JP5055172B2 - Capacitive proximity sensor - Google Patents

Capacitive proximity sensor Download PDF

Info

Publication number
JP5055172B2
JP5055172B2 JP2008064626A JP2008064626A JP5055172B2 JP 5055172 B2 JP5055172 B2 JP 5055172B2 JP 2008064626 A JP2008064626 A JP 2008064626A JP 2008064626 A JP2008064626 A JP 2008064626A JP 5055172 B2 JP5055172 B2 JP 5055172B2
Authority
JP
Japan
Prior art keywords
electrode
planar
detection
linear
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008064626A
Other languages
Japanese (ja)
Other versions
JP2009222423A (en
JP2009222423A5 (en
Inventor
慶一 野々垣
Original Assignee
慶一 野々垣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 慶一 野々垣 filed Critical 慶一 野々垣
Priority to JP2008064626A priority Critical patent/JP5055172B2/en
Publication of JP2009222423A publication Critical patent/JP2009222423A/en
Publication of JP2009222423A5 publication Critical patent/JP2009222423A5/ja
Application granted granted Critical
Publication of JP5055172B2 publication Critical patent/JP5055172B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Description

本発明は、静電容量の変化で人体などの検出対象物の接近を検出する静電容量型の近接センサ、詳しくは複数の電極を備えた静電容量型近接センサに関する。   The present invention relates to a capacitance-type proximity sensor that detects the approach of a detection object such as a human body by a change in capacitance, and more particularly to a capacitance-type proximity sensor that includes a plurality of electrodes.

この種の静電容量型近接センサは、2枚の電極を平板状にし、平板状の両電極を並列して対面している。両電極は、片側の電極から出た電気力線が他の電極に入り、コンデンサを構成している。電極に検出対象物の人体などが接近すると、電極から出た電気力線が変形し、両電極間の静電容量が変化する。静電容量の変化で検出対象物の接近を検出する。   In this type of capacitive proximity sensor, two electrodes are formed in a flat plate shape, and both the flat plate electrodes face each other in parallel. In both electrodes, electric lines of force from one electrode enter another electrode to constitute a capacitor. When the human body or the like of the detection object approaches the electrode, the electric lines of force emitted from the electrode are deformed, and the capacitance between the electrodes changes. The approach of the detection target is detected by a change in capacitance.

特開2006−78422号公報JP 2006-78422 A

[背景技術の課題]
静電容量型の近接センサは、電極の前側の検出領域では、電極から遠い位置の検出対象物を検出することができる、即ち、検出可能距離が長いことが望まれる。
また、電極の反対側、後側の領域では検出可能距離が短いことが望まれる。誤動作が少ないことが望まれる。
[Issues of background technology]
It is desirable that the capacitive proximity sensor can detect a detection object at a position far from the electrode in the detection region on the front side of the electrode, that is, has a long detectable distance.
Further, it is desirable that the detectable distance is short in the regions on the opposite side and the rear side of the electrode. It is desirable that there are few malfunctions.

[課題を解決するための着想]
上記のような静電容量型近接センサでは、電極に検出対象物の人体が接近すると、片側の電極から出た電気力線が人体を通って大地に入り、他の電極に入らなくなり、両電極間の静電容量が変化する。このことから、両電極間の電気力線は、遠くに延び、遠い位置での本数が多いと、検出可能距離が長くなるものと推察される。両電極が同形同寸の平板であって対面していると、両電極間の電気力線は、遠い位置での本数が多くなり難いものと推察される。
そこで、両電極は、一方を表面積の少ない線状の形状にし、他方を表面積の多い面状ないし板状の形状にすることを着想した。
[Idea for solving problems]
In the capacitive proximity sensor as described above, when the human body of the detection object approaches the electrode, the electric lines of force from one electrode enter the ground through the human body and do not enter the other electrode. The capacitance between them changes. From this, it is surmised that the lines of electric force between the two electrodes extend far and the detectable distance becomes longer when the number of the lines at a far position is large. If both electrodes are flat plates of the same shape and the same size and face each other, it is assumed that the number of lines of electric force between the electrodes is difficult to increase at a distant position.
Accordingly, the inventors have conceived that one of the electrodes has a linear shape with a small surface area and the other has a planar or plate shape with a large surface area.

[実験(図1〜図5参照)]
静電容量型近接センサにおいて、線状の電極と面状の電極を用いて実験した。
[Experiment (see FIGS. 1 to 5)]
In the capacitive proximity sensor, an experiment was conducted using a linear electrode and a planar electrode.

1)電極(図1〜図3参照)
電極の例1では、図1に示すように、線状電極1は、直線状の電線であり、直径0.22mmで、長さ300mmである。面状電極2は、帯状ないし長方形状の平板であり、幅30mmで、長さ300mmである。線状電極1は、面状電極2と長さ方向を揃えて並列し、面状電極2の幅方向中央位置に配置し、面状電極2との間に間隔3mmを置いている。両電極の線状電極1側は、線状電極1が面状電極2に隠れず、線状電極1と面状電極2が現れ、前側の領域であって検出領域である。面状電極2側は、線状電極1が面状電極2に隠れ、後側の領域である。
1) Electrode (see FIGS. 1 to 3)
In Example 1 of the electrode, as shown in FIG. 1, the linear electrode 1 is a linear electric wire having a diameter of 0.22 mm and a length of 300 mm. The planar electrode 2 is a belt-shaped or rectangular flat plate having a width of 30 mm and a length of 300 mm. Linear electrode 1, parallel align the planar electrode 2 and the longitudinal direction, arranged in the width direction center position location of the planar electrode 2, are spaced 3mm between the planar electrode 2. On both sides of the linear electrode 1, the linear electrode 1 is not hidden by the planar electrode 2, and the linear electrode 1 and the planar electrode 2 appear, which is a front region and a detection region. On the planar electrode 2 side, the linear electrode 1 is hidden behind the planar electrode 2 and is a rear region.

電極の例2では、図2に示すように、線状電極1は、電極例1におけるのと同じ電線である。面状電極は、電極例1における面状電極2の平板の上辺と下辺をそれぞれ上下に延長して前側に折り返している。電極例1における面状電極2と同形同寸の後側板3の上縁と下縁にそれぞれ上側板と下側板を介して前側板4を連結している。後側板3と線状電極1の相対位置は、電極例1における面状電極2と線状電極1のそれと同じである。2枚の前側板4は、後側板3と並列し、線状電極1の上下に位置し、線状電極1との間に間隔3mmを置いている。面状電極は、折り返し板3、4である。両電極の線状電極1側は、前側の領域であって検出領域である。面状電極3、4の後側板3側は、後側の領域である。 In the electrode example 2, as shown in FIG. 2, the linear electrode 1 is the same electric wire as in the electrode example 1. The planar electrode is folded back to the front side by extending the upper and lower sides of the flat plate of the planar electrode 2 in the electrode example 1 vertically. The front plate 4 is connected to the upper and lower edges of the rear plate 3 having the same shape and the same size as the planar electrode 2 in the electrode example 1 via the upper plate and the lower plate, respectively. The relative positions of the rear plate 3 and the linear electrode 1 are the same as those of the planar electrode 2 and the linear electrode 1 in the electrode example 1. The two front plates 4 are juxtaposed with the rear plate 3, positioned above and below the linear electrode 1, and spaced by 3 mm from the linear electrode 1. The planar electrodes are the folded plates 3 and 4. The linear electrode 1 side of both electrodes is a front region and a detection region. The rear plate 3 side of the planar electrodes 3 and 4 is a rear region.

比較例では、図3に示すように、電極例1における面状電極2を2枚並列し、それらの間に間隔3mmを置いている。   In the comparative example, as shown in FIG. 3, two planar electrodes 2 in the electrode example 1 are juxtaposed, and a space of 3 mm is placed between them.

2)電気回路(図4、図5参照)
電気回路は、静電容量の変化を検出することのできる各種の回路が使用可能であるが、直列共振回路を用いた。この回路は、図4に示すように、発信源E、巻き線間静電容量C1を有するコイルL、コンデンサC2を構成する電極6と電極7、抵抗器Rを直列に接続している。巻き線間静電容量C1とコイルLで並列共振回路を構成している。コイルLとコンデンサC2で直列共振回路を構成している。発信源Eと抵抗器Rの間は、接地している。抵抗器Rの両端の電圧Vを検出する。検出電圧Vと発信源Eの交流の周波数の関係は、図5の線図に実線で示すようになる。直列共振周波数は、並列共振周波数より低い。
2) Electrical circuit (see FIGS. 4 and 5)
As the electric circuit, various circuits capable of detecting a change in capacitance can be used, but a series resonance circuit is used. In this circuit, as shown in FIG. 4, a transmission source E, a coil L having interwinding capacitance C1, an electrode 6 and an electrode 7 constituting a capacitor C2, and a resistor R are connected in series. The inter-winding capacitance C1 and the coil L constitute a parallel resonance circuit. The coil L and the capacitor C2 constitute a series resonance circuit. The source E and the resistor R are grounded. The voltage V across the resistor R is detected. The relationship between the detection voltage V and the AC frequency of the transmission source E is indicated by a solid line in the diagram of FIG. The series resonance frequency is lower than the parallel resonance frequency.

電極6又は電極7に検出対象物の接地した人体が近づくと、コンデンサC2の静電容量が減少する一方、人体がコンデンサCを構成し、コンデンサCが直列接続のコンデンサC2と抵抗器Rに並列に接続することになる。人体によるコンデンサCは、静電容量がコンデンサC2の静電容量減少分の数倍である。例えば、コンデンサCの静電容量は2〜3pFで、コンデンサC2の静電容量減少分は0.7pF位である。直列共振回路は、人体の接近で、静電容量が増加し、直列共振周波数が低くなる。検出電圧Vと発信源Eの交流の周波数の関係は、図5の線図に破線で示すように、直列共振の特性曲線が周波数の低い方に移動する。   When the human body whose detection target is grounded approaches the electrode 6 or the electrode 7, the capacitance of the capacitor C2 decreases, while the human body forms the capacitor C, and the capacitor C is parallel to the capacitor C2 and the resistor R connected in series. Will be connected to. The capacitor C by the human body has a capacitance several times that of the capacitance decrease of the capacitor C2. For example, the capacitance of the capacitor C is 2 to 3 pF, and the decrease in the capacitance of the capacitor C2 is about 0.7 pF. In the series resonant circuit, the capacitance increases and the series resonant frequency decreases as the human body approaches. The relationship between the detection voltage V and the AC frequency of the transmission source E is such that the characteristic curve of series resonance moves to the lower frequency as shown by the broken line in the diagram of FIG.

発信源Eは、正弦波交流を発信し、発信周波数を直列共振周波数より少し高く設定し、検出電圧Vを検出対象物の人の手がない初期状態で8Vに設定する。電極6又は電極7に人の手が近づくと、検出電圧Vが初期設定の8Vから減少する。   The transmission source E transmits a sine wave alternating current, sets the transmission frequency slightly higher than the series resonance frequency, and sets the detection voltage V to 8 V in an initial state where there is no human hand of the detection target. When a human hand approaches the electrode 6 or the electrode 7, the detection voltage V decreases from the initial setting of 8V.

3)実験方法と実験結果(図6参照)
電極例1では、線状電極1は抵抗器Rに接続して電極7にし、面状電極2はコイルLに接続して電極6にする。発信周波数は54kHzにし、発信電圧は0.5mVにする。すると、検出対象物の人の手がない初期状態で、検出電圧Vが8Vになる。この初期設定で、前側の領域において、検出対象物の人の手を線状電極1から各距離に配置して、検出電圧Vを測定する。また、後側の領域において、人の手を面状電極2から各距離に配置して、検出電圧Vを検出する。
3) Experimental method and experimental results (see Fig. 6)
In the electrode example 1, the linear electrode 1 is connected to the resistor R to be the electrode 7, and the planar electrode 2 is connected to the coil L to be the electrode 6. The transmission frequency is 54 kHz and the transmission voltage is 0.5 mV. Then, the detection voltage V becomes 8V in the initial state where the detection target has no human hand. In this initial setting, the detection voltage V is measured by placing the human hand of the detection object at each distance from the linear electrode 1 in the front region. In the rear region, a human hand is placed at each distance from the planar electrode 2 to detect the detection voltage V.

すると、実験結果は、図6に太い実線で示すようになる。前側の領域で、人の手が線状電極1から200mm強の距離に近づくと、検出電圧Vが初期設定の8Vから減少し始める。人の手が検出され始める。人の手が線状電極1に近づくに従って検出電圧Vが急激に減少する。また、後側の領域で、人の手が面状電極2から200mm弱の距離に近づくと、検出電圧Vが減少し始める。人の手が検出され始める。人の手が面状電極2に近づくに従って検出電圧Vが急激に減少する。線状電極1側の前側領域の方が面状電極2側の後側領域より検出可能距離が長い。   Then, the experimental result is shown by a thick solid line in FIG. When a human hand approaches a distance of slightly more than 200 mm from the linear electrode 1 in the front region, the detection voltage V starts to decrease from the initial setting of 8V. Human hands begin to be detected. As the human hand approaches the linear electrode 1, the detection voltage V decreases rapidly. In the rear area, when the human hand approaches a distance of less than 200 mm from the planar electrode 2, the detection voltage V starts to decrease. Human hands begin to be detected. As the human hand approaches the planar electrode 2, the detection voltage V decreases rapidly. The detectable distance is longer in the front region on the linear electrode 1 side than in the rear region on the planar electrode 2 side.

なお、線状電極1は電極6に、面状電極2は電極7に入れ替えた場合、検出電圧Vを初期設定の8Vにするため、発信周波数は57kHzにし、発信電圧は0.4mVにするが、実験結果は、上記の場合とほぼ同じである。   When the linear electrode 1 is replaced with the electrode 6 and the planar electrode 2 is replaced with the electrode 7, the detection voltage V is set to 8V as an initial setting, so that the transmission frequency is 57 kHz and the transmission voltage is 0.4 mV. The experimental results are almost the same as in the above case.

電極例2では、線状電極1は抵抗器Rに接続して電極7にし、面状電極3、4はコイルLに接続して電極6にする。発信周波数は55kHzに、発信電圧は0.4mVにする。初期状態で、検出電圧Vが8Vになる。実験結果は、図6に細い実線で示すようになる。前側の領域で、人の手が線状電極1から300mm位の距離に近づくと、検出電圧Vが減少し始める。人の手が検出され始める。人の手が線状電極1に近づくに従って検出電圧Vが急激に減少する。また、後側の領域で、人の手が面状電極2から200mm位の距離に近づくと、検出電圧Vが減少し始める。人の手が面状電極2に近づくに従って検出電圧Vが急激に減少する。線状電極1側の前側領域の方が面状電極3、4側の後側領域より検出可能距離が大幅に長い。また、前側領域での検出可能距離が電極例1におけるそれより大幅に長い。   In the electrode example 2, the linear electrode 1 is connected to the resistor R to be the electrode 7, and the planar electrodes 3 and 4 are connected to the coil L to be the electrode 6. The transmission frequency is 55 kHz and the transmission voltage is 0.4 mV. In the initial state, the detection voltage V becomes 8V. The experimental result is shown by a thin solid line in FIG. When a human hand approaches a distance of about 300 mm from the linear electrode 1 in the front region, the detection voltage V starts to decrease. Human hands begin to be detected. As the human hand approaches the linear electrode 1, the detection voltage V decreases rapidly. Further, when the human hand approaches the distance of about 200 mm from the planar electrode 2 in the rear region, the detection voltage V starts to decrease. As the human hand approaches the planar electrode 2, the detection voltage V decreases rapidly. The detectable distance in the front region on the linear electrode 1 side is significantly longer than the rear region on the planar electrodes 3 and 4 side. Further, the detectable distance in the front region is significantly longer than that in the electrode example 1.

なお、線状電極1は電極6に、面状電極3、4は電極7に入れ替えた場合、発信周波数と発信電圧は変わらず、実験結果は同じである。   When the linear electrode 1 is replaced with the electrode 6 and the planar electrodes 3 and 4 are replaced with the electrode 7, the transmission frequency and the transmission voltage are not changed, and the experimental results are the same.

比較例では、一方の面状電極2は電極7にし、他方の面状電極2は電極6にする。発信周波数は63kHzにし、発信電圧は0.6mVにする。初期状態で、検出電圧Vが8Vになる。実験結果は、図6に破線で示すようになる。前側領域と後側領域の検出可能距離が160〜170mm位になる。前側領域の検出可能距離は、電極例1、電極例2におけるそれより短い。
結局、電極例1と電極例2では、前側の検出領域の検出可能距離が長い。
In the comparative example, one planar electrode 2 is an electrode 7 and the other planar electrode 2 is an electrode 6. The transmission frequency is 63 kHz and the transmission voltage is 0.6 mV. In the initial state, the detection voltage V becomes 8V. The experimental result is shown by a broken line in FIG. The detectable distance between the front region and the rear region is about 160 to 170 mm. The detectable distance in the front region is shorter than that in electrode example 1 and electrode example 2.
After all, in electrode example 1 and electrode example 2, the detectable distance of the front detection area is long.

[遮蔽電極(図7〜図9参照)]
電極例1と電極例2では、後側領域の検出可能距離が前側領域のそれより短いが、誤動作を減らすにはまだ十分ではない。そこで、後側領域の検出可能距離を更に短くするため、遮蔽電極を設けることにした。電極例1では、図7に示すように、面状電極2の後側に間隔を置いて面状の遮蔽電極8を並列して対面する。遮蔽電極8は、帯状ないし長方形状の平板である。電極例2でも、図8に示すように、面状電極3、4の後側に間隔を置いて面状の遮蔽電極8を並列して対面する。遮蔽電極8は、接地する。
[Shielding electrode (see FIGS. 7 to 9)]
In electrode example 1 and electrode example 2, the detectable distance of the rear region is shorter than that of the front region, but it is not yet sufficient to reduce malfunctions. Therefore, in order to further reduce the detectable distance of the rear region, a shielding electrode is provided. In the electrode example 1, as shown in FIG. 7, the planar shielding electrodes 8 face each other in parallel with a space behind the planar electrode 2. The shield electrode 8 is a belt-like or rectangular flat plate. Also in the electrode example 2, as shown in FIG. 8, the planar shielding electrodes 8 face each other in parallel with a space behind the planar electrodes 3 and 4. The shield electrode 8 is grounded.

すると、電極例1では、電極7の線状電極1と電極6の面状電極2がコンデンサC2を構成する一方、電極6の面状電極2と遮蔽電極8がコンデンサC3を構成する。電極例2でも、電極7の線状電極1と電極6の面状電極3、4がコンデンサC2を構成する一方、電極6の面状電極3、4と遮蔽電極8がコンデンサC3を構成する。図4に示した直列共振回路は、図9に示すように、コンデンサC3が直列接続のコンデンサC2と抵抗器Rに並列に接続することになる。   Then, in the electrode example 1, the linear electrode 1 of the electrode 7 and the planar electrode 2 of the electrode 6 constitute a capacitor C2, while the planar electrode 2 of the electrode 6 and the shielding electrode 8 constitute a capacitor C3. Also in the electrode example 2, the linear electrode 1 of the electrode 7 and the planar electrodes 3 and 4 of the electrode 6 constitute a capacitor C2, while the planar electrodes 3 and 4 of the electrode 6 and the shielding electrode 8 constitute a capacitor C3. In the series resonant circuit shown in FIG. 4, a capacitor C3 is connected in parallel to a capacitor C2 and a resistor R connected in series as shown in FIG.

遮蔽電極付きの電極例1と電極例2では、遮蔽電極8によって後側領域の検出可能距離が短くなる。   In the electrode example 1 and the electrode example 2 with the shielding electrode, the detectable distance of the rear region is shortened by the shielding electrode 8.

[他の電極例(図10、図11参照)]
電極例3は、電極例2の面状電極を変形している。電極例2の面状電極における後側板3、上側板と下側板は、なくしている。電極例3の面状電極は、図10に示すように、上下の前側板4のみにしている。電極例3は、上下の前側板4、平板の面状電極と電線の線状電極1からなる。上下の前側板4のみの面状電極は、電極例2の折り返し板の面状電極より製造し易い。
[Other electrode examples (see FIGS. 10 and 11)]
The electrode example 3 is a modification of the planar electrode of the electrode example 2. The rear side plate 3, the upper side plate, and the lower side plate in the planar electrode of the electrode example 2 are eliminated. As shown in FIG. 10, the planar electrode of the electrode example 3 is only the upper and lower front side plates 4. The electrode example 3 includes an upper and lower front side plate 4, a planar sheet electrode, and a wire electrode 1. The planar electrodes of only the upper and lower front plates 4 are easier to manufacture than the planar electrodes of the folded plate of the electrode example 2.

また、電極例4は、電極例3の面状電極を変形している。電極例3の面状電極における上側の前側板4の下縁と下側の前側板4の上縁は、図11に示すように、溝形断面の溝形板5で連結している。溝形板5は、遮蔽電極8側の後側に突出している。電極例4の面状電極は、上下の前側板4と溝形板5からなり、折り曲げ板である。電極例4は、折り曲げ板の面状電極4、5と電線の線状電極1からなる。折り曲げ板の面状電極4、5は、電極例2の折り返し板の面状電極より製造し易い。 In addition, the electrode example 4 is a modification of the planar electrode of the electrode example 3. As shown in FIG. 11, the lower edge of the upper front plate 4 and the upper edge of the lower front plate 4 in the planar electrode of the electrode example 3 are connected by a groove plate 5 having a groove-shaped cross section. The channel plate 5 protrudes to the rear side of the shielding electrode 8 side. The planar electrode of the electrode example 4 is composed of upper and lower front plates 4 and a groove plate 5 and is a bent plate. The electrode example 4 includes the planar electrodes 4 and 5 of the bent plate and the linear electrode 1 of the electric wire. The planar electrodes 4 and 5 of the folded plate are easier to manufacture than the planar electrodes of the folded plate of the electrode example 2.

[雨滴による不動作(図12、図9参照)]
静電容量型近接センサは、電極を内蔵した感知部が屋外に配置され、感知部の電極6、7付近に雨滴などが付着することがある。検出対象物ではない雨滴などが付着しても、動作しないことが望まれる。
[Non-operation due to raindrops (see FIGS. 12 and 9)]
In the capacitive proximity sensor, a sensing unit having an electrode built therein is disposed outdoors, and raindrops or the like may adhere near the electrodes 6 and 7 of the sensing unit. Even if raindrops or the like that are not detection objects are attached, it is desired that they do not operate.

図9に示した電気回路において、電極6、7に検出対象物外の雨滴などが最接近する、例えば1mm以内に近づくと、その雨滴などが両電極6、7間の誘電体として作用し、両電極6、7によるコンデンサC2の静電容量が大きく増加する。電極6と遮蔽電極8の間には、雨滴などが最接近しないとすると、コンデンサC3の静電容量が変化しない。非接地の雨滴などは、接地した人体とは異なり、コンデンサCを構成しない。   In the electric circuit shown in FIG. 9, when raindrops outside the detection object are closest to the electrodes 6 and 7, for example, within 1 mm, the raindrops act as a dielectric between the electrodes 6 and 7, The capacitance of the capacitor C2 due to both electrodes 6 and 7 is greatly increased. If raindrops are not closest between the electrode 6 and the shield electrode 8, the capacitance of the capacitor C3 does not change. Ungrounded raindrops and the like do not constitute a capacitor C unlike a grounded human body.

即ち、電極6、7に非接地の雨滴などが最接近すると、直列共振回路は、静電容量が増加し、直列共振周波数が低くなる。また、同時に、コンデンサC2の静電容量の増加によって、コンデンサC2と抵抗器Rの直列接続部は、インピーダンスが減少する。コンデンサC3の接続部は、インピーダンスが変化しない。すると、コンデンサC2と抵抗器Rの直列接続部は、電流が増加して、検出電圧Vが増加する。結局、検出電圧Vと発信源Eの交流の周波数の関係は、図12の線図に鎖線で示すように、直列共振の特性曲線が周波数の低い方に移動すると共に、検出電圧の高い方に移動する。   That is, when an ungrounded raindrop or the like is closest to the electrodes 6 and 7, the series resonance circuit has an increased capacitance and a lower series resonance frequency. At the same time, due to the increase in the capacitance of the capacitor C2, the impedance of the series connection portion of the capacitor C2 and the resistor R decreases. The impedance of the connection portion of the capacitor C3 does not change. Then, in the series connection portion of the capacitor C2 and the resistor R, the current increases and the detection voltage V increases. Eventually, the relationship between the detection voltage V and the AC frequency of the transmission source E is such that the characteristic curve of the series resonance moves to a lower frequency and a higher detection voltage as shown by a chain line in the diagram of FIG. Moving.

図12の線図において、実線で示す初期設定の直列共振周波数より少し高い発信周波数では、実線で示す初期設定の特性曲線と鎖線で示す雨滴付着時の特性曲線が交差する。その発信周波数付近では、雨滴の付着で検出電圧が変化しない、又は、ほとんど変化しない。雨滴などの付着に対して無感の発信周波数が存在する。発信周波数を無感の発信周波数に設定すると、雨滴などの付着で誤動作しない。   In the diagram of FIG. 12, at the transmission frequency slightly higher than the initial series resonance frequency indicated by the solid line, the initial characteristic curve indicated by the solid line and the characteristic curve at the time of raindrop adhesion indicated by the chain line intersect. In the vicinity of the transmission frequency, the detection voltage does not change or hardly changes due to adhesion of raindrops. There is a transmission frequency that is insensitive to the attachment of raindrops. If the transmission frequency is set to an insensitive transmission frequency, it will not malfunction due to adhesion of raindrops.

なお、雨滴などによる誤動作を防止する場合には、感知部は、電極6と遮蔽電極8の間に雨滴などが最接近しない構成にする。   In order to prevent malfunction due to raindrops or the like, the sensing unit is configured such that raindrops or the like are not closest between the electrode 6 and the shield electrode 8.

[他の電気回路(図13参照)]
他の電気回路は、図13に示すように、図9に示した電気回路における「巻き線間静電容量C1を有するコイルL」と「電極6と電極7で構成されるコンデンサC2」を入れ替えている。コイルLとコンデンサC2の直列接続回路、直列共振回路は、図9に示した電気回路におけるのと同様である。
[Other electrical circuits (see FIG. 13)]
As shown in FIG. 13, the other electric circuit replaces “coil L having interwinding capacitance C1” and “capacitor C2 composed of electrode 6 and electrode 7” in the electric circuit shown in FIG. ing. The series connection circuit and series resonance circuit of the coil L and the capacitor C2 are the same as those in the electric circuit shown in FIG.

1)一の電極と他の電極でコンデンサを構成し、電極に検出対象物の人体などが接近すると、静電容量が変化し、静電容量の変化に基いて検出対象物の接近を検出する静電容量型近接センサにおいて、
一の電極は、表面積の少ない線状の形状にし、他の電極は、表面積の多い面状の形状にし、線状電極と面状電極は、間隔を置いて並列し、線状電極が面状電極に隠れない側を前側の検出領域にし
線状電極は電線にし、面状電極は、平板の両側を前側に折り返し、後側に後側板を、前側の両側に前側板を有し、両側の前側板の間に線状電極を前側板と長さ方向を揃えて配置し、線状電極は両側の前側板と後側板から等距離に位置し、
線状電極と面状電極によるコンデンサとコイルを直列接続して直列共振回路を構成し、直列共振回路の電圧又は電流を検出し、検出電圧又は検出電流の変化で検出対象物の接近を検出する構成にしたことを特徴とする。
2)上記の静電容量型近接センサにおいて、
面状電極の後側には、間隔を置いて遮蔽電極を並列して対面し、遮蔽電極を接地する構成にしたことを特徴とする。
3)上記の静電容量型近接センサにおいて、
直列共振回路は、発信周波数を直列共振周波数より高く設定し、前側の検出領域で検出対象物の人体などが接近すると、直列共振周波数が低くなって検出電圧又は検出電流が減少し、検出対象物ではない雨滴などが接近すると、直列共振周波数が低くなると共にインピーダンスが減少し、検出電圧又は検出電流が変化しない、又は、ほとんど変化しない構成にしたことを特徴とする。
4)上記2)又は3)の静電容量型近接センサにおいて、
面状電極の片端側にコイルを配置し、面状電極とコイルを電線で接続し、
面状電極とコイルを接続した電線、線状電極、面状電極と遮蔽電極及びコイルを電気絶縁体に埋没して固定したことを特徴とする。
5)上記2)、3)又は4)の静電容量型近接センサにおいて、
感知部と電気回路部をケーブルで接続し、
感知部は、線状電極、面状電極と遮蔽電極及びコイルを内蔵し、
電気回路部は、直列共振回路の発信源、検出電圧又は検出電流の変化を検出する回路又は機器を内蔵したことを特徴とする。
1) to form a capacitor with one electrode and the other electrode, the human body of the detection object to the electrode approaches the electrostatic capacitance is changed, to detect the approach of a detection object based on a change in capacitance In capacitive proximity sensors,
One electrode makes it less linear shape surface area and the other electrode, the greater the surface shape of the surface area, the linear electrode and the planar electrode, Resshi parallel spaced, face linear electrode The side that is not hidden by the electrode is the front detection area ,
The linear electrode is an electric wire, and the planar electrode has both sides of the flat plate folded forward, the rear plate on the rear side, the front plate on both sides of the front side, and the linear electrode between the front plate on both sides and the front plate Arranged in the same direction, the linear electrodes are equidistant from the front and rear plates on both sides,
A series resonance circuit is configured by connecting a capacitor and a coil composed of linear electrodes and planar electrodes in series, and the voltage or current of the series resonance circuit is detected, and the approach of the detection target is detected by a change in the detection voltage or detection current. It is characterized by having a configuration .
2) In the above capacitive proximity sensor,
On the rear side of the planar electrode, the shield electrodes are arranged to face each other with a space therebetween, and the shield electrode is grounded .
3) In the above capacitive proximity sensor,
The series resonance circuit sets the transmission frequency higher than the series resonance frequency, and when the human body of the detection object approaches in the detection area on the front side, the series resonance frequency decreases and the detection voltage or detection current decreases. When a raindrop or the like that is not close, the series resonance frequency is lowered and the impedance is decreased, and the detection voltage or the detection current is not changed or hardly changed .
4) In the capacitive proximity sensor of 2) or 3 ) above,
A coil is arranged on one end side of the planar electrode , the planar electrode and the coil are connected by an electric wire,
An electric wire, a linear electrode, a planar electrode, a shielding electrode, and a coil in which a planar electrode and a coil are connected are buried and fixed in an electrical insulator.
5) In the capacitive proximity sensor of 2), 3) or 4) above,
Connect the sensor and electrical circuit with a cable,
The sensing unit contains a linear electrode, a planar electrode, a shielding electrode and a coil,
The electric circuit unit is characterized in that a transmission source of a series resonance circuit, a circuit or a device for detecting a change in detection voltage or detection current is incorporated .

静電容量型近接センサは、前側の検出領域で検出可能距離が長い。後側の領域では検出可能距離が短い。誤動作が少ない。   The capacitive proximity sensor has a long detectable distance in the front detection area. The detectable distance is short in the rear area. There are few malfunctions.

実施形態の静電容量型近接センサは、図14に示すように、遮蔽電極付き電極を内蔵した感知部11をシールド線19、20のケーブルで電気回路部31に接続している。   In the capacitive proximity sensor of the embodiment, as shown in FIG. 14, the sensing unit 11 having a built-in electrode with a shielding electrode is connected to the electric circuit unit 31 with cables of shielded wires 19 and 20.

感知部11は、図14〜図16に示すように、遮蔽電極12、絶縁シート13、面状電極14と線状電極17及びコイル18を内蔵している。   As shown in FIGS. 14 to 16, the sensing unit 11 includes a shielding electrode 12, an insulating sheet 13, a planar electrode 14, a linear electrode 17, and a coil 18.

遮蔽電極12は、金属板で帯状ないし長方形状の平板であり、片側の板面に絶縁シート13を重ねている。絶縁シート13は、電気絶縁体であり、遮蔽電極12とほぼ同形同寸で、遮蔽電極12と長さ方向を揃えている。絶縁シート12の片側の面には、面状電極14を重ねている。面状電極14は、図8に示した形態の折り返し板の金属板であり、後側に後側板15を、前側の両側に前側板16を有している。後側板15は、遮蔽電極12や絶縁シート13より一回り小さい帯状ないし長方形状の平板であり、絶縁シート13と長さ方向を揃えている。遮蔽電極12と面状電極14の後側板15の間には、絶縁シート13を挟んでいる。両側の前側板16の間には、線状電極17を前側板16と長さ方向を揃えて配置している。線状電極17は、丸棒の金属線、直線状の電線であり、面状電極14とほぼ同じ長さで、両側の前側板16と後側板15から等距離に位置している。遮蔽電極12、面状電極14と線状電極17は、間隔を置いて並列している。 The shielding electrode 12 is a metal plate which is a belt-like or rectangular flat plate, and an insulating sheet 13 is overlapped on one plate surface. The insulating sheet 13 is an electrical insulator, is substantially the same shape and size as the shielding electrode 12, and is aligned with the shielding electrode 12 in the length direction. A planar electrode 14 is superimposed on one surface of the insulating sheet 12. The planar electrode 14 is a metal plate of a folded plate of the form shown in FIG. 8, and has a rear plate 15 on the rear side and front plates 16 on both sides of the front side. The rear plate 15 is a strip or rectangular flat plate that is slightly smaller than the shielding electrode 12 and the insulating sheet 13, and is aligned with the insulating sheet 13 in the length direction. An insulating sheet 13 is sandwiched between the shielding electrode 12 and the rear plate 15 of the planar electrode 14. Between the front plates 16 on both sides, the linear electrodes 17 are arranged with the front plate 16 aligned in the length direction. The linear electrode 17 is a round metal wire or a linear electric wire, and has substantially the same length as the planar electrode 14 and is located at an equal distance from the front side plate 16 and the rear side plate 15 on both sides. The shielding electrode 12, the planar electrode 14, and the linear electrode 17 are arranged in parallel at intervals.

面状電極14の片端側には、コイル18とケーブル19、20の一端を配置している。コイル18は、インダクタンスLと巻き線間静電容量C1を有する。ケーブル19、20は、2本のシールド線19、20を束ねている。コイル18は、一端を面状電極14に電線21で接続し、他端をシールド線19の心線に接続している。他のシールド線20は、心線を線状電極17に接続している。両シールド線19、20の被覆網線は、遮蔽電極12に接続している。   One end of the coil 18 and the cables 19 and 20 are arranged on one end side of the planar electrode 14. The coil 18 has an inductance L and an interwinding capacitance C1. The cables 19 and 20 bundle two shield wires 19 and 20 together. The coil 18 has one end connected to the planar electrode 14 with an electric wire 21 and the other end connected to the core of the shield wire 19. The other shield wire 20 connects the core wire to the linear electrode 17. The shielded mesh wires of both shield wires 19 and 20 are connected to the shield electrode 12.

遮蔽電極12、絶縁シート13、面状電極14、線状電極17、コイル18、電線21とケーブル19、20の一端は、合成樹脂液に没入し、合成樹脂液を硬化してケース22に成形している。ケース22は、合成樹脂成形品の電気絶縁体であり、帯状ないし長方形状の平板形状である。ケース22の線状電極17側は、線状電極17が面状電極14に隠れず、前側の領域であって検出領域である。遮蔽電極12側は、線状電極17が面状電極14に隠れ、後側の領域である。   The shield electrode 12, the insulating sheet 13, the planar electrode 14, the linear electrode 17, the coil 18, one end of the electric wire 21 and the cables 19 and 20 are immersed in the synthetic resin liquid, and the synthetic resin liquid is cured and molded into the case 22. is doing. The case 22 is an electrical insulator of a synthetic resin molded product and has a flat plate shape of a belt shape or a rectangular shape. The linear electrode 17 side of the case 22 is a detection region where the linear electrode 17 is not hidden by the planar electrode 14 and is a front region. On the shielding electrode 12 side, the linear electrode 17 is hidden behind the planar electrode 14 and is a rear region.

面状電極14と線状電極17は、コンデンサC2を構成している。面状電極14と遮蔽電極12は、コンデンサC3を構成している。遮蔽電極12、面状電極14、線状電極17とコイル18及び電線21は、ケース22に埋没し、固定されている。それら付近の漂遊容量や漂遊インダクタンスが変化し難い。漂遊容量などの変化によるLC直列共振特性のずれが生じ難い。 The planar electrode 14 and the linear electrode 17 constitute a capacitor C2. The planar electrode 14 and the shielding electrode 12 constitute a capacitor C3. The shielding electrode 12, the planar electrode 14 , the linear electrode 17 , the coil 18, and the electric wire 21 are buried and fixed in the case 22. The stray capacitance and stray inductance in the vicinity of them are difficult to change. It is difficult for the LC series resonance characteristic to shift due to a change in stray capacitance.

電気回路部31は、発信源E、抵抗器R、抵抗器Rの両端の電圧Vの変化を検出する回路又は機器とケーブル19、20の他端を内蔵している。発信源Eは、一端を抵抗器Rの一端に、他端をシールド線19の心線に接続している。抵抗器Rの他端は、シールド線20の心線に接続している。両シールド線19、20の被覆網線は、発信源Eと抵抗器Rの間に接続している。発信源Eと抵抗器Rの間は、接地している。電気回路は、図17に示すように、インダクタンスLのコイル18と、面状電極14と線状電極17によるコンデンサC2を直列接続している。図9に示したLC直列共振回路と同様である。発信源Eの発信周波数は、直列共振周波数より少し高い発信周波数、雨滴などの付着に対して無感の発信周波数に設定している。   The electric circuit unit 31 includes a transmission source E, a resistor R, a circuit or device for detecting a change in the voltage V across the resistor R, and the other ends of the cables 19 and 20. The transmission source E has one end connected to one end of the resistor R and the other end connected to the core of the shield wire 19. The other end of the resistor R is connected to the core wire of the shield wire 20. The shielded mesh wires of both shield wires 19 and 20 are connected between the transmission source E and the resistor R. The source E and the resistor R are grounded. In the electric circuit, as shown in FIG. 17, a coil 18 having an inductance L and a capacitor C <b> 2 including a planar electrode 14 and a linear electrode 17 are connected in series. This is the same as the LC series resonance circuit shown in FIG. The transmission frequency of the transmission source E is set to a transmission frequency slightly higher than the series resonance frequency and a transmission frequency insensitive to adhesion of raindrops and the like.

ケース22の前側の検出領域では、検出対象物の人体に対して検出可能距離が長い。200mm位になる。ケース22の後側の領域では、人体の検出がほとんどない。ケース22の前面に検出対象物外の雨滴などが付着しても、動作しない。   In the detection region on the front side of the case 22, the detectable distance is long with respect to the human body of the detection target. It becomes about 200 mm. In the area behind the case 22, there is almost no human body detection. Even if raindrops or the like outside the detection target adhere to the front surface of the case 22, the operation does not occur.

[変形例]
記の実施形態において、線状電極17は、断面形状が円形であるが、角形にする
[Modification]
In the above embodiments SL, linear electrodes 17, although the cross-sectional shape is circular, to shape.

本発明は、移動体と人体の接近や衝突の防止、危険個所への人体の接近の防止、立入禁止区域への人体の侵入の防止や、人体の所在確認などに利用される。   The present invention is used to prevent the approach and collision between a moving body and a human body, prevent the human body from approaching a dangerous location, prevent the human body from entering a prohibited area, and confirm the location of the human body.

本発明の静電容量型近接センサの電極の実験例1の斜視図。The perspective view of Experimental example 1 of the electrode of the capacitive proximity sensor of this invention. 同電極の実験例2の斜視図。The perspective view of Experimental example 2 of the same electrode. 電極の比較例の斜視図。The perspective view of the comparative example of an electrode. 同静電容量型近接センサの電気回路の実験例の図。The figure of the experiment example of the electric circuit of the electrostatic capacitance type proximity sensor. 同実験例の電気回路における検出電圧と発信源の周波数の関係を示す線図。The diagram which shows the relationship between the detection voltage in the electric circuit of the experiment example, and the frequency of a transmission source. 同実験例における検出電圧と検出対象物の距離の関係を示す線図。The diagram which shows the relationship between the detection voltage in the experiment example, and the distance of a detection target object. 同静電容量型近接センサの遮蔽電極付き電極の例1の斜視図。The perspective view of Example 1 of the electrode with a shielding electrode of the same capacitive proximity sensor. 同静電容量型近接センサの遮蔽電極付き電極の例2の斜視図。The perspective view of Example 2 of the electrode with a shielding electrode of the same capacitive proximity sensor. 同遮蔽電極付き電極の電気回路の例の図。The figure of the example of the electric circuit of the electrode with the shielding electrode. 同遮蔽電極付き電極の他の例の斜視図。The perspective view of the other example of the electrode with the same shielding electrode. 同遮蔽電極付き電極の更に他の例の斜視図。The perspective view of the further another example of the electrode with the shielding electrode. 図5と同様な線図で、無感の発信周波数、雨滴などの付着による不動作を示す図。FIG. 6 is a diagram similar to FIG. 5, showing non-operation due to insensitive transmission frequency, adhesion of raindrops, and the like. 同遮蔽電極付き電極の電気回路の他の例の図。The figure of the other example of the electric circuit of the electrode with the same shielding electrode. 本発明の実施形態の静電容量型近接センサの模式図。The schematic diagram of the capacitive proximity sensor of the embodiment of the present invention. 同静電容量型近接センサの感知部のケース破断正面図。The case fracture | rupture front view of the sensing part of the electrostatic capacitance type proximity sensor. 図15のA−A線断面拡大図。FIG. 16 is an enlarged sectional view taken along line AA in FIG. 15. 同静電容量型近接センサの電気回路図。The electric circuit diagram of the same capacitive proximity sensor.

符号の説明Explanation of symbols

1 線状電極、電線
2 面状電極、平板、金属板
3、4 面状電極、折り返し板、金属板
3 面状電極の後側板
4 面状電極の前側板、面状電極
4、5 面状電極、折り曲げ板、金属板
5 面状電極の溝形板
6 電極
7 電極
8 遮蔽電極、平板、金属板
11 感知部
12 遮蔽電極、平板、金属板
13 絶縁シート、電気絶縁体
14 面状電極、折り返し板、金属板
15 面状電極の後側板
16 面状電極の前側板
17 線状電極、丸棒の金属線、電線
18 コイル
19、20 ケーブル、ケーブルのシールド線
19 シールド線
20 シールド線
21 電線
22 ケース、合成樹脂成形品の電気絶縁体
31 電気回路部
E 発信源
L コイル、インダクタンス
C1 コイルの巻き線間静電容量
C2 電極によるコンデンサ
C3 遮蔽電極によるコンデンサ
C 人体によるコンデンサ
R 抵抗器
V 電圧、検出電圧
DESCRIPTION OF SYMBOLS 1 Linear electrode, Electric wire 2 Planar electrode, Flat plate, Metal plate 3, 4 Planar electrode, Folded plate, Metal plate 3 Rear plate of planar electrode 4 Front plate of planar electrode, Planar electrode 4, 5 Planar shape Electrode, bent plate, metal plate 5 planar electrode groove plate 6 electrode 7 electrode 8 shielding electrode, flat plate, metal plate 11 sensing unit 12 shielding electrode, flat plate, metal plate 13 insulating sheet, electrical insulator 14 planar electrode, Folded plate, metal plate 15 rear electrode 16 planar electrode front plate 17 linear electrode, round bar metal wire, electric wire 18 coil 19, 20 cable, cable shield wire 19 shield wire 20 shield wire 21 electric wire 22 Case, Synthetic Resin Molded Electrical Insulator 31 Electric Circuit Part E Transmission Source L Coil, Inductance C1 Capacitance between windings of coil C2 Capacitor by electrode C3 Capacitor by shielding electrode C Capacitor by human body Resistors V voltage, the detection voltage

Claims (5)

一の電極と他の電極でコンデンサを構成し、電極に検出対象物の人体などが接近すると、静電容量が変化し、静電容量の変化に基いて検出対象物の接近を検出する静電容量型近接センサにおいて、
一の電極は、表面積の少ない線状の形状にし、他の電極は、表面積の多い面状の形状にし、線状電極と面状電極は、間隔を置いて並列し、線状電極が面状電極に隠れない側を前側の検出領域にし
線状電極は電線にし、面状電極は、平板の両側を前側に折り返し、後側に後側板を、前側の両側に前側板を有し、両側の前側板の間に線状電極を前側板と長さ方向を揃えて配置し、線状電極は両側の前側板と後側板から等距離に位置し、
線状電極と面状電極によるコンデンサとコイルを直列接続して直列共振回路を構成し、直列共振回路の電圧又は電流を検出し、検出電圧又は検出電流の変化で検出対象物の接近を検出する構成にしたことを特徴とする静電容量型近接センサ。
To form a capacitor with one electrode and the other electrode, the human body of the detection object to the electrode approaches the electrostatic capacitance is changed, to detect the approach of a detection object based on a change in capacitance In capacitive proximity sensors,
One electrode makes it less linear shape surface area and the other electrode, the greater the surface shape of the surface area, the linear electrode and the planar electrode, Resshi parallel spaced, face linear electrode The side that is not hidden by the electrode is the front detection area ,
The linear electrode is an electric wire, and the planar electrode has both sides of the flat plate folded forward, the rear plate on the rear side, the front plate on both sides of the front side, and the linear electrode between the front plate on both sides and the front plate Arranged in the same direction, the linear electrodes are equidistant from the front and rear plates on both sides,
A series resonance circuit is configured by connecting a capacitor and a coil composed of linear electrodes and planar electrodes in series, and the voltage or current of the series resonance circuit is detected, and the approach of the detection target is detected by a change in the detection voltage or detection current. A capacitive proximity sensor characterized by having a configuration .
面状電極の後側には、間隔を置いて遮蔽電極を並列して対面し、遮蔽電極を接地する構成にしたことを特徴とする請求項1に記載の静電容量型近接センサ。 2. The capacitive proximity sensor according to claim 1, wherein the shield electrodes are arranged to face each other in parallel on the rear side of the planar electrode, and the shield electrode is grounded. 直列共振回路は、発信周波数を直列共振周波数より高く設定し、前側の検出領域で検出対象物の人体などが接近すると、直列共振周波数が低くなって検出電圧又は検出電流が減少し、検出対象物ではない雨滴などが接近すると、直列共振周波数が低くなると共にインピーダンスが減少し、検出電圧又は検出電流が変化しない、又は、ほとんど変化しない構成にしたことを特徴とする請求項1又は2に記載の静電容量型近接センサ。 The series resonance circuit sets the transmission frequency higher than the series resonance frequency, and when the human body of the detection object approaches in the detection area on the front side, the series resonance frequency decreases and the detection voltage or detection current decreases. 3. The configuration according to claim 1, wherein when a raindrop or the like that is not close approaches, the series resonance frequency decreases and the impedance decreases, and the detection voltage or detection current does not change or hardly changes. Capacitive proximity sensor. 面状電極の片端側にコイルを配置し、面状電極とコイルを電線で接続し、
面状電極とコイルを接続した電線、線状電極、面状電極と遮蔽電極及びコイルを電気絶縁体に埋没して固定したことを特徴とする請求項2又は3に記載の静電容量型近接センサ。
A coil is arranged on one end side of the planar electrode , the planar electrode and the coil are connected by an electric wire,
The electrostatic capacity type proximity according to claim 2 or 3 , characterized in that an electric wire, a linear electrode, a planar electrode, a shielding electrode, and a coil in which a planar electrode and a coil are connected are buried and fixed in an electrical insulator. Sensor.
感知部と電気回路部をケーブルで接続し、
感知部は、線状電極、面状電極と遮蔽電極及びコイルを内蔵し、
電気回路部は、直列共振回路の発信源、検出電圧又は検出電流の変化を検出する回路又は機器を内蔵したことを特徴とする請求項2、3又は4に記載の静電容量型近接センサ。
Connect the sensor and electrical circuit with a cable,
The sensing unit contains a linear electrode, a planar electrode, a shielding electrode and a coil,
5. The capacitive proximity sensor according to claim 2, wherein the electric circuit unit includes a transmission source of a series resonance circuit, a circuit or a device for detecting a change in a detection voltage or a detection current .
JP2008064626A 2008-03-13 2008-03-13 Capacitive proximity sensor Expired - Fee Related JP5055172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008064626A JP5055172B2 (en) 2008-03-13 2008-03-13 Capacitive proximity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008064626A JP5055172B2 (en) 2008-03-13 2008-03-13 Capacitive proximity sensor

Publications (3)

Publication Number Publication Date
JP2009222423A JP2009222423A (en) 2009-10-01
JP2009222423A5 JP2009222423A5 (en) 2011-04-07
JP5055172B2 true JP5055172B2 (en) 2012-10-24

Family

ID=41239382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008064626A Expired - Fee Related JP5055172B2 (en) 2008-03-13 2008-03-13 Capacitive proximity sensor

Country Status (1)

Country Link
JP (1) JP5055172B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5102716B2 (en) * 2008-08-08 2012-12-19 慶一 野々垣 Capacitive proximity sensor
JP2010066021A (en) * 2008-09-08 2010-03-25 Keiichi Nonogaki Electrostatic capacitance type proximity sensor
WO2011111146A1 (en) * 2010-03-08 2011-09-15 Nonogaki Keiichi Capacitance type proximity sensor
FR2996673B1 (en) * 2012-10-05 2016-02-05 Bostik Sa CAPACITIVE SENSOR FOR DETECTING THE PRESENCE OF AN OBJECT AND / OR AN INDIVIDUAL.
JP2017048614A (en) * 2015-09-02 2017-03-09 株式会社東海理化電機製作所 Entrapment detecting sensor and open/close body control device
WO2019093550A1 (en) * 2017-11-10 2019-05-16 황성공업 주식회사 Non-contact electric step device
KR102009858B1 (en) * 2017-11-10 2019-08-12 황성공업 주식회사 Non-Contact Electric Stepping Device
JP7107547B2 (en) * 2018-02-16 2022-07-27 東京パーツ工業株式会社 Capacitive proximity sensor and human body detection method using this capacitive proximity sensor
CN112671956B (en) 2019-10-16 2023-06-30 北京小米移动软件有限公司 Human body distance detection module of electronic equipment, electronic equipment and control method thereof
JP7406246B2 (en) 2020-04-10 2023-12-27 東京パーツ工業株式会社 capacitive proximity sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760185B2 (en) * 1992-01-21 1995-06-28 松下電工株式会社 Seating sensor
JP3453962B2 (en) * 1995-10-31 2003-10-06 松下電工株式会社 Capacitive rain sensor
JP2000177380A (en) * 1998-12-14 2000-06-27 Harness Syst Tech Res Ltd Nipping detector

Also Published As

Publication number Publication date
JP2009222423A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5055172B2 (en) Capacitive proximity sensor
WO2011024306A1 (en) Electrostatic capacity type proximity sensor
US8970523B2 (en) Two-dimensional capacitive touch panel with single sensor layer
JP6166227B2 (en) Power transmission device and power reception device
TWI556693B (en) Printed circuit board comprising an electrode configuration of a capacitive sensor
JP5093369B2 (en) Power transmission device, power reception device, and power transmission system
CN102023744B (en) Position detection apparatus
EP2031346A1 (en) Object detecting device for detecting an object by electromagnetic induction
US10491212B2 (en) Apparatus to secure a sensor assembly for a device touch button
JP2009222423A5 (en)
JP2007157107A5 (en)
JP2009278319A (en) Capacitance proximity sensor
JP6349748B2 (en) Non-contact voltage measuring device
JP2010066021A (en) Electrostatic capacitance type proximity sensor
US10942587B2 (en) Stylus pen
JP5102716B2 (en) Capacitive proximity sensor
JP2005181165A (en) Liquid level sensor
WO2011111146A1 (en) Capacitance type proximity sensor
KR102081110B1 (en) Stylus pen and touch input system using the same and method for detecting touch
KR20180001448A (en) Touch input device
CN113994307A (en) Position detecting device
CN113359059A (en) Leakage inductance element, leakage detection circuit and water heater
KR102093940B1 (en) Touch panel
CN106708336B (en) Capacitive touch screen
KR102260985B1 (en) Combined type sensor with contact sensing and contactless sensing

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees