JP5056967B2 - MEMS vibrator - Google Patents

MEMS vibrator Download PDF

Info

Publication number
JP5056967B2
JP5056967B2 JP2011069829A JP2011069829A JP5056967B2 JP 5056967 B2 JP5056967 B2 JP 5056967B2 JP 2011069829 A JP2011069829 A JP 2011069829A JP 2011069829 A JP2011069829 A JP 2011069829A JP 5056967 B2 JP5056967 B2 JP 5056967B2
Authority
JP
Japan
Prior art keywords
mems
free
beams
substrate
free beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011069829A
Other languages
Japanese (ja)
Other versions
JP2011139536A (en
Inventor
竜児 木原
カルモナ フローレス マニュエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011069829A priority Critical patent/JP5056967B2/en
Publication of JP2011139536A publication Critical patent/JP2011139536A/en
Application granted granted Critical
Publication of JP5056967B2 publication Critical patent/JP5056967B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、MEMS振動子の構造に関する。詳しくは、複数の両端自由梁を振動の節を
連結部として連環状に連結し、その連結部を支持部材によって支持するMEMS振動子の
構造に関する。
The present invention relates to a structure of a MEMS vibrator. More specifically, the present invention relates to a structure of a MEMS vibrator in which a plurality of free beams at both ends are connected in a ring shape with a vibration node as a connecting portion, and the connecting portion is supported by a support member.

MEMS(Micro Electro Mechanical Systems)技
術を用いて駆動体をつくり、特定の周波数で駆動させることで振動素子として使用するこ
とができ、このようなMEMS技術を用いたMEMS構造体が提案されている。このよう
なMEMS構造体は、一般的な振動子に比べ等価回路で考えた場合の直列抵抗成分が大き
こと、振動漏れが大きい等の損失が大きいという課題を有している。
A drive body is made using a MEMS (Micro Electro Mechanical Systems) technology and can be used as a vibration element by being driven at a specific frequency, and a MEMS structure using such a MEMS technology has been proposed. Such a MEMS structure has a problem that a series resistance component when considered in an equivalent circuit is larger than that of a general vibrator and a loss such as a large vibration leakage is large.

このような課題を解決するためのMEMS振動子の構造として、複数の矩形状の振動体
の角部を直線的に連結し、各振動体の平面中央部をアンカー(支持部)で基板に支持し、
複数の振動体を同周波数で駆動するMEMS振動子というものが知られている(例えば、
非特許文献1参照)。
As a structure of a MEMS vibrator for solving such problems, the corners of a plurality of rectangular vibrators are linearly connected, and the center of the plane of each vibrator is supported on a substrate by an anchor (support part). And
A MEMS vibrator that drives a plurality of vibrators at the same frequency is known (for example,
Non-patent document 1).

また、短冊状の振動片の両端部を基板に接続支持し、この振動片を並列に複数個配設し
て複数の振動片を同じ周波数で同時に駆動させるMEMS振動子というものも知られてい
る(例えば、非特許文献2参照)。
There is also known a MEMS vibrator in which both ends of a strip-shaped vibrating piece are connected and supported to a substrate, a plurality of the vibrating pieces are arranged in parallel, and the plurality of vibrating pieces are simultaneously driven at the same frequency. (For example, refer nonpatent literature 2).

M.U.Demirci,m.a.a.Abdelmoneum,and C.T−C.Nguyen“Mechanically Corner−Coupled Squar Microresonator Array Reduced Sries Motional Resistannce”,Solid−State Sensors & Actuators (Trannsducers’03),pp.995−958,June 2003.M.M. U. Demirci, m. a. a. Abdelmoneum, and C.I. TC. Nguyen “Mechanically Corner-Coupled Square Microcontroller Array Array Reduced Slides Motional Resistance”, Solid-State Sensors & Actors (Trans03rds). 995-958, June 2003. S.Lee and C.T−C.Nguyen“Mechanically Corner−Coupled Micromechanical Resonator Arrays for Improved Phase Noise”,IEEE Int.Ultrasonics,pp.280−286,August 2004.S. Lee and C.L. TC. Nguyen “Mechanically Corner-Coupled Micromechanical Resonator Array for Improved Phase Noise”, IEEE Int. Ultrasonics, pp. 280-286, August 2004.

このような非特許文献1や非特許文献2では、複数の振動子を同一周波数で駆動させる
ことにより直列抵抗成分を小さくしてエネルギー損失を低減して駆動特性を改善しようと
している。この構造は、等価回路で考えたときに、抵抗が並列接続されていることに相当
し、振動子全体として直列抵抗成分を下げるものである。
In Non-Patent Document 1 and Non-Patent Document 2 described above, a plurality of vibrators are driven at the same frequency, thereby reducing the series resistance component to reduce energy loss and improving drive characteristics. This structure corresponds to the fact that the resistors are connected in parallel when considered with an equivalent circuit, and lowers the series resistance component of the entire vibrator.

しかしながら、非特許文献1によれば、振動の節の部分を一点で固定することにより、
基板への振動漏れを軽減させ高いQ値を実現することが可能であるが、中心部(節の部分
)をアンカーで支持する構造のため、位置が僅かにずれただけでも所望の駆動特性が得ら
れなくなるという製造精度のつくりこみに課題がある。
However, according to Non-Patent Document 1, by fixing the portion of the vibration node at one point,
Although it is possible to reduce the vibration leakage to the substrate and achieve a high Q value, the desired driving characteristics can be achieved even if the position is slightly shifted due to the structure in which the center part (node part) is supported by the anchor. There is a problem in manufacturing accuracy that cannot be obtained.

また、非特許文献2では、短冊状の振動子の両端部を直接基板に接続しているために、
支持部から基板への振動漏れがあり、高いQ値を得ることは困難である。さらに、支持部
は、振動子の両端に設けられるため、仮に振動子を5個配設する場合には、10箇所の支
持が必要になることから、支持部からの振動漏れを増長させてしまうことも考えられる。
In Non-Patent Document 2, since both ends of the strip-like vibrator are directly connected to the substrate,
There is vibration leakage from the support portion to the substrate, and it is difficult to obtain a high Q value. Furthermore, since the support portions are provided at both ends of the vibrator, if five vibrators are provided, 10 places of support are required, which increases vibration leakage from the support portion. It is also possible.

本発明の目的は、前述した課題を解決することを要旨とし、振動漏れがなく、エネルギ
ー損失を低減し、Q値が高く、高効率に駆動できるMEMS振動子を提供することである
An object of the present invention is to solve the above-described problems, and to provide a MEMS vibrator that is free from vibration leakage, reduces energy loss, has a high Q value, and can be driven with high efficiency.

本発明のMEMS振動子は、基板と、前記基板の表面に形成される複数の両端自由梁と
、前記複数の両端自由梁それぞれを振動の節となる位置を連結部として交差連結し、連環
状に構成されるMEMS構造体と、前記連結部から延在され、前記MEMS構造体を前記
基板の表面と空隙を有して支持する支持部材と、が備えられ、前記複数の両端自由梁を同
時に同じ周波数で駆動することを特徴とする。
The MEMS vibrator according to the present invention includes a substrate, a plurality of free beams at both ends formed on the surface of the substrate, and a plurality of free beams at both ends that are cross-connected with the positions serving as vibration nodes as connection portions. And a supporting member that extends from the connecting portion and supports the MEMS structure with a surface of the substrate and a gap, and simultaneously supports the plurality of free beams at both ends. It is characterized by driving at the same frequency.

この発明によれば、複数の両端自由梁を振動の節で交差連結し、この連結部を支持部材
によって支持しているために両端自由梁の振動による支持部材の変位は非常に小さく、基
板への振動漏れを抑制することができる。さらに、連結部を支持する構造であるため、上
述した非特許文献2のように、単独で振動片(梁)の両端を支持し複数個を並列に連結す
る構造に比べ、支持部を少なくすることができるので、より一層、振動漏れを抑制するこ
とができ、Q値を高めることができるという効果がある。
According to the present invention, a plurality of free beams at both ends are cross-connected at the vibration node, and the connecting portion is supported by the support member, so that the displacement of the support member due to the vibration of the free beams at both ends is very small and Vibration leakage can be suppressed. Furthermore, since the structure supports the connecting portion, as in Non-Patent Document 2 described above, the number of supporting portions is reduced compared to a structure in which both ends of a vibrating piece (beam) are supported alone and a plurality are connected in parallel. Therefore, vibration leakage can be further suppressed, and the Q value can be increased.

また、複数の両端自由梁を同一の共振周波数で駆動することで、等価回路における直列
抵抗を並列接続することに相当するため、直列抵抗成分を小さくすることができるので直
列抵抗成分によるエネルギー損失を低減することができる。
In addition, by driving a plurality of free beams at both ends at the same resonance frequency, this corresponds to connecting the series resistance in the equivalent circuit in parallel, so the series resistance component can be reduced, so that the energy loss due to the series resistance component is reduced. Can be reduced.

また、前記複数の両端自由梁が、2n個(nは2以上の整数)備えられ、前記複数の両
端自由梁のうち、隣り合う両端自由梁それぞれを同じ周波数、且つ、逆位相、で駆動する
ことが好ましい。
The plurality of free beams at both ends are provided with 2n pieces (n is an integer of 2 or more), and among the plurality of free beams at both ends, adjacent free beams at both ends are driven at the same frequency and opposite phase. It is preferable.

すなわち、両端自由梁は、4個以上の偶数個で構成され、隣り合う両端自由梁それぞれ
を逆位相、同じ周波数で駆動するため、MEMS構造体全体としての駆動(振動)のバラ
ンスがとれ、振動の節で指示していることから、一層、支持部材から基板への振動漏れを
抑制することができる。
In other words, the free beams at both ends are composed of an even number of 4 or more, and the adjacent free beams at both ends are driven in the opposite phase and the same frequency, so that the drive (vibration) of the entire MEMS structure is balanced, Therefore, it is possible to further suppress vibration leakage from the support member to the substrate.

また、前記支持部材が、前記連結部の側面から前記MEMS構造体の外側または内側に
向かって放射状に延在されている支持梁であることが好ましい。
Moreover, it is preferable that the said supporting member is a supporting beam extended radially toward the outer side or the inner side of the said MEMS structure from the side surface of the said connection part.

支持梁は、振動の節となる部分、つまり両端自由梁の連結部の側面から放射状に延在し
ているため、両端自由梁と支持梁とは、フォトリソグラフィ等の同一工程において形成す
ることが可能であり、振動の節となる部分と支持梁との位置関係を高精度に管理すること
ができ、それらの位置ずれによる振動漏れや、振動特性への影響を抑制することができる
Since the support beam extends radially from the side of the connecting portion of the free beam at both ends, that is, the vibration node, the free beam at both ends and the support beam can be formed in the same process such as photolithography. It is possible to manage the positional relationship between the vibration node and the support beam with high accuracy, and to suppress the vibration leakage and the influence on the vibration characteristics due to the displacement.

また、前記両端自由梁の共振周波数における波長をλとしたとき、前記支持梁の長さが
(1/4)λに設定されていることが好ましい。
Further, when the wavelength at the resonance frequency of the free beams at both ends is λ, the length of the support beam is preferably set to (1/4) λ.

支持梁の長さをこのように設定すれば、複数の両端自由梁が振動した際に、支持梁から
基板への振動漏れ(支持梁のねじれ振動として)をより一層抑制することができる。
By setting the length of the support beam in this way, vibration leakage from the support beam to the substrate (as torsional vibration of the support beam) can be further suppressed when a plurality of free beams at both ends vibrate.

さらに、前記支持部材が、前記連結部の平面略中央と前記基板とを接続する支持柱であ
ることが望ましい。
Furthermore, it is preferable that the support member is a support column that connects a substantially planar center of the connecting portion and the substrate.

支持部材が支持柱であるということは、両端自由梁の連結部中央(つまり、振動の節の
位置)に、この支持柱を設けることができることから、振動漏れをより抑制する効果があ
るとともに、MEMS構造体の形状を簡素化することができる。
The fact that the support member is a support column means that this support column can be provided at the center of the connecting portion of the free beams at both ends (that is, the position of the vibration node), and thus has the effect of suppressing vibration leakage, The shape of the MEMS structure can be simplified.

また、前記両端自由梁の共振周波数における波長をλとしたとき、前記支持柱の高さが
、(1/4)λに設定されていることが好ましい。
Moreover, when the wavelength at the resonance frequency of the free beams at both ends is λ, the height of the support column is preferably set to (1/4) λ.

支持柱の高さ(長さ)をこのように設定すれば、前述した支持梁の長さの設定と同様に
、複数の両端自由梁が振動した際に、支持柱から基板への振動漏れをより一層抑制するこ
とができる。
If the height (length) of the support column is set in this way, vibration leakage from the support column to the substrate will occur when a plurality of free beams at both ends vibrate, similar to the setting of the length of the support beam described above. Further suppression can be achieved.

さらに、前記基板の表面の前記複数の両端自由梁それぞれの長手方向中央部に、前記両
端自由梁と空隙を有して交差する駆動電極が設けられ、前記複数の両端自由梁が、前記基
板の表面に対して垂直に駆動されることが望ましい。
Furthermore, a drive electrode that intersects the free beam at both ends with a gap is provided at a longitudinal center of each of the free beams at both ends on the surface of the substrate, and the free beams at both ends are connected to the substrate. It is desirable to be driven perpendicular to the surface.

このように両端自由梁と駆動電極とを構成すれば、両端自由梁の幅で、両端自由梁と駆
動電極との交差面積が決定されるため、駆動電極の厚さは電気特性が保証される程度の厚
さがあればよく、薄膜プロセスで形成することが可能で、製造し易いという効果がある。
If the both-end free beam and the drive electrode are configured in this way, the width of the both-end free beam determines the intersection area between the both-end free beam and the drive electrode, so that the thickness of the drive electrode ensures electrical characteristics. It only needs to have a certain thickness, can be formed by a thin film process, and is easy to manufacture.

本発明の実施形態1に係るMEMS振動子の一部を示す平面図。FIG. 3 is a plan view showing a part of the MEMS vibrator according to the first embodiment of the invention. 図1のA―A切断面を示す断面図。Sectional drawing which shows the AA cut surface of FIG. 本発明の実施形態1に係るMEMS振動子の構成を示し、(a)は、MEMS振動子を模式的に示す構成図、(b)は等価回路。The structure of the MEMS vibrator | oscillator which concerns on Embodiment 1 of this invention is shown, (a) is a block diagram which shows a MEMS vibrator typically, (b) is an equivalent circuit. 本発明の実施形態1に係るMEMS構造体の駆動形態を示し、(a)は両端自由梁1個単独の振動形態、(b)は全体の振動形態を示す説明図。The drive form of the MEMS structure which concerns on Embodiment 1 of this invention is shown, (a) is a vibration form of one free beam of both ends, (b) is explanatory drawing which shows the whole vibration form. 支持梁がない場合の共振周波数と支持梁がある場合の共振周波数を示すグラフ。The graph which shows the resonance frequency when there is no support beam and the resonance frequency when there is a support beam. 本発明の実施形態1の変形例を示す平面図。The top view which shows the modification of Embodiment 1 of this invention. 本発明の実施形態2に係るMEMS振動子の構造の一部を示す平面図。The top view which shows a part of structure of the MEMS vibrator | oscillator concerning Embodiment 2 of this invention. 本発明の実施形態2に係るMEMS構造体の駆動形態を模式的に示す斜視図。The perspective view which shows typically the drive form of the MEMS structure which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係るMEMS振動子の一部を示す平面図。FIG. 6 is a plan view showing a part of a MEMS vibrator according to a third embodiment of the invention. 図9のB−B切断面を示す断面図。Sectional drawing which shows the BB cut surface of FIG.

以下、本発明の実施の形態を図面に基づいて説明する。
図1〜図5は本発明の実施形態1に係るMEMS振動子の構造を示し、図6は、実施形
態1の変形例、図7,8は、実施形態2、図9,10は実施形態3に係るMEMS振動子
を示している。
(実施形態1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 5 show the structure of the MEMS vibrator according to the first embodiment of the present invention, FIG. 6 shows a modification of the first embodiment, FIGS. 7 and 8 show the second embodiment, and FIGS. 3 shows a MEMS resonator according to FIG.
(Embodiment 1)

図1は、実施形態1に係るMEMS振動子の一部を示す平面図、図2は、図1のA―A
切断面を示す断面図である。図1,2において、MEMS振動子10は、基板20の表面
に駆動部としてのMEMS構造体40と駆動電極71〜74とを備えて構成されている。
MEMS構造体40は、断面が矩形の棒状の同じ形状の振動体4個が井桁状に連結されて
構成されている。
FIG. 1 is a plan view showing a part of the MEMS vibrator according to the first embodiment, and FIG.
It is sectional drawing which shows a cut surface. 1 and 2, the MEMS vibrator 10 includes a MEMS structure 40 as a drive unit and drive electrodes 71 to 74 on the surface of a substrate 20.
The MEMS structure 40 is configured by connecting four vibrating bodies having the same shape in the shape of a rod having a rectangular cross section in a cross-beam shape.

これら4個の振動体は、振動の節となる部分どうしを交差連結した形状に1体に形成さ
れている。従って、これらの振動体は、振動の節に相当する連結部41〜44を基部とし
て長手方向の中央部と両端が可動する両端自由梁である(図4(a)、参照)。両端自由
梁31〜34は、それぞれが振動の節で連結され、この節を直線で結ぶと正四角形となる
。また、このMEMS構造体40は、重心Gに対して点対称形である。そして、MEMS
構造体40は、支持梁51〜54によって基部40aに連続している。
These four vibrating bodies are formed as a single body in a shape in which portions that become vibration nodes are cross-connected. Therefore, these vibrating bodies are free-end beams that are movable at both ends in the longitudinal direction with the connecting portions 41 to 44 corresponding to vibration nodes as the base (see FIG. 4A). The free beams 31 to 34 at both ends are respectively connected by vibration nodes, and when these nodes are connected by a straight line, a regular square is formed. The MEMS structure 40 is point-symmetric with respect to the center of gravity G. And MEMS
The structure 40 is continued to the base 40a by the support beams 51 to 54.

支持梁51〜54は、MEMS構造体40(両端自由梁31〜34)の厚さと同じ厚さ
で、両端自由梁31〜34それぞれが交差する連結部の隅部に連続しており、その長さは
、両端自由梁31〜34の共振周波数の波長をλとしたときに(1/4)λとなるように
設定される。
基板20には、両端自由梁31〜34の長手方向中央部の下部に、両端自由梁31〜3
4それぞれと空隙を有して交差する駆動電極71〜74が形成されている。
The support beams 51 to 54 have the same thickness as that of the MEMS structure 40 (both ends free beams 31 to 34) and are continuous to the corners of the connecting portion where both ends free beams 31 to 34 intersect. Is set to be (1/4) λ, where λ is the wavelength of the resonance frequency of the free beams 31 to 34 at both ends.
The substrate 20 has both ends of the free beams 31 to 34 at the lower portion of the longitudinal center of the free beams 31 to 34.
The drive electrodes 71 to 74 are formed so as to intersect with each other with a gap.

基板20は、シリコン(Si)基板からなり、両端自由梁31の下部には駆動電極71
が形成され、両端自由梁32の下部には駆動電極72、両端自由梁33の下部には駆動電
極73、両端自由梁34の下部には駆動電極74が配設されている。この駆動電極71,
73は同電位(仮に+電位)で、駆動電極72,74は同電位(仮に−電位)であり、そ
れぞれ図示しない駆動制御回路に接続され、同一周波数、逆位相の交流電圧が印加される
よう構成されている。
The substrate 20 is made of a silicon (Si) substrate, and a drive electrode 71 is provided below the free beams 31 at both ends.
A drive electrode 72 is provided below the free beams 32 at both ends, a drive electrode 73 is provided below the free beams 33 at both ends, and a drive electrode 74 is provided below the free beams 34 at both ends. This drive electrode 71,
73 is the same potential (tentatively + potential), and the drive electrodes 72 and 74 are the same potential (tentatively -potential), and each is connected to a drive control circuit (not shown) so that an alternating voltage of the same frequency and opposite phase is applied. It is configured.

続いて、本実施形態のMEMS振動子10の製造方法について図2を参照して説明する
(図1も参照する)。なお、各両端自由梁の形状は同じであるので両端自由梁32を例示
して説明する。まず、シリコン(Si)からなる基板20の表面の上述した駆動電極71
〜74を形成する領域に絶縁層60を形成する。次に、金属(AuまたはAl)層を薄膜
プロセスにより形成した後、フォトリソグラフィ技術を用いて、所定の形状の駆動電極7
1〜74を形成する。
Subsequently, a manufacturing method of the MEMS vibrator 10 of the present embodiment will be described with reference to FIG. 2 (also refer to FIG. 1). Since the shapes of the free beams at both ends are the same, the free beams 32 at both ends will be described as an example. First, the above-described drive electrode 71 on the surface of the substrate 20 made of silicon (Si).
The insulating layer 60 is formed in the region where .about.74 is to be formed. Next, after a metal (Au or Al) layer is formed by a thin film process, a drive electrode 7 having a predetermined shape is formed using a photolithography technique.
1 to 74 are formed.

続いて、支持梁51〜54を含むMEMS構造体40の形状を除く部分に犠牲層(Si
2)を形成した後、ポリシリコンからなるMEMS構造体40をCVD法等により形成
し、エッチング法により犠牲層を除去することにより両端自由梁31〜34と基板20と
の間に空間80を形成し、支持梁51〜54の端部が基部40aに接続された両端自由梁
31〜34が基板20から浮いた状態のMEMS構造体40が形成される。また、MEM
S構造体40には、駆動時において直流電位が加えられるように基板20の表面に接続さ
れている。
なお、上述した製造方法は、MEMS構造体の製造方法の1例を示したもので、これに
限定されるものではない。
Subsequently, a sacrificial layer (Si) is formed on a portion excluding the shape of the MEMS structure 40 including the support beams 51 to 54.
After forming O 2 ), a MEMS structure 40 made of polysilicon is formed by a CVD method or the like, and a sacrificial layer is removed by an etching method, whereby a space 80 is formed between both free beams 31 to 34 and the substrate 20. As a result, the MEMS structure 40 is formed in a state where the free ends 31 to 34 having the ends of the support beams 51 to 54 connected to the base 40 a are lifted from the substrate 20. Also, MEM
The S structure 40 is connected to the surface of the substrate 20 so that a DC potential is applied during driving.
In addition, the manufacturing method mentioned above showed one example of the manufacturing method of a MEMS structure, and is not limited to this.

次に、本実施形態に係るMEMS振動子10の構成を等価回路を参照して説明する。
図3(a)は、本実施形態におけるMEMS振動子10を模式的に示す構成図、(b)
は等価回路である。本実施形態のMEMS振動子10の構成は、図3(a)のように表す
ことができる。両端自由梁31〜34は並列接続に相当する。両端自由梁31〜34に同
じ周波数の交流電圧(Vi)が印加され、それぞれから電流ix1〜ix4が流れ、総電
流i0が流れるように構成されている。これを図3(b)で等価回路として表す。
Next, the configuration of the MEMS vibrator 10 according to the present embodiment will be described with reference to an equivalent circuit.
FIG. 3A is a configuration diagram schematically showing the MEMS vibrator 10 in the present embodiment, and FIG.
Is an equivalent circuit. The configuration of the MEMS vibrator 10 of this embodiment can be expressed as shown in FIG. The free beams 31 to 34 at both ends correspond to parallel connection. An AC voltage (Vi) having the same frequency is applied to the free beams 31 to 34 at both ends, currents ix1 to ix4 flow from each, and a total current i0 flows. This is represented as an equivalent circuit in FIG.

MEMS振動子10の等価回路はL(インダクタンス成分)、C(コンデンサ成分)、
R(直列抵抗成分)を構成要素とするLCR回路で表される。ここで、各両端自由梁の形
状は同じであるためLx、Cx、Rx、は同じ値となり並列接続されている。つまり、そ
れぞれの直列抵抗Rxは、両端自由梁31〜34が連環状に連結されていることから並列
接続に相当する構成とされる。従って、MEMS振動子10の直列抵抗成分は、両端自由
梁が1個の場合や、直列接続する場合に比べて小さくすることができるため、直列抵抗成
分による損失が小さくなる。
The equivalent circuit of the MEMS vibrator 10 is L (inductance component), C (capacitor component),
It is represented by an LCR circuit having R (series resistance component) as a constituent element. Here, since the shapes of the free beams at both ends are the same, Lx, Cx, and Rx have the same value and are connected in parallel. That is, each series resistance Rx is configured to correspond to a parallel connection because the free beams 31 to 34 at both ends are connected in a continuous ring shape. Accordingly, the series resistance component of the MEMS vibrator 10 can be reduced as compared with the case where there is one free beam at both ends or in the case of series connection, and therefore the loss due to the series resistance component is reduced.

次に、上述した直列抵抗成分について説明を加える。一般に、このような等価回路を有
する振動子は、直列抵抗成分が大きく、この直列抵抗成分によるエネルギー損失が駆動の
効率に影響を与えることが知られている。
Next, a description will be given of the series resistance component described above. In general, a vibrator having such an equivalent circuit has a large series resistance component, and it is known that energy loss due to the series resistance component affects driving efficiency.

ここで、振動片(両端自由梁)の直列抵抗成分をRx、バネ定数をkr、固有円振動ω
0、バイアス電圧をVDC、両端自由梁と駆動電極との空隙距離をg、誘電率をε0、両端自
由梁と駆動電極との交差面積をA0としたとき、直列抵抗成分Rxは次の数式で表される
。なお、QはQ値で表す。
つまり、直列抵抗成分Rxは、Rx=(kr/ε0QVDC 2)・(g4/ε0 20 2)で表
される。
Here, the series resistance component of the resonator element (free beams at both ends) is Rx, the spring constant is kr, and the natural circular vibration ω
When the bias voltage is V DC , the gap distance between the free beam at both ends and the drive electrode is g, the dielectric constant is ε 0 , and the intersection area between the free beam at both ends and the drive electrode is A 0 , the series resistance component Rx is It is expressed by the following formula. Q is represented by a Q value.
That is, the series resistance component Rx is represented by Rx = (kr / ε 0 QV DC 2 ) · (g 4 / ε 0 2 A 0 2 ).

従って、直列抵抗成分Rxは、空隙距離gが狭いほど、バイアス電圧VDCが大きいほど
小さくすることができる。しかしながら、空隙距離gは製造プロセスによって限界値があ
り、バイアス電圧VDCは大きくするとバネ定数をkrの関係から振幅が大きくなり、駆動
電極との接触が考えられるため、空隙距離gとバイアス電圧VDCとのバランスを調整する
必要がある。ここで、等価回路で示すように、直列抵抗成分Rxを並列接続する構造によ
り、直列抵抗成分によるエネルギー損失を低減することを可能にする。
Therefore, the series resistance component Rx can be reduced as the gap distance g is decreased and the bias voltage V DC is increased. However, the gap distance g has a limit value depending on the manufacturing process, and when the bias voltage V DC is increased, the spring constant is increased in amplitude from the relationship of kr, and contact with the drive electrode is considered. It is necessary to adjust the balance with DC . Here, as shown by an equivalent circuit, the structure in which the series resistance component Rx is connected in parallel makes it possible to reduce energy loss due to the series resistance component.

続いて、本実施形態によるMEMS構造体の駆動形態について図面を参照して説明する

図4は、MEMS構造体40の駆動形態を示し(a)は、両端自由梁1個単独の振動形
態、(b)は全体の振動形態を示す説明図である。まず、両端自由梁1個の振動形態につ
いて説明する。なお、両端自由梁31〜34は、同じ振動形態を示すので、両端自由梁3
2を例示して説明する。
Subsequently, the driving mode of the MEMS structure according to the present embodiment will be described with reference to the drawings.
4A and 4B show the drive form of the MEMS structure 40. FIG. 4A is an explanatory view showing the vibration form of one free beam at both ends, and FIG. 4B is an explanatory view showing the whole vibration form. First, the vibration mode of one free beam at both ends will be described. In addition, since the free beams 31 to 34 at both ends exhibit the same vibration form, the free beams 3 at both ends
2 will be described as an example.

図4(a)において、両端自由梁32は、振動の節に設けられる連結部42,43を支
持梁52,53によって支持されている。両端自由梁32には直流電圧を印加し、駆動電
極72には交流電圧を印加することにより、両端自由梁32は、連結部を振動の節として
矢印で表されるように撓み振動する。つまり、両端自由梁32の中央部が上方に撓むとき
、自由端32a、32bは下方に、また、両端自由梁32の中央部が下方に撓むとき、自
由端32a、32bは上方に撓む。
次に、MEMS構造体40の全体の動きを図4(b)に表す。
In FIG. 4A, the free beams 32 at both ends support the connecting portions 42 and 43 provided at the vibration nodes by the support beams 52 and 53. When a DC voltage is applied to the free beams 32 at both ends and an AC voltage is applied to the drive electrodes 72, the free beams 32 at both ends bend and vibrate as indicated by arrows with the connecting portion as a vibration node. That is, the free ends 32a and 32b bend downward when the center portion of the free beams 32 at both ends bend upward, and the free ends 32a and 32b bend upward when the center portion of the free beams 32 at both ends bend downward. Mu
Next, the entire movement of the MEMS structure 40 is shown in FIG.

図4(b)において、両端自由梁31〜34は、同じ周波数の駆動電圧を印加し、所定
の共振周波数で振動する。ここで、両端自由梁31,33と両端自由梁32,34とは逆
位相の駆動電圧を印加することで、振動の位相も逆位相となる。つまり、両端自由梁31
,33は中央部が上方に撓み(矢印F1方向)、先端部(自由端)が下方に撓むように振
動する。また、両端自由梁32,34は中央部が下方(矢印F2方向)に撓み、先端部(
自由端)が上方に撓むように振動する。
In FIG. 4B, the free beams 31 to 34 at both ends are applied with a drive voltage having the same frequency and vibrate at a predetermined resonance frequency. Here, the free-phase free beams 31 and 33 and the free-end free beams 32 and 34 are applied with driving voltages having opposite phases, so that the vibration phase is also reversed. That is, both ends free beam 31
, 33 vibrate so that the center portion is bent upward (in the direction of arrow F1) and the tip portion (free end) is bent downward. In addition, the free ends 32 and 34 at both ends are bent downward (in the direction of arrow F2) at the center, and the tip (
It vibrates so that the free end is bent upward.

各両端自由梁の連結部41〜44は振動の節に相当する位置に連続しているために、振
動の伝播は抑制されており、両端自由梁31〜34は、各連結部においてねじれのような
振動形態となる。ここで、MEMS構造体40を支持する支持梁51〜54の長さは、共
振周波数の波長をλとしたときに(1/4)λとなるように設定されている。
Since the connecting portions 41 to 44 of the free beams at both ends are continuous at positions corresponding to vibration nodes, the propagation of vibration is suppressed, and the free beams 31 to 34 at both ends are twisted at the connecting portions. Vibration form. Here, the length of the support beams 51 to 54 that support the MEMS structure 40 is set to be (1/4) λ when the wavelength of the resonance frequency is λ.

なお、前述した数式において、直列抵抗線分Rxは、Q値が大きいほど小さくなること
が表されている。Q値は、振動片の材質、形状、カット角など様々な要因によって決定さ
れるが、支持部からの振動漏れが影響することが知られている。ここで、振動漏れを抑制
する構造として、支持梁51〜54の長さを共振周波数の波長をλとしたときに(1/4
)λとする構造について説明する。
In the above-described mathematical expression, the series resistance line segment Rx is shown to be smaller as the Q value is larger. Although the Q value is determined by various factors such as the material, shape, and cut angle of the resonator element, it is known that the vibration leakage from the support portion affects. Here, as a structure for suppressing vibration leakage, the length of the support beams 51 to 54 is (1/4) when the wavelength of the resonance frequency is λ.
) A structure with λ will be described.

図5は、支持梁51〜54がない場合の共振周波数と支持梁がある場合の共振周波数を
示すグラフである。図5において、MEMS構造体40は、理想的には支持梁がない構造
がもっとも自然な駆動形態を示し、支持梁51〜54を設けることにより共振周波数は影
響を受ける。そして、図5に示すように、支持梁が長くなるに従い共振周波数が低くなる
傾向を示す。支持梁がないときの共振周波数と支持梁を有するときの共振周波数が一致す
る位置が、共振周波数の波長をλとしたときに支持梁の長さを(1/4)λに相当し、こ
のような長さにすることで振動漏れを抑制することができる。
なお、支持梁51〜54は、MEMS構造体40の内側に設けることができる。
(実施形態1の変形例)
FIG. 5 is a graph showing the resonance frequency when there is no support beam 51 to 54 and the resonance frequency when there is a support beam. In FIG. 5, the MEMS structure 40 ideally has a drive form in which the structure without the support beam is the most natural, and the resonance frequency is affected by providing the support beams 51 to 54. Then, as shown in FIG. 5, the resonance frequency tends to decrease as the support beam becomes longer. The position where the resonance frequency when the support beam is not present and the resonance frequency when the support beam is provided corresponds to the length of the support beam as (1/4) λ when the wavelength of the resonance frequency is λ. By making such a length, vibration leakage can be suppressed.
Note that the support beams 51 to 54 can be provided inside the MEMS structure 40.
(Modification of Embodiment 1)

図6は、本発明の実施形態1の変形例を示す平面図である。この変形例は、支持梁を連
環状に連結されたMEMS構造体40の内側方向に延在されていることに特徴を有し、両
端自由梁31〜34及び駆動電極71〜74の構成は、前述した実施形態1と同じである
ため説明を省略する。図6において、支持梁51〜54は、両端自由梁31〜34の各連
結部41〜44の内側隅部から中心部の基部40aに延在されている。
FIG. 6 is a plan view showing a modification of the first embodiment of the present invention. This modification is characterized in that it extends in the inner direction of the MEMS structure 40 in which the support beams are connected in a ring shape, and the configurations of the free beams 31 to 34 and the drive electrodes 71 to 74 at both ends are as follows. Since it is the same as Embodiment 1 mentioned above, description is abbreviate | omitted. In FIG. 6, the support beams 51 to 54 extend from the inner corners of the connecting portions 41 to 44 of the free ends 31 to 34 to the base portion 40 a at the center.

支持梁51〜54の内側先端部が、基板20の基部40aに接続されており、MEMS
構造体40(両端自由梁31〜34)が基板20の垂直方向に撓むことができる構造とな
っている。従って、両端自由梁31〜34は、実施形態1(図4、参照)と同じ駆動形態
をする。
なお、この変形例における支持梁51〜54の長さも共振周波数の波長をλとしたとき
に(1/4)λとなるよう設定される。
The inner front ends of the support beams 51 to 54 are connected to the base 40a of the substrate 20, and the MEMS
The structure 40 (both free beams 31 to 34) can be bent in the vertical direction of the substrate 20. Accordingly, the free beams 31 to 34 at both ends have the same drive form as that of the first embodiment (see FIG. 4).
The length of the support beams 51 to 54 in this modification is also set to be (1/4) λ when the wavelength of the resonance frequency is λ.

従って、本実施形態によれば、4個の両端自由梁31〜34を振動の節で交差連結し、
且つ、この連結部41〜44を支持梁51〜54で支持しているために基板20への振動
漏れを抑制することができる。さらに、振動の節を支持する構造であるため、上述した非
特許文献2のように、振動片の両端を支持される振動片(梁)を複数個並列に連結する構
造に比べ、前述した実施形態1と同様な効果が得られる。つまり、支持梁を少なくするこ
とができるので振動漏れを抑制することができ、このことによりQ値を高めることができ
るという効果がある。
Therefore, according to the present embodiment, the four free ends 31 to 34 are cross-connected at the vibration node,
And since this connection part 41-44 is supported by the support beams 51-54, the vibration leak to the board | substrate 20 can be suppressed. Further, since the structure supports the vibration node, as described in Non-Patent Document 2 described above, the above-described implementation is performed in comparison with a structure in which a plurality of vibration pieces (beams) supported at both ends of the vibration piece are connected in parallel. The same effect as in the first mode is obtained. That is, since the number of support beams can be reduced, vibration leakage can be suppressed, and this has the effect of increasing the Q value.

また、4個の両端自由梁31〜34を同一の共振周波数で駆動する構成にすることで、
等価回路における直列抵抗成分を小さくすることができるので、この直列抵抗成分による
エネルギー損失を低減することができる。
In addition, by configuring the four free ends 31 to 34 at the same resonance frequency,
Since the series resistance component in the equivalent circuit can be reduced, energy loss due to the series resistance component can be reduced.

また、支持梁51〜54は、振動の節となる部分、つまり両端自由梁31〜34の連結
部41〜44の側面から放射状に延在されているため、両端自由梁31〜34と支持梁5
1〜54とは、フォトリソグラフィ等の同一工程において製造することが可能であり、振
動の節となる部分(連結部41〜44)と支持梁51〜54との位置関係を高精度に管理
することができ、それらの位置ずれによる振動漏れや、振動特性への影響を抑制すること
ができる。
Further, since the support beams 51 to 54 extend radially from the portion that becomes a vibration node, that is, the side surfaces of the connecting portions 41 to 44 of the free ends of the free ends 31 to 34, the free ends of the free ends 31 to 34 and the support beams 5
1 to 54 can be manufactured in the same process such as photolithography, and the positional relationship between the vibration nodes (connecting portions 41 to 44) and the support beams 51 to 54 is managed with high accuracy. Therefore, it is possible to suppress the vibration leakage due to the position shift and the influence on the vibration characteristics.

また、前記両端自由梁の共振周波数における波長をλとしたとき、支持梁51〜54の
長さが(1/4)λに設定されているために、図5に示すように、両端自由梁31〜34
が振動した際に、支持梁51〜54から基板20への振動漏れ(ねじれ振動として)を抑
制することができる。
(実施形態2)
Also, when the wavelength at the resonance frequency of the free beams at both ends is λ, the length of the support beams 51 to 54 is set to (1/4) λ, and therefore, as shown in FIG. 31-34
When the beam vibrates, vibration leakage (as torsional vibration) from the support beams 51 to 54 to the substrate 20 can be suppressed.
(Embodiment 2)

次に、本発明の実施形態2に係るMEMS振動子について図面を参照して説明する。実
施形態2は、6個の両端自由梁を連結した構成としたところに特徴を有し、両端自由梁1
個の形状、振動形態、製造方法は、前述した実施形態1と同じにすることができるので説
明を省略する。
図7は、本実施形態のMEMS振動子100の構造の一部を示す平面図である。図7に
おいて、本実施形態のMEMS振動子100は、6個の両端自由梁121〜126をそれ
ぞれの振動の節の位置で連結し、連環されて構成されたMEMS構造体140と、基板2
0の表面上に形成される駆動電極141〜146と、から構成されている。
Next, a MEMS vibrator according to Embodiment 2 of the present invention will be described with reference to the drawings. The second embodiment is characterized in that six free beams at both ends are connected to each other.
Since the shape, vibration mode, and manufacturing method of the individual pieces can be the same as those of the first embodiment described above, description thereof will be omitted.
FIG. 7 is a plan view showing a part of the structure of the MEMS vibrator 100 of the present embodiment. In FIG. 7, the MEMS vibrator 100 according to this embodiment includes a MEMS structure 140 configured by connecting six free ends 121 to 126 at the positions of the nodes of the respective vibrations and connecting them, and the substrate 2.
Drive electrodes 141 to 146 formed on the surface of zero.

両端自由梁121〜126のそれぞれの連結部151〜156の外側隅部からは、支持
梁131〜136が外側方向に放射状に延在され、基板20の基部(図示は省略)に連続
している。これら両端自由梁121〜126が連環されたMEMS構造体140は正六角
形をなす。本実施形態によるMEMS構造体140は、両端自由梁の数を6個としている
以外、支持梁との接続構造等は前述した実施形態1(図2、参照)と同様に構成できるた
め、詳細な説明を省略する。
From the outer corners of the connecting portions 151 to 156 of the free beams 121 to 126 at both ends, the support beams 131 to 136 extend radially outward and continue to the base (not shown) of the substrate 20. . The MEMS structure 140 in which the free beams 121 to 126 at both ends are connected to each other has a regular hexagonal shape. The MEMS structure 140 according to the present embodiment can be configured in the same manner as in the first embodiment described above (see FIG. 2) except for the number of free beams at both ends, and the connection structure with the support beams can be configured in detail. Description is omitted.

支持梁131〜136それぞれの長さは、共振周波数の波長をλとしたときに(1/4
)λとなるよう設定される。また、本実施形態においても、前述した実施形態1の変形例
(図6、参照)と同様に、支持梁131〜136は、連結部151〜156それぞれから
MEMS構造体140の中心(重心)方向に向かって延在する構造を採用することができ
る。
The length of each of the support beams 131 to 136 is (1/4) when the wavelength of the resonance frequency is λ.
) Λ. Also in the present embodiment, as in the modification of the first embodiment described above (see FIG. 6), the support beams 131 to 136 are in the center (center of gravity) direction of the MEMS structure 140 from the coupling portions 151 to 156. It is possible to adopt a structure extending toward the front.

また、両端自由梁121〜126それぞれの長手方向中央部の下部(基板20の上面)
には、駆動電極141〜146が形成されている。これら駆動電極には同じ周波数の交流
電圧が印加される。ここで、駆動電極141,143,145には同位相の電位(例えば
−電位)、駆動電極142,144,146には、駆動電極141,143,145とは
逆の電位(例えば+電位)を印加することで、両端自由梁121,123,125と両端
自由梁122,124,126とは逆位相で振動する。
Moreover, the lower part (upper surface of the board | substrate 20) of the longitudinal direction center part of each free beam 121-126 of both ends
The drive electrodes 141 to 146 are formed. An alternating voltage having the same frequency is applied to these drive electrodes. Here, the drive electrodes 141, 143, and 145 have the same potential (for example, -potential), and the drive electrodes 142, 144, and 146 have the opposite potential (for example, + potential) to the drive electrodes 141, 143, and 145. When applied, the free beams 121, 123, 125 at both ends and the free beams 122, 124, 126 at both ends vibrate in opposite phases.

図8は、本実施形態のMEMS構造体140の駆動形態を模式的に示す斜視図である。
図8において、両端自由梁121〜126は、同一周波数の駆動電圧を印加し、所定の共
振周波数で振動する。ここで、両端自由梁121,123,125と両端自由梁122,
124,126とは逆位相の駆動電圧を印加するために振動の位相も逆位相となる。つま
り、両端自由梁121,123,125は中央部が下方に撓み(矢印F2方向)、先端部
(自由端)が上方に撓むように振動する。また、両端自由梁122,124,126は中
央部が上方(矢印F1方向)に撓み、先端部(自由端)が下方に撓むように振動する。
FIG. 8 is a perspective view schematically showing a drive form of the MEMS structure 140 of the present embodiment.
In FIG. 8, the free beams 121 to 126 at both ends apply a drive voltage having the same frequency and vibrate at a predetermined resonance frequency. Here, the free beams 121, 123, and 125 at both ends and the free beams at both ends 122,
Since a drive voltage having an opposite phase to that of 124 and 126 is applied, the vibration phase is also opposite to the phase. That is, the free beams 121, 123, and 125 at both ends vibrate so that the center portion is bent downward (in the direction of arrow F2) and the tip portion (free end) is bent upward. Further, the free beams 122, 124, and 126 at both ends vibrate so that the center portion is bent upward (in the direction of arrow F1) and the tip portion (free end) is bent downward.

各両端自由梁の連結部151〜156は振動の節に相当する位置に設けられているため
に、振動は基板20(基部)にまで伝播せず、両端自由梁121〜126は、連結部15
1〜156を節としてねじれのような振動形態となる。
Since the connecting portions 151 to 156 of the free beams on both ends are provided at positions corresponding to the vibration nodes, the vibration does not propagate to the substrate 20 (base), and the free beams 121 to 126 on both ends are connected to the connecting portion 15.
It becomes a vibration form like a twist with 1 to 156 as nodes.

また、図示しないが、本実施形態においても、MEMS振動子100を等価回路で表す
ことが可能で、図3(b)に表す等価回路において、直列抵抗Rxを6個並列に接続され
ている状態に置き換えることができる。
従って、直列抵抗成分を低減し、この直列抵抗成分によるエネルギー損失を低減するこ
とができる。
Although not shown, the MEMS vibrator 100 can also be represented by an equivalent circuit in this embodiment, and in the equivalent circuit shown in FIG. 3B, six series resistors Rx are connected in parallel. Can be replaced.
Therefore, the series resistance component can be reduced, and energy loss due to the series resistance component can be reduced.

従って、本実施形態では、両端自由梁121〜126が6個で構成されていても、単独
で両端を支持する振動子(梁)を複数連結する構造に比べ支持梁を少なくすることができ
ること、両端自由梁が偶数個で構成され、隣り合う両端自由梁それぞれを逆位相、同じ周
波数で駆動するためMEMS構造体140全体としての駆動(振動)のバランスがとれる
こと、両端自由梁の共振周波数における波長をλとしたとき、支持梁131〜136の長
さが(1/4)λに設定されていることから、前述した実施形態1と同様の効果を得るこ
とができる。
Therefore, in this embodiment, even if the both-end free beams 121 to 126 are configured by six pieces, it is possible to reduce the number of support beams as compared to a structure in which a plurality of vibrators (beams) supporting both ends are connected independently. The number of free beams at both ends is composed of an even number, and the adjacent free beams at both ends are driven in the opposite phase and at the same frequency, so that the drive (vibration) of the MEMS structure 140 as a whole can be balanced. Since the length of the support beams 131 to 136 is set to (1/4) λ when the wavelength is λ, the same effect as in the first embodiment can be obtained.

以上、実施形態1では4個の両端自由梁、実施形態2では6個の両端自由梁を有するM
EMS振動子について説明したが、両端自由梁の数はこれらに限らず任意に選択して構成
することができる。すなわち、両端自由梁の振動の節において連結し連環状に構成し、隣
合う両端自由梁の振動の位相を逆位相とし、等価回路における直列抵抗を並列接続構造に
する構成とすることで本発明を実現できる。つまり、両端自由梁の数は2n個(nは2以
上の整数)の構成であればよい。
(実施形態3)
As described above, the first embodiment has four free beams at both ends, and the second embodiment has six free beams at both ends.
Although the EMS vibrator has been described, the number of free beams at both ends is not limited to these and can be arbitrarily selected and configured. That is, the present invention is configured in such a manner that it is connected at the node of vibration of the free beams at both ends and is configured in a continuous ring, the phase of vibration of the adjacent free beams at both ends is reversed, and the series resistance in the equivalent circuit is configured in parallel connection. Can be realized. That is, the number of free beams at both ends may be 2n (n is an integer of 2 or more).
(Embodiment 3)

続いて、本発明の実施形態3に係るMEMS振動子の構造について図面を参照して説明
する。本実施形態は、MEMS構造体の支持部材として、両端自由梁の振動の節となる部
分、つまり連結部に柱状の支持柱を設けたことに特徴を有している。ここでは、基本構造
として4個の両端自由梁を有する実施形態1の構成を例示して説明し、共通部及び駆動形
態についての説明は省略する。
Next, the structure of the MEMS vibrator according to the third embodiment of the invention will be described with reference to the drawings. This embodiment is characterized in that a columnar support column is provided as a support member of the MEMS structure at a portion that becomes a vibration node of the free beams at both ends, that is, at a connecting portion. Here, the configuration of the first embodiment having four free beams at both ends as a basic structure will be described as an example, and description of the common portion and the drive mode will be omitted.

図9は、本実施形態に係るMEMS振動子10の一部を示す平面図、図10は、図9の
B−B切断面を示す断面図である。図9,10において、MEMS構造体40は、両端自
由梁31〜34の連結部41〜44のそれぞれの下部に円柱状の支持柱45〜48を基板
20に接続することで支持されている。
FIG. 9 is a plan view showing a part of the MEMS vibrator 10 according to the present embodiment, and FIG. 10 is a cross-sectional view showing a BB cut surface of FIG. 9 and 10, the MEMS structure 40 is supported by connecting cylindrical support columns 45 to 48 to the substrate 20 at the lower portions of the connecting portions 41 to 44 of the free beams 31 to 34 at both ends.

支持柱45〜48は、連結部41〜44それぞれの中央(振動の節となる位置)を中心
とする円柱であり、MEMS構造体40と一体で形成されている。支持柱45〜48の長
さ(高さ)も、共振周波数の波長をλとしたとき、(1/4)λに設定される。
また、支持柱45〜48の断面形状は特に限定されず、円形、矩形であってもよい。さ
らに、断面の大きさは、連結部の交差面積以内で、MEMS構造体の支持柱としての構造
的強度を確保できれば特に限定されない。
The support pillars 45 to 48 are cylinders centering on the centers (positions of vibration nodes) of the coupling parts 41 to 44, and are formed integrally with the MEMS structure 40. The lengths (heights) of the support columns 45 to 48 are also set to (1/4) λ, where λ is the wavelength of the resonance frequency.
Moreover, the cross-sectional shape of the support columns 45 to 48 is not particularly limited, and may be circular or rectangular. Further, the size of the cross section is not particularly limited as long as the structural strength as the support pillar of the MEMS structure can be secured within the crossing area of the connecting portion.

本実施形態におけるMEMS振動子10の製造方法は、実施形態1に準ずることができ
るが、まず、シリコン(Si)からなる基板20の表面の上述した駆動電極71〜74を
形成する領域に絶縁層60を形成する。次に、駆動電極71〜74となる金属(Auまた
はAl)層を形成した後、フォトリソグラフィ技術を用いて、所定の形状の駆動電極71
〜74を形成する。
The manufacturing method of the MEMS vibrator 10 according to the present embodiment can be the same as that of the first embodiment. First, an insulating layer is formed in the region where the above-described drive electrodes 71 to 74 are formed on the surface of the substrate 20 made of silicon (Si). 60 is formed. Next, after a metal (Au or Al) layer to be the drive electrodes 71 to 74 is formed, the drive electrode 71 having a predetermined shape is used by using a photolithography technique.
~ 74 are formed.

続いて、支持柱を含むMEMS構造体40の形状を除く部分に犠牲層(SiO2)を形
成した後、ポリシリコンからなるMEMS構造体40を形成し、エッチング法により犠牲
層を除去することにより、支持柱45〜48が基板20の表面に接続された状態で、両端
自由梁31〜34が基板20から浮いているMEMS構造体40が形成される。また、M
EMS構造体40には、駆動時において直流電圧が印加される。
Subsequently, a sacrificial layer (SiO 2 ) is formed on a portion excluding the shape of the MEMS structure 40 including the support pillar, and then the MEMS structure 40 made of polysilicon is formed, and the sacrificial layer is removed by an etching method. In the state where the support columns 45 to 48 are connected to the surface of the substrate 20, the MEMS structure 40 in which the free beams 31 to 34 at both ends float from the substrate 20 is formed. M
A DC voltage is applied to the EMS structure 40 during driving.

従って、実施形態3によれば、MEMS構造体40の支持構造が、前述した実施形態1
の支持梁によるものから支持柱45〜48に変わっているが技術的思想は共通であるため
、実施形態1と同様な効果を得ることができる。
Therefore, according to the third embodiment, the support structure of the MEMS structure 40 is the first embodiment described above.
However, since the technical idea is common, the same effect as in the first embodiment can be obtained.

また、支持柱45〜48、連結部41〜44それぞれの中心部(振動の節の位置)を支
持柱の中心としているため、両端自由梁から基板での振動漏れを一層抑制することができ
る。
Moreover, since the center part (position of the vibration node) of each of the support columns 45 to 48 and the connecting portions 41 to 44 is the center of the support column, vibration leakage from the free beams at both ends can be further suppressed.

なお、本実施形態においても、両端自由梁の数については2n個(nは2以上の整数)
の構成であればよく限定されない。
Also in this embodiment, the number of free beams at both ends is 2n (n is an integer of 2 or more).
The configuration is not limited as long as it is configured as follows.

なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる
範囲での変形、改良等は本発明に含まれるものである。
すなわち、本発明は、主に特定の実施形態に関して特に図示され、且つ、説明している
が、本発明の技術的思想及び目的の範囲に逸脱することなく、以上説明した実施形態に対
し、形状、材質、組み合わせ、その他の詳細な構成、及び製造工程間の加工方法において
、当業者が様々な変形を加えることができるものである。
It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
That is, although the present invention has been illustrated and described with particular reference to particular embodiments, it is not intended to depart from the technical spirit and scope of the invention. Various modifications can be made by those skilled in the art in terms of materials, combinations, other detailed configurations, and processing methods between manufacturing processes.

従って、上記に開示した形状、材質、製造工程などを限定した記載は、本発明の理解を
容易にするために例示的に記載したものであり、本発明を限定するものでないから、それ
らの形状、材質、組み合わせなどの限定の一部もしくは全部の限定をはずした部材の名称
での記載は、本発明に含まれるものである。
Therefore, the description limited to the shape, material, manufacturing process and the like disclosed above is an example for easy understanding of the present invention, and does not limit the present invention. Descriptions of the names of members from which some or all of the limitations such as materials and combinations are removed are included in the present invention.

例えば、前述した実施形態1〜実施形態3では、両端自由梁が、基板20に対して垂直
方向に駆動する構造を有するMEMS振動子を例示しているが、本発明によれば、両端自
由梁を基板20の表面に平行に駆動する構造にも採用することができる。つまりの幅方向
の一方または両側に駆動電極を設け、同一周波数で、しかも、隣合う両端自由梁に逆位相
の交流電圧を加えることで両端自由梁を基板20の表面に平行に駆動することができる。
For example, in the above-described first to third embodiments, the MEMS vibrator having a structure in which the free beams at both ends are driven in the direction perpendicular to the substrate 20 is illustrated. It is also possible to adopt a structure for driving in parallel to the surface of the substrate 20. In other words, driving electrodes are provided on one or both sides in the width direction, and the free beams at both ends are driven in parallel with the surface of the substrate 20 by applying an alternating voltage of opposite phase to the adjacent free beams at both ends at the same frequency. it can.

また、前述の実施形態1と、その変形例を組み合わせることも可能である。つまり、支
持梁を連結部からMEMS構造体の外側及び内側の両方に延在する構造とすることができ
る。このようにすれば、支持梁の幅を細くすることができ、上述のような構造であっても
、駆動時のエネルギー損失を増加させることなくMEMS構造体の支持をより確実にでき
る。
Moreover, it is also possible to combine the above-mentioned Embodiment 1 and its modification examples. That is, the support beam can be configured to extend from the connecting portion to both the outside and the inside of the MEMS structure. In this way, the width of the support beam can be reduced, and even with the above-described structure, the MEMS structure can be more reliably supported without increasing energy loss during driving.

従って、前述の実施形態1〜実施形態3によれば、振動漏れがなく、エネルギー損失を
低減することにより、Q値が高く、高効率に駆動できるMEMS振動子を提供することが
できる。
Therefore, according to the above-described first to third embodiments, it is possible to provide a MEMS vibrator that has a high Q value and can be driven with high efficiency by preventing vibration leakage and reducing energy loss.

本発明のMEMS振動子は、共振器の他に、フィルタ、スイッチ及びアクチュエータと
して応用が可能である。
The MEMS vibrator of the present invention can be applied as a filter, a switch, and an actuator in addition to a resonator.

10…MEMS振動子、20…基板、31〜34…両端自由梁、40…MEMS構造体
、41〜44…連結部、51〜54…支持梁。
DESCRIPTION OF SYMBOLS 10 ... MEMS vibrator, 20 ... Board | substrate, 31-34 ... Free beam on both ends, 40 ... MEMS structure 41-44 ... Connection part, 51-54 ... Support beam.

Claims (7)

基板と、前記基板の表面に形成される複数の両端自由梁と、
前記複数の両端自由梁それぞれを振動の節となる位置を連結部として交差連結し、連環状に構成されるMEMS構造体と、
前記連結部から延在し、前記MEMS構造体を前記基板の表面との間に空隙を有するように支持する支持部材と、
前記基板の表面に、前記複数の両端自由梁との間に空隙を有するように設けられる複数の駆動電極と、が備えられ、
前記MEMS構造体と前記支持部材とは、ポリシリコンからなり、かつ直流電位が加えられ、
前記複数の駆動電極に、同じ周波数の駆動電位が印加されることを特徴とするMEMS振動子。
A substrate and a plurality of free beams at both ends formed on the surface of the substrate;
A plurality of free beams at both ends are cross-connected with a position serving as a vibration node as a connecting portion, and a MEMS structure configured in a continuous ring;
A support member that extends from the connecting portion and supports the MEMS structure so as to have a gap with the surface of the substrate ;
A plurality of drive electrodes provided on the surface of the substrate so as to have gaps between the plurality of free beams at both ends ; and
The MEMS structure and the support member are made of polysilicon, and a direct current potential is applied thereto,
A MEMS vibrator in which a driving potential having the same frequency is applied to the plurality of driving electrodes .
請求項1に記載のMEMS振動子において、
前記複数の両端自由梁が、2n個(nは2以上の整数)備えられ、前記複数の両端自由梁のうち、隣り合う両端自由梁それぞれ同じ周波数、且つ、逆位相、で駆動されることを特徴とするMEMS振動子。
The MEMS resonator according to claim 1,
The plural free beams at both ends are provided with 2n (n is an integer of 2 or more), and among the plural free beams at both ends, the adjacent free beams at both ends are driven at the same frequency and opposite phase. MEMS vibrator characterized by the above.
請求項1または請求項2に記載のMEMS振動子において、
前記支持部材が、前記連結部の側面から前記MEMS構造体の外側または内側に向かって放射状に延在されている支持梁であることを特徴とするMEMS振動子。
The MEMS resonator according to claim 1 or 2,
The MEMS vibrator according to claim 1, wherein the support member is a support beam radially extending from a side surface of the coupling portion toward an outer side or an inner side of the MEMS structure.
請求項3に記載のMEMS振動子において、
前記両端自由梁の共振周波数における波長をλとしたとき、前記支持梁の長さが(1/4)λに設定されていることを特徴とするMEMS振動子。
The MEMS vibrator according to claim 3,
A length of the support beam is set to (1/4) λ, where λ is the wavelength at the resonance frequency of the free beams at both ends.
請求項1または請求項2に記載のMEMS振動子において、
前記支持部材が、平面視で前記連結部の中央と前記基板とを接続する支持柱であることを特徴とするMEMS振動子。
The MEMS resonator according to claim 1 or 2 ,
The MEMS vibrator according to claim 1, wherein the support member is a support column that connects the center of the connecting portion and the substrate in plan view.
請求項5に記載のMEMS振動子において、
前記両端自由梁の共振周波数における波長をλとしたとき、前記支持柱の高さが、(1/4)λに設定されていることを特徴とするMEMS振動子。
The MEMS vibrator according to claim 5,
The MEMS vibrator, wherein a height of the support column is set to (1/4) λ, where λ is a wavelength at a resonance frequency of the free beams at both ends.
請求項1ないし請求項6のいずれか一項に記載のMEMS振動子において、
前記駆動電極は、前記基板の表面の前記複数の両端自由梁それぞれの長手方向中央部の下部に設けられ、
前記複数の両端自由梁が、前記基板の表面に対して垂直に駆動されることを特徴とする
MEMS振動子。
The MEMS vibrator according to any one of claims 1 to 6, wherein
The drive electrode is provided at a lower portion of a center portion in the longitudinal direction of each of the plurality of free beams at both ends on the surface of the substrate,
The MEMS vibrator characterized in that the plurality of free beams at both ends are driven perpendicular to the surface of the substrate.
JP2011069829A 2011-03-28 2011-03-28 MEMS vibrator Expired - Fee Related JP5056967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011069829A JP5056967B2 (en) 2011-03-28 2011-03-28 MEMS vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011069829A JP5056967B2 (en) 2011-03-28 2011-03-28 MEMS vibrator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006001113A Division JP4760382B2 (en) 2006-01-06 2006-01-06 MEMS vibrator

Publications (2)

Publication Number Publication Date
JP2011139536A JP2011139536A (en) 2011-07-14
JP5056967B2 true JP5056967B2 (en) 2012-10-24

Family

ID=44350397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011069829A Expired - Fee Related JP5056967B2 (en) 2011-03-28 2011-03-28 MEMS vibrator

Country Status (1)

Country Link
JP (1) JP5056967B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080012A (en) 2013-10-15 2015-04-23 セイコーエプソン株式会社 Vibrator, oscillator, electronic apparatus and movable body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4206904B2 (en) * 2003-11-06 2009-01-14 ソニー株式会社 MEMS resonator
JP2005210681A (en) * 2003-11-07 2005-08-04 Matsushita Electric Ind Co Ltd Piezoelectric resonator, production method therefor, filter using the resonator, duplexer, and communications device

Also Published As

Publication number Publication date
JP2011139536A (en) 2011-07-14

Similar Documents

Publication Publication Date Title
JP4760382B2 (en) MEMS vibrator
JP4645227B2 (en) Vibrator structure and manufacturing method thereof
TWI595738B (en) Micro-electromechanical system and related system, utilization, micro-electromechanical system loudspeaker, and regulating unit
US9851373B2 (en) Vibrator and vibrating gyroscope
JP4206102B2 (en) Actuator with vertical comb electrode
JP4760384B2 (en) MEMS vibrator
JP6481028B2 (en) Multi-coil spring MEMS resonator for oscillator and real-time clock applications
JP7374910B2 (en) Coupled MEMS resonator
JP6451078B2 (en) Optical scanning device
JP2008099020A (en) Micromechanical resonator
JP5056967B2 (en) MEMS vibrator
JP2006231489A (en) Oscillator structure and manufacturing method thereof
US7511937B2 (en) Rotary variable capacitance element and rotary variable capacitance device
JP7453147B2 (en) Configuration of MEMS resonator
JP2008103777A (en) Micromechanical resonator
JP6608962B2 (en) Micromachine type spring device and method of manufacturing micromachine type spring device
JP5671742B2 (en) Method for arranging electrode structure element and vibration structure element close to each other and MEMS device using the same
JP4965962B2 (en) Micromechanical resonator
JP5115244B2 (en) Electrostatic vibrator and method of using the same
JP2009212887A (en) Electrostatic vibrator and use thereof
JP2006303558A (en) Mems resonator
JP4930769B2 (en) Oscillator
JP5368214B2 (en) Micro electromechanical element
JP5081586B2 (en) Micromechanical resonator
JP2006064538A (en) Gyroscope sensor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5056967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees