JP5049153B2 - Energy absorbing member and energy absorbing structure - Google Patents

Energy absorbing member and energy absorbing structure Download PDF

Info

Publication number
JP5049153B2
JP5049153B2 JP2008024536A JP2008024536A JP5049153B2 JP 5049153 B2 JP5049153 B2 JP 5049153B2 JP 2008024536 A JP2008024536 A JP 2008024536A JP 2008024536 A JP2008024536 A JP 2008024536A JP 5049153 B2 JP5049153 B2 JP 5049153B2
Authority
JP
Japan
Prior art keywords
energy absorbing
outer shape
cross
absorbing member
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008024536A
Other languages
Japanese (ja)
Other versions
JP2009184444A (en
Inventor
正敏 吉田
徹 橋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008024536A priority Critical patent/JP5049153B2/en
Publication of JP2009184444A publication Critical patent/JP2009184444A/en
Application granted granted Critical
Publication of JP5049153B2 publication Critical patent/JP5049153B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Description

本発明は、車両のバンパ補強材の背面側に設けられるバンパステイ、クラッシュボックス、サイドメンバなどのエネルギー吸収部材に関する。   The present invention relates to an energy absorbing member such as a bumper stay, a crash box, and a side member provided on the back side of a vehicle bumper reinforcement.

自動車などの車体の前端(フロント)及び後端(リア)に取り付けられているバンパの背面には、強度補強材としてのバンパ補強材(バンパリインフォースメントあるいはバンパアマチャアなどともいう)が設けられている。車両衝突時の乗員への衝撃を緩和及びバンパ補強材を支持する目的で、このバンパ補強材の背面側にはバンパステイ、クラッシュボックス、サイドメンバ(サイドフレームともいう)が設けられる。これらの部材は、中高速衝突時にバンパ補強材単体で衝突エネルギーを吸収しきれない場合、塑性変形することでエネルギーを吸収することが求められる。   Bumper reinforcements (also called bumper reinforcements or bumper armatures) as strength reinforcements are provided on the back of bumpers attached to the front end (front) and rear end (rear) of a vehicle body such as an automobile. . A bumper stay, a crash box, and a side member (also referred to as a side frame) are provided on the back side of the bumper reinforcing material for the purpose of alleviating the impact on the occupant during a vehicle collision and supporting the bumper reinforcing material. These members are required to absorb energy by plastic deformation when the impact energy cannot be absorbed by the bumper reinforcing material alone at the time of medium-high speed collision.

近年、地球環境の問題から、自動車車両の軽量化が必要になってきており、これらのエネルギー吸収部材に対しても軽量化が求められている。つまり、エネルギー吸収部材の性能は、部品重量に対するエネルギー吸収量の大きさで評価されるようになってきた。
また、これらのエネルギー吸収部材は、その衝突背面側に位置する部品を変形させないように、最大荷重が規定され、その制限の中で、効率よくエネルギー吸収を行うことも求められる。つまり圧壊変形時の荷重変動が少なく、エネルギー吸収効率に優れることも要求される。
このようなエネルギー吸収部材には、従来から、軽量化のために、鋼製に代わるアルミニウム合金製品が提案されている。特に車体前後方向を押出方向とするアルミニウム合金押出形材は、衝突方向に直交する断面を予め閉断面構造にすることが可能であるため、溶接によるコスト増加、熱影響などによる強度低下もなく、軽量化効果が大きいことが知られている。
In recent years, due to problems in the global environment, it has become necessary to reduce the weight of automobiles, and these energy absorbing members are also required to be reduced in weight. That is, the performance of the energy absorbing member has been evaluated by the amount of energy absorbed relative to the weight of the component.
In addition, these energy absorbing members are required to have a maximum load so as not to deform a part located on the rear side of the collision, and to efficiently absorb energy within the limitation. In other words, it is also required that the load fluctuation during crushing deformation is small and that energy absorption efficiency is excellent.
Conventionally, aluminum alloy products that replace steel are proposed for such energy absorbing members in order to reduce the weight. In particular, the extruded shape of the aluminum alloy with the longitudinal direction of the vehicle body as the extrusion direction can have a cross-sectional structure that is perpendicular to the collision direction in advance, so there is no increase in cost due to welding, no decrease in strength due to thermal effects, It is known that the lightening effect is great.

このような縦圧壊型のエネルギー吸収部材については、これまでに様々な断面形状のものが提案されている。
まず、エネルギー吸収効率を高めることを目的に提案されている構造について示す。荷重変動を抑制し、エネルギー吸収性能を向上させるためには、断面を構成する稜線を増やし、断面を構成する各辺の幅を短くすることが有効とされている。これは圧壊変形時に生じる座屈の波長が短くなり、荷重変動の周期が短くなることで、荷重変動の振幅を抑える効果があるためである。このため、断面の外寸を多角形にする形状案が、種々提案、実用化されている。例えば、一般的な4角形状断面に対して、5角形、6角形、8角形、さらにはそれ以上の多角形の断面形状を持つクラッシュボックスあるいはサイドメンバが提案、実用化されている(特許文献1〜3参照)。
さらに、断面を構成する直線を非直線にすることで、エネルギー吸収性能向上を図る例も報告されているが(特許文献4参照)、この場合には、他部品と接合するための平面が確保できないという問題が懸念される。
As such a vertical crushing type energy absorbing member, various cross-sectional shapes have been proposed so far.
First, the structure proposed for the purpose of increasing the energy absorption efficiency is shown. In order to suppress the load fluctuation and improve the energy absorption performance, it is effective to increase the ridge lines constituting the cross section and shorten the width of each side constituting the cross section. This is because the wavelength of buckling that occurs during crushing deformation is shortened and the period of load variation is shortened, thereby suppressing the amplitude of load variation. For this reason, various proposals for shape with a polygonal outer dimension of the cross section have been proposed and put into practical use. For example, a crush box or a side member having a polygonal cross-sectional shape of a pentagonal, hexagonal, octagonal, or more than a general quadrangular cross-section has been proposed and put into practical use (Patent Literature). 1-3).
Furthermore, an example of improving energy absorption performance by making the straight line constituting the cross section non-linear has been reported (see Patent Document 4). In this case, a plane for joining with other components is secured. There is concern about the inability to do so.

次に、エネルギー吸収量自体を大きくすることを目的とした構造案について示す。エネルギー吸収量を大きくするためには、受圧面積を大きくする必要があるため、断面を構成する肉厚を増加するか、形状制約が満足できる場合には、断面外寸を大きくすることが必要となる。なお、肉厚の増加は、圧壊変形時の座屈波長の増加につながり、荷重変動が激しくなるという問題がある。また、単純に断面の幅を広くし、外形を大きくした場合にも、座屈波長が長くなり、荷重変動が激しくなるという問題があった。これを防止するために、多角形断面のフレームを2つつなげた断面形状にすることで、稜線と辺数を増やし、辺の幅を短くすることでエネルギー吸収率を高める構造案が提案されている(特許文献5〜8参照)。   Next, a structure plan for increasing the energy absorption amount itself will be described. In order to increase the amount of energy absorbed, it is necessary to increase the pressure receiving area. Therefore, it is necessary to increase the thickness of the cross section, or to increase the outer dimension of the cross section if the shape constraints can be satisfied. Become. In addition, the increase in thickness leads to an increase in the buckling wavelength at the time of crushing deformation, and there is a problem that the load fluctuation becomes severe. Further, when the cross-section is simply widened and the outer shape is enlarged, there is a problem that the buckling wavelength becomes long and the load fluctuation becomes severe. In order to prevent this, there has been proposed a structure plan that increases the energy absorption rate by increasing the ridgeline and the number of sides by shortening the width of the sides by making the cross section of the frame of the polygonal cross section two. (See Patent Documents 5 to 8).

さらに、形状制約が厳しく、断面を大きくできない場合には、断面内部に中リブを設け、断面外寸を大きくせずに、辺数を増やし、エネルギー吸収量を高くすることも一般的に行われている。特に前記した多角形断面の場合には、頂点と断面中心を結ぶように中リブを設けることで、エネルギー吸収量を高めることが提案されている(特許文献9〜11参照)。   In addition, when the shape restrictions are severe and the cross section cannot be enlarged, it is common practice to provide a medium rib inside the cross section to increase the number of sides and increase the amount of energy absorption without increasing the outer dimensions of the cross section. ing. In particular, in the case of the polygonal section described above, it has been proposed to increase the amount of energy absorption by providing an intermediate rib so as to connect the apex and the center of the section (see Patent Documents 9 to 11).

特開2000−006840号公報JP 2000-006840 A 特開2002−173048号公報JP 2002-173048 A 特許3381477号公報Japanese Patent No. 3381477 特開2006−207725号公報JP 2006-207725 A 特開2005−162049号公報JP 2005-162049 A 特開2006−207724号公報JP 2006-207724 A 特開2006−207726号公報JP 2006-207726 A 特開2007−17003号公報JP 2007-17003 A 特開2004−182088号公報JP 2004-182088 A 特開2004−106612号公報JP 2004-106612 A 特開2001−124128号公報JP 2001-124128 A

中リブを設けたエネルギー吸収部材に関しこれまでに提案されている断面形状は、多角形状断面の頂点を結ぶように中リブを設けたものであり、中リブにより、断面外形を構成する各辺を強固に支持することで、各辺を独立的に座屈させ、圧壊時の荷重変動を抑えてエネルギー吸収を行うものである。このような中リブの追加は、当然部品重量増加につながるため、エネルギー吸収効率及び重量比でのエネルギー吸収量を高めることができるような中リブの配置が重要といえる。   Regarding the energy absorbing member provided with the intermediate rib, the cross-sectional shape proposed so far is the one in which the intermediate rib is provided so as to connect the apexes of the polygonal cross section, and each side constituting the cross-sectional outline is formed by the intermediate rib. By supporting firmly, each side is buckled independently, and energy absorption is performed while suppressing load fluctuations during crushing. Such addition of the intermediate rib naturally leads to an increase in the weight of the component, and therefore it can be said that the arrangement of the intermediate rib so that the energy absorption efficiency and the energy absorption amount in the weight ratio can be increased is important.

本発明は、このように形状制約を満足するために断面内部に中リブを設けたエネルギー吸収部材において、中リブを効率的に配置することにより、従来技術に比べさらに衝突圧壊時の荷重変動が少なく、かつ、重量あたりのエネルギー吸収性に優れたエネルギー吸収部材を提供することを目的とする。   In the present invention, in the energy absorbing member provided with the intermediate rib in the cross section in order to satisfy the shape restriction as described above, the load fluctuation at the time of the collision collapse is further increased as compared with the prior art by efficiently arranging the intermediate rib. An object of the present invention is to provide an energy absorbing member which is small and excellent in energy absorption per weight.

本発明は、車両のバンパ補強材の背面側に設けられ、車両前後方向と押出方向が略平行となるアルミニウム合金押出形材製のエネルギー吸収部材において、押出方向に垂直な断面において外形が凸5角形又は凸6角形の閉断面形状をなすとともに、その内部に3本の中リブを有し、各中リブは一方の端部が前記外形を構成する相異なる辺に連結され、他方の端部が互いに連結されていることを特徴とする。なお、凸多角形とは、全ての内角が180°未満の多角形を意味する。   The present invention provides an energy absorbing member made of an aluminum alloy extruded shape that is provided on the back side of a vehicle bumper reinforcing material and whose extrusion direction is substantially parallel to the longitudinal direction of the vehicle. It has a square or convex hexagonal closed cross-sectional shape, and has three medium ribs inside thereof, each medium rib having one end connected to different sides constituting the outer shape, and the other end. Are connected to each other. The convex polygon means a polygon having all inner angles of less than 180 °.

望ましい実施の形態として、前記外形が6角形であり、各中リブの一方の端部が前記外形を構成する互いに隣り合わない辺に連結されていること(請求項2)、各中リブの一方の端部が前記外形を構成する辺の中央部に連結されていること(請求項3)、各中リブの他方の端部が、前記一方の端部と前記外形を構成する辺の連結点を結ぶ3角形の重心において互いに連結されていること(請求項4)等が挙げられる。このエネルギー吸収部材は、自動車用バンパ補強材のステイ、クラッシュボックス、サイドメンバのいずれかとして用いるのに好適である。また、このエネルギー吸収部材をアルミニウム合金押出形材製バンパ補強材と組み合わせることで、さらに軽量化効果に優れたエネルギー吸収構造体を得ることができる。
なお、前記中リブは押出形材の製造時に同時に閉断面形状をなす外形と一体成形することが望ましいが、前記外形と中リブを別々に押出形材として製造した後、中リブを前記外形の内部に接合してもよい。その場合、前記中リブは前記外形の押出方向全長にわたり接合することもでき、あるいは外形より短い中リブを外形の押出方向の一部長さ範囲にのみ接合することもできる。
As a desirable embodiment, the outer shape is a hexagon, and one end of each middle rib is connected to a side that does not adjoin each other constituting the outer shape (Claim 2), and one of the middle ribs Are connected to the central part of the side constituting the outer shape (Claim 3), and the other end of each middle rib is the connecting point of the one end and the side constituting the outer shape. Are connected to each other at the center of gravity of a triangle connecting the two (claim 4). This energy absorbing member is suitable for use as any of a stay, a crash box, and a side member of an automobile bumper reinforcement. Further, by combining this energy absorbing member with a bumper reinforcing material made of an aluminum alloy extruded profile, an energy absorbing structure that is further excellent in weight reduction effect can be obtained.
The intermediate rib is preferably integrally formed with an outer shape having a closed cross-sectional shape at the same time when the extruded profile is manufactured, but after the outer profile and the intermediate rib are separately manufactured as an extruded profile, the intermediate rib is You may join inside. In this case, the middle rib can be joined over the entire length in the extrusion direction of the outer shape, or the middle rib shorter than the outer shape can be joined only in a partial length range of the outer shape in the extrusion direction.

本発明によれば、断面内部に中リブを設けたエネルギー吸収部材において、衝突圧壊時の荷重変動が少なく、かつ、重量あたりのエネルギー吸収性に優れたエネルギー吸収部材を得ることができる。
また、アルミ押出形材製バンパー補強材と組み合わせることにより、軽量、かつエネルギー吸収性能に優れたバンパシステムを構成することができる。
According to the present invention, it is possible to obtain an energy absorbing member having an intermediate rib in the cross section, which has little load fluctuation at the time of collision collapse and is excellent in energy absorption per weight.
In addition, by combining with a bumper reinforcing material made of an extruded aluminum material, a bumper system that is lightweight and has excellent energy absorption performance can be configured.

本発明に係るエネルギー吸収部材は、アルミニウム合金押出形材からなり、押出方向に対して垂直な断面をみると、断面外形が凸5角形又は凸6角形の閉断面形状をなすとともに、その内部に3本の中リブを有し、各中リブは一方の端部が前記外形を構成する相異なる辺に連結され、他方の端部が前記外形内の一点で互いに連結されている。
図1,2は本発明に係るアルミニウム合金押出形材の断面を例示するもので、図1は6角形断面の例、図2は5角形断面の例である。
The energy absorbing member according to the present invention is made of an aluminum alloy extruded shape. When a cross section perpendicular to the extrusion direction is viewed, the cross-sectional outer shape forms a convex pentagon or a convex hexagon, and the inside thereof has a closed cross-sectional shape. Each of the middle ribs has one end connected to different sides constituting the outer shape, and the other end connected to each other at one point in the outer shape.
1 and 2 exemplify a cross section of an aluminum alloy extruded profile according to the present invention. FIG. 1 shows an example of a hexagonal cross section, and FIG. 2 shows an example of a pentagonal cross section.

図1(a)の断面は、正6角形の外形1の中に3本の中リブ2〜4が形成されたもので、中リブ2〜4の一方の端部が外形1を構成する互いに隣り合わない辺1a〜1cの中央に連結され、他方の端部が前記一方の端部と外形1を構成する辺1a〜1cとの連結点5〜7を結ぶ3角形の重心Gにおいて互いに連結されている。この断面が最も望ましい。
図1(b)の断面は、正6角形の外形1の中に3本の中リブ2〜4が形成されたもので、中リブ2〜4の一方の端部が外形1を構成する互いに隣り合わない辺1a〜1cの中央に連結され、他方の端部が中リブ3,4の前記一方の端部と辺1b,1cの連結点6,7を結ぶ線分の中心Cにおいて互いに連結されている。
The cross section of FIG. 1A is a regular hexagonal outer shape 1 in which three middle ribs 2 to 4 are formed, and one end of the middle ribs 2 to 4 constitutes the outer shape 1. The sides 1a to 1c that are not adjacent to each other are connected to the center, and the other ends are connected to each other at a triangular center of gravity G that connects the connection points 5 to 7 between the one end and the sides 1a to 1c constituting the outer shape 1. Has been. This cross section is most desirable.
The cross section of FIG. 1B is obtained by forming three medium ribs 2 to 4 in a regular hexagonal outer shape 1, and one end of each of the middle ribs 2 to 4 forms the outer shape 1. It is connected to the center of the sides 1a to 1c which are not adjacent to each other, and the other end is connected to each other at the center C of the line segment connecting the one end of the middle ribs 3 and 4 and the connecting points 6 and 7 of the sides 1b and 1c. Has been.

図1(c)の断面は、正6角形の外形1の中に3本の中リブ2〜4が形成されたもので、中リブ2〜4の一方の端部が外形1を構成する互いに隣り合わない辺1a〜1cの中心よりやや頂点に近い箇所に連結され、他方の端部が前記一方の端部と辺1a〜1cの連結点5〜7を結ぶ3角形の重心Gにおいて互いに連結されている。
図1(d)の断面は、全ての内角が120°で、1組の対辺1a,1dが他の2組の対辺と異なる長さを有する外形1と、その中に形成された3本の中リブ2〜4からなり、中リブ2〜4の一方の端部が外形1を構成する互いに隣り合わない辺1a〜1cの中央に連結され、他方の端部が前記一方の端部と辺1a〜1cの連結点5〜7を結ぶ3角形の重心Gにおいて互いに連結されている。
The cross section of FIG. 1C is obtained by forming three medium ribs 2 to 4 in a regular hexagonal outer shape 1, and one end of each of the middle ribs 2 to 4 forms the outer shape 1. It is connected to a location that is slightly closer to the apex than the centers of the sides 1a to 1c that are not adjacent to each other, and the other end is connected to each other at the center of gravity G of the triangle that connects the one end and the connecting points 5 to 7 of the sides 1a to 1c. Has been.
The cross section of FIG. 1 (d) has an outer shape 1 in which all inner angles are 120 °, one set of opposite sides 1a and 1d have different lengths from the other two sets of opposite sides, and three pieces formed therein. It consists of the middle ribs 2 to 4, and one end of the middle ribs 2 to 4 is connected to the center of the sides 1a to 1c that are not adjacent to each other constituting the outer shape 1, and the other end is the one end and the side. The triangular centers of gravity G connecting the connecting points 5 to 7 of 1a to 1c are connected to each other.

図2(a)の断面は、正5角形の外形11の中に3本の中リブ12〜14が形成されたもので、中リブ12の一方の端部が辺11cの中央に連結され、他の中リブ13,14の一方の端部が辺11cに隣り合わない辺11d,11eの中央にそれぞれ連結され、中リブ12〜14の他方の端部が前記一方の端部と辺11c〜11eとの連結点15〜17を結ぶ3角形の重心Gにおいて互いに連結されている。両側の辺11a,11bには中リブ12〜14は連結されていない。
図2(b)の断面は、互いに平行で同一長さの2辺11a,11bと,辺11a,11bの一端に垂直に連結する辺11cと、辺11a,11bの他端に連結する同一長さの2辺11d,11e(辺11a,11bと同じ長さ)により構成される5角形の外形11と、その中に形成された3本の中リブ12〜14からなり、中リブ12〜14の一方の端部が辺11cと該辺11cに隣り合わない辺11d,11eの中央に連結され、他方の端部が前記一方の端部と辺1c〜1eの連結点15〜17を結ぶ3角形の重心Gにおいて互いに連結されている。
図2(c)の断面は、互いに平行で同一長さの辺11a,11bの一端に垂直に連結する辺11cの長さが、該辺11a,11bと同じ長さである点のみで、図2(a)の断面と異なる。
The cross section of FIG. 2A is a regular pentagonal outer shape 11 in which three medium ribs 12 to 14 are formed, and one end of the medium rib 12 is connected to the center of the side 11c. One end of the other middle ribs 13 and 14 is connected to the center of each of the sides 11d and 11e not adjacent to the side 11c, and the other ends of the middle ribs 12 to 14 are connected to the one end and the side 11c to 11c. They are connected to each other at a triangular center of gravity G connecting connecting points 15 to 17 with 11e. The middle ribs 12 to 14 are not connected to the sides 11a and 11b on both sides.
The cross section of FIG. 2 (b) has two sides 11a and 11b that are parallel and have the same length, a side 11c that is perpendicularly connected to one end of the sides 11a and 11b, and a same length that is connected to the other end of the sides 11a and 11b. A pentagonal outer shape 11 constituted by two sides 11d, 11e (the same length as the sides 11a, 11b) and three middle ribs 12-14 formed therein, and the middle ribs 12-14 3 is connected to the center of the side 11c and the sides 11d and 11e that are not adjacent to the side 11c, and the other end connects the one end and the connecting points 15 to 17 of the sides 1c to 1e. They are connected to each other at the center of gravity G of the square.
The cross section of FIG. 2 (c) is only shown in that the length of the side 11c that is parallel to each other and perpendicular to one end of the sides 11a and 11b having the same length is the same as that of the sides 11a and 11b. Different from the cross section of 2 (a).

押出方向に衝突荷重を受ける多角形断面のエネルギー吸収部材において、座屈強度は断面を構成する各辺の幅厚比(板幅/板厚)に依存し、幅厚比が大きくなると座屈強度も低下する。また、荷重変動は座屈の波長に依存し、これらは各辺の板幅に比例することが知られている。断面形状が6角形状までの場合、稜線部(断面の頂点)が断面を構成する各辺を拘束することで各辺は独立的に座屈し、前記板幅は、稜線間の距離と等しくなる。しかし、多角形断面の角数をこれ以上大きくすると、稜線部の各辺に対する支持効果が小さくなるため、各辺は独立的に座屈しにくくなり、稜線をまたいで構成される折れ曲がった板の座屈というべき変形が生じる。これにより、座屈強度は低下し、かつ、座屈波長が大きくなることによる荷重変動の増大が問題になる。このため、本発明ではアルミニウム合金押出形材の断面外形は6角形以下の多角形とした。そして、一般的な4角形断面(いわゆる田の字断面)に比べて角数が多く、辺の幅を短くすることができる5,6角形断面形状を対象にした。なお、5,6角形断面を比較すると、角数の多い6角形状断面がより好ましい。   In an energy absorbing member with a polygonal cross section that receives a collision load in the extrusion direction, the buckling strength depends on the width / thickness ratio (plate width / plate thickness) of each side constituting the cross section, and the buckling strength increases as the width / thickness ratio increases. Also decreases. Further, it is known that the load variation depends on the buckling wavelength, and these are proportional to the plate width of each side. When the cross-sectional shape is up to a hexagonal shape, the ridgeline portion (vertex of the cross-section) constrains each side constituting the cross-section so that each side buckles independently, and the plate width becomes equal to the distance between the ridgelines. . However, if the number of corners of the polygonal cross section is further increased, the support effect for each side of the ridge line portion is reduced, so that each side becomes difficult to buckle independently, and the seat of the bent plate configured to straddle the ridge line Deformation that should be bent occurs. As a result, the buckling strength decreases, and an increase in load variation due to an increase in the buckling wavelength becomes a problem. For this reason, in this invention, the cross-sectional external shape of the aluminum alloy extrusion shape material was made into the hexagon or less polygon. In addition, a pentagonal cross-section having a larger number of corners and a shorter side width than a general quadrangular cross-section (so-called rice-shaped cross-section) was targeted. In addition, when a hexagonal cross section is compared, a hexagonal cross section having a large number of angles is more preferable.

本発明は、自動車用ステイ、クラッシュボックス、サイドメンバなどのエネルギー吸収部材を想定したもので、これらの衝突荷重は、必ずしも正面から入力されるだけではなく、車体左右方向に荷重方向がずれる場合を想定する必要がある。このような衝突の際にエネルギー吸収部材が倒れ変形しないように、断面外形は線対称(車体左右方向に対して対称形状になるように配置できる)であることが好ましい。先に説明した図1,2の例では、全てそのようになっている。また、中リブの連結の有無により各辺の座屈強度に差異が確実に生じるように、外形を構成する各辺の幅がほぼ等しいこと(正5角形、正6角形又はそれに近い形状)がより好ましい。
さらに、他の部品と接合する場合を想定すると、これらの接合が容易なように、断面外形の左右両側に車体上下方向に向く互いに平行な2辺が存在し、かつそのうち一方又は両方の辺に中リブが連結されていないことが望ましい。このような辺では、他部品接合に要する領域を確保するため辺幅を他の辺より大きくしてもよい。
The present invention assumes an energy absorbing member such as an automobile stay, a crash box, a side member, etc., and these collision loads are not necessarily input from the front, but the load direction is shifted in the lateral direction of the vehicle body. It is necessary to assume. In order to prevent the energy absorbing member from falling and deforming during such a collision, the cross-sectional outer shape is preferably axisymmetric (can be arranged so as to be symmetrical with respect to the vehicle body left-right direction). In the examples of FIGS. 1 and 2 described above, this is all the case. In addition, the width of each side constituting the outer shape is substantially equal (a regular pentagon, a regular hexagon, or a shape close thereto) so that a difference in the buckling strength of each side occurs with certainty depending on whether or not the middle rib is connected. More preferred.
Furthermore, assuming the case of joining with other parts, there are two sides parallel to each other in the vertical direction of the vehicle body on both the left and right sides of the cross-sectional outline so that these parts can be easily joined, and one or both of these sides. It is desirable that the middle ribs are not connected. In such a side, the side width may be made larger than the other side in order to secure an area required for joining other components.

本発明では、特許文献9〜11に見られるように、中リブを多角形断面の頂点部に連結するのではなく、辺の中間部(隣接する2つの頂点の間)に連結している。先に述べたように、本発明では、断面外形を6角形又は5角形に規定していることで、中リブを頂点部に連結しなくても、稜線部が断面外形を構成する各辺を十分に保持できているが、さらに中リブを辺の中間部に連結することで、該辺は中リブと稜線によって保持されることになる。これにより、中リブを連結した辺では、座屈時の辺幅(幅厚比の板幅)は中リブ連結部と稜線間の距離となり、中リブを設けない構造に比べて辺幅を短くすることができる。これにより、中リブの連結された辺の座屈強度増加と、座屈波長の減少、つまり荷重変動の低減が実現できる。   In the present invention, as seen in Patent Documents 9 to 11, the middle rib is connected to the middle part of the side (between two adjacent vertices), not to the vertex part of the polygonal cross section. As described above, in the present invention, by defining the cross-sectional outer shape as a hexagon or a pentagon, each side of the ridge line portion constituting the cross-sectional outer shape can be obtained without connecting the middle rib to the apex portion. Although it can hold | maintain sufficiently, this edge | side will be hold | maintained by a middle rib and a ridgeline by further connecting a middle rib to the intermediate part of a edge | side. As a result, at the side where the middle rib is connected, the side width during buckling (plate width of the width-thickness ratio) is the distance between the middle rib connecting portion and the ridgeline, and the side width is shorter than the structure without the middle rib. can do. Thereby, the buckling strength increase of the side where the middle ribs are connected and the buckling wavelength can be reduced, that is, the load fluctuation can be reduced.

本発明構造では中リブが3本であるから、少なくとも2辺以上、中リブの連結されていない辺が存在する。しかし、中リブを連結した座屈強度の高い辺が、中リブの連結されていない辺の変形を拘束することにより、部品重量の増加を最小限に抑えて部品としての座屈強度が向上する。つまり、全ての辺に中リブを連結する構造に比べて、部品重量あたりのエネルギ吸収量が向上する。なお、中リブを連結した辺の座屈強度を最も高くするという目的からは、中リブは、辺の中央に連結することが望ましい。
また、中リブ及び稜線(断面の頂点)により支持される辺の座屈時の辺幅が一律にならないことで、辺ごとに座屈波長が異なる。この効果により、外形を構成する各辺によって荷重振幅の発生タイミングが分散し、荷重変動の振幅自体を小さくするという効果も得られる。
Since there are three middle ribs in the structure of the present invention, there are at least two sides where the middle ribs are not connected. However, the high buckling strength side connected with the intermediate ribs restrains deformation of the side where the intermediate ribs are not connected, thereby minimizing an increase in the weight of the component and improving the buckling strength as a component. . That is, the amount of energy absorption per part weight is improved as compared with the structure in which the middle ribs are connected to all sides. For the purpose of maximizing the buckling strength of the side to which the middle rib is connected, the middle rib is preferably connected to the center of the side.
Further, the side width at the time of buckling of the side supported by the middle rib and the ridge line (vertex of the cross section) is not uniform, so that the buckling wavelength is different for each side. With this effect, the load amplitude generation timing is dispersed by each side constituting the outer shape, and the effect of reducing the load fluctuation amplitude itself can be obtained.

自動車用の縦圧壊エネルギー吸収部材としては、圧壊時に荷重方向に平行につぶれ、圧壊途中で倒れ変形やクの字型のオイラー座屈などが生じないことが望ましい。このため、中リブは、左右及び上下方向への倒れ変形防止のためには、3本以上設けることが望ましく、前記のとおり部品重量の増加を最小限に抑えるとの観点から最少の3本とする。3本の中リブは、断面の5角形又は6角形の外形の中で、Yの字又はTの字を構成するように設けることが望ましい。いいかえれば、各中リブの一方の端部と外形を構成する辺の連結点を結ぶ3角形に、各中リブの他方の端部同士の連結点が含まれるということである。先に説明した図1,2の例では、全てそのようになっている。特に圧壊時のバランスを確保するという観点からは、中リブを互いに連結する位置は、3本の中リブと断面外形を構成する辺との連結点を結ぶ3角形の重心であることが望ましい。また、同様の観点から、前記外形が6角形の場合、各中リブの一方の端部が前記外形を構成する互いに隣り合わない辺に連結されていることが望ましく、前記外形が5角形の場合、各中リブの一方の端部が1つの辺と該辺に隣り合わない2辺に連結されていることが望ましい。   As a longitudinal crushing energy absorbing member for automobiles, it is desirable that the crushing parallel to the load direction at the time of crushing does not cause a collapse deformation or a U-shaped Euler buckling during crushing. For this reason, it is desirable to provide three or more middle ribs in order to prevent the horizontal deformation and vertical deformation, and as described above, the minimum number of the three ribs is three from the viewpoint of minimizing the increase in the weight of the parts. To do. The three middle ribs are preferably provided so as to form a Y-shape or a T-shape in a pentagonal or hexagonal outer shape in cross section. In other words, a triangle connecting one end portion of each middle rib and a connecting point of the sides constituting the outer shape includes a connection point between the other end portions of each middle rib. In the examples of FIGS. 1 and 2 described above, this is all the case. In particular, from the viewpoint of securing a balance at the time of crushing, it is desirable that the position where the middle ribs are connected to each other is the triangular center of gravity connecting the connection points of the three middle ribs and the sides constituting the cross-sectional outline. From the same viewpoint, when the outer shape is a hexagon, it is desirable that one end of each middle rib is connected to non-adjacent sides constituting the outer shape, and the outer shape is a pentagon. It is desirable that one end of each middle rib is connected to one side and two sides that are not adjacent to the side.

本発明構造では、少なくとも2辺の中リブが連結されてない辺(図1に示す例では辺1d〜1e、図2に示す例では辺11a,11b)が存在する。このため、これらの辺に他部品を接合することで、必要となるボルトスペースを確保することが可能となり、他部品との構造を簡単に行うことができるという利点がある。
また、断面内部の中リブ本数が断面外形の辺の数に比べて少ないことは、部品としての軽量効果とともに、押出加工時の抵抗も減少することから、ダイスの長寿命化、押出速度の増加など、生産性向上に対する効果をも得ることが可能である。
なお、この中リブは素材押出加工時に外形と同時に一体成形することが望ましいが、別部品として製造した後、閉断面形材からなる外形の長手方向で必要な部分のみに接合してもよい。
In the structure according to the present invention, there are at least two sides (sides 1d to 1e in the example shown in FIG. 1, sides 11a and 11b in the example shown in FIG. 2) where the middle ribs are not connected. For this reason, it is possible to secure a necessary bolt space by joining other parts to these sides, and there is an advantage that the structure with the other parts can be easily performed.
In addition, the fact that the number of medium ribs inside the cross section is smaller than the number of sides of the cross section outline reduces the resistance of the die as well as the light weight effect as a part, thus extending the life of the die and increasing the extrusion speed. Thus, it is possible to obtain an effect on productivity improvement.
In addition, it is desirable to integrally mold the inner rib at the same time as the outer shape at the time of extruding the material. However, after manufacturing as a separate part, the rib may be joined only to a necessary portion in the longitudinal direction of the outer shape made of the closed cross-sectional shape material.

本発明の効果を検討するために、FEM解析を用いて縦圧壊時の荷重−変位曲線の解析を行った。解析条件は,図3に示すように、長さ150mmの供試材18の上面に板厚4mmのフランジ19を置き、これを定盤21の上に垂直に置き押圧板22を介して軸方向に圧縮するものとし、供試材として、図4に示す応力(σ)−歪み(εp)関係(耐力σy:154MPa)を持つ一般的な6000系アルミニウム合金押出形材6063−T5材を想定し、部品肉厚(全断面で一定とした)をパラメータにして解析した。FEM解析には汎用の動的陽解法ソフトLS−DYNAを用いた。供試材の断面形状(肉厚中心形状)は、60×60mmの正方形スペース内に配置できることを前提条件に図5のように仮定した。   In order to examine the effect of the present invention, the load-displacement curve at the time of longitudinal crushing was analyzed using FEM analysis. As shown in FIG. 3, the analysis conditions are as follows: a flange 19 having a thickness of 4 mm is placed on the upper surface of a specimen 18 having a length of 150 mm, and this is placed vertically on a surface plate 21 and placed in the axial direction via a pressing plate 22. As a test material, a general 6000 series aluminum alloy extruded shape 6063-T5 material having a stress (σ) -strain (εp) relationship (proof stress σy: 154 MPa) shown in FIG. 4 is assumed. The analysis was performed using the part thickness (constant for all sections) as a parameter. General-purpose dynamic explicit software LS-DYNA was used for FEM analysis. The cross-sectional shape (thickness center shape) of the specimen was assumed as shown in FIG. 5 on the precondition that it can be arranged in a 60 × 60 mm square space.

図5においてCase1は一般的な田型形状(4角形:中リブ付き)であり、中リブの一方の端が外形を構成する辺の中央に連結し、他方の端が外形の重心において互いに連結している。Case2,Case3は断面外形が正6角形で、中リブの一方の端が頂点に連結し、中リブの他方の端が外形の重心において互いに連結している。Case4は断面外形が正6角形で、3本の中リブの一方の端が外形を構成する辺の中央に連結し、他方の端が前記一方の端と外形を構成する辺の連結点を結ぶ3角形の重心において互いに連結されている。Case1〜3が従来例構造、Case4が本発明構造に相当する。
各断面構造の解析条件を表1に示す。
In FIG. 5, Case 1 has a general rice pad shape (quadrangle: with a middle rib), and one end of the middle rib is connected to the center of the side constituting the outer shape, and the other end is connected to each other at the center of gravity of the outer shape. is doing. Case 2 and Case 3 have a regular hexagonal cross-sectional outer shape, and one end of the middle rib is connected to the apex, and the other end of the middle rib is connected to each other at the center of gravity of the outer shape. Case 4 has a regular hexagonal cross-sectional outer shape, and one end of three medium ribs is connected to the center of the side constituting the outer shape, and the other end is connected to the connecting point of the one end and the side constituting the outer shape. They are connected to each other at the center of gravity of the triangle. Cases 1 to 3 correspond to the conventional structure, and Case 4 corresponds to the structure of the present invention.
Table 1 shows the analysis conditions for each cross-sectional structure.

Figure 0005049153
Figure 0005049153

縦圧壊変形における初期荷重ピークについては、通常エンボス付与などの対策により低減することが可能である。そこで、初期荷重ピーク終了後のストローク20〜80mm区間における荷重−変位関係を評価することとした。エネルギ吸収性能の評価は、以下の2つの評価指標で行った。この評価指標の説明を図6に示す。図6に示すように、ストローク20mm〜80mm区間における最大荷重がPmax、最小荷重がPmin、平均荷重がPave.である。供試材の断面積はAとした。
(1)平均荷重Pave./断面積A
(2)平均荷重Pave./最大荷重Pmax
なお、上記(1)の値が大きいほど、重量あたりのエネルギ吸収量が大きいことを示す。また、(2)の値が1に近いほど、荷重−変位曲線は矩形波に近くなり、エネルギ吸収効率が良いことを示す。
The initial load peak in the vertical crushing deformation can be reduced by measures such as normal embossing. Therefore, it was decided to evaluate the load-displacement relationship in the stroke 20 to 80 mm section after the end of the initial load peak. The energy absorption performance was evaluated using the following two evaluation indexes. A description of this evaluation index is shown in FIG. As shown in FIG. 6, the maximum load is Pmax, the minimum load is Pmin, and the average load is Pave. It is. The cross-sectional area of the test material was A.
(1) Average load Pave. / Cross sectional area A
(2) Average load Pave. / Maximum load Pmax
In addition, it shows that the amount of energy absorption per weight is so large that the value of said (1) is large. Further, the closer the value of (2) is to 1, the closer the load-displacement curve is to a rectangular wave, indicating that the energy absorption efficiency is good.

図5のCase1〜4の各構造について、解析で得られた荷重−変位関係を、図7に示す。図7に示す荷重−変位関係を、上記(1),(2)の評価指標で整理した結果を図8,9及び表1に示す。
図8,9及び表1に示すように、本発明の構造は、従来構造に比べて、重量当たりのエネルギー吸収量が大きく(平均荷重Pave./断面積Aが大きい)、同時にエネルギー吸収効率が優れる(平均荷重Pave./最大荷重Pmaxが大きい)といえる。
FIG. 7 shows the load-displacement relationship obtained by analysis for each of the structures of Cases 1 to 4 in FIG. The results of arranging the load-displacement relationship shown in FIG. 7 with the evaluation indexes (1) and (2) are shown in FIGS.
As shown in FIGS. 8 and 9 and Table 1, the structure of the present invention has a larger amount of energy absorption per unit weight (average load Pave./cross-sectional area A is larger) than the conventional structure, and at the same time energy absorption efficiency. It can be said that it is excellent (average load Pave./maximum load Pmax is large).

本発明に係るアルミニウム合金押出形材の断面形状(6角形断面の例)である。It is a cross-sectional shape (example of hexagonal cross section) of an aluminum alloy extruded profile according to the present invention. 本発明に係るアルミニウム合金押出形材の断面形状(5角形断面の例)であるIt is a cross-sectional shape (example of a pentagonal cross section) of an aluminum alloy extruded profile according to the present invention. FEM解析条件を説明する図である。It is a figure explaining FEM analysis conditions. FEM解析に用いた供試材の応力(σ)−歪み(εp)曲線である。It is a stress ((sigma))-strain ((epsilon) p) curve of the test material used for FEM analysis. FEM解析に用いた供試材の断面形状(肉厚中心形状)である。It is the cross-sectional shape (thickness center shape) of the test material used for FEM analysis. FEM解析の結果得られた荷重−変位曲線に基づくエネルギ吸収性能の評価指標を説明する図である。It is a figure explaining the evaluation parameter | index of energy absorption performance based on the load-displacement curve obtained as a result of FEM analysis. FEM解析の結果得られた荷重−変位曲線である。It is a load-displacement curve obtained as a result of FEM analysis. FEM解析の結果得られた荷重−変位曲線から求めたPave.−A関係図である。Pave. Obtained from the load-displacement curve obtained as a result of the FEM analysis. FIG. FEM解析の結果得られた荷重−変位曲線から求めたPave./A−Pave./Pmax関係図である。Pave. Obtained from the load-displacement curve obtained as a result of the FEM analysis. / A-Pave. FIG.

符号の説明Explanation of symbols

1,11 閉鎖断面の外形
1a〜1d,11a〜11e 外形を構成する辺
2〜4,12〜14 中リブ
5〜7,15〜17 外形を構成する辺と中リブの連結点
1,11 Outlines 1a to 1d and 11a to 11e of closed cross section Sides 2 to 4 and 12 to 14 constituting the outer shape Middle ribs 5 to 7 and 15 to 17 Connection points between the sides constituting the outer shape and the middle rib

Claims (7)

車両のバンパ補強材の背面側に設けられ、車両前後方向と押出方向が略平行となるアルミニウム合金押出形材製のエネルギー吸収部材であって、押出方向に垂直な断面において外形が凸5角形又は凸6角形の閉断面形状をなすとともに、前記外形の内部に3本の中リブを有し、各中リブは一方の端部が前記外形を構成する相異なる辺に連結され、他方の端部が互いに連結されていることを特徴とするエネルギー吸収部材。 An energy absorbing member made of an aluminum alloy extruded material provided on the back side of a vehicle bumper reinforcing material, the vehicle longitudinal direction and the extrusion direction being substantially parallel, the outer shape of which is a convex pentagon in a cross section perpendicular to the extrusion direction or It has a convex hexagonal closed cross-sectional shape, and has three medium ribs inside the outer shape, and each medium rib has one end connected to different sides constituting the outer shape, and the other end. Are mutually connected, The energy absorption member characterized by the above-mentioned. 前記外形が6角形であり、各中リブの一方の端部が前記外形を構成する互いに隣り合わない辺に連結されていることを特徴とする請求項1に記載のエネルギ−吸収部材。 2. The energy absorbing member according to claim 1, wherein the outer shape is a hexagon, and one end portion of each middle rib is connected to sides that are not adjacent to each other that form the outer shape. 各中リブの一方の端部が前記外形を構成する辺の中央部に連結されていることを特徴とする請求項1又は2に記載のエネルギー吸収部材。 3. The energy absorbing member according to claim 1, wherein one end portion of each middle rib is connected to a central portion of a side constituting the outer shape. 各中リブの他方の端部が、前記一方の端部と前記外形を構成する辺の連結点を結ぶ3角形の重心において互いに連結されていることを特徴とする請求項1〜3のいずれかに記載のエネルギー吸収部材。 The other end part of each middle rib is mutually connected in the center of gravity of the triangle which connects the said one end part and the connection point of the edge | side which comprises the said external shape. The energy absorbing member described in 1. 前記アルミニウム合金押出形材が、いずれも押出形材からなる外形と中リブを接合してなり、前記中リブが前記外形の全長にわたり又は一部長さ範囲に接合されていることを特徴とする請求項1〜4のいずれかに記載のエネルギー吸収部材。 The aluminum alloy extruded shape member is formed by joining an outer shape made of an extruded shape member and an intermediate rib, and the intermediate rib is joined over the entire length of the outer shape or a partial length range. Item 5. The energy absorbing member according to any one of Items 1 to 4. 自動車用バンパ補強材のステイ、クラッシュボックス、サイドメンバのいずれかであることを特徴とする請求項1〜5のいずれかに記載のエネルギー吸収部材。 The energy absorbing member according to claim 1, wherein the energy absorbing member is any one of a stay, a crash box, and a side member of a bumper reinforcing material for an automobile. アルミニウム合金押出形材製バンパ補強材と、その背面に直接又はステイを介して固定された請求項1〜5のいずれかに記載のエネルギー吸収部材からなるエネルギー吸収構造体。 An energy absorbing structure comprising an aluminum alloy extruded shape bumper reinforcing material and an energy absorbing member according to any one of claims 1 to 5 fixed directly or via a stay to the back surface thereof.
JP2008024536A 2008-02-04 2008-02-04 Energy absorbing member and energy absorbing structure Expired - Fee Related JP5049153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008024536A JP5049153B2 (en) 2008-02-04 2008-02-04 Energy absorbing member and energy absorbing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008024536A JP5049153B2 (en) 2008-02-04 2008-02-04 Energy absorbing member and energy absorbing structure

Publications (2)

Publication Number Publication Date
JP2009184444A JP2009184444A (en) 2009-08-20
JP5049153B2 true JP5049153B2 (en) 2012-10-17

Family

ID=41068166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008024536A Expired - Fee Related JP5049153B2 (en) 2008-02-04 2008-02-04 Energy absorbing member and energy absorbing structure

Country Status (1)

Country Link
JP (1) JP5049153B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5486251B2 (en) * 2009-09-14 2014-05-07 アイシン精機株式会社 Vehicle shock absorber and vehicle bumper device
JPWO2013024883A1 (en) * 2011-08-17 2015-03-05 昭和電工株式会社 Shock absorbing member
CN103386941B (en) * 2013-07-30 2016-08-10 奇瑞汽车股份有限公司 A kind of energy-absorption box
CN104890604B (en) * 2015-06-23 2017-07-04 湖南大学 A kind of many born of the same parents' automatic buffer energy absorption devices
CN109501704A (en) * 2018-12-28 2019-03-22 凌云中南工业有限公司 Bumper anticollision beam assembly
CN112224163B (en) * 2020-10-28 2021-12-17 吉林大学 Bionic composite energy absorption structure with impact angle adaptability
CN114312896B (en) * 2021-12-23 2023-06-13 中车株洲电力机车有限公司 Energy absorbing structure of railway vehicle

Also Published As

Publication number Publication date
JP2009184444A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP5049153B2 (en) Energy absorbing member and energy absorbing structure
EP2565489A1 (en) Shock-absorbing member
US8469415B2 (en) Bumper reinforcement and bumper device for vehicle
US7874600B2 (en) Bumper system for vehicle
JP2003112587A (en) Bumper device for vehicle and bumper stay
JP6176468B2 (en) Auto body structure
JP5085445B2 (en) Vehicle bumper system
JP2006335241A (en) Bumper stay and bumper device
JP5795332B2 (en) Vehicle underrun protector
JP5984269B2 (en) Front floor panel
JP5235007B2 (en) Crash box
JP4527613B2 (en) Bumper stay and bumper equipment
JP2012111356A (en) Method for manufacturing energy absorbing structure, and energy absorbing structure
JP6973517B2 (en) Structural members for vehicles
JP2009096225A (en) Energy absorbing member
JP2006347527A (en) Bumper device and bumper stay
US6767650B2 (en) Lightweight support for bumpers
JP2008044507A (en) Shock-absorbing member
JP4493945B2 (en) Vehicle shock absorbing structure and method of manufacturing the same
JP6747928B2 (en) Shock absorber
JP2005104335A (en) Side member tube hydroforming member
JP2005001474A (en) Shock absorbing member
JP7181846B2 (en) Shock-absorbing structural members for vehicles
JP2007008428A (en) Magnesium alloy extruded section
JP2004148955A (en) Collision energy absorbing member for automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5049153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees