JP5054889B2 - Exposure method and exposure apparatus - Google Patents

Exposure method and exposure apparatus Download PDF

Info

Publication number
JP5054889B2
JP5054889B2 JP2004334621A JP2004334621A JP5054889B2 JP 5054889 B2 JP5054889 B2 JP 5054889B2 JP 2004334621 A JP2004334621 A JP 2004334621A JP 2004334621 A JP2004334621 A JP 2004334621A JP 5054889 B2 JP5054889 B2 JP 5054889B2
Authority
JP
Japan
Prior art keywords
exposure
time
amount
semiconductor wafer
shot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004334621A
Other languages
Japanese (ja)
Other versions
JP2006156424A (en
Inventor
輝久 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004334621A priority Critical patent/JP5054889B2/en
Publication of JP2006156424A publication Critical patent/JP2006156424A/en
Application granted granted Critical
Publication of JP5054889B2 publication Critical patent/JP5054889B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体ウエハ上に形成した感光材料の露光方法および露光装置、特にラジカル重合型UV硬化樹脂にフォトリソパターン(カラーフィルター)を形成する際の露光に適用して好適な技術に関する。   The present invention relates to an exposure method and an exposure apparatus for a photosensitive material formed on a semiconductor wafer, and more particularly to a technique suitably applied to exposure for forming a photolithography pattern (color filter) on a radical polymerization type UV curable resin.

ラジカル重合型UV硬化樹脂を露光すると、ラジカル重合型UV硬化樹脂は、ラジカル重合反応して硬化する。この硬化の際に、ラジカル重合型UV硬化樹脂の皮膜中に、紫外線を吸収し発生する熱エネルギーによる熱ダメージや、ラジカル濃度分布が生じる。図9(a)はラジカル重合型UV硬化樹脂に所定の露光量を一括露光した場合の熱ダメージの皮膜中の分布を示す。横軸は熱ダメージの大きさ、縦軸は皮膜の厚さを表す。皮膜下層では熱ダメージは小さいが、皮膜中層、皮膜上層のように表面側になるほど熱ダメージが大きくなる。また図9(b)はラジカル重合型UV硬化樹脂に一括露光した場合の皮膜中のラジカル濃度分布を示す。横軸はラジカル濃度の高さ、縦軸は皮膜の厚さを表す。皮膜下層ではラジカル濃度は低いが、皮膜中層、皮膜上層のように表面側になるほどラジカル濃度が高くなる。熱ダメージが大きくなる傾向、ラジカル濃度が高くなる傾向は、露光量が大きくなるほど、また皮膜上層ほど強くなる。
このように熱ダメージが大きく、ラジカル濃度が高くなると、フォトリソグラフィーで形成される回路パターンプロファイルの性能が悪くなり、所定の微細な回路パターンが形成できない。特にラジカル重合型UV硬化樹脂が、適当な照度のときに最適のフォトリソパターンプロファイル性能を有する場合、適当な照度よりも高照度の露光機を使用すると、最適性能が得られない。したがってラジカル重合型UV硬化樹脂のような感光体はその感光体が有する最適条件で露光するのが望ましい。
When the radical polymerization type UV curable resin is exposed, the radical polymerization type UV curable resin is cured by a radical polymerization reaction. During the curing, heat damage due to heat energy generated by absorbing ultraviolet rays and radical concentration distribution are generated in the film of the radical polymerization type UV curable resin. FIG. 9A shows the distribution of thermal damage in the film when the radical polymerization type UV curable resin is collectively exposed to a predetermined exposure amount. The horizontal axis represents the magnitude of thermal damage, and the vertical axis represents the film thickness. Although the thermal damage is small in the lower layer of the film, the thermal damage becomes larger as the surface becomes closer like the middle layer and the upper layer of the film. FIG. 9B shows the radical concentration distribution in the film when the radical polymerization type UV curable resin is collectively exposed. The horizontal axis represents the radical concentration height, and the vertical axis represents the film thickness. Although the radical concentration is low in the lower layer of the film, the radical concentration becomes higher as the surface becomes closer, as in the middle layer and upper layer of the film. The tendency for the thermal damage to increase and the radical concentration to increase becomes stronger as the exposure amount increases and the upper layer of the film.
As described above, when the thermal damage is large and the radical concentration is high, the performance of the circuit pattern profile formed by photolithography deteriorates, and a predetermined fine circuit pattern cannot be formed. In particular, when the radical polymerization type UV curable resin has an optimum photolithographic pattern profile performance at an appropriate illuminance, the optimum performance cannot be obtained if an exposure machine having an illuminance higher than the appropriate illuminance is used. Therefore, it is desirable to expose a photoconductor such as a radical polymerization type UV curable resin under the optimum conditions of the photoconductor.

例えば特許文献1は、1回あたりの露光を所定の露光量よりも低露光量で行い、露光を複数回繰り返すことで所定の露光量を得る技術を開示している。特許文献1は、露光中にレンズの温度が上昇して、露光装置の光学系に悪影響が生じるのを防止するために、露光途中に中断時間をとり、露光を間欠的に複数回繰り返し行うものである。このように特許文献1は半導体ウエハの同一箇所に露光を間欠的に複数回繰り返し行い、上記同一箇所に必要量の露光を行う。
特開平1−270225号公報
For example, Patent Document 1 discloses a technique in which a single exposure is performed at a lower exposure amount than a predetermined exposure amount, and a predetermined exposure amount is obtained by repeating the exposure a plurality of times. In Patent Document 1, in order to prevent the temperature of the lens from rising during exposure and causing adverse effects on the optical system of the exposure apparatus, the exposure is intermittently repeated a plurality of times with an interruption time during the exposure. It is. As described above, Patent Document 1 intermittently repeats exposure at the same location of a semiconductor wafer a plurality of times, and performs a necessary amount of exposure at the same location.
JP-A-1-270225

上記のようにラジカル重合型UV硬化樹脂を一括露光すると、図9に示すように熱ダメージが大きく、またラジカル濃度が高くなる。また特許文献1のように同一箇所をN回繰り返して露光する場合は、図6に示すように露光ごとに露光中断時間t4をとるので、半導体ウエハ全部をステップアンドリピートする露光の処理時間T1は、次式
T1=〔t3・N+t4・(N−1)〕・X+t2(X−1)
となる。ここで、t2はショット間のステージ移動時間、t3は1ショットの露光時間、t4は中断時間、Xはショット回数、Nは繰り返し回数である。
半導体ウエハをステップアンドリピートにより、露光する露光時間Srは(Sr=t3・N・X)であり、ステージの移動時間Sdは(Sd=t2(X−1))である。露光中断時間Stは(St=t4・(N−1)・X)である。したがって特許文献1は、露光中断時間だけ長くなる。
本発明は、以上の問題に鑑みて、熱ダメージが小さく、ラジカル濃度が低く、更に露光時間の短い露光方法および露光装置を提供するものである。
When the radical polymerization type UV curable resin is collectively exposed as described above, the thermal damage is large and the radical concentration is high as shown in FIG. Further, when the same portion is repeatedly exposed N times as in Patent Document 1, an exposure interruption time t4 is taken for each exposure as shown in FIG. 6, so that the exposure processing time T1 for stepping and repeating the entire semiconductor wafer is T1 = [t3 · N + t4 · (N−1)] · X + t2 (X−1)
It becomes. Here, t2 is the stage moving time between shots, t3 is the exposure time for one shot, t4 is the interruption time, X is the number of shots, and N is the number of repetitions.
The exposure time Sr for exposing the semiconductor wafer by step-and-repeat is (Sr = t3 · N · X), and the stage moving time Sd is (Sd = t2 (X−1)). The exposure interruption time St is (St = t4 · (N−1) · X). Therefore, Patent Document 1 becomes longer by the exposure interruption time.
In view of the above problems, the present invention provides an exposure method and an exposure apparatus that have low thermal damage, a low radical concentration, and a short exposure time.

本発明の露光方法は、半導体ウエハ上にUV光源から放射される光を1つのレティクルを透過して結像し、半導体ウエハを載置するウエハステージを移動させて、露光ショット1から露光ショットXまで露光を行なって、露光1へ戻るステップアンドリピート露光をN回繰り返し行う露光方法であって、当な露光時間、あるいは適当な照度のとき、最適のフォトリソパターンプロファイル性能を有するラジカル重合型UV硬化樹脂よりなる感光体を塗布した半導体ウエハに、前記感光体を露光する各1回の露光ショットが最適の露光時間、最適の照度、又は露光時間と照度の両方を調整することにより、所定露光量の1/Nで露光する露光工程を備え、
半導体ウエハ1枚あたりの露光時間Toが次式の通りであることを特徴とし、前記課題を解決する。
To=〔t3・X+t2・(X−1)〕・N+t5・(N−1)
ここで、t3は、露光ショットの時間
Xは、露光ショット回数
t2は、ステップアンドリピートの際のウエハステージの移動時間
t5は、ウエハステージを最初の位置に戻すための時間
また本発明の露光方法は、前記露光時間は、シャッターの開口時間を調整することにより、所定露光量の1/Nで露光することを特徴とする。
また本発明の露光方法は、前記照度は、UV光源の電圧調整、UV光源と半導体ウエハ間の距離調整または露光量調整板の挿入により、所定露光量の1/Nで露光することを特徴とする。
また本発明の露光方法は、感光体がアクリル基またはメタクリル基などの不飽和基を有するプリポリマー、不飽和ポリエステルにスチレンなどのビニルモノマーを溶解した系、またはチオールーオレフィン樹脂系のようなラジカル重合型UV硬化樹脂(光ラジカル重合開始剤:ベンゾフェノン系、ベンゾインエーテル系、アセトフェノン系、チオキサントン系など)であることを特徴とする。
また本発明の露光方法は、前記Nが2以上10以下であることを特徴とする。
また本発明の露光方法は、前記露光工程の露光量は、初めは所定露光量の1/Nより小さく、終わりは所定露光量の1/Nより大きくすることを特徴とする。
また本発明の露光装置は、前記のような投影露光方法を実施する制御部を備えることを特徴とする。
In the exposure method of the present invention, light emitted from a UV light source is imaged on a semiconductor wafer through one reticle, a wafer stage on which the semiconductor wafer is placed is moved, and exposure shot 1 to exposure shot X by performing exposure to a step-and-repeat exposure Return to exposure 1 a N times repeated exposure method, suitable equivalent exposure time, or when the appropriate illumination, a radical polymerization type UV having an optimal photolithography pattern profile performance Each exposure shot for exposing the photoconductor to a semiconductor wafer coated with a photoconductor made of a curable resin adjusts the optimal exposure time, the optimal illuminance, or both the exposure time and the illuminance, thereby providing a predetermined exposure. An exposure step of exposing at 1 / N of the amount,
The exposure time To per one semiconductor wafer is expressed by the following formula, and the above-mentioned problem is solved.
To = [t3 * X + t2 * (X-1)] * N + t5 * (N-1)
Where t3 is the exposure shot time
X is the number of exposure shots
t2 is the movement time of the wafer stage during step-and-repeat
t5 is a time for returning the wafer stage to the initial position. In the exposure method of the present invention, the exposure time is adjusted to 1 / N of a predetermined exposure amount by adjusting the opening time of the shutter. It is characterized by doing.
The exposure method of the present invention, the illumination intensity, and characterized in that the voltage adjustment of the UV light source, the insertion distance adjustment or exposure adjustment plate between the UV light source and the semiconductor wafer is exposed with a predetermined exposure amount of 1 / N To do.
Further, the exposure method of the present invention is a prepolymer having a photosensitive body having an unsaturated group such as an acrylic group or a methacryl group, a system in which a vinyl monomer such as styrene is dissolved in an unsaturated polyester, or a thiol-olefin resin system. It is a radical polymerization type UV curable resin (photo radical polymerization initiator: benzophenone series, benzoin ether series, acetophenone series, thioxanthone series, etc.) .
In the exposure method of the present invention, the N is 2 or more and 10 or less .
The exposure method of the present invention, the exposure amount of the exposure process, initially less than 1 / N of a predetermined exposure amount, the end is characterized by greater than 1 / N of a predetermined exposure amount.
The exposure apparatus of the present invention is characterized by comprising a control unit for performing the projection exposure method as described above .

本発明の露光方法は、半導体ウエハを必要露光量の1/Nで露光するので、ラジカル重合型UV硬化樹脂の皮膜表層への熱ダメージや皮膜中に発生するラジカルの濃度分布の偏りを小さくすることができ、そのため、露光機の紫外線露光照度に関係なく良好なパターンプロファイルや線幅特性を得ることができる。そして、紫外線照度の大きく異なる露光機同士においても同じラジカル重合型UV硬化樹脂を用いて、性能の良いフォトリソパターンを形成することができ、ラジカル重合型UV硬化樹脂が同じ線幅特性を得ることができる。また本発明を使用すれば、適当な照度のときに最適のフォトリソパターンプロファイル性能を有するラジカル重合型UV硬化樹脂を使用する場合、その最適の照度により露光することができる。また、ひとたび導入したラジカル重合型UV硬化樹脂に対し、その組成や添加物等を変える手間なく、パターンプロファイルの性能をコントロール(向上)することができる。
また本発明は、ステップアンドリピートをN回繰り返して露光することにより、自ずから露光中断時間がとれるので、わざわざ露光中断時間をとる従来技術の間欠露光方法を用いた露光方法に比べ、処理時間を大幅に短くすることができる。
また本発明の露光装置は、前記露光時間(露光シャッター開口時間)を1/Nにすることにより、あるいは、前記露光量1/Nの照度のUV光源を使用することにより、露光量の調整を行うことができる。
In the exposure method of the present invention, the semiconductor wafer is exposed at 1 / N of the required exposure amount, so that the thermal damage to the surface layer of the radical polymerization type UV curable resin and the uneven concentration distribution of radicals generated in the film are reduced. Therefore, a good pattern profile and line width characteristic can be obtained regardless of the ultraviolet exposure illuminance of the exposure machine. And, it is possible to form a photolitho pattern with good performance using the same radical polymerization type UV curable resin even in exposure machines having greatly different ultraviolet illuminances, and the radical polymerization type UV curable resin can obtain the same line width characteristics. it can. If the present invention is used, when a radical polymerization type UV curable resin having an optimum photolithographic pattern profile performance at an appropriate illuminance is used, exposure can be performed with the optimum illuminance. Moreover, the performance of the pattern profile can be controlled (improved) for the radical polymerization type UV curable resin once introduced without changing the composition and additives.
In addition, since the exposure interruption time can be taken naturally by performing exposure by repeating step and repeat N times, the present invention significantly increases the processing time compared to the exposure method using the conventional intermittent exposure method that takes the exposure interruption time. Can be shortened.
The exposure apparatus of the present invention adjusts the exposure amount by setting the exposure time (exposure shutter opening time) to 1 / N or using a UV light source having an illuminance of the exposure amount 1 / N. It can be carried out.

本発明の露光方法は、図1に示すように縮小投影露光装置を使用して構成される。露光装置は、超高圧水銀灯のようなUV光源1から放射される光2をコンデンサレンズ3で集光し、この光を所定の回路パターンが形成されたレティクル4を透過して、さらに縮小レンズ5により半導体ウエハ6に結像する構成である。これによりレティクル4に形成された回路パターンが半導体ウエハ6上に縮小投影され、半導体ウエハ上に塗布した感光層(ラジカル重合型UV硬化樹脂)を露光する。この半導体ウエハ6はX、Y方向に移動可能なウエハステージ7に載置され、このウエハステージ7をX、Y方向に移動させることにより、ステップアンドリピート露光が行われる。光源として、i線、g線、KrF、ArF、F2,KR2エキシマレーザ、電子ビームを使用してもよい。また感光層として、アクリル基またはメタクリル基などの不飽和基を有するプリポリマー、不飽和ポリエステルにスチレンなどのビニルモノマーを溶解した系、チオールーオレフィン樹脂系のようなラジカル重合型UV硬化樹脂(光ラジカル重合開始剤:ベンゾフェノン系、ベンゾインエーテル系、アセトフェノン系、チオキサントン系など)が使用できる。またレティクルに代えて、位相差板を使用してもよい。   The exposure method of the present invention is configured using a reduced projection exposure apparatus as shown in FIG. The exposure apparatus condenses light 2 emitted from a UV light source 1 such as an ultra-high pressure mercury lamp by a condenser lens 3, transmits this light through a reticle 4 on which a predetermined circuit pattern is formed, and further reduces a lens 5. Thus, an image is formed on the semiconductor wafer 6. As a result, the circuit pattern formed on the reticle 4 is reduced and projected onto the semiconductor wafer 6, and the photosensitive layer (radical polymerization type UV curable resin) applied on the semiconductor wafer is exposed. The semiconductor wafer 6 is placed on a wafer stage 7 that can move in the X and Y directions, and step and repeat exposure is performed by moving the wafer stage 7 in the X and Y directions. As the light source, i-line, g-line, KrF, ArF, F2, KR2 excimer laser, or electron beam may be used. In addition, as a photosensitive layer, a prepolymer having an unsaturated group such as an acrylic group or a methacryl group, a system in which a vinyl monomer such as styrene is dissolved in an unsaturated polyester, a radical polymerization type UV curable resin such as a thiol-olefin resin system ( Photo radical polymerization initiators: benzophenone series, benzoin ether series, acetophenone series, thioxanthone series, etc.) can be used. Further, instead of the reticle, a phase difference plate may be used.

本発明の半導体ウエハ上の露光工程は、図2(a)の説明図に示すように、半導体ウエハ6上をレティクルごとに順次露光ショット1、露光ショット2、・・・、露光ショットXまでステップアンドリピート露光を行う。このときの各露光ショットの露光量は所定露光量Eの1/Nである。露光量は光源の照度の大きさと露光時間の積であるから、光源の照度は変化させずに露光時間を1/Nにするか、露光時間は変化させずに光源の照度を1/Nにするか、または露光時間と照度の両方を変えて露光量が1/Nになるようにすればよい。露光時間の調整は、露光シャッターの開口時間を1/Nに設定する。照度の調整は、UV光源の電圧を調整する方法、UV光源の位置を変えて半導体ウエハ表面からの距離を調整する方法、光源と半導体ウエハの間に露光量調整板を挿入する方法がある。特に感光層(ラジカル重合型UV硬化樹脂)が適当な露光時間(露光シャッター開口時間)、あるいは、適当な照度のときに最適のフォトリソパターンプロファイル性能を有する場合(上述の光ラジカル重合開始剤)、その最適の露光時間(露光シャッター開口時間)、あるいは、最適の照度により露光する。本発明ではこのステップアンドリピートをN回繰り返す。
図2(b)は本発明において、UV光源の照度は変えず、露光時間(露光シャッター開口時間)を1/Nにして露光する場合の露光シーケンスを示し、露光量E/Nで露光ショット1、露光ショット2、・・・、露光ショットXまでステップアンドリピートを行う。
1ショットの露光時間はt3である。露光ショットごとのステージ移動時間はt2である。次に繰り返し露光を行うためにウエハステージ7を最初の位置に戻す。この最初の位置に戻る時間はt5である。そして2回目の露光を行う。この露光をN回行う。これにより、所定の露光量Eを半導体ウエハ上に照射する。
In the exposure process on the semiconductor wafer according to the present invention, as shown in the explanatory diagram of FIG. 2A, the exposure shot 1, the exposure shot 2,... And repeat exposure is performed. The exposure amount of each exposure shot at this time is 1 / N of the predetermined exposure amount E. Since the exposure amount is the product of the illuminance of the light source and the exposure time, the exposure time is set to 1 / N without changing the illuminance of the light source, or the illuminance of the light source is set to 1 / N without changing the exposure time. Or by changing both the exposure time and the illuminance so that the exposure amount becomes 1 / N. For adjusting the exposure time, the opening time of the exposure shutter is set to 1 / N. The illuminance adjustment includes a method of adjusting the voltage of the UV light source, a method of adjusting the distance from the surface of the semiconductor wafer by changing the position of the UV light source, and a method of inserting an exposure adjustment plate between the light source and the semiconductor wafer. In particular, when the photosensitive layer (radical polymerization type UV curable resin) has an optimum exposure time (exposure shutter opening time) or an optimum photolithographic pattern profile performance at an appropriate illuminance (the above-mentioned photo radical polymerization initiator), The exposure is performed with the optimum exposure time (exposure shutter opening time) or with the optimum illuminance. In the present invention, this step-and-repeat is repeated N times.
FIG. 2B shows an exposure sequence when exposure is performed with the exposure time (exposure shutter opening time) set to 1 / N without changing the illuminance of the UV light source in the present invention, and exposure shot 1 with exposure amount E / N. , Exposure shot 2,..., Step and repeat until exposure shot X.
The exposure time for one shot is t3. The stage moving time for each exposure shot is t2. Next, the wafer stage 7 is returned to the initial position for repeated exposure. The time to return to this initial position is t5. Then, the second exposure is performed. This exposure is performed N times. Thereby, a predetermined exposure amount E is irradiated onto the semiconductor wafer.

本発明は各露光ショットの露光量を所定露光量Eの1/Nとすることにより、1回あたりの露光量をE/Nとすることができる。本発明において、UV光源の照度は変えず、露光時間(露光シャッター開口時間)を1/Nにして露光する場合、半導体ウエハ上の同一チップ(または同一チップ群)の1回目の露光ショットから2回目の露光ショットの間隔は、半導体ウエハの1枚あたりのステップアンドリピート時間となり、露光を行っていない時間のみを計算すると、ステージ移動時間が0.3秒、ウエハステージを最初の位置に戻すための時間が3秒、露光ショット回数が100回した場合、32.7秒である。これに露光に要する時間も加わり、これにより十分な露光中断時間をとることができる。本発明は露光中断時間を十分にとるので、熱ダメージは図3(a)に示すように、皮膜下層から皮膜上層までほぼ均一に少なくなる。またラジカル濃度は図3(b)に示すように、皮膜下層から皮膜上層までほぼ均一に低くなる。   In the present invention, by setting the exposure amount of each exposure shot to 1 / N of the predetermined exposure amount E, the exposure amount per time can be set to E / N. In the present invention, when the exposure time (exposure shutter opening time) is set to 1 / N without changing the illuminance of the UV light source, it is 2 from the first exposure shot of the same chip (or the same chip group) on the semiconductor wafer. The interval between exposure shots is the step-and-repeat time for each semiconductor wafer. If only the time during which exposure is not performed is calculated, the stage movement time is 0.3 seconds, and the wafer stage is returned to the initial position. When the time of 3 is 3 seconds and the number of exposure shots is 100, 32.7 seconds. In addition to this, the time required for exposure is added, so that a sufficient exposure interruption time can be taken. In the present invention, since the exposure interruption time is sufficiently long, the thermal damage is almost uniformly reduced from the lower layer to the upper layer as shown in FIG. Further, as shown in FIG. 3B, the radical concentration is almost uniformly lowered from the lower layer to the upper layer.

今、一例として、カラーレジストSが紫外線照度A[mW/cm2]の露光機で紫外線露光量E[mJ/cm2]の一括露光によって図4(形状A)のようなパターンプロファイル及び線幅特性が得られるとする。これを高照度B[mW/cm2](例えばB>A×2)の露光機で同様に行うと、図4(形状B−1)のようにパターンプロファイルが劣化し、線幅特性も悪くなる。これに対して、本発明のように分割露光方法を用い、高照度B[mW/cm2]の露光機において、カラーレジストに必要な紫外線露光量E[mJ/cm2]をN分割し、紫外線露光量E/N[mJ/cm2]をN回、同一箇所に分割露光する。ここで、分割回数Nを2、4、8とすると、図4(形状B−2、B−4、B−8)のように、分割回数Nが増えるにつれてパターンプロファイルが改善される。分割回数Nが8の時にパターンプロファイルは照度A[mW/cm2]の露光機のものよりも良好になり、さらに照度A[mW/cm2]の露光機と同じ線幅特性となり、カラーレジストの表層への熱ダメージや皮膜中に発生するラジカルの濃度分布の偏りが小さくなり、パターンプロファイルへの悪影響を防止、改善していることがわかる。分割回数は感光体の特性、回路パターンの形状、製造工程上の制約等を勘案して決めればよいが、通常2〜10が適当である。2以下では熱ダメージ、ラジカル濃度が大きくなり、10以上では製造時間が長くなる。   As an example, the pattern profile and line width characteristics as shown in FIG. 4 (shape A) are obtained by batch exposure with an ultraviolet light exposure amount E [mJ / cm2] with an exposure machine having a color resist S of ultraviolet illuminance A [mW / cm2]. Suppose that it is obtained. If this is performed in the same manner with an exposure machine having a high illuminance B [mW / cm 2] (for example, B> A × 2), the pattern profile is deteriorated and the line width characteristic is also deteriorated as shown in FIG. 4 (shape B-1). . On the other hand, by using the divided exposure method as in the present invention, the ultraviolet exposure amount E [mJ / cm2] necessary for the color resist is divided into N parts in an exposure machine with high illuminance B [mW / cm2], and ultraviolet exposure is performed. The amount E / N [mJ / cm2] is divided and exposed to the same portion N times. Here, if the division number N is 2, 4, and 8, the pattern profile is improved as the division number N increases as shown in FIG. 4 (shapes B-2, B-4, and B-8). When the number of divisions N is 8, the pattern profile is better than that of an exposure machine with illuminance A [mW / cm2], and it has the same line width characteristics as an exposure machine with illuminance A [mW / cm2]. It can be seen that the thermal damage to the film and the concentration distribution of radicals generated in the film are reduced, thereby preventing and improving the adverse effect on the pattern profile. The number of divisions may be determined in consideration of the characteristics of the photoconductor, the shape of the circuit pattern, restrictions on the manufacturing process, etc., but 2 to 10 is usually appropriate. If it is 2 or less, thermal damage and radical concentration increase, and if it is 10 or more, the production time becomes long.

ここで、カラーレジストSにおいて、特許文献1の分割露光方法を用いた場合、分割回数Nが8のときの本発明と同じ線幅特性になる露光中断時間t4を求めると、図5に示すように、3.5秒になる。図5の横軸は露光中断時間、縦軸は線幅ターゲットからのシフト量、即ちパターン残し部の余分な大きさ(μm)である。つまり露光中断時間が0秒ではパターン残し部の余分な大きさは0.16μmである。露光中断時間が0.3秒ではパターン残し部の大きさは0.05μmである。露光中断時間が3.5秒以上ではパターン残し部の余分な大きさが0になる。このようにカラーレジストSが良好なパターンを得るためには露光中断時間は3.5秒以上必要であることが分かる。本発明の実施例ではウエハステージ7が最初の位置に戻る時間は、露光時間を除いても32.7秒、露光時間をいれるとそれ以上であるから、十分に露光中断時間をとることができる。   Here, in the color resist S, when the division exposure method of Patent Document 1 is used, when the exposure interruption time t4 having the same line width characteristic as that of the present invention when the division number N is 8, as shown in FIG. It will be 3.5 seconds. The horizontal axis in FIG. 5 is the exposure interruption time, and the vertical axis is the shift amount from the line width target, that is, the extra size (μm) of the pattern remaining portion. That is, when the exposure interruption time is 0 second, the extra size of the pattern remaining portion is 0.16 μm. When the exposure interruption time is 0.3 seconds, the size of the pattern remaining portion is 0.05 μm. When the exposure interruption time is 3.5 seconds or more, the extra size of the pattern remaining portion becomes zero. Thus, it can be seen that the exposure interruption time is required to be 3.5 seconds or more in order to obtain a good pattern with the color resist S. In the embodiment of the present invention, the time for the wafer stage 7 to return to the initial position is 32.7 seconds even if the exposure time is excluded, and it is longer if the exposure time is included. .

以上、本発明の実施例について具体的に説明したが、本発明は上述の実施例に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。例えば、必要な露光を何回に分けて行うかとか、どのような分け方にするかなど、対象となる被照射物の組成や露光機の照度、線幅寸法などの必要に応じて決めることが可能である。つまり、分割した個々の露光量は毎回同じ露光量であっても、そうでなくても良い。また初めの露光量は1/Nより少なく、終わりの露光量は1/Nよりを大きくしてもよい。また紫外線露光量E/N[mW/cm2]をN±α回、分割露光を増減するなどして、パターンプロファイルと線幅寸法のバランスをとることも可能である。
ところで、上述の照度A[mW/cm2]の露光機においても本発明技術を用いれば、より良好なパターンプロファイルを得ることが可能であり、その時の線幅寸法の調整はマスクパターンをリサイズすれば良い。
Although the embodiments of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments, and various modifications based on the technical idea of the present invention are possible. For example, determine how many times the required exposure is performed and how to divide the exposure, etc., depending on the necessity of the composition of the subject irradiation object, the illuminance of the exposure machine, the line width dimension, etc. Is possible. That is, the divided exposure amounts may or may not be the same each time. The initial exposure amount may be less than 1 / N, and the final exposure amount may be greater than 1 / N. It is also possible to balance the pattern profile and the line width dimension by, for example, increasing / decreasing the divided exposure by N ± α times the ultraviolet exposure amount E / N [mW / cm 2].
By the way, it is possible to obtain a better pattern profile by using the technique of the present invention even in the above-described exposure apparatus having the illuminance A [mW / cm 2], and the line width dimension at that time can be adjusted by resizing the mask pattern. good.

本発明において、UV光源の照度は変えず、露光時間(露光シャッター開口時間)を1/Nにする露光シーケンスを図2(b)に示す。ここでUV光源の照度を変えずとは、具体的には図9に示すように一括露光する場合の照度と同じであることを意味している。この実施例の場合の半導体ウエハ1枚あたりの露光時間Toは、次のように計算できる。露光ショットの時間t3、露光ショット回数X、ステップアンドリピートの際のステージ移動時間t2、繰り返し回数N、ウエハステージを最初の位置に戻すための時間t5とすると、
To=〔t3・X+t2・(X−1)〕・N+t5・(N−1)
となる。ここで、露光ショットの合計時間t1を
t1=t3・N
とすると、
To=t1・X+t2・(X−1)・N+t5・(N−1)
である。
露光時間t1・Xを除き、露光を行っていない時間Soのみを計算すると、t2が0.3秒、t5が3秒、Xが100回、Nが8回とすると、
So=t2・(X−1)・N+t5・(N−1)
=0.3×(100−1)×8+3×(8−1)
=237.6+21≒259(秒)
となる。
(比較例)
In the present invention, FIG. 2B shows an exposure sequence in which the illuminance of the UV light source is not changed and the exposure time (exposure shutter opening time) is set to 1 / N. Here, the fact that the illuminance of the UV light source is not changed specifically means that it is the same as the illuminance in the case of batch exposure as shown in FIG. The exposure time To per semiconductor wafer in this embodiment can be calculated as follows. Assuming that exposure shot time t3, exposure shot count X, stage movement time t2 during step-and-repeat, repetition count N, and time t5 for returning the wafer stage to the initial position,
To = [t3 * X + t2 * (X-1)] * N + t5 * (N-1)
It becomes. Here, the total time t1 of the exposure shot is t1 = t3 · N
Then,
To = t1, X + t2, (X-1), N + t5, (N-1)
It is.
Excluding the exposure time t1 · X, and calculating only the non-exposure time So, t2 is 0.3 seconds, t5 is 3 seconds, X is 100 times, and N is 8 times.
So = t2 * (X-1) * N + t5 * (N-1)
= 0.3 * (100-1) * 8 + 3 * (8-1)
= 237.6 + 21≈259 (seconds)
It becomes.
(Comparative example)

特許文献1に記載のように露光中断時間を設けた間欠露光を図6に示す。図6(a)は半導体ウエハ上の露光ショットの説明図であり、露光ショット1、露光ショット2・・・・が順次行われる。図6(b)に露光シーケンスを示すように、1つの露光ショット中に、露光中断時間t4がある。この比較例の場合、1回あたりの露光照度は露光回数をNとすると、1/Nにすることができるので、この場合の熱ダメージは図7(a)に示すように本発明と同程度に低減することができる。またラジカル濃度は図7(b)に示すように本発明と同程度になる。   FIG. 6 shows intermittent exposure with an exposure interruption time as described in Patent Document 1. FIG. 6A is an explanatory diagram of exposure shots on a semiconductor wafer, where exposure shot 1, exposure shot 2,... Are sequentially performed. As shown in the exposure sequence in FIG. 6B, there is an exposure interruption time t4 in one exposure shot. In the case of this comparative example, the exposure illuminance per time can be reduced to 1 / N, where N is the number of exposures, so the thermal damage in this case is comparable to that of the present invention as shown in FIG. Can be reduced. Further, the radical concentration is comparable to that of the present invention as shown in FIG.

この比較例の半導体ウエハ上の露光工程は、図6(a)の説明図に示すように、半導体ウエハ6上のチップ(またはチップ群)に露光ショット1において、露光と中断をN回繰り返す。1つのチップ(またはチップ群)で露光ショットが済むと、次のチップ(またはチップ群)にステージを移動して露光ショット2において露光と中断をN回繰り返す。この露光シーケンスを図6(b)に示す。
この半導体ウエハ1枚あたりの露光時間T1は、前述のように
T1=〔t3・N+t4・(N−1)〕・X+t2(X−1)
である。露光時間Srは(Sr=t3・N・X=t1・X)であり、ステージの移動時間Sdは(Sd=t2(X−1))ある。露光中断時間Stは(St=t4・(N−1)・X)である。露光時間Srを除き、露光を行っていない時間Sd+Stのみを計算すると、t2が0.3秒、t4が3.5秒、Xが100回、Nが8回とすると、
Sd+St=t2・(X−1)+t4・(N−1)・X
=0.3×(100−1)+3.5×(8−1)×100
=29.7+2450≒2480(秒)
となる。本発明に比べて約9倍以上の時間である。
(参考例)
In the exposure process on the semiconductor wafer of this comparative example, as shown in the explanatory diagram of FIG. 6A, exposure and interruption are repeated N times on the exposure shot 1 on the chip (or chip group) on the semiconductor wafer 6. When an exposure shot is completed with one chip (or chip group), the stage is moved to the next chip (or chip group), and exposure and interruption are repeated N times in exposure shot 2. This exposure sequence is shown in FIG.
The exposure time T1 per one semiconductor wafer is, as described above, T1 = [t3 · N + t4 · (N−1)] · X + t2 (X−1)
It is. The exposure time Sr is (Sr = t3 · N · X = t1 · X), and the stage moving time Sd is (Sd = t2 (X−1)). The exposure interruption time St is (St = t4 · (N−1) · X). Excluding the exposure time Sr and calculating only the non-exposure time Sd + St, if t2 is 0.3 seconds, t4 is 3.5 seconds, X is 100 times, and N is 8 times,
Sd + St = t2 * (X-1) + t4 * (N-1) * X
= 0.3 * (100-1) + 3.5 * (8-1) * 100
= 29.7 + 2450≈2480 (seconds)
It becomes. Compared to the present invention, the time is about 9 times or more.
(Reference example)

参考例として、一括露光の場合を図8に示す。図8(a)は半導体ウエハ上の露光工程の説明図を示し、図8(b)は露光シーケンスを示す。各露光ショットは必要露光量で露光が行われる。図8の露光時間T2は
T2=t1・X+t2・(X−1)
である。t1・Xは露光時間、t2・(X−1)はステージ移動時間の合計である。t2が0.3秒、ショット数Xが100とすると、ステージ移動時間は29.7秒である。一括露光の場合、大きい露光量で露光されるので、この場合の熱ダメージは図9(a)に示すように大きくなり、またラジカル濃度は図9(b)に示すように大きくなる。
As a reference example, the case of batch exposure is shown in FIG. FIG. 8A shows an explanatory diagram of an exposure process on a semiconductor wafer, and FIG. 8B shows an exposure sequence. Each exposure shot is exposed with a necessary exposure amount. The exposure time T2 in FIG. 8 is T2 = t1 · X + t2 · (X−1)
It is. t1 · X is the exposure time, and t2 · (X−1) is the total stage moving time. If t2 is 0.3 seconds and the number of shots X is 100, the stage moving time is 29.7 seconds. In the case of collective exposure, since exposure is performed with a large exposure amount, the thermal damage in this case increases as shown in FIG. 9A, and the radical concentration increases as shown in FIG. 9B.

縮小投影露光装置の構成を説明する図である。It is a figure explaining the structure of a reduction projection exposure apparatus. 本発明の半導体ウエハ上の露光工程の説明図と、露光シーケンス(UV光源の照度は変えず、露光時間(露光シャッター開口時間)を1/Nにした場合)の説明図である。It is explanatory drawing of the exposure process on the semiconductor wafer of this invention, and explanatory drawing of an exposure sequence (When illumination intensity of UV light source is not changed and exposure time (exposure shutter opening time) is set to 1 / N). 本発明の露光装置で露光した場合の熱ダメージと、ラジカル濃度の変化を説明する図である。It is a figure explaining the thermal damage at the time of exposing with the exposure apparatus of this invention, and the change of a radical concentration. パターンプロファイルの説明図である。It is explanatory drawing of a pattern profile. 露光中断時間と線幅ターゲットからのシフト量の関係を説明する図である。It is a figure explaining the relationship between exposure interruption time and the amount of shifts from a line width target. 比較例の半導体ウエハ上の露光工程の説明図と、露光シーケンスの説明図である。It is explanatory drawing of the exposure process on the semiconductor wafer of a comparative example, and explanatory drawing of an exposure sequence. 比較例の露光装置で露光した場合の熱ダメージと、ラジカル濃度の変化を説明する図である。It is a figure explaining the thermal damage at the time of exposing with the exposure apparatus of a comparative example, and the change of a radical concentration. 参考例の半導体ウエハ上の露光工程の説明図と、露光シーケンスの説明図である。It is explanatory drawing of the exposure process on the semiconductor wafer of a reference example, and explanatory drawing of an exposure sequence. 参考例の露光装置で露光した場合の熱ダメージと、ラジカル濃度の変化を説明する図である。It is a figure explaining the thermal damage at the time of exposing with the exposure apparatus of a reference example, and the change of a radical concentration.

符号の説明Explanation of symbols

1 光源
3 コンデンサレンズ
4 レティクル
5 縮小レンズ
6 半導体ウエハ
7 ウエハステージ
DESCRIPTION OF SYMBOLS 1 Light source 3 Condenser lens 4 Reticle 5 Reduction lens 6 Semiconductor wafer 7 Wafer stage

Claims (7)

半導体ウエハ上にUV光源から放射される光を1つのレティクルを透過して結像し、半導体ウエハを載置するウエハステージを移動させて、露光ショット1から露光ショットXまで露光を行なって、露光ショット1へ戻るステップアンドリピート露光をN回繰り返し行う露光方法であって、
当な露光時間、あるいは適当な照度のとき、最適のフォトリソパターンプロファイル性能を有するラジカル重合型UV硬化樹脂よりなる感光体を塗布した半導体ウエハに、前記感光体を露光する各1回の露光ショットが最適の露光時間、最適の照度、又は露光時間と照度の両方を調整することにより、所定露光量の1/Nで露光する露光工程を備え、
半導体ウエハ1枚あたりの露光時間Toが次式の通りであることを特徴とする露光方法。
To=〔t3・X+t2・(X−1)〕・N+t5・(N−1)
ここで、t3は、露光ショットの時間
Xは、露光ショット回数
t2は、ステップアンドリピートの際のウエハステージの移動時間
t5は、ウエハステージを最初の位置に戻すための時間
The light emitted from the UV light source onto a semiconductor wafer passes through a single reticle is imaged, by moving the wafer stage for placing a semiconductor wafer, by performing exposure with exposure shot X or from exposure shot 1, An exposure method in which step-and-repeat exposure returning to exposure shot 1 is repeated N times,
Suitable equivalents exposure time, or when the appropriate illumination, the semiconductor wafer coated with a photosensitive member consisting of a radical polymerization type UV curable resin having an optimal photolithography pattern profile performance, each one exposure shot of exposing the photosensitive member Comprises an exposure process in which exposure is performed at 1 / N of a predetermined exposure amount by adjusting the optimal exposure time, optimal illuminance, or both exposure time and illuminance,
An exposure method characterized in that an exposure time To per one semiconductor wafer is expressed by the following equation .
To = [t3 * X + t2 * (X-1)] * N + t5 * (N-1)
Where t3 is the exposure shot time
X is the number of exposure shots
t2 is the movement time of the wafer stage during step-and-repeat
t5 is a time for returning the wafer stage to the initial position.
前記露光時間は、シャッターの開口時間を調整することにより、所定露光量の1/Nで露光することを特徴とする請求項1記載の露光方法。   2. The exposure method according to claim 1, wherein the exposure time is 1 / N of a predetermined exposure amount by adjusting a shutter opening time. 前記照度は、UV光源の電圧調整、UV光源と半導体ウエハ間の距離調整または露光量調整板の挿入により、所定露光量の1/Nで露光することを特徴とする請求項1記載の露光方法。 The exposure method according to claim 1, wherein the illuminance is exposed at 1 / N of a predetermined exposure amount by adjusting a voltage of a UV light source, adjusting a distance between the UV light source and a semiconductor wafer, or inserting an exposure amount adjusting plate. . 前記感光体は、アクリル基またはメタクリル基などの不飽和基を有するプリポリマー、不飽和ポリエステルにスチレンなどのビニルモノマーを溶解した系、またはチオールーオレフィン樹脂系のようなラジカル重合型UV硬化樹脂(光ラジカル重合開始剤:ベンゾフェノン系、ベンゾインエーテル系、アセトフェノン系、チオキサントン系など)であることを特徴とする請求項1記載の露光方法。   The photoreceptor is a prepolymer having an unsaturated group such as an acrylic group or a methacryl group, a system in which a vinyl monomer such as styrene is dissolved in an unsaturated polyester, or a radical polymerization type UV curable resin such as a thiol-olefin resin system. 2. The exposure method according to claim 1, wherein the exposure method is a photo radical polymerization initiator (benzophenone series, benzoin ether series, acetophenone series, thioxanthone series, etc.). 前記Nが2以上10以下であることを特徴とする請求項1乃至4のいずれか1項に記載の投影露光方法。   5. The projection exposure method according to claim 1, wherein the N is 2 or more and 10 or less. 前記露光工程の露光量は、初めは所定露光量の1/Nより小さく、終わりは所定露光量の1/Nより大きくすることを特徴とする請求項1乃至5のいずれか1項に記載の投影露光方法。 6. The exposure amount according to claim 1, wherein an exposure amount in the exposure step is initially smaller than 1 / N of a predetermined exposure amount , and the end amount is larger than 1 / N of a predetermined exposure amount . Projection exposure method. 前記請求項1乃至6のいずれか1項に記載の投影露光方法を実施する制御部を備える露光装置。 An exposure apparatus comprising a control unit that implements the projection exposure method according to claim 1.
JP2004334621A 2004-10-25 2004-11-18 Exposure method and exposure apparatus Expired - Fee Related JP5054889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004334621A JP5054889B2 (en) 2004-10-25 2004-11-18 Exposure method and exposure apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004309857 2004-10-25
JP2004309857 2004-10-25
JP2004334621A JP5054889B2 (en) 2004-10-25 2004-11-18 Exposure method and exposure apparatus

Publications (2)

Publication Number Publication Date
JP2006156424A JP2006156424A (en) 2006-06-15
JP5054889B2 true JP5054889B2 (en) 2012-10-24

Family

ID=36634358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004334621A Expired - Fee Related JP5054889B2 (en) 2004-10-25 2004-11-18 Exposure method and exposure apparatus

Country Status (1)

Country Link
JP (1) JP5054889B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599663A (en) * 1982-07-07 1984-01-19 Nec Corp Reduction projecting and exposing method
JPH021904A (en) * 1988-06-10 1990-01-08 Mitsubishi Electric Corp Exposure of mask
JPH0210818A (en) * 1988-06-29 1990-01-16 Mitsubishi Electric Corp Exposure method
JPH0423311A (en) * 1990-05-14 1992-01-27 Matsushita Electron Corp Pattern transcription method
JP3644041B2 (en) * 1993-02-03 2005-04-27 株式会社ニコン Exposure method and exposure apparatus
JP3766165B2 (en) * 1997-03-07 2006-04-12 株式会社ニコン Image forming method and photosensitive material
JP2000298209A (en) * 1999-04-15 2000-10-24 Canon Inc Manufacture of color filter
JP2001250756A (en) * 2000-03-03 2001-09-14 Hitachi Ltd Manufacturing method of semiconductor integrated circuit device
JP2002040224A (en) * 2000-07-26 2002-02-06 Sharp Corp Method for forming resist pattern and method for manufacturing color filter
JP2002184669A (en) * 2000-12-14 2002-06-28 Hitachi Ltd Manufacturing method of semiconductor integrated circuit device

Also Published As

Publication number Publication date
JP2006156424A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
KR101888287B1 (en) System and method for shifting critical dimensions of patterned films
KR100563157B1 (en) Duv scanner linewidth control by mask error factor compensation
US8283111B2 (en) Method for creating gray-scale features for dual tone development processes
JP2011040716A (en) Exposure apparatus, exposure method, and device manufacturing method
US20130057843A1 (en) Maskless exposure apparatus including spatial filter having phase shifter pattern and exposure method
US11448971B2 (en) Optical maskless
JP4521219B2 (en) Drawing pattern generation method, resist pattern formation method, and exposure apparatus control method
Fujimura et al. Best depth of focus on 22-nm logic wafers with less shot count
JP5054889B2 (en) Exposure method and exposure apparatus
JP2001290014A (en) Method and system for manufacturing optical device, optical device manufactured by using that manufacture method and exposure device using that optical device
US9651870B2 (en) Method and tool of lithography
EP1197802B1 (en) Method of optical proximity correction
KR101055246B1 (en) Vortex Phase Shift Mask for Optical Lithography
JP2005537507A (en) Lithographic method for fine line printing
JP2004502309A (en) Apparatus and method for forming a photoresist pattern with a target critical dimension
CN114286966B (en) Exposure apparatus and article manufacturing method
TW202321824A (en) Systems and methods for distributing light delivery
CN113093476A (en) Optimization method of photoetching process and photoetching method
KR100598252B1 (en) Exposure method for semiconductor
KR100604755B1 (en) Pattern forming method using photoresist-curing
KR100515368B1 (en) Apparatus for forming fine patterns of semiconductor wafer by shift patterning and the method of the same
JP2005275000A (en) Mask used for manufacturing optical element, and manufacturing method of optical element using the mask
KR20060018722A (en) Method for forming fine pattern of semiconductor device
KR20100078151A (en) Method for exposing semiconductor wafer
JP2005025098A (en) Vortex phase shift mask for photolithography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees