4MZ, manufactured by Shikoku Kasei Co., Ltd.) 4.5 parts by weight, titanate coupling agent 0.5 parts by weight and ethyl 100 parts by weight of carbitol was uniformly mixed to obtain a binder solution.

上記混合導電粉98重量部と上記バインダ溶液4重量部をらいかい機で均一混合し、導電ペーストを得た。
回路形成
このペーストでライン長さが115mm、ライン幅が0.7mmの回路を、銅箔をエッチングして除去したガラスエポキシ基板上に印刷したのち、110℃で30分間乾燥させ、ついで185℃で45分間硬化させた回路の体積固有抵抗は6.8μΩ・cmであった。またこのペーストを、ボイドが含まれないように注意深く印刷と乾燥を繰り返して積層印刷及び乾燥して厚さが1.2mmの試験片とし、これを硬化させて熱伝導試験片を作製した。この試験片の熱伝導率は、25Wm-1-1であった。
98 parts by weight of the mixed conductive powder and 4 parts by weight of the binder solution were uniformly mixed using a rake machine to obtain a conductive paste.
Circuit formation A circuit having a line length of 115 mm and a line width of 0.7 mm is printed on a glass epoxy substrate from which copper foil has been removed by etching, and then dried at 110 ° C. for 30 minutes, and then at 185 ° C. The volume resistivity of the circuit cured for 45 minutes was 6.8 μΩ · cm. Further, this paste was carefully printed and dried repeatedly so as not to contain voids, and laminated printed and dried to obtain a test piece having a thickness of 1.2 mm, which was cured to produce a heat conduction test piece. The thermal conductivity of this test piece was 25 Wm −1 K −1 .

導電シートの評価
また上記導電ペーストを片面が離型処理されたフィルムの上に塗布し、100℃で乾燥させて導電シートを作製した。該導電シートは室温で接着性を示すので、ICチップと接着でき、配線板上に該導電シートを接着し、その状態で185℃に加熱することで、配線板上に導電シートを介してICチップを接着することができた。
Evaluation of the conductive sheet Further, the conductive paste was applied on a film having a release treatment on one side and dried at 100 ° C. to prepare a conductive sheet. Since the conductive sheet exhibits adhesiveness at room temperature, it can be bonded to the IC chip, and the conductive sheet is bonded onto the wiring board and heated to 185 ° C. in that state, so that the IC is placed on the wiring board via the conductive sheet. The chip could be glued.

該導電シートを幅が1mmで長さが300mmの形状に切断し、離型処理された厚さが2mmのアルミニウム板と、厚さが25ミクロンのポリイミドフィルムで挟みさらにポリイミドフィルムを上記のアルミニウム板で挟み、これら挟んだままで110℃に加熱し10分間保持して加熱した後、0.1MPaの圧力を5分間加熱のまま印加した後、冷却し、片面のアルミニウム板を剥離し次いで注意深く導電シートと接するアルミニウム板をはがし、さらに185℃で45分間加熱硬化させて、導電シート硬化物を得た。その結果得られた回路の体積固有抵抗は4.6μΩ・cmであった。
実施例2
導電粉の調製
平均粒径が10.3μmの銀粉を原料として使用した。この充填密度は52%であった
。この銀粉の表面にステアリン酸を0.2重量%処理し、これを1000g秤量して、内容積3リットルのボールミルに入れた。該ボールミルには、直径が約2mmのアルミナビーズが1.5リットル充填してある。ビーズと導電粉の体積比はビーズ:導電粉=8:1であった。ボールミルの直径は約14cmであった。該ボールミルを50min-1の回転速度で8時間処理して、略単分散導電粉である形状加工銀粉を得た。
The conductive sheet is cut into a shape having a width of 1 mm and a length of 300 mm, and a release-treated aluminum plate having a thickness of 2 mm is sandwiched between a polyimide film having a thickness of 25 microns and the polyimide film is further bonded to the aluminum plate. Heated to 110 ° C. while holding them for 10 minutes and heated, then applied 0.1 MPa while heated for 5 minutes, then cooled, peeled off the aluminum plate on one side, and carefully conductive sheet The aluminum plate in contact with was peeled off and further cured by heating at 185 ° C. for 45 minutes to obtain a cured conductive sheet. As a result, the volume resistivity of the obtained circuit was 4.6 μΩ · cm.
Example 2
Preparation of conductive powder Silver powder having an average particle diameter of 10.3 μm was used as a raw material. This packing density was 52%. The surface of the silver powder was treated with 0.2% by weight of stearic acid, and 1000 g of this was weighed and placed in a ball mill having an internal volume of 3 liters. The ball mill is filled with 1.5 liters of alumina beads having a diameter of about 2 mm. The volume ratio of the beads to the conductive powder was beads: conductive powder = 8: 1. The diameter of the ball mill was about 14 cm. The ball mill was treated at a rotation speed of 50 min −1 for 8 hours to obtain a shaped silver powder that was a substantially monodispersed conductive powder.

この結果得られた形状加工導電粉を粒度分布測定器及びSEMで観察した結果、平均粒径は11.4μmであり、累積30%径以上の大粒子の平均アスペクト比は2.8であり
、累積30%径は7.2μmであり、その小粒子のアスペクト比は平均で5.5であった。処理済みの導電粉の充填密度は62%であった。
As a result of observing the resulting shape-processed conductive powder with a particle size distribution measuring instrument and SEM, the average particle size is 11.4 μm, and the average aspect ratio of large particles having a cumulative diameter of 30% or more is 2.8, The cumulative 30% diameter was 7.2 μm, and the average aspect ratio of the small particles was 5.5. The packing density of the treated conductive powder was 62%.

上記略単分散導電粉750gと、平均粒径が1.5μmでタップ密度から算出した充填密度が52%の易分散性の塊状銀粉250gを、実施例1記載の内容積が2リットルのボール無しの容器にいれ、50min-1の回転速度で48時間処理して混合導電粉を得た。タップ密度から算出した混合導電粉の充填密度は、76%であり、プレス密度は93%であった。 750 g of the above substantially monodispersed conductive powder and 250 g of easily dispersible bulk silver powder having an average particle size of 1.5 μm and a packing density calculated from the tap density of 52%, and having no ball having an internal volume of 2 liters as described in Example 1 The mixed conductive powder was obtained by processing for 48 hours at a rotation speed of 50 min −1 . The filling density of the mixed conductive powder calculated from the tap density was 76%, and the press density was 93%.

導電ペーストの調製
実施例1に記載のバインダ溶液2gおよびエチルカルビトール3gに、この混合導電粉99gを添加し、らいかい機で2分間均一混合して導電ペーストを得た。
Preparation of Conductive Paste 99 g of this mixed conductive powder was added to 2 g of the binder solution described in Example 1 and 3 g of ethyl carbitol, and mixed uniformly for 2 minutes with a milling machine to obtain a conductive paste.

回路形成
この導電ペーストを使用して実施例1と同様に各種試験を行った。
実施例1と同様の方法で体積固有抵抗を測定した結果、5μΩ・cmであった。
Circuit formation Various tests were conducted in the same manner as in Example 1 using this conductive paste.
The volume resistivity was measured by the same method as in Example 1 and found to be 5 μΩ · cm.

導電シートの評価
上記とは別に、熱軟化温度が55乃至65℃の半固形ビスフェノールA型エポキシ樹脂
75重量部と熱軟化温度が75℃乃至85℃の固形ビスフェノールA型エポキシ樹脂20重量部並びに2−フェニル−4−メチル−イミダゾール(四国化成(株)製、商品名キュアゾール2P4MZ)4.5重量部、チタネート系カップリング剤0.5重量部及びエチルカルビトール100重量部を均一に混合してバインダ溶液を得た。上記混合導電粉96重量部と、上記バインダ溶液8重量部を容器が自転しながら公転する混合機で1分間混合し、導電ペーストを得た。該導電ペーストを真空脱泡したのち、表面が離型性を示す離型紙上にドクターブレード方式で塗布し、ついで100℃で乾燥して厚さが60μmの導電シートを作製した。この導電シートは溶剤をわずかに残存させると室温で弱いが接着でき、また導電シートとしても切断した小片をハンドリングでき、70℃近傍に加熱すると熱軟化して強く接着でき、さらに165℃乃至185℃に加熱すると導電性のまま硬化接着させることが出来た。
この導電シート硬化物の体積固有抵抗値は9μΩ・cmであり、25℃の熱伝導率は13W/mKであった。
実施例3
導電粉の調製
平均粒径が5.5μmの銀粉を原料として使用した。この充填密度は54%であった。
この銀粉の表面にステアリン酸を0.05重量%処理し、これを1500g秤量して、内容積5リットルのボールミルに入れた。該ボールミルには、直径が約2mmのアルミナビーズが3リットル充填してある。ビーズと導電粉の体積比はビーズ:導電粉=11:1であった。ボールミルの直径は約14cmであった。該ボールミルを50min-1の回転速度で4時間処理して、略単分散導電粉である形状加工銀粉を得た。
Evaluation of conductive sheet Separately from the above, 75 parts by weight of a semi-solid bisphenol A type epoxy resin having a heat softening temperature of 55 to 65 ° C, 20 parts by weight of a solid bisphenol A type epoxy resin having a heat softening temperature of 75 ° C to 85 ° C, and 2 parts -Phenyl-4-methyl-imidazole (manufactured by Shikoku Kasei Co., Ltd., trade name Curesol 2P4MZ) 4.5 parts by weight, titanate coupling agent 0.5 parts by weight and ethyl carbitol 100 parts by weight were mixed uniformly. A binder solution was obtained. 96 parts by weight of the mixed conductive powder and 8 parts by weight of the binder solution were mixed for 1 minute in a mixer that revolves while the container rotates to obtain a conductive paste. After the conductive paste was degassed in vacuum, it was applied on a release paper whose surface exhibited releasability by a doctor blade method, and then dried at 100 ° C. to prepare a conductive sheet having a thickness of 60 μm. This conductive sheet is weak at room temperature with a slight amount of solvent remaining, but can be bonded, and the cut piece can also be handled as a conductive sheet. When heated to around 70 ° C, it can be softened and strongly bonded, and further 165 ° C to 185 ° C. It was possible to cure and adhere to the conductive material when heated.
The volume resistivity of this cured conductive sheet was 9 μΩ · cm, and the thermal conductivity at 25 ° C. was 13 W / mK.
Example 3
Preparation of conductive powder Silver powder having an average particle size of 5.5 μm was used as a raw material. This packing density was 54%.
The surface of the silver powder was treated with 0.05% by weight of stearic acid, and 1500 g of this was weighed and placed in a ball mill having an internal volume of 5 liters. The ball mill is filled with 3 liters of alumina beads having a diameter of about 2 mm. The volume ratio of the beads to the conductive powder was beads: conductive powder = 11: 1. The diameter of the ball mill was about 14 cm. The ball mill was processed at a rotation speed of 50 min −1 for 4 hours to obtain a shaped silver powder that was a substantially monodispersed conductive powder.

この結果得られた形状加工導電粉を粒度分布測定器及びSEMで観察した結果、平均粒径は6.5μmであり、累積30%径以上の大粒子の平均アスペクト比は2.5であり、
累積30%径は3.3μmであり、その小粒子のアスペクト比は平均で5.4であった。処理済みの導電粉の充填密度は65%であった。
As a result of observing the resulting shaped processed conductive powder with a particle size distribution measuring instrument and SEM, the average particle size is 6.5 μm, and the average aspect ratio of large particles having a cumulative 30% diameter or more is 2.5,
The cumulative 30% diameter was 3.3 μm, and the average aspect ratio of the small particles was 5.4. The packing density of the treated conductive powder was 65%.

上記略単分散導電粉350gと、平均粒径が1.5μmでタップ密度から算出した充填密度が52%の易分散性の塊状銀粉150gを、実施例1記載の内容積が2リットルのボール無しの容器にいれ、50min-1の回転速度で48時間処理して混合導電粉を得た。タップ密度から算出した混合導電粉の充填密度は、73%であり、プレス密度は88%であった。 350 g of the above substantially monodispersed conductive powder and 150 g of easily dispersible bulk silver powder having an average particle diameter of 1.5 μm and a packing density calculated from the tap density of 52%, and having no ball having an internal volume of 2 liters described in Example 1 The mixed conductive powder was obtained by processing for 48 hours at a rotation speed of 50 min −1 . The filling density of the mixed conductive powder calculated from the tap density was 73%, and the press density was 88%.

上記略単分散導電粉900gと、平均粒径が1.5μmでタップ密度から算出した充填密度が52%の易分散性の塊状銀粉100gを、実施例1記載の内容積が2リットルのボール無しの容器にいれ、50min-1の回転速度で48時間処理して混合導電粉を得た。タップ密度から算出した混合導電粉の充填密度は、72%であり、プレス密度は89%であった。 900 g of the above substantially monodispersed conductive powder and 100 g of easily dispersible bulk silver powder having an average particle diameter of 1.5 μm and a packing density calculated from the tap density of 52%, and having no ball having an internal volume of 2 liters described in Example 1 The mixed conductive powder was obtained by processing for 48 hours at a rotation speed of 50 min −1 . The filling density of the mixed conductive powder calculated from the tap density was 72%, and the press density was 89%.

導電ペーストの調製
実施例1記載のバインダ溶液4gおよびエチルカルビトール3gに、この混合導電粉98gを添加し、らいかい機で2分間均一混合して導電ペーストを得た。
Preparation of conductive paste 98 g of this mixed conductive powder was added to 4 g of the binder solution described in Example 1 and 3 g of ethyl carbitol, and mixed uniformly for 2 minutes with a milling machine to obtain a conductive paste.

回路および導電シートの評価
この導電ペーストを使用して実施例1と同様に各種試験を行った。実施例1と同様の方法で体積固有抵抗を測定した結果、8μΩ・cmであった。
実施例4
導電粉の調製
平均粒径が10.4μmの銀粉を原料として使用した。この充填密度は53%であった
。この銀粉の表面にステアリン酸を0.05重量%処理し、これを2000g秤量して、
内容積10リットルのボールミルに入れた。該ボールミルには、直径が約2mmのアルミナビーズが5リットル充填してある。ビーズと導電粉の体積比はビーズ:導電粉=14:1であった。ボールミルの直径は約24cmであった。該ボールミルを30min-1の回転
速度で12時間処理して、略単分散導電粉である形状加工銀粉を得た。
Evaluation of circuit and conductive sheet Using this conductive paste, various tests were conducted in the same manner as in Example 1. As a result of measuring the volume resistivity by the same method as in Example 1, it was 8 μΩ · cm.
Example 4
Preparation of conductive powder Silver powder having an average particle diameter of 10.4 μm was used as a raw material. This packing density was 53%. The surface of this silver powder is treated with 0.05% by weight of stearic acid and weighed 2000 g.
It put into the ball mill of internal volume 10 liters. The ball mill is filled with 5 liters of alumina beads having a diameter of about 2 mm. The volume ratio of the beads to the conductive powder was beads: conductive powder = 14: 1. The diameter of the ball mill was about 24 cm. The ball mill was treated for 12 hours at a rotation speed of 30 min −1 to obtain a shaped silver powder which was a substantially monodispersed conductive powder.

この結果得られた形状加工導電粉を粒度分布測定器及びSEMで観察した結果、平均粒径は11.3μmであり、累積30%径以上の大粒子の平均アスペクト比は2.3であり
、累積30%径は6.5μmであり、その小粒子のアスペクト比は平均で5.3であった。処理済みの導電粉の充填密度は64%であった。
As a result of observing the resulting shaped processed conductive powder with a particle size distribution measuring instrument and SEM, the average particle size is 11.3 μm, and the average aspect ratio of large particles having a cumulative 30% diameter or more is 2.3. The cumulative 30% diameter was 6.5 μm, and the average aspect ratio of the small particles was 5.3. The packing density of the treated conductive powder was 64%.

上記略単分散導電粉850gと、平均粒径が1.6μmでタップ密度から算出した充填密度が54%の易分散性の塊状銀粉150gを、実施例1記載の内容積が2リットルのボール無しの容器にいれ、50min-1の回転速度で36時間混合処理して混合導電粉を得た。タップ密度から算出した混合導電粉の充填密度は、77%であり、プレス密度は93%であった。 850 g of the above substantially monodispersed conductive powder and 150 g of easily dispersible bulk silver powder having an average particle diameter of 1.6 μm and a packing density calculated from the tap density of 54%, and having no ball having an internal volume of 2 liters described in Example 1 The mixed conductive powder was obtained by mixing for 36 hours at a rotation speed of 50 min −1 . The filling density of the mixed conductive powder calculated from the tap density was 77%, and the press density was 93%.

導電ペーストの調製
実施例1に記載のバインダ溶液10gに、この混合導電粉95gを添加し、らいかい機で2分間均一混合して導電ペーストを得た。
Preparation of conductive paste 95 g of this mixed conductive powder was added to 10 g of the binder solution described in Example 1, and the mixture was uniformly mixed for 2 minutes with a milling machine to obtain a conductive paste.

回路および導電シートの評価
この導電ペーストを使用して実施例1と同様に各種試験を行った。実施例1と同様の方法で体積固有抵抗を測定した結果、10μΩ・cmであった。
実施例5
導電粉の調製
平均粒径が5.0μmの銀粉を原料として使用した。この充填密度は53%であった。
この銀粉の表面にステアリン酸を0.1重量%処理し、これを1000g秤量して、内容積3リットルのボールミルに入れた。該ボールミルには、直径が約2mmのアルミナビーズが1.5リットル充填してある。ビーズと導電粉の体積比はビーズ:導電粉=8:1であった。ボールミルの直径は約14cmであった。該ボールミルを60min-1の回転速度で6時間処理して、略単分散導電粉である形状加工銀粉を得た。
Evaluation of Circuit and Conductive Sheet Various tests were conducted in the same manner as in Example 1 using this conductive paste. As a result of measuring the volume resistivity by the same method as in Example 1, it was 10 μΩ · cm.
Example 5
Preparation of conductive powder Silver powder having an average particle diameter of 5.0 μm was used as a raw material. This packing density was 53%.
The surface of the silver powder was treated with 0.1% by weight of stearic acid, and 1000 g of this was weighed and placed in a ball mill having an internal volume of 3 liters. The ball mill is filled with 1.5 liters of alumina beads having a diameter of about 2 mm. The volume ratio of the beads to the conductive powder was beads: conductive powder = 8: 1. The diameter of the ball mill was about 14 cm. The ball mill was treated at a rotational speed of 60 min −1 for 6 hours to obtain a shaped silver powder that was a substantially monodispersed conductive powder.

この結果得られた形状加工導電粉を粒度分布測定器及びSEMで観察した結果、平均粒径は6.1μmであり、累積30%径以上の大粒子の平均アスペクト比は2.4であり、
累積30%径は2.7μmであり、その小粒子のアスペクト比は平均で7.3であった。処理済みの導電粉の充填密度は63%であった。
As a result of observing the resulting shaped processed conductive powder with a particle size distribution measuring instrument and SEM, the average particle diameter is 6.1 μm, and the average aspect ratio of large particles having a cumulative 30% diameter or more is 2.4.
The cumulative 30% diameter was 2.7 μm, and the average aspect ratio of the small particles was 7.3. The packing density of the treated conductive powder was 63%.

上記略単分散導電粉400gと、平均粒径が1.5μmでタップ密度から算出した充填密度が53%の易分散性の塊状銀粉100gを、内容積が2リットルの上記ボールミルと同一のボール無しの容器にいれ、50min-1の回転速度で72時間処理して混合導電粉を
得た。タップ密度から算出した混合導電粉の充填密度は、72%であり、プレス密度は89%であった。
400 g of the above substantially monodispersed conductive powder and 100 g of easily dispersible bulk silver powder having an average particle diameter of 1.5 μm and a packing density calculated from the tap density of 53% are the same as those in the ball mill having an internal volume of 2 liters. The mixture was treated for 72 hours at a rotation speed of 50 min −1 to obtain mixed conductive powder. The filling density of the mixed conductive powder calculated from the tap density was 72%, and the press density was 89%.

導電ペーストの調製
実施例1に記載のバインダ溶液6gに、この混合導電粉97gを添加し、らいかい機で2分間均一混合して導電ペーストを得た。
Preparation of Conductive Paste 97 g of this mixed conductive powder was added to 6 g of the binder solution described in Example 1, and the mixture was uniformly mixed for 2 minutes with a milling machine to obtain a conductive paste.

回路および導電シートの評価
この導電ペーストを使用して実施例1と同様に各種試験を行った。実施例1と同様の方法で体積固有抵抗を測定した結果、10μΩ・cmであった。
実施例6
導電粉の調製
平均粒径が5.5μmで、銀めっきを20重量%処理した略球状の銀めっき銅粉を原料として使用した。この充填密度は45%であった。この銀めっき銅粉の表面にステアリン酸を0.2重量%処理し、これを1000g秤量して、内容積3リットルのボールミルに入れた。該ボールミルには、直径が約2mmのガラス製ビーズが1.5リットル充填してある。ビーズと導電粉の体積比はビーズ:導電粉=7:1であった。ボールミルの直径は約14cmであった。該ボールミルを50min-1の回転速度で4時間処理した。この結果
得られた形状加工導電粉を粒度分布測定器及びSEMで観察した結果、平均粒径は6μmであり、累積30%径以上の大粒子の平均アスペクト比は2.4であり、累積30%径は5μmであり、その小粒子のアスペクト比は平均で5.3であった。処理済みの導電粉の充填密度は64%であった。この導電粉を大気中で12ヶ月保管していたが変色は認められなかった。
Evaluation of Circuit and Conductive Sheet Various tests were conducted in the same manner as in Example 1 using this conductive paste. As a result of measuring the volume resistivity by the same method as in Example 1, it was 10 μΩ · cm.
Example 6
Preparation of conductive powder An approximately spherical silver-plated copper powder having an average particle size of 5.5 μm and treated with 20% by weight of silver plating was used as a raw material. This packing density was 45%. The surface of this silver-plated copper powder was treated with 0.2% by weight of stearic acid, and 1000 g of this was weighed and placed in a ball mill having an internal volume of 3 liters. The ball mill is filled with 1.5 liters of glass beads having a diameter of about 2 mm. The volume ratio of the beads to the conductive powder was beads: conductive powder = 7: 1. The diameter of the ball mill was about 14 cm. The ball mill was treated for 4 hours at a rotation speed of 50 min -1 . As a result of observing the resulting shaped processed conductive powder with a particle size distribution measuring instrument and SEM, the average particle size was 6 μm, and the average aspect ratio of large particles having a cumulative 30% diameter or more was 2.4, and the cumulative 30 The% diameter was 5 μm, and the average aspect ratio of the small particles was 5.3. The packing density of the treated conductive powder was 64%. The conductive powder was stored in the atmosphere for 12 months, but no discoloration was observed.

上記略単分散導電粉480gと、平均粒径が1.5μmでタップ密度から算出した充填密度が53%の易分散性の塊状銀粉20gを、内容積が2リットルの上記ボールミルと同一のボール無しの容器にいれ、60min-1の回転速度で72時間処理して混合導電粉を得
た。タップ密度から算出した混合導電粉の充填密度は、69%であり、プレス密度は87%であった。
480 g of the above substantially monodispersed conductive powder and 20 g of easily dispersible bulk silver powder having an average particle diameter of 1.5 μm and a packing density calculated from the tap density of 53% are the same as those in the ball mill having an internal volume of 2 liters. The mixture was treated for 72 hours at a rotation speed of 60 min −1 to obtain mixed conductive powder. The filling density of the mixed conductive powder calculated from the tap density was 69%, and the press density was 87%.

導電ペーストの調製
実施例1記載のバインダ溶液6gに、この混合導電粉97gを添加し、らいかい機で2分間均一混合して導電ペーストを得た。この導電ペーストを使用して実施例1と同様に各種試験を行った。また実施例1記載のバインダ溶液10gに、この混合導電粉95gを添加し、らいかい機で2分間均一混合して導電ペーストを得た。
Preparation of Conductive Paste 97 g of this mixed conductive powder was added to 6 g of the binder solution described in Example 1, and the mixture was uniformly mixed for 2 minutes with a cracker to obtain a conductive paste. Various tests were conducted in the same manner as in Example 1 using this conductive paste. Further, 95 g of this mixed conductive powder was added to 10 g of the binder solution described in Example 1, and the mixture was uniformly mixed for 2 minutes with a rake machine to obtain a conductive paste.

回路および導電シートの評価
この導電ペーストを使用して実施例1と同様に各種試験を行った。実施例1と同様の方法で体積固有抵抗を測定した結果、16μΩ・cmであった。
実施例7
導電粉の調製
平均粒径が10.2μmで、銀めっきを10重量%処理した略球状の銀めっき銅粉を原料として使用した。この充填密度は50%であった。この銀めっき銅粉の表面にラウリン酸を0.1重量%処理し、これを500g秤量して、内容積3リットルのボールミルに入れた。該ボールミルには、直径が約2mmのガラス製ビーズが1.0リットル充填してある。ビーズと導電粉の体積比はビーズ:導電粉=9:1であった。ボールミルの直径は約14cmであった。該ボールミルを50min-1の回転速度で4時間処理した。この結果得
られた形状加工導電粉を粒度分布測定器及びSEMで観察した結果、平均粒径は10.8μmであり、累積30%径以上の大粒子の平均アスペクト比は2.2であり、累積30%径は4.8μmであり、その小粒子のアスペクト比は平均で4.7であった。処理済みの導電粉の充填密度は64%であった。この導電粉を大気中で12ヶ月保管していたが変色は認められなかった。
Evaluation of Circuit and Conductive Sheet Various tests were conducted in the same manner as in Example 1 using this conductive paste. As a result of measuring the volume resistivity by the same method as in Example 1, it was 16 μΩ · cm.
Example 7
The average particle diameter of the conductive powder was 10.2 μm, and a substantially spherical silver-plated copper powder treated with 10% by weight of silver plating was used as a raw material. This packing density was 50%. The surface of the silver-plated copper powder was treated with 0.1% by weight of lauric acid, and 500 g of this was weighed and placed in a ball mill having an internal volume of 3 liters. The ball mill is filled with 1.0 liter of glass beads having a diameter of about 2 mm. The volume ratio of beads to conductive powder was bead: conductive powder = 9: 1. The diameter of the ball mill was about 14 cm. The ball mill was treated for 4 hours at a rotation speed of 50 min -1 . As a result of observing the resulting shape-processed conductive powder with a particle size distribution measuring instrument and SEM, the average particle size was 10.8 μm, and the average aspect ratio of large particles having a cumulative 30% diameter or more was 2.2. The cumulative 30% diameter was 4.8 μm, and the average aspect ratio of the small particles was 4.7. The packing density of the treated conductive powder was 64%. The conductive powder was stored in the atmosphere for 12 months, but no discoloration was observed.

上記略単分散導電粉450gと、平均粒径が1.5μmで、易分散性の塊状銀粉50gを、実施例1記載の内容積が2リットルのボール無しの容器にいれ、60min-1の回転速
度で36時間処理して混合導電粉を得た。タップ密度から算出した混合導電粉の充填密度は、75%であり、プレス密度は92%であった。
450 g of the above substantially monodispersed conductive powder and 50 g of easily dispersible bulk silver powder having an average particle diameter of 1.5 μm are placed in a container having no internal ball of 2 liters described in Example 1 and rotated at 60 min −1 . The mixed conductive powder was obtained by treating at a speed for 36 hours. The filling density of the mixed conductive powder calculated from the tap density was 75%, and the press density was 92%.

導電ペーストの調製
実施例1に記載のバインダ溶液10gに、この混合導電粉95gを添加し、らいかい機
で2分間均一混合して導電ペーストを得た。
Preparation of conductive paste 95 g of this mixed conductive powder was added to 10 g of the binder solution described in Example 1, and the mixture was uniformly mixed for 2 minutes with a milling machine to obtain a conductive paste.

回路および導電シートの評価
この導電ペーストを使用して実施例1と同様に各種試験を行った。また印刷基板を110℃に加熱し、0.1MPaの圧力で5分間加熱・加圧した結果、回路の体積固有抵抗は20μΩ・cmであった。
実施例8
導電粉の調製
平均粒径が10.2μmで、銀めっきを30重量%処理した略球状の銀めっき銅粉を原料として使用した。この充填密度は47%であった。この銀めっき銅粉の表面にオレイン酸を0.05重量%処理し、これを1000g秤量して、内容積5リットルのボールミルに入れた。該ボールミルには、直径が約2mmのガラス製ビーズが2.5リットル充填してある。ビーズと導電粉の体積比はビーズ:導電粉=9:1であった。ボールミルの直径は約17cmであった。該ボールミルを40min-1の回転速度で12時間処理した。この
結果得られた形状加工導電粉を粒度分布測定器及びSEMで観察した結果、平均粒径は11.2μmであり、累積30%径以上の大粒子の平均アスペクト比は2.6であり、累積30%径は5.8μmであり、その小粒子のアスペクト比は平均で5.8であった。処理済みの導電粉の充填密度は62%であった。この導電粉を大気中で12ヶ月保管していたが変色は認められなかった。
Evaluation of Circuit and Conductive Sheet Various tests were conducted in the same manner as in Example 1 using this conductive paste. The printed circuit board was heated to 110 ° C. and heated and pressurized at a pressure of 0.1 MPa for 5 minutes. As a result, the volume resistivity of the circuit was 20 μΩ · cm.
Example 8
The average particle diameter of the conductive powder was 10.2 μm, and a substantially spherical silver-plated copper powder treated with 30% by weight of silver plating was used as a raw material. This packing density was 47%. The surface of the silver-plated copper powder was treated with 0.05% by weight of oleic acid, and 1000 g of this was weighed and placed in a ball mill having an internal volume of 5 liters. The ball mill is filled with 2.5 liters of glass beads having a diameter of about 2 mm. The volume ratio of beads to conductive powder was bead: conductive powder = 9: 1. The diameter of the ball mill was about 17 cm. The ball mill was treated at a rotational speed of 40 min -1 for 12 hours. As a result of observing the resulting shape-processed conductive powder with a particle size distribution measuring instrument and SEM, the average particle size is 11.2 μm, and the average aspect ratio of large particles having a cumulative 30% size or more is 2.6, The cumulative 30% diameter was 5.8 μm, and the average aspect ratio of the small particles was 5.8. The packing density of the treated conductive powder was 62%. The conductive powder was stored in the atmosphere for 12 months, but no discoloration was observed.

上記略単分散導電粉450gと、平均粒径が1.5μmでタップ密度から算出した充填密度が53%の易分散性の塊状銀粉50gを、内容積が2リットルの上記ボールミルと同一のボール無しの容器にいれ、60min-1の回転速度で72時間処理して混合導電粉を得
た。タップ密度から算出した混合導電粉の充填密度は、74%であり、プレス密度は90%であった。
450 g of the above substantially monodispersed conductive powder and 50 g of easily dispersible bulk silver powder having an average particle diameter of 1.5 μm and a packing density calculated from the tap density of 53%, are the same as those in the ball mill having an internal volume of 2 liters. The mixture was treated for 72 hours at a rotation speed of 60 min −1 to obtain mixed conductive powder. The filling density of the mixed conductive powder calculated from the tap density was 74%, and the press density was 90%.

導電ペーストの調製
実施例1記載のバインダ溶液2gおよびエチルカルビトール3gに、この混合導電粉99gを添加し、らいかい機で2分間均一混合して導電ペーストを得た。
Preparation of Conductive Paste 99 g of this mixed conductive powder was added to 2 g of the binder solution described in Example 1 and 3 g of ethyl carbitol, and mixed uniformly for 2 minutes with a milling machine to obtain a conductive paste.

回路および導電シートの評価
この導電ペーストを使用して実施例1と同様に各種試験を行った。また実施例1とい同様にして測定した体積固有抵抗は12μΩ・cmであった。
実施例9
導電粉の調製
平均粒径が10.2μmで、銀めっきを5重量%処理した略球状の銀めっき銅粉を原料として使用した。この充填密度は51%であった。この銀めっき銅粉の表面にラウリン酸を0.1重量%処理し、これを500g秤量して、内容積3リットルのボールミルに入れた。該ボールミルには、直径が約2mmのアルミナ製ビーズが1.5リットル充填してある。ビーズと導電粉の体積比はビーズ:導電粉=14:1であった。ボールミルの直径は約14cmであった。該ボールミルを50min-1の回転速度で4時間処理した。この結果
得られた形状加工導電粉を粒度分布測定器及びSEMで観察した結果、平均粒径は10.8μmであり、累積30%径以上の大粒子の平均アスペクト比は2.1であり、累積30%径は4.7μmであり、その小粒子のアスペクト比は平均で4.6であった。処理済みの導電粉の充填密度は64%であった。この導電粉を大気中で12ヶ月保管していたが変色は認められなかった。
Evaluation of Circuit and Conductive Sheet Various tests were conducted in the same manner as in Example 1 using this conductive paste. The volume resistivity measured in the same manner as in Example 1 was 12 μΩ · cm.
Example 9
The average particle diameter of the conductive powder was 10.2 μm, and a substantially spherical silver-plated copper powder treated with 5% by weight of silver plating was used as a raw material. This packing density was 51%. The surface of the silver-plated copper powder was treated with 0.1% by weight of lauric acid, and 500 g of this was weighed and placed in a ball mill having an internal volume of 3 liters. The ball mill is filled with 1.5 liters of alumina beads having a diameter of about 2 mm. The volume ratio of the beads to the conductive powder was beads: conductive powder = 14: 1. The diameter of the ball mill was about 14 cm. The ball mill was treated for 4 hours at a rotation speed of 50 min -1 . As a result of observing the resulting shape-processed conductive powder with a particle size distribution measuring instrument and SEM, the average particle size is 10.8 μm, and the average aspect ratio of large particles having a cumulative diameter of 30% or more is 2.1, The cumulative 30% diameter was 4.7 μm, and the aspect ratio of the small particles was 4.6 on average. The packing density of the treated conductive powder was 64%. The conductive powder was stored in the atmosphere for 12 months, but no discoloration was observed.

上記略単分散導電粉400gと、平均粒径が1.5μmでタップ密度から算出した充填密度が53%の易分散性の塊状銀粉100gを、内容積が2リットルの上記ボールミルと同一のボール無しの容器にいれ、60min-1の回転速度で72時間処理して混合導電粉を
得た。タップ密度から算出した混合導電粉の充填密度は、76%であり、プレス密度は92%であった。
400 g of the above substantially monodispersed conductive powder and 100 g of easily dispersible bulk silver powder having an average particle diameter of 1.5 μm and a packing density calculated from the tap density of 53% are the same as those in the ball mill having an internal volume of 2 liters. The mixture was treated for 72 hours at a rotation speed of 60 min −1 to obtain mixed conductive powder. The filling density of the mixed conductive powder calculated from the tap density was 76%, and the press density was 92%.

導電ペーストの調製
実施例1に記載のバインダ溶液4gおよびエチルカルビトール2gに、この混合導電粉98gを添加し、らいかい機で2分間均一混合して導電ペーストを得た。
Preparation of conductive paste 98 g of this mixed conductive powder was added to 4 g of the binder solution described in Example 1 and 2 g of ethyl carbitol, and the mixture was uniformly mixed for 2 minutes with a milling machine to obtain a conductive paste.

回路および導電シートの評価
この導電ペーストを使用して実施例1と同様に各種試験を行った。また実施例1と同様にして測定した体積固有抵抗は13μΩ・cmであった。
実施例10
導電ペーストの調製
エポキシ当量が170g/eqのビスフェノールF型エポキシ樹脂(三井化学(株)製、商品名エポミックR110)10重量部、エポキシ当量が325g/eqで軟化温度が60℃のビスフェノールA型エポキシ樹脂85重量部、2−フェニル−4−メチル−イミダゾール(四国化成(株)製、商品名キュアゾール2P4MZ)4.5重量部、チタネート系カップリング剤0.5重量部及びエチルカルビトール100重量部を均一に混合してバインダ溶液を得た。
Evaluation of Circuit and Conductive Sheet Various tests were conducted in the same manner as in Example 1 using this conductive paste. The volume resistivity measured in the same manner as in Example 1 was 13 μΩ · cm.
Example 10
Preparation of conductive paste 10 parts by weight of bisphenol F type epoxy resin (trade name Epomic R110, manufactured by Mitsui Chemicals, Inc.) having an epoxy equivalent of 170 g / eq, bisphenol A type epoxy having an epoxy equivalent of 325 g / eq and a softening temperature of 60 ° C. 85 parts by weight of resin, 4.5 parts by weight of 2-phenyl-4-methyl-imidazole (trade name Curesol 2P4MZ, manufactured by Shikoku Kasei Co., Ltd.), 0.5 parts by weight of titanate coupling agent and 100 parts by weight of ethyl carbitol Were uniformly mixed to obtain a binder solution.

実施例1に記載の混合導電粉96重量部と上記バインダ溶液8重量部をらいかい機で均一混合し、導電ペーストを得た。この導電ペーストを使用し、厚さが125μmのポリカーボネートフィルム上に所望のパターンを印刷し、ついで100℃で45分間乾燥して溶剤を揮発させてポリカーボネートフィルム上に回路の厚さが約30μmの回路を形成した。   96 parts by weight of the mixed conductive powder described in Example 1 and 8 parts by weight of the above binder solution were uniformly mixed with a screening machine to obtain a conductive paste. Using this conductive paste, a desired pattern is printed on a polycarbonate film having a thickness of 125 μm, then dried at 100 ° C. for 45 minutes to evaporate the solvent, and a circuit thickness of about 30 μm is formed on the polycarbonate film. Formed.

電子部品の作製
形成した回路上の部品接着部に50℃に加熱したチップコンデンサとICチップを押し付けて仮接着させた。その後チップコンデンサおよびICチップを接着させたポリカーボネートフィルムを金型内にセットし、この金型内に240℃に加熱溶融させたポリカーボネート樹脂を10MPaの圧力で厚入させて、ICチップとチップコンデンサをポリカーボネートで封入して、電子部品を作製した。
A chip capacitor heated to 50 ° C. and an IC chip were pressed against and temporarily bonded to a component bonding portion on a circuit formed with electronic components . Thereafter, a polycarbonate film to which a chip capacitor and an IC chip are bonded is set in a mold, and a polycarbonate resin heated and melted at 240 ° C. is inserted into the mold at a pressure of 10 MPa, so that the IC chip and the chip capacitor are attached. An electronic component was fabricated by enclosing with polycarbonate.

得られたICチップおよびチップコンデンサは、所定の働きを確認した。
比較例1
導電ペーストの調製
実施例1で作製した略単分散導電粉(プレス密度70%)のみを使用し、実施例1記載のバインダを使用して導電ペーストを作製した。バインダ溶液10gと導電粉95gを混合し、らいかい機で2分間混合した。
The obtained IC chip and chip capacitor confirmed their predetermined functions.
Comparative Example 1
Preparation of conductive paste Using only the substantially monodispersed conductive powder (press density 70%) prepared in Example 1, the conductive paste was prepared using the binder described in Example 1. 10 g of the binder solution and 95 g of the conductive powder were mixed, and mixed for 2 minutes with a rake machine.

回路および導電シートの評価
この導電ペーストについて実施例1と同様に特性を評価した。また印刷基板を110℃に加熱し、10MPaの圧力で5分間加熱・加圧した結果、回路の体積固有抵抗は35μΩ・cmであった。
比較例2
導電ペーストの調製
実施例1で作製した略単分散導電粉300gと平均粒径が1.5μmでタップ密度から算出した充填密度が53%の易分散性の塊状銀粉200gを、実施例1記載の方法で混合して混合導電粉を作製した。得られた混合導電粉のプレス密度は74%であった。
Evaluation of Circuit and Conductive Sheet The characteristics of this conductive paste were evaluated in the same manner as in Example 1. The printed circuit board was heated to 110 ° C. and heated and pressurized at a pressure of 10 MPa for 5 minutes. As a result, the volume specific resistance of the circuit was 35 μΩ · cm.
Comparative Example 2
Preparation of Conductive Paste 300 g of substantially monodispersed conductive powder prepared in Example 1 and 200 g of easily dispersible bulk silver powder having an average particle size of 1.5 μm and a packing density calculated from tap density of 53% are described in Example 1. The mixed conductive powder was produced by mixing by the method. The press density of the obtained mixed conductive powder was 74%.

ついで実施例1に記載のバインダを使用し、バインダ溶液10gと導電粉95gをらい
かい機で2分間混合したが粘度が過ぎて攪拌・混合が難しかった。このため、評価ができなかった。
比較例3
導電ペーストの調製
実施例8で作製した略単分散導電粉(プレス密度71%)のみを使用し、実施例1に記載のバインダを使用して導電ペーストを作製した。バインダ溶液12gと導電粉94gを混合し、らいかい機で2分間混合した。
Next, using the binder described in Example 1, 10 g of the binder solution and 95 g of the conductive powder were mixed for 2 minutes with a rake machine, but the viscosity was too high and stirring and mixing were difficult. For this reason, evaluation was not possible.
Comparative Example 3
Preparation of conductive paste Using only the substantially monodispersed conductive powder (press density 71%) prepared in Example 8, the conductive paste was prepared using the binder described in Example 1. 12 g of the binder solution and 94 g of the conductive powder were mixed, and mixed for 2 minutes with a rough machine.

回路および導電シートの評価
この導電ペーストについて実施例1と同様に特性を評価した。また印刷基板を110℃に加熱し、10MPaの圧力で5分間加熱・加圧した結果、回路の体積固有抵抗は128μΩ・cmであった。
比較例4
導電ペーストの調製
実施例8で作製した略単分散導電粉300gと平均粒径が1.5μmでタップ密度から算出した充填密度が53%の易分散性の塊状銀粉200gを、実施例1記載の方法で混合して混合導電粉を作製した。得られた混合導電粉のプレス密度は74%であった。ついで実施例1記載のバインダを使用し、バインダ溶液10gと導電粉95gをらいかい機で2分間混合したが粘度が過ぎて攪拌・混合が難しかった。このため評価できなかった。
Evaluation of Circuit and Conductive Sheet The characteristics of this conductive paste were evaluated in the same manner as in Example 1. The printed circuit board was heated to 110 ° C. and heated and pressurized at a pressure of 10 MPa for 5 minutes. As a result, the volume specific resistance of the circuit was 128 μΩ · cm.
Comparative Example 4
Preparation of conductive paste 300 g of substantially monodispersed conductive powder prepared in Example 8 and 200 g of easily dispersible bulk silver powder having an average particle diameter of 1.5 μm and a packing density calculated from the tap density of 53% are described in Example 1. The mixed conductive powder was produced by mixing by the method. The press density of the obtained mixed conductive powder was 74%. Next, using the binder described in Example 1, 10 g of the binder solution and 95 g of the conductive powder were mixed for 2 minutes with a scourer, but the viscosity was too high and stirring and mixing were difficult. For this reason, it was not possible to evaluate.

実施例2〜9および比較例1および3について、実施例1と同様に、熱伝導率も評価した。
結果を併せて表1に示す。
For Examples 2 to 9 and Comparative Examples 1 and 3, as in Example 1, the thermal conductivity was also evaluated.
The results are also shown in Table 1.

Figure 0005059458
Figure 0005059458

Claims (11)

多面体形状粒子および略鱗片状粒子からなる分散導電粉、および塊状微粉を含み、かつプレス密度が80%乃至99.5%の金粉、白金粉、パラジウム粉、銀粉、銅粉、銀めっき銅粉、アルミニウム粉およびこれらの合金粉からなることを特徴とする導電粉。 Gold powder, platinum powder, palladium powder, silver powder, copper powder, silver-plated copper powder having a press density of 80% to 99.5%, including dispersed conductive powder composed of polyhedral particles and substantially scaly particles, and bulk fine powder, A conductive powder comprising an aluminum powder and an alloy powder thereof. 請求項1に記載の導電粉とバインダとを含むことを特徴とする導電ペースト。   A conductive paste comprising the conductive powder according to claim 1 and a binder. ペースト中の前記導電粉が95乃至99.5重量%の範囲にあり、バインダが0.5乃至5重量%の範囲にあることを特徴とする請求項2に記載の導電ペースト。   The conductive paste according to claim 2, wherein the conductive powder in the paste is in the range of 95 to 99.5% by weight and the binder is in the range of 0.5 to 5% by weight. バインダが熱軟化性樹脂であり、常温常圧下で接着性を有することを特徴とする請求項2または3に記載の導電ペースト。   The conductive paste according to claim 2 or 3, wherein the binder is a thermosoftening resin and has adhesiveness under normal temperature and normal pressure. 請求項1に記載の導電粉とバインダとを含むことを特徴とする導電シート。 A conductive sheet comprising the conductive powder according to claim 1 and a binder. シート中の前記導電粉が95乃至99.5重量%の範囲にあり、バインダが0.5乃至5重量%の範囲にあることを特徴とする請求項5に記載の導電シート。 6. The conductive sheet according to claim 5, wherein the conductive powder in the sheet is in the range of 95 to 99.5% by weight and the binder is in the range of 0.5 to 5% by weight. バインダが熱軟化性であり、常温常圧下で接着性を有することを特徴とする請求項5または6に記載の導電シート。   The conductive sheet according to claim 5 or 6, wherein the binder is heat-softening and has adhesiveness at normal temperature and pressure. 請求項2〜4のいずれかに記載の導電ペーストで基材の上に所望の回路パターンが形成されてなることを特徴とする回路板。   A circuit board, wherein a desired circuit pattern is formed on a substrate with the conductive paste according to claim 2. 回路パターンが複数形成されてなり、基材上に形成された該回路パターン間が接続されてなることを特徴とする請求項8に記載の回路板。   The circuit board according to claim 8, wherein a plurality of circuit patterns are formed, and the circuit patterns formed on the substrate are connected. 請求項2〜4のいずれかに記載の導電ペーストで基材の上に所望の回路パターンが形成されてなり、かかる基材上に形成された回路パターンの一部を介して電子部品が接続されてなることを特徴とする電子部品実装回路板。   A desired circuit pattern is formed on a substrate with the conductive paste according to any one of claims 2 to 4, and an electronic component is connected through a part of the circuit pattern formed on the substrate. An electronic component mounting circuit board characterized by comprising: 回路パターンが複数形成されてなり、基材上に形成された該回路パターン間が接続されてなることを特徴とする請求項10に記載の電子部品実装回路板。   The electronic component mounting circuit board according to claim 10, wherein a plurality of circuit patterns are formed, and the circuit patterns formed on the substrate are connected.
JP2007076945A 2007-03-23 2007-03-23 Conductive powder, conductive paste, conductive sheet, circuit board and electronic component mounting circuit board Expired - Fee Related JP5059458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007076945A JP5059458B2 (en) 2007-03-23 2007-03-23 Conductive powder, conductive paste, conductive sheet, circuit board and electronic component mounting circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007076945A JP5059458B2 (en) 2007-03-23 2007-03-23 Conductive powder, conductive paste, conductive sheet, circuit board and electronic component mounting circuit board

Publications (3)

Publication Number Publication Date
JP2008235198A JP2008235198A (en) 2008-10-02
JP2008235198A5 JP2008235198A5 (en) 2010-04-15
JP5059458B2 true JP5059458B2 (en) 2012-10-24

Family

ID=39907752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007076945A Expired - Fee Related JP5059458B2 (en) 2007-03-23 2007-03-23 Conductive powder, conductive paste, conductive sheet, circuit board and electronic component mounting circuit board

Country Status (1)

Country Link
JP (1) JP5059458B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5632176B2 (en) * 2009-09-30 2014-11-26 三ツ星ベルト株式会社 Laminated body, conductive substrate using the laminated body, and method for producing the same
WO2011065271A1 (en) * 2009-11-24 2011-06-03 独立行政法人産業技術総合研究所 Conductive substrate and process for producing same
EP3796336A1 (en) * 2010-11-03 2021-03-24 Alpha Assembly Solutions Inc. Sintering materials and attachment methods using same
CN102994797A (en) * 2012-12-10 2013-03-27 大连创达技术交易市场有限公司 Alloy powder
JP6389628B2 (en) * 2014-03-31 2018-09-12 三井金属鉱業株式会社 Copper powder, method for producing the same, and conductive composition containing the same
CN108565042B (en) * 2018-04-24 2020-02-07 河南省豫星微钻有限公司 Electric-conduction and heat-conduction electronic paste containing nano diamond alkene and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111204A (en) * 1999-10-07 2001-04-20 Aisin Seiki Co Ltd Method of bonding metal component and conductive resin component and bonded product thereof
JP2003331648A (en) * 2002-05-10 2003-11-21 Tsuchiya Co Ltd Conductive paste and manufacturing method for electric circuit
KR100719993B1 (en) * 2003-09-26 2007-05-21 히다치 가세고교 가부시끼가이샤 Mixed Conductive Powder and Use Thereof
JP2006111807A (en) * 2004-10-18 2006-04-27 Hitachi Chem Co Ltd Electronic part and method for producing the same

Also Published As

Publication number Publication date
JP2008235198A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4954885B2 (en) Conductive powder and method for producing the same, conductive powder paste, and method for producing conductive powder paste
JP4677900B2 (en) Mixed conductive powder and its use
JP5059458B2 (en) Conductive powder, conductive paste, conductive sheet, circuit board and electronic component mounting circuit board
JP3964868B2 (en) Thermosetting conductive paste for conductive bumps
WO2018163921A1 (en) Resin composition, method for producing resin composition, and structure
JP4922793B2 (en) Mixed conductive powder and method for producing the same, conductive paste and method for producing the same
WO2015060173A1 (en) Silver paste and semiconductor device using same
JPWO2013161966A1 (en) Conductive composition
JP5609492B2 (en) Electronic component and manufacturing method thereof
JP3599149B2 (en) Conductive paste, electric circuit using conductive paste, and method of manufacturing electric circuit
JP2001297627A (en) Conductive material
TWI808208B (en) Nano copper paste and film for sintered die attach and similar applications and method of manufacturing sintering powders
JP2004165357A (en) Film-laced heat-conducting sheet
JP2000348538A (en) Anisotropically conducting film and manufacture thereof
JP2005310538A (en) Electronic component and its manufacturing method
JP2006111807A (en) Electronic part and method for producing the same
KR102459748B1 (en) Metal particle aggregates, method for producing same, paste-like metal particle aggregate composition, and method for producing bonded body using said paste-like metal particle aggregate composition
JP5953003B2 (en) Conductive paste for ceramic multilayer circuit boards
WO2023176402A1 (en) Block-like silver powder and manufacturing method thereof, and electrically conductive paste
JP5494299B2 (en) Method for demagnetizing magnetic powder
TW202325438A (en) Silver powder, production method for silver powder, and conductive paste
JP2015043429A (en) Conductive paste for ceramic multilayer circuit board
JPH11172147A (en) Production of electroconductive powder, electroconductive powder and electroconductive paste by using the same
JP2010238615A (en) Conductive particulate, anisotropic conductive material, and connection structural body

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees