JP5048903B2 - 適応形多次元バックエンドマッピングを有する医用超音波イメージングシステム - Google Patents
適応形多次元バックエンドマッピングを有する医用超音波イメージングシステム Download PDFInfo
- Publication number
- JP5048903B2 JP5048903B2 JP2001577820A JP2001577820A JP5048903B2 JP 5048903 B2 JP5048903 B2 JP 5048903B2 JP 2001577820 A JP2001577820 A JP 2001577820A JP 2001577820 A JP2001577820 A JP 2001577820A JP 5048903 B2 JP5048903 B2 JP 5048903B2
- Authority
- JP
- Japan
- Prior art keywords
- input signal
- soft tissue
- gain
- signal
- noise
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003044 adaptive effect Effects 0.000 title claims description 24
- 238000013507 mapping Methods 0.000 title claims description 23
- 238000003384 imaging method Methods 0.000 title claims description 13
- 238000002604 ultrasonography Methods 0.000 title claims description 6
- 210000004872 soft tissue Anatomy 0.000 claims description 90
- 238000000034 method Methods 0.000 claims description 22
- 238000007906 compression Methods 0.000 claims description 8
- 230000006835 compression Effects 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 5
- 210000001519 tissue Anatomy 0.000 description 33
- 238000010586 diagram Methods 0.000 description 29
- 230000014509 gene expression Effects 0.000 description 10
- 238000012285 ultrasound imaging Methods 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 8
- 238000013459 approach Methods 0.000 description 7
- 238000012805 post-processing Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000013139 quantization Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000001914 filtration Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002872 contrast media Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 230000005534 acoustic noise Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000002592 echocardiography Methods 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 210000002435 tendon Anatomy 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8979—Combined Doppler and pulse-echo imaging systems
- G01S15/8988—Colour Doppler imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52023—Details of receivers
- G01S7/52025—Details of receivers for pulse systems
- G01S7/52026—Extracting wanted echo signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52023—Details of receivers
- G01S7/52034—Data rate converters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/13—Tomography
- A61B8/14—Echo-tomography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52023—Details of receivers
- G01S7/52033—Gain control of receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52023—Details of receivers
- G01S7/52036—Details of receivers using analysis of echo signal for target characterisation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Description
関連する特許出願への相互参照
本発明は、2000年4月24日に提出された同時出願の特許明細書第09/556354号の継続した一部をなし、その全体をここでは参考文献として引用する。
【0002】
背景
本発明は、医用超音波イメージングに関し、殊にバックエンド対応付けの1つ以上の段を適応的に設定するシステムに関しており、このバックエンド対応付けには、1つ以上の画像次元におけるポストプロセッシングマッピング段、ゲイン段、ダイナミックレンジ段を含むことができ、これによってこのようなイメージングが改善される。
【0003】
慣用の超音波イメージングでは、Bモード信号がゲインおよびダイナミックレンジに対して調整され、ここでこの調整は、この信号が表示のためにグレイレベルまたは色のレンジに対応付けられる前に行われる。表示すべき信号のダイナミックレンジは、これまではユーザが表示のダイナミックレンジコントロールを用いることによって設定可能であった。このコントロールは、従来、画像におけるレンジおよび方位位置には依存しない。ゲインは通常、ユーザが、デプスゲイン補償(DGC=depth gain compensation)または時間ゲイン補償(TGC=time gain compensation)を主ゲインまたはBゲインコントロールと共に使用することによって変更可能である。これらのDGCおよびTGCコントロールは、これまでレンジ(軸の次元)だけにおいて変更可能であり、主ゲインは、レンジにも横方向(方位)位置にも依存しない。2,3のシステムでは横方向のゲイン補償もデプスゲイン補償に加えて提供されているが、2つの1次元ゲインコントロールによっては、真の2次元ゲインコントロールに対する近似だけしか得られないのである。
【0004】
ゲインおよびディスプレイダイナミックレンジを適用した後、対数圧縮されたBモード信号は、通例、8ビットないしは256の量子化レベルに再量子化される。(dBでの)量子化ステップは、量子化レベルと、ユーザによって選択されるダイナミックレンジとの比によって得られる。
【0005】
量子化の後、ポストプロッセッシングマップが使用されて量子化レベルがグレイレベルまたは色のレンジに対応付けられる。この対応付けは、あらかじめ設計された対応付けの集合のうちから選択されたマップか、択一的にはユーザ定義のマップとすることができる。これらのマップは通例、レンジおよび方位に依存しない。
【0006】
市場で入手可能な超音波イメージングシステムでは、ゲインコントロールがユーザによって使用されて輝度レベルが調整されることが多い。多くの場合、ユーザがゲインを調整するのは主に、画像にわたって、軟組織グレイレベルの領域における平均値をグレイレベルの狭い範囲内に維持するためである。このような好みのレンジはユーザ毎に一貫性があり、多くの場合にユーザは、ゲインを調整して、軟組織に対するグレイレベルを、0が黒にまた255が白に対応付けられる線形の対応付けにおいて大まかにいって64番目のレベルに設定する傾向がある。しかしながら軟組織輝度レベルおよび一様性に対するゲイン調整によって、同時にノイズ抑圧が最適化されかつディスプレイの飽和が回避されることはない。このような理由からゲインおよび/またはダイナミックレンジは、1画像の1部分または全体に対して最適以下であることが多い。この結果、低レベル信号を切り捨てるかまたは高レベル信号が飽和してしまうことによって情報が失われてしまうことがあり得るのである。
【0007】
ゲインおよび/またはダイナミックレンジの設定における誤りに起因する情報のこのような損失は、ダイナミックレンジを極めて高いレベルに設定することによって低減ないしは排除することが可能である。しかしながらこのアプローチではコントラスト分解能が低下してしまう。それはこの場合、別の組織タイプが同じグレイレベルに対応付けられてしまい、これによってエコー源性における差異の突出(prominence of echogenicity difference)が低減されるからである。
【0008】
(本発明の指定代理人に割り当てられている)Klesenski米国特許第5579768号では自動ゲイン補償システムが提案されており、このシステムでは、画像信号のBモード強度を使用して軟組織の領域が識別され、つぎに軟組織のこの領域があらかじめ定めた大きさ(magnitude)に自動的に設定される。
【0009】
Roundhill米国特許第5993392号には超音波イメージングシステムが記載されており、ここではダイナミックレンジは、フレーム内の画像信号のレンジおよび方位位置に基づいて選択される。ここに記載されたシステムは、画像信号それ自体に応答するのではないため、適応形システムとみなすことはできない。Roundhill特許で使用されるアプローチはむしろ、記憶された圧縮マップを、ディスプレイ信号のレンジおよび方位の関数として選択することにあるのである。
【0010】
要約
慣用の超音波イメージングシステムでは、バックエンドにおいて様々なコントロール段が使用されて入力信号レベルのレンジ(窓)が、表示グレイレベルまたは色のレンジに対応付けられる。これらの段には単一または複数のゲイン段、ダイナミックレンジコントロール段、ポストプロセッシングマップその他を含むことができる。ダイナミックレンジコントロールによってユーザは、表示される入力信号レベルの窓の幅を調整することができる。このようなユーザのコントロールを表示ダイナミックレンジコントロールと称し、これによってこれと、システムの有し得る別の窓化操作とを区別する。ゲインコントロールによってユーザはこの窓の位置を調整することができる。したがってダイナミックレンジ段とゲイン段とが一緒になって、飽和することなく表示される入力信号レベルの実際の窓が決定される。つぎにポストプロセッシングマップによって、表示に対して上記のように選択された信号レベルに相応して実際のグレイレベルおよび/または色が決定される。
【0011】
理想的には表示ダイナミックレンジは、入力信号のダイナミックレンジに等しく設定すべきであり、またゲインは、入力信号のフルレンジが、表示される値のフルレンジに一致するように設定するべきである。このようにすれば、信号は失われず、バックエンド量子化ノイズが最小化される。さらに、軟組織信号の領域における平均値は、一様性を表示するため、画像にわたって一様に特定のディスプレイレベル(例えばグレイレベル)に対応付けるべきである。
【0012】
Bモード信号のダイナミックレンジは、システムのノイズレベルと、最大エコーレベルとによって決定される。システムのノイズレベルは、レンジおよび方位がフロントエンドゲインおよびイメージャのアパーチャサイズに依存することに起因してレンジおよび方位に依存する。最大エコーレベルは、送信の場の強度と、媒体の減衰と、観察する対象体の反射率と、受信側のビームフォーマのコヒーレントゲインとによって決定される。これらの理由から、適応形でありかつ多次元である1つ以上のバックエンドマッピング段が、上記の対応付けに対する目標を達成するために必要なのである。
【0013】
ここではつぎのような適応形かつ多次元の方法を示し、ここでこの方法ではa)バックエンドにおける情報の損失が回避され、b)表示される画像において電子的なノイズが低減または排除され、c)バックエンド量子化ノイズが最小化され、d)Bモードに対しては軟組織の領域における平均値が、組織に対するプログラム可能な目標表示レベルに対応付けられる。またここでは上記の一覧の部分集合を満たす縮小化した実現についてもいくつか記載する。これらの縮小化した実現においてはゲインは適応的に調整され、場合によってはダイナミックレンジが2次元で調整されて、格段に少ない電子的なノイズで画像が表示され、また組織が目標組織グレイレベルで表示される。
【0014】
ここで「入力信号」という語は広く、振幅、強度またはビームフォーマ(beamformer)出力(すなわちBモード信号)の対数圧縮された振幅を表すため、またビームフォーマ出力から導出ないしは抽出される関心対象の任意のパラメタを表すために使用され、これらには平均速度、ドップラー周波数偏移のパワー推定値(すなわちカラードップラーモード信号)およびドップラー周波数偏移のパワースペクトル推定値(すなわちスペクトルドップラーモード信号)が含まれる。上に示した段落は導入のために記載したものであり、請求項の範囲を制限することを意図したものではない。
【0015】
図面の簡単な説明
図1は、本発明の有利な実施形態を取り入れた医用診断超音波イメージングシステムのブロック図であり、
図2は、図1の多次元バックエンドマッピング段の有利な実施形態のブロック図であり、
図3は、図2の実施形態の変形実施形態を示すブロック図であり、
図4,5および6は、図2の実施形態によって実行される択一的な対応付け関数を説明するために使用される線図であり、
図7は、図2の実施形態によって実行される方法のフローチャートであり、
図8は、図1の適応形多次元バックエンドマッピング段の別の実施形態を示すブロック図であり、
図9は、図8に示したマッピング段の第1の有利な実施形態のより詳細なブロック図であり、
図10は、図9の実施形態によって実現される方法のフローチャートであり、
図11,12および13は、図9の実施形態の動作を説明する線図であり、
図14は、局所的なゲインおよび局所的なダイナミックレンジの両方が適応的に設定されるように動作する、図8のゲインプロセッサの第2の有利な実施形態を示すブロック図であり、
図15は、局所的なゲインおよび局所的なダイナミックレンジの両方が適応的に設定されるように動作する、図8のゲインプロセッサの第3の有利な実施形態を示すブロック図であり、
図16は、図15の実施形態の動作を説明するために使用される線図である。
【0016】
現在のところ有利であると思われる実施形態の詳細な説明
図面を参照すると、図1は、医用診断超音波イメージングシステム10のブロック図であり、ここでこのシステムには本発明の有利な実施形態が取り入れられている。図1に示したように送信ビームフォーマ11により、送信/受信スイッチ12を介して送信波形がトランスデューサアレイ13に供給される。トランスデューサアレイ13により、送信波形に応じて超音波パルスが形成され、このパルスは、イメージングされる身体Bに配向される。身体Bから戻ったエコーは、トランスデューサアレイ13に衝突し、このトランスデューサアレイによってこられのエコーが受信信号に変換され、これらの受信信号は送信/スイッチ12を介して受信ビームフォーマ14に転送される。受信ビームフォーマ14は適当な遅延および位相シフトを行い、これによって身体B内の選択した位置からの複数の受信信号がコヒーレントに加算されるようにする。これらのビームフォーミングされた信号は、スキャンコンバータ17に供給される前に振幅検出器15と、対数圧縮装置16を含むバックエンドプロセッサに供給される。スキャンコンバータ17はディスプレイ19に対して適切なグリッドで表示値を生成する。
【0017】
すべてのエレメント11〜17および19は任意の有利な形態をとることができ、何らかの固有の実現に制限されることはない。例えば、送信および受信ビームフォーマはアナログまたはディジタル装置として構成することができ、単一素子トランスデューサアレイおよび種々異なる次元の移相されたアレイを含む任意の適切なトランスデューサアレイを使用可能である。またシステム10は、トランスデューサアレイ13とディスプレイ19との間の信号路に付加的なエレメントを含むこともでき、図示のエレメントのいくつかを選択して削除するか、いくつかのエレメントの順番を交替することも可能である。例えば、バックエンドプロセッサとスキャンコンバータ17の順番は変更可能である。
【0018】
バックエンドプロセッサはまた、本発明の有利な実施形態を取り込んだ適応形多次元バックエンドマッピング段18を含むことも可能である。マッピング段18は多くの形態をとることができ、以下では特定の4つの実施形態を説明する。
【0019】
第1の有利な実施形態
図2にはマッピング段18の一般的な実施形態のブロック図が示されている。図2の実施形態では、対数圧縮装置16によって生成される入力信号I(x)が受信される。ここでは例として簡単のために入力信号はBモード画像信号とすることができる。
【0020】
入力信号I(x)および推定器20によって生成される局所的なノイズ平均の推定値が加算器24に供給される。局所的なノイズ平均の推定器20は、このシステムの局所的なノイズを1画像内の位置の関数として推定する。以下にさらに詳しく説明するように、局所的なノイズ平均を推定するためにはいくつかのアプローチを使用することができる。例えば、送信信号をトランスデューサ13のトランスデューサ素子に供給することなく、画像データの1つ以上のフレームを取得することができる。音を発生させる圧力波(insonifying pressure wave)がない場合、結果的に得られる入力信号によってノイズフレームが形成される。ここでこれは、目下のシステムノイズの尺度であり、この画像内の位置の関数である。
【0021】
【外1】
【0022】
このパラメタは加算器24において入力信号I(x)から減算される。加算器24の出力は、ノイズが抑圧された入力信号In(x)を表し、これは、組織平均推定器21と、最大SNR推定器25と、適応形多次元マッピング段26とに並列に供給される。
【0023】
【外2】
【0024】
組織平均推定器21には、組織検出器22と平均推定器23とが含まれる。組織検出器は、軟組織を特徴付けるIn(x)の部分を識別して出力信号T(x)を生成する。これは軟組織に関連するxの値に対しては1の論理状態にあり、軟組織に関連しないxの値に対しては0の論理状態にある。組織検出器22は多くの形態をとることができ、以下に詳しく説明するようにIn(x)の分散と、軟組織を特徴付ける目標値とを比較することによって動作することができる。択一的には、Klesenski米国特許第5579768号に記載されているように組織検出器22によって振幅技術が使用されて軟組織を検出することも可能である。この組織検出器22ではつぎの式1が実現される。
【0025】
R(x0) ={T(x) = 1}∩{|x−x0|≦Wt} (式1)
式1においてWtは、x0の周りの領域Rを定義する幅の配列である。
【0026】
平均推定器22ではIn(x)およびT(x)が使用されてつぎの式2が実現される。
【0027】
【数1】
【0028】
式2でシンボル<*>は、領域R内のxにわたって平均化を行う演算子であり、これは位置x0の関数である。
【0029】
【外3】
【0030】
択一的な実施形態ではT(x)を組織マップとすることができ、この組織マップは、位置xにおける画像が軟組織から取得された尤度を表す。ここでこのマップは0と1との間の中間の値をとり、関連する入力信号が軟組織から取得された尤度のレベルが増加するのに相応して、組織マップに対する値が増加する。
【0031】
【外4】
【0032】
最大SNR推定器25ではつぎの式3が実現される:
【0033】
【数2】
【0034】
式3において関数MAX{
・}は最大値をとる演算子であり、Wmはx0の周りの領域Rを定義する幅の配列である。必要であれば、Wmを上記のWtと等しく設定することが可能である。最大SNR推定器25は、点のSNR値(この例ではIn(x)に等しい)に作用することができるか、または択一的にこの推定器25は画像信号の一部分にわたる平均SNRに作用することができる。推定器25が作用することのできる領域は、目下の画像フレームの一部、目下の画像フレーム全体、前の画像フレームまたは2つ以上の画像フレームとすることが可能である。推定器25により出力信号Im(x)が生成され、この出力信号によって、入力信号の選択された部分における局所的な最大SNRが定義される。
【0035】
【外5】
【0036】
図2の実施例では、マッピング段26ではつぎの式が実現されている。
【0037】
【数3】
【0038】
マッピング段26によって実現される関数gは、式5で識別され図4で説明される関数とすることができる。
【0039】
【数4】
【0040】
【外6】
【0041】
【外7】
【0042】
【外8】
【0043】
別の択一的なアプローチも可能である。例えば、図3に示したようにSNR適合形の空間的かつ時間的に存続性を有するフィルタを加算器24とマッピング段26との間に挿入することができる。このフィルタは、低SNRを有する入力値に対してノイズを低減するために使用することができ、その際に十分なSNRを有する入力信号に対して時間または空間分解能が犠牲になってしまうことはない。
【0044】
【外9】
【0045】
【外10】
【0046】
ブロック27cではI(x)の最大SNR In(x)が、指定された領域にわたって推定され、ここでこれは上述のようにアプリケーションに依存して変化し得る。
【0047】
【外11】
【0048】
【外12】
【0049】
ブロック27fでは、I(x)のSNRと、Im(x)とが比較可能であればいつでもI(x)は、Dmの周りのD(x)値の高いSNRレンジに対応付けられる。Bモードタイプ入力信号に加えて、ブロック27fはカラードップラーパワーモードおよびスペクトルドップラーモード入力信号にも適用可能である。
【0050】
この説明から明らかであるのは、図2のシステムによって入力信号I(x)が適応的に対応付けられ、ここでこれはつぎの3つの評価基準を満たす画像をユーザに提供されるように行われる。
【0051】
1. 画像フレーム全体にわたり、ノイズと比較可能な入力信号は、ノイズ目標値Dnの周りにある値のレンジに対応付けられる。
【0052】
2. 画像フレーム全体にわたり、軟組織に関連するBモードタイプの入力信号は、軟組織目標値Dtの周りにある値のレンジに対応付けられる。
【0053】
3. 画像フレーム全体にわたり、局所的な最大SNRと比較可能なSNRを有する入力信号は、目標表示値Dmの周りにある値のレンジに対応付けられる。
【0054】
例えば、Dnを黒または黒の近くとすることができ、Dmを白または白の近くとすることができ、またDtをグレイレベルの指定した範囲、例えば、0が黒に255が白に相応するシステムにおいて64の周りのグレイレベルにすることができる。
【0055】
パラメタxは、方位、レンジ、俯角および時間(フレーム番号)軸ないしは次元のうちの任意の1つ、任意の2つ、任意の3つまたは4つすべてを表すために使用される。
【0056】
【外13】
【0057】
付加的な実施形態
すべての実施形態において、図2に関連して上に説明したすべての関数を組み合わせる必要はない。これらの関数のうちのいくつかを選択して種々にグループ化することも有利である。例えば、図9に関連して以下に説明する実施形態では、画像の近くのフィールドおよび遠くのフィールドの両方において局所的なゲインがコントロールされ、軟組織が実質的に一定の目標値で表示されるようにする。図14および15に関連して以下に説明する実施形態では付加的に、表示される画像のダイナミックレンジを局所的に調整し、これによって目下の画像信号を考慮して表示を最適化する。
【0058】
図8には、図1のマッピング段18′のこの実施形態のブロック図が示されている。図8に示したようにマッピング段18′には、ノイズフレームプロセッサ30と、軟組織プロセッサ32と、ゲインプロセッサ34とが含まれている。ノイズフレームプロセッサ30によって、電子的なノイズがフレームにわたって変化するのに伴い、その推定値が生成される。軟組織プロセッサ32によって、1画像フレーム内の軟組織の強度を表す滑らかな曲面がこのフレームの種々異なる位置において生成される。ゲインプロセッサ34により、プロセッサ30および32の出力が使用され、これによってこの画像フレームに適用されるゲインまたはゲインとダイナミックレンジとの両方が適応的に調整される。
【0059】
図9には図8の要素の有利な1実施形態のより詳細なブロック図が示されており、また図10には図9の実施形態によって実現される方法のフローチャートが示されている。
【0060】
図9に示したように、この実施形態のノイズフレームプロセッサ30には、ローパスフィルタ40と、デシメータ(decimator)42とが含まれており、プロセッサ30により、このフレーム全体にわたって分散されている種々異なる位置において、平均的な電子的ノイズの尺度が生成される。ノイズプロセッサ30は入力としてノイズフレーム、すなわち送信器を遮断して取得された画像データのフレームを受け取る。ローパスフィルタ40によってこのノイズフレームは平滑化され、デシメータ42によって、この濾波されたノイズが、例えば一方の側の大きさが50ピクセルであるより粗いグリッドに間引かれる。別の間引き率、例えば、音響グリッド(acoustic grid)において10×10ピクセルである間引き率を使用することも可能である。
【0061】
軟組織プロセッサ32はデータの画像フレームに応動し、ここでこのデータは、以下に説明する標準化されたイメージングパラメタによって得られ、またこの画像の軟組織から得られたデータを含む。軟組織プロセッサ32には、ローパスフィルタ44とデシメータ46とが含まれており、これらはノイズプロセッサ30の相応するエレメントと同じであると有利である。ノイズプロセッサ30から得られ濾波され間引かれたノイズフレームは、マイナスの符号が付けられて、濾波され間引かれた画像フレームと加算器54において加算される。この実施例においてノイズフレームおよび画像フレームは、ポスト検出、ポスト圧縮信号であるため、加算器54によって行われる加算により、2つのフレームの関連する領域に対する信号対雑音比(SNR)に等しい出力信号が形成される。このSNR信号は比較器56に供給され、この比較器により、出力としてSNR2値画像が生成される。この2値画像は、あらかじめ定めた値、例えば3dBまたは6dBよりも大きなSNRによって特徴付けられるこのフレームの領域において1に等しく設定され、SNRが上記のあらかじめ定めた値よりも小さいか等しい領域において0に等しく設定される。したがってこのSNR2値画像によって、十分に大きなSNRを有する画像フレームの領域が、軟組織画像信号に対する候補であることが識別される。論理値0で特徴付けられるSNR2値画像の部分は、ノイズが多くかつSNRが小さい画像の領域に相応し、これらの領域は軟組織の候補とはみなされない。
【0062】
軟組織プロセッサ32により、局所的な分散計算器48と、デシメータ50と、比較器52とが使用されて分散2値画像も生成される。これらのエレメントにより、画像フレームの局所的な空間的分散が使用されて、軟組織に特徴的な分散を有する画像フレームの領域が識別される。
【0063】
軟組織においては、各分解セル(resolution cell)に極めて多くの散乱体が存在する。完全に現像されるスペックルが、反射された信号間のランダムな干渉に起因して発生し、信号の振幅は、軟組織を表す画像フレームの領域においてレイリー分布にしたがう。この実施形態では、各画像ピクセルの周りの2,3の分解セルにおいて計算した局所的な分散と、完全に現像されるスペックルのそれとが類似している程度が尤度の尺度として使用され、ここでこれは特定の画像ピクセルが軟組織の画像を表す尤度である。この分散2値画像は、分散が軟組織のイメージングと整合する領域では1に等しく設定され、それ以外では0に等しく設定される。
【0064】
局所的な分散計算器48は、画像をより小さな領域のグリッドに分割することによって機能する。これらの領域の大きさは有利には各軸の方向に沿って画像の分解能よりも10倍大きなオーダーを有する。
【0065】
座標(i,j)を有する領域ないしはセルCの中心の空間的分散Vi,jはつぎのように計算される。
【0066】
【数5】
【0067】
デシメータ50は有利にはデシメータ42および46と同じスケールで動作する。間引きの行われた分散フレームはつぎに比較器52において要素毎に最小および最大の分散レベルと比較される。この比較は、対数圧縮されたデータに対しては殊に簡単であり、ここで軟組織を特徴付ける、完全に現像されるスペックルの分散は(5.57dB)2である。したがって画像フレームにおける軟組織の領域は、(5.57dB)2に近い分散を有する完全に現像されるスペックルによって特徴付けられる。例えば、分散がつぎの式7で説明する関係を満たす場合、図9の比較器52によって、この分散を軟組織に特徴的なものとして分類することができる。
【0068】
【数6】
【0069】
スペックルの実際の局所的な分散は、超音波システムの信号処理パスにおけるフィルタに起因して理論値と等しくないこともある。実践的には分散はファントムを模倣する軟組織の測定を介して決定される。
【0070】
電子的なノイズそれ自体は、軟組織の分散に近い分散を有しており、参照符号60で示されたAND演算により、SNR2値画像および分散2値画像が使用され、これによって電子的なノイズが誤って軟組織として分類されてしまうことが回避される。このAND演算は、間引きが行われたSNR2値画像と、間引きが行われた分散2値画像とに基づいて要素毎に実行される。
【0071】
結果的に得られる間引きが行われた組織2値画像は、SNR2値画像によって、関連する領域が小さなSNR比によって特徴付けられることが表されるか、または分散2値画像によって、関連する領域が軟組織でないことが表される場合に0に等しい値を有する。SNR2値画像はすべての実施形態において必須ではなく、別の手法を使用してノイズの多い画像の領域が誤って軟組織として分類されてしまわないようにすることも可能である。例えば、局所的な分散推定に先立ってノイズ低減手法を適用することできる。
【0072】
デシメータ46からの濾波され間引きが行われた画像フレームおよびANDエレメント60からの2値組織画像は、軟組織の強度を計算する装置62に入力として供給される。殊に装置62の出力は、間引きが行われたフレームであり、これは同じ領域の組織2値画像の相応する値に依存する強度値を有する。組織2値画像の相応する領域が論理値0に等しいところでは(この領域が軟組織でないことを示す)、装置62の出力は、相応する領域に対する強度値を含まない。択一的には組織2値画像が論理値1に等しい領域に対して、装置62の出力に、相応するフィルタ44によって濾波されデシメータ47によって間引きが行われた領域に対する強度値が含まれるようにする。
【0073】
装置64では曲面、例えば2次曲面が、装置62によって供給されたフレームにあてはめられる。この2次曲面により、画像フレーム全体にわたって軟組織強度が変化する際に平均の軟組織強度の尺度が得られる。SNR2値画像を使用しているため、ノイズの多い画像の部分によってこの2次曲面が変えられてしまうことはない。この曲面は、間引きが行われたフレームにあてはめられる2次曲面であるため、装置64によってあてはめられる曲面が急激に変化して、コントラストの異なる軟組織間の界面ないしは移行部の表現を妨害してしまうことはない。1実施形態では装置64により、画像は6×6のグリッドに分割され、このグリッドの矩形領域毎に平均軟組織強度値が計算され、つぎに2次曲面がこの平均値にあてはめられる。
【0074】
図9について続けると、この実施形態のゲインプロセッサ34によって加算器82が使用されて、装置64から得られたあてはめられた曲面と、軟組織目標輝度レベルTTとの差分が領域毎に得られる。加算器82の出力は、組織ゲインGTであり、これはレンジおよび方位の両方と共に変化し、またこれは、局所的な組織平均にあてはめられた上記の曲面を、軟組織目標レベルTTで表示するのに必要なゲインである。この組織ゲインGTは論理ブロック84に供給され、このブロックは第2の入力GNも受け取る。信号GNは加算器80によって生成され、ここではこの加算器によって、ノイズ目標レベルTNと、濾波され間引きが行われたノイズフレームの相応する値との間の差分が点毎に計算される。したがってノイズゲインGNもレンジおよび方位の両方と共に変化し、このゲインは、局所的な平均ノイズレベルがノイズ目標レベルTNで表示されることを保証するために必要なゲインを表す。論理ブロック84により、最終的な2次元ゲインGFが、GNおよびGTのうちの小さい方に等しく設定される。最終的な2次元ゲインGFは、ブロック86で画像フレームに適用される。実施形態によっては最終的なゲインGFが、デプスゲイン、横方向ゲインおよび横方向ゲイン傾き成分に分解されることもあり、これは、例えば最小2乗あてはめ(least square fit)を介して行われる。デプスゲイン成分を選択して横方向傾き値を最小化し、主ゲイン値を選択してデプスゲインと横方向ゲインにおける変化を最小化することが有利なこともある。
【0075】
図11〜13には、図9のゲインプロセッサ34の動作が示されている。図11では軟組織目標レベルTTおよびノイズ目標レベルTNは点線で示されている。この場合、TTおよびTNは両方ともデプスについて一定である。デシメータ42によって供給されるノイズ強度INおよび装置64によって供給される組織強度ITは実線で示されている。図12ではGTおよびGNが示されており、図13では最終的なゲインGFが、GTおよびGNのうちの小さい方として示されている。
【0076】
図11〜13は、説明を分かりやすくするためにデプスの関数として強度が2次元線図で示されている。上述のようにゲインGT,GNおよびGFはすべて、デプスおよび方位の両方の関数として2次元で変化する。
【0077】
ゲインプロセッサ34によりゲインGFが設定され、ノイズ信号がノイズ目標レベルよりも小さい画像のすべての部分に対して、画像の軟組織領域がほぼ組織目標レベルTTで表示されるようにする。ノイズ強度INがノイズ目標レベルTNよりも大きな画像の領域では、小さい方のゲインが使用され、これによってノイズが不適切に増幅されてしまわないことが保証される。
【0078】
図10には図9のシステムによって実現される方法のフローチャートが示されている。ブロック100では上述の適合形ゲイン機能が開始される。これは多くの手法で行うことができる。例えば、適応形のゲインは、ユーザの要求に応じてまたは所定のインターバルで自動的に開始することができる。例えば、適応形のゲインは、設定した個数のフレームまたは秒毎に開始することが可能である。
【0079】
適応形のゲインがブロック100において一旦開始されると、コントロールはブロック102に渡され、ここではこのシステムの画像取得パラメタがあらかじめ選択した値に設定される。これらのあらかじめ選択された値によって、適応形のゲインプロセッサの動作が最適化される。例としてつぎの一般的なガイドラインが1実施形態において有利であることが判明した。
【0080】
ゲインおよびダイナミックレンジを含む画像取得パラメタはつぎのように決定される。すなわちイメージング状況の考えられ得る最も広範なバリエーションに対して、発生し得る最も高い信号対雑音比が画像全体にわたって維持され、その際にこの画像のどの部分にも飽和が生じないように決定されるのである。このことによって保証されるのは、信号の弱い領域が適応形ゲインプロセッサによって考慮されることである。
【0081】
画像取得パラメタが一旦選択されると、これらブロック104において1つ以上のノイズフレームを取得するため、またブロック106において画像フレームを取得するために使用される。上で説明したようにノイズフレームは、送信器が遮断されていることを除けばふつうの画像フレームである。送信器が遮断されているため、真正なエコー信号は存在せず、画像フレームに発生する任意の信号はシステムないしは電子的なノイズを表すのである。このノイズフレームはブロック108で使用され、これによって低SNRによって特徴付けられる画像の領域が識別される。これはSNR2値画像の作成に関連して説明した通りである。この画像フレームは所望の任意の様相とすることができ、例えば、組織の基本的またはハーモニックなイメージングを含むことができ、付加的な造影剤(contrast agent)を用いても用いなくてもよい。
【0082】
つぎにブロック110において、ばらつきの統計的尺度が、画像フレームの選択した領域に対して決定される。ブロック110では、振幅が検出され対数圧縮された信号の時間的または空間的平均を上述のように使用することができる。択一的には、ノイズパワーの局所的な平均によって規準化したノイズパワーの空間的分散を使用することが可能である。例えば、規準化された空間的分散は、予備圧縮信号(pre-compression signal)において決定することができ、ここでは規準化された空間的分散は、この予備圧縮信号の局所的な平均によって規準化される。
【0083】
ばらつきの統計的尺度は、横方向、軸方向および俯角の方向の軸のうちの任意の1つ、またはこれらの軸のうちの任意の2つ、またはこれらの3つの軸のすべてに沿って計算することができる。上述の例では分散は、横方向および軸方向の軸について計算されている。
【0084】
つぎにブロック112および114では、軟組織に対応する画像フレームの領域が決定される。ブロック114では、ブロック108で決定された低SNRで特徴付けられる画像の領域が使用され、これによって保証されるのは、この画像のノイズが多い領域の外に軟組織として識別される領域があることである。
【0085】
局所的なコヒーレンスファクタを使用して保証することができるのは、音響雑音またはクラッタの多い領域が、対応付けの判別から除外されることである。局所的なコヒーレンスファクタは、遅延されアポディゼーションされた信号の受信チャネルのわたるインコヒーレント(位相弁別的でない)な和に対する、コヒーレント(位相弁別的)な和の比として定義される。これについてはRigby米国特許第5910115号明細書の考察を参照されたい。低コヒーレンスファクタは、大きな位相収差(phase aberration)、すなわち音響雑音ないしはクラッタのレベルが高いことを示す。したがってコヒーレンスファクタを使用することにより、クラッタの多い画像の領域を無視することができる。
【0086】
上述のように軟組織は、ばらつきの統計的尺度に基づいて識別することができる。これとは択一的に、実施形態によっては、別の手法を使用して軟組織を識別することもでき、例としては画像信号の大きさに基づく手法がある。本発明の指定代理人に割り当てられているKlesenski米国特許第5579768号明細書の考察を参照されたい。
【0087】
ブロック116では2次曲面が、フレームの近くのフィールドおよび遠くのフィールドを含むフレーム全体にわたって軟組織強度値にあてはめられる。
【0088】
ブロック118では局所的なゲインが適応的に変更され、相応の個所において2次曲面の振幅を有する信号が、いくつかの画像またはすべての画像にわたって、軟組織目標値で表示されるようにする。軟組織目標値または目標表示値は複数の仕方で設定することができる。目標表示値は、単純に記憶された値、またはユーザが選択した値、または周辺光に応じて適応的に決定された値とすることができる。
【0089】
択一的かつ有利には、軟組織目標レベルは、目下呼び出されているポストプロセッシング曲線の関数である。殊にユーザがコントロール可能な値またはあらかじめ定めた値を、目標軟組織グレイレベルTGとして使用可能である。つぎにTTは、ポストプロセッシング曲線が選択される度に、TGの表示グレイレベルに対応付けられる信号強度レベルを有するように定められる。
【0090】
図14には、図8のゲインプロセッサの第2の有利な実施形態が示されている。図14の実施形態には、加算器80,82と、論理ブロック84と、上で述べた図9の相応するエレメントと同じものにすることの可能なブロック86とが含まれている。付加的には図14のゲインプロセッサにより、適応的にダイナミックレンジが設定され、このダイナミックレンジで画像フレームが表示される。ブロック140において最終的なゲインGFと、組織ゲインGTと、前に選択したダイナミックレンジDNROLDが使用され、つぎの式にしたがって新たなダイナミックレンジDNRNEWが生成される。
【0091】
【数7】
【0092】
この新しいダイナミックレンジDNRNEWはつぎに、ブロック86によって生成されたゲイン調整がなされた画像に適用され、これによってディスプレイに供給されるDNR調整された画像が形成される。
【0093】
図14のゲインプロセッサにより、ダイナミックレンジは、画像の低SNR領域に調整される。このようにダイナミックレンジを調整することによって保証されるのは、軟組織が平均して、あらかじめ選択した目標値TTで表示されることである。最終的なゲインGFおよび組織ゲインGTは、デプスおよび方位の関数であるため、新たなダイナミックレンジDNRNEWは、DNROLDがそうでなかったとしても、空間的に変化し適応的に決定される量である。図14のダイナミックゲインプロセッサによって、SNRが適応的に調整されるのは、画像の低SNR領域においてだけである。それは高SNR領域では最終的なゲインGは、組織ゲインGTに等しく、したがって高SNR領域ではDNRNEWはDNROLDに等しいからである。
【0094】
図14のブロック140,142により、画像内の複数の個所におけるノイズレベルおよび軟組織強度の両方に基づいて、信号のダイナミックレンジが適応的に変更される。
【0095】
図15には図8のゲインプロセッサの第3の有利な実施形態が示されている。図15のゲインプロセッサでは、ブロック160によりつぎの式にしたがってパラメタSが設定される。
【0096】
【数8】
【0097】
ここでITは局所的な平均組織強度、INは局所的な平均ノイズレベル、TTは組織目標強度、またTNはノイズ目標強度である。ブロック162においてダイナミックレンジDNRは、ブロック160で決定されたSと、許容される最大のダイナミックレンジDNRMAXとの最小値に等しく設定される。ブロック164ではゲインパラメタが式10にしたがって設定される。
【0098】
【数9】
【0099】
つぎにブロック166においてブロック164で決定されたゲインと、ブロック162で決定されたダイナミックレンジとが画像フレームに適用される。
【0100】
図16を使用して図15のゲインプロセッサの動作を説明する。図16に示したようにここでは入力信号が水平軸にdBの単位でプロットされており、表示グレイレベルが垂直軸にプロットされている。入力信号を表示グレイレベルに対応付ける直線の傾きは、ダイナミックレンジに逆比例し、その単位は、1dB当たりのグレイレベルである。当然のことながら、信号とグレイレベルとを対応付ける関数は直線である必要はなく、直線でない場合、関心対象の入力信号の最小値および最大値に相応するグレイレベルを通過する直線の傾きを使用可能である。この例におけるゲインは図示のようになり、対応付けされるグレイレベルは、信号とゲインとの和に傾きを乗算したものに等しい。この関係によって、図15の実施形態によって定められたダイナミックレンジおよびゲインにより、平均軟組織強度およびノイズが、相応する所望の目標値に対応付けられるのである。
【0101】
さらなる考察
1. 軟組織の検出
上記の有利な実施形態では、入力信号のばらつきの統計的尺度を使用して、軟組織を識別した。つぎの複数のステップを(個別にまたは種々の組み合わせで)使用して、軟組織識別の精度を改善し、軟組織であると誤って識別してしまうことを低減することができる。
【0102】
a. 低SNRの領域を識別し、このような領域を軟組織として分類しない。図9のエレメント54,56,60により、上記のようにこの機能が実現されている。
【0103】
b. ばらつきの局所的な尺度との比較のために、調整可能な閾値を与える。図9のエレメント52では、ユーザによって調整されたか、固有のトランスデューサの機能として自動的に調整されたか、または使用中の画像処理パラメタとして調整された最大および最小の閾値を使用可能である。この最大および最小の閾値は、目標値に関して対称にも非対称にも配置することができる。アプリケーションによっては、閾値に対してつぎのような値を選択すると有利である。すなわち軟組織でないと誤って識別されることが幾分多くなったとしても、軟組織であると誤って識別されることが格段に少なくなる値を選択すると有利である。
【0104】
c. ばらつきの統計的尺度に影響を及ぼす信号処理を遮断する。周波数コンパウンディング、空間的コンパウンディング(spatial compounding)、空間的フィルタリング(spatial filtering)(例えばビデオフィルタによる)、時間的フィルタリング(temporal filtering)(例えば存続性を有するフィルタリング(persistene filtering))および非線形ポストプロセッシング対応付けなどの慣用の信号処理技術により、ばらつきの統計的尺度が影響を受けてしまうことが多い。このため、軟組織識別に使用される入力信号を取得中、このような信号処理は有利には遮断されるか、または択一的にはこのような信号処理の影響を軟組織識別の際に考慮に入れる。これは例えば閾値を適切に設定することによって行われる。さらに空間的なアンダーサンプリングによって画像のアーチファクトが発生してこれが局所的な分散を変化させるため、このようなアーチファクトは有利には回避される。
【0105】
d. ばらつきの統計な尺度の推定において分散(すなわちノイズ)を低減する。ピクセル毎のばらつきの尺度は、上に述べたものよりも大きな、サポートの領域を使用することによって推定することができるか、またはばらつきの推定値を空間的にローパスフィルタリングし、これによってばらつきの細かな分解能により、より低い推定ノイズに対する推定値との妥協をはかる。択一的な1実施例では、局所的な分散(またはばらつきの別の統計的尺度)を計算するために使用されるエリアは、平均スペックルサイズの関数であり、これは例えば平均スペックルサイズの単位で指定される。平均スペックルサイズは、自己共分散の等価な幅によって得られ、往復の点広がり関数(round-trip point spread function)のサイズまたは等価的にビームフォーマの横方向および軸方向の帯域幅によって直接決定される。このパラメタは、トランスデューサ毎に音響グリッド(予備スキャンコンバージョン)サンプルの単位で別個に設定することができる。それはこの音響グリッドが、多かれ少なかれ横方向および軸方向の帯域幅の変化に追従するからである。
【0106】
ダイナミックに更新が行われる場合、分散画像を時間的に平均化(存続させる)すること、またはこれによって得られる組織マスクまたは適応形ゲイン画像が必要なことがあり、これによって分散の推定におけるノイズに起因するフリッカまたはゲインの急峻な変化が回避される。
【0107】
e. ばらつきの尺度を統計的に推定することに加えて別の尺度を使用して軟組織識別を改善する。例えば、腱や筋などの組織は、腱や筋の長軸にそってスペックルが少ないことによって特徴付けられる。このパターンは、識別可能であり、またこれらのタイプの組織を識別できる精度を改善するために使用可能である。別の例としては、軟組織における造影剤は超音波ビームによって欠乏する傾向があり、このような欠乏によって、連続する画像間の相関性が欠如する。このような相関性の欠如は検出可能であり、この場合に上に説明した軟組織識別手法と組み合わせて使用して、軟組織において造影剤が識別される精度を改善することができる。
【0108】
2. ばらつきの統計的尺度
上記の考察では分散を、ばらつきの統計的尺度の1例として使用した。分散(σ2)の標準的な定義は、統計変数とその期待値との間の差の大きさの自乗の期待値である。
【0109】
σ2 = <|I−<I>|2>,
または等価的に
σ2 = <|I|2>−|<I>|2
であり、ここで<・>は期待値、すなわち平均化の演算子であり、|・|は大きさの演算子である。図9のエレメント48では、局所的な空間的分散が使用される。画像の任意のピクセルx0に対して、局所的な分散が、このピクセルx0周りの領域Rにおけるサンプルを使用して計算され、ここでこの領域Rは、任意の1つまたは複数の軸で定めることができる。この軸は、軸方向、横方向、俯角または別の任意の空間的な軸とすることができる。
【0110】
空間的分散に対しては多くの近似値があり、これらはすべてここで使用することのできるばらつきの統計的尺度の例とみなすことができる。例えば、平均が無視できる、またはこれが画像にわたって多かれ少なかれ一定であると仮定すると、分散はつぎの式で近似される。
【0111】
σ2 〜 <|I|2 >
考えられ得る別の表現にはつぎのようなものがある。
【0112】
σ2 〜 (max(I)−min(I))/<I>;
σ2 〜 (max(I)−<I>)/<I>;
σ2 〜 (<I>−min(I))/<I>;
σ2 〜 (max(I)−min(I));
σ2 〜 (max(I)−<I>);
σ2 〜 (<I>−min(I))
があり、ここでmax(.)およびmin(.)演算子ならびに平均化の演算子は、ピクセルx0の周りの領域Rにわたって計算される。
【0113】
別の実施例としては、1つ以上の軸に沿って入力サンプルの空間周波数のスペクトルを測定し、つぎにこのスペクトルと軟組織の空間特性とを比較することが有利であることもある。
【0114】
ばらつきの別の統計的尺度には、分散の関数として変化するパラメタ、例えば標準偏差σまたは分散の近似値が含まれる。
【0115】
「ばらつきの統計的尺度」という語は広く、上記の例のすべて、ならびに軟組織を識別するため、または組織の別のタイプと軟組織とを区別するために使用可能な別の統計的尺度を含めて意味するものである。
【0116】
3. 曲面のあてはめ
図9のブロック64で実行される曲面あてはめ機能は、多くの手法で実現可能である。例えば、多項式スプラインを使用することができ、ここでこれは区分的な多角形曲面であり、多項式曲面の区分間のすべての境界において所定の次数までの導関数の連続性を有している。多項式スプラインの次数によって、大域的な円滑さが決定され、これに対して多項式曲面の区分間の境界において満たされる導関数の連続性の数によって局所的な円滑さの程度が決定される。
【0117】
(直交または直交しない)基底関数の和として定義可能な任意の関数を、曲面あてはめに対して使用可能であり、これらは例えば、三角関数または双曲線三角関数の和として書き表すことのできる関数である。一般的には、平均軟組織強度値のグリッドにあてはまるように選択される重み付けパラメタを有する、レンジおよび方位の任意の基底関数の1次結合を使用可能である。
【0118】
4. ゲインまたはダイナミックレンジの適応的な調整の開始
上で説明したように、上記の適応的な調整は手動またはインターバルで自動的に開始することができる。さらにこのような調整を、入力信号における大きな変化、例えば、フレームの和(1フレームにおける全Bモードピクセルの和)における大きな変化、またはフレームの相関にも基づいて検出される大きな動きに応じて自動的に開始することも可能である。例えば、連続する2つのフレームをまず空間的に例えばボックスカー(boxcar)フィルタによって濾波して間引き、つぎに2つのフレームの間引かれたピクセルの値の差分を自乗して和をとる。この和が、あらかじめ定めた閾値、例えば、間引きが行われた2つのフレームの最初のフレームの全エネルギー(大きさの自乗の和)の20%を上回る場合、図7または10の手法が開始されるのである。変形には、自乗ではない関数の使用、フレームの一部(例えば中央の部分)に計算を制限すること、ドップラー信号を監視して、ユーザがプローブの移動を停止した時(ユーザが有利な探査位置に達成したことを保証するために遅延をおそらく加えて)を判断することなどが含まれる。別のアプローチは、イメージングパラメタ(例えば、超音波周波数の送信または受信)のユーザによる変更に応じて図7または10の手法を開始することである。
【0119】
5. 高分解能表示モードへの使用
慣用の高分解能動作モードでは、既存のフレームの一部が拡大されて表示される。これはフレームのこの部分をより高い解像度で再取得することによって、または既存のフレームに対して拡大率を増すことによって行うことができる。上記のいずれの場合においても、拡大される部分よりも大きな領域に対する入力信号を上記の組織識別および曲面あてはめ法に使用可能である。このことによって拡大された部分におけるエッジのあいまいさおよびアーチファクトを低減することができ、このことによって、この拡大された部分に軟組織がほとんどない場合に、よりロバストなゲイン曲面を計算可能である。
【0120】
結論
当然のことながら多くの択一的な実施例が可能である。実際に、アナログおよびディジタル信号処理技術の最大限の範囲を上記の基本機能の実現に使用可能である。プログラムされたコンピュータは、上記の適応形ゲインプロセッサに対する有利な1実施例である。例えば、適応形のゲインおよび選択的な適応的に決定されるダイナミックレンジを、トランスデューサアレイ13とディスプレイ19との間の信号路に沿った所望の任意の点で適用することができる。この2つは、スキャンコンバージョン、対数圧縮および検出の前または後に適用可能である。適応形のゲインプロセッサは、検出、対数圧縮およびスキャンコンバージョンのの前または後にRF,IFまたはベースバンド信号において動作可能である。
【0121】
また別の手法を使用してノイズレベルを決定することができる。例えば、コンピュータモデルを使用して、イメージングシステムの(取得パラメタも含めた)パラメタに基づき、フレームの種々の位置に対するノイズレベルを計算することができる。
【0122】
前述の例では、種々のバックエンドゲイン段を適切にコントロールすることにより、入力信号が軟組織または出力信号値のノイズレンジに適応的に対応付けられる。しかしながら本発明はこのアプローチに限定されることはなく、フロントエンドゲイン段のゲインを変更して所望の出力信号値を得ることができ、これは単独でも、1つ以上のバックエンドゲイン段におけるゲイン変更との組み合せでも行うことができる。
【0123】
上記の有利な実施形態では、効果的に協動して画像のゲインおよびダイナミックレンジを適応的に設定する複数の機能が組み合わされている。これらの機能のうちの種々異なるいくつかの機能を、組み合わせるのではなく別の機能とは独立して使用できることも理解されたい。殊に以下の発明を共にまたは種々の組み合わせで使用可能である。
【0124】
-- ばらつきの統計的尺度を使用して、実質的に軟組織に相応する画像のエリアを識別する、
-- 画像の近くのフィールドおよび遠くのフィールドの両方における軟組織強度値を含む軟組織強度値に曲面をあてはめる、
-- それぞれあらかじめ選択された値に設定されたシステムの複数の取得パラメタで適応形ゲインシステムに対する画像を取得する、
-- 少なくとも部分的に軟組織強度値および相応する個所におけるノイズ値に基づき、超音波イメージングシステムのゲインを適応的に変更する、
-- 少なくとも部分的に画像の複数の個所におけるノイズ値および軟組織強度値に基づき、超音波イメージングシステムのダイナミックレンジを適応的に変更する。
【0125】
ここで使用する「画像」という語は広く、1,2または3つの空間的次元の画像を表す。例えば、Mモード表示は1次元画像とみなすことができる。
【0126】
「値の範囲」という表現は広く1つ以上の値を表す。
【0127】
2つの信号は、これらの信号のスケールファクタが等しいか、またはスケールファクタが等しくないにかかわらず、「比較可能である」と言われる。「軟組織」という語は、分解不能な微細構造のためにスペックルを形成する任意の目標物のことを表す。
【0128】
上述のようにSNRの最大値は、時間および空間座標の任意の組み合わせによって変化し得る。
【0129】
上記の詳しい説明は説明のためであり、限定のためではない。等価なものをすべて含む請求項だけによって本発明の範囲が定義される。
【図面の簡単な説明】
【図1】 本発明の有利な実施形態を取り入れた医用診断超音波イメージングシステムのブロック図である。
【図2】 図1の多次元バックエンドマッピング段の有利な実施形態のブロック図である。
【図3】 図2の実施形態の変形実施形態を示すブロック図である。
【図4】 図2の実施形態によって実行される対応付け関数を説明する線図である。
【図5】 図2の実施形態によって実行される択一的な対応付け関数を説明する線図である。
【図6】 図2の実施形態によって実行される別の択一的な対応付け関数を説明する線図である。
【図7】 図2の実施形態によって実行される方法のフローチャートである。
【図8】 図1の適応形多次元バックエンドマッピング段の別の実施形態を示すブロック図である。
【図9】 図8に示したマッピング段の第1の有利な実施形態のより詳細なブロック図である。
【図10】 図9の実施形態によって実現される方法のフローチャートである。
【図11】 図9の実施形態の動作を説明する線図である。
【図12】 図9の実施形態の動作を説明する別の線図である。
【図13】 図9の実施形態の動作を説明する別の線図である。
【図14】 局所的なゲインおよび局所的なダイナミックレンジが適応的に設定されるように動作する、図8のゲインプロセッサの第2の有利な実施形態を示すブロック図である。
【図15】 局所的なゲインおよび局所的なダイナミックレンジの両方が適応的に設定されるように動作する、図8のゲインプロセッサの第3の有利な実施形態を示すブロック図である。
【図16】 図15の実施形態の動作を説明する線図である。
Claims (2)
- 受信入力信号を取得して出力信号を表示する医用超音波イメージングシステムにおける適応的対応付け方法において、
(a)前記入力信号のばらつきの統計的尺度を決定し、
(b)少なくとも部分的に、前記の(a)の統計的尺度に基づいて、軟組織を特徴付ける入力信号を識別し(27b)、
(c)前記の(b)で前記識別された入力信号の値が局所的な軟組織平均と等しければ、前記識別された入力信号を、出力信号値の軟組織目標表示値の範囲に対応付け(27e)、
(d)前記システムに対する目下のノイズレベルを表すノイズ信号を供給し、
(e)前記識別された入力信号のレベルと、前記ノイズ信号のレベルとが比較可能な場合、該入力信号を出力信号値のノイズ範囲に対応付ける
ことを特徴とする、医用超音波イメージングシステムにおける適応的対応付け方法。 - エコー信号パラメタを表す入力信号を取得して出力信号を表示する医用超音波イメージングシステムにおける適応的対応付け方法において、
(a)前記入力信号の振幅のばらつきの統計的尺度を決定し、
(b)少なくとも部分的に、前記の(a)の統計的尺度に基づいて、軟組織を特徴付ける入力信号を識別し(27b)、
(c)前記の(b)で識別された入力信号の平均振幅を、目標表示値で表示し、
前記(a)の統計的尺度は、前記入力信号の空間的分散を表しかつ横方向、軸方向および俯角方向の軸からなるグループから選択された少なくとも1つの軸に沿って決定され、
前記入力信号は、振幅検出され対数圧縮された信号である
ことを特徴とする、医用超音波イメージングシステムにおける適応的対応付け方法。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/556,354 | 2000-04-24 | ||
US09/556,354 US6398733B1 (en) | 2000-04-24 | 2000-04-24 | Medical ultrasonic imaging system with adaptive multi-dimensional back-end mapping |
US09/791,405 | 2001-02-23 | ||
US09/791,405 US6579238B1 (en) | 2000-04-24 | 2001-02-23 | Medical ultrasonic imaging system with adaptive multi-dimensional back-end mapping |
PCT/US2001/012438 WO2001080714A2 (en) | 2000-04-24 | 2001-04-17 | Medical ultrasonic imaging system with adaptive multi-dimensional back-end mapping |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004500915A JP2004500915A (ja) | 2004-01-15 |
JP2004500915A5 JP2004500915A5 (ja) | 2012-04-12 |
JP5048903B2 true JP5048903B2 (ja) | 2012-10-17 |
Family
ID=27071122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001577820A Expired - Lifetime JP5048903B2 (ja) | 2000-04-24 | 2001-04-17 | 適応形多次元バックエンドマッピングを有する医用超音波イメージングシステム |
Country Status (5)
Country | Link |
---|---|
US (1) | US6579238B1 (ja) |
JP (1) | JP5048903B2 (ja) |
AU (1) | AU2001253580A1 (ja) |
DE (1) | DE10196119B4 (ja) |
WO (1) | WO2001080714A2 (ja) |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8858981B2 (en) | 1997-10-10 | 2014-10-14 | Ed. Geistlich Soehne Fuer Chemistrie Industrie | Bone healing material comprising matrix carrying bone-forming cells |
JP3619158B2 (ja) * | 2001-02-13 | 2005-02-09 | キヤノン株式会社 | 画像処理装置、画像処理システム、画像処理方法、画像処理方法プログラム及び記録媒体 |
US7054474B1 (en) * | 2001-07-25 | 2006-05-30 | 3D Sharp, Inc. | Image noise reduction |
WO2004086974A1 (en) * | 2002-02-15 | 2004-10-14 | Ultratouch Corporation | Detection of tissue abnormalities using ultrasonic scanning |
US6666824B2 (en) * | 2002-04-01 | 2003-12-23 | Koninklijke Philips Electronics N.V. | System and method of dynamic automatic sensing of available dynamic range |
US6679844B2 (en) * | 2002-06-20 | 2004-01-20 | Acuson Corporation | Automatic gain compensation for multiple mode or contrast agent imaging |
US7254277B2 (en) * | 2002-12-30 | 2007-08-07 | Texas Instruments Incorporated | Image processing with minimization of ringing artifacts and noise |
CN100475150C (zh) * | 2003-06-03 | 2009-04-08 | 株式会社日立医药 | 超声波诊断装置 |
US6942618B2 (en) * | 2003-06-19 | 2005-09-13 | Siemens Medical Solutions U.S.A., Inc. | Change detection for optimized medical imaging |
US7248749B2 (en) * | 2003-07-29 | 2007-07-24 | Ge Medical Systems Global Technology Company, Llc | Method and apparatus for signal-to-noise ratio dependent image processing |
US6932770B2 (en) * | 2003-08-04 | 2005-08-23 | Prisma Medical Technologies Llc | Method and apparatus for ultrasonic imaging |
US7998073B2 (en) | 2003-08-04 | 2011-08-16 | Imacor Inc. | Ultrasound imaging with reduced noise |
US7591788B2 (en) * | 2003-08-19 | 2009-09-22 | Siemens Medical Solutions Usa, Inc. | Adaptive contrast agent medical imaging |
US20050124886A1 (en) * | 2003-11-21 | 2005-06-09 | Koninklijke Philips Electronics N.V. | System and method for generating ultrasound images having variable spatial compounding |
EP1706036B1 (en) * | 2003-11-26 | 2013-01-09 | ImaCor Inc. | Transesophageal ultrasound using a narrow probe |
US7288068B2 (en) * | 2003-12-15 | 2007-10-30 | Siemens Medical Solutions Usa, Inc. | Automatic optimization for ultrasound medical imaging |
US7534210B2 (en) * | 2004-02-03 | 2009-05-19 | Siemens Medical Solutions Usa, Inc. | Methods for adaptively varying gain during ultrasound agent quantification |
US7744532B2 (en) * | 2004-03-31 | 2010-06-29 | Siemens Medical Solutions Usa, Inc. | Coherence factor adaptive ultrasound imaging methods and systems |
US7306561B2 (en) * | 2004-09-02 | 2007-12-11 | Scimed Life Systems, Inc. | Systems and methods for automatic time-gain compensation in an ultrasound imaging system |
US7921717B2 (en) * | 2005-01-03 | 2011-04-12 | Siemens Medical Solutions Usa, Inc. | Ultrasonic imaging system |
EP1859296A1 (en) * | 2005-03-08 | 2007-11-28 | Koninklijke Philips Electronics N.V. | Method and apparatus for automatic gain adjustment in spectral doppler |
EP1874192B1 (en) * | 2005-04-14 | 2017-06-07 | Verasonics, Inc. | Ultrasound imaging system with pixel oriented processing |
JP5113322B2 (ja) * | 2005-04-28 | 2013-01-09 | 株式会社日立メディコ | 超音波診断装置 |
US7764818B2 (en) * | 2005-06-20 | 2010-07-27 | Siemens Medical Solutions Usa, Inc. | Surface parameter adaptive ultrasound image processing |
US7645236B2 (en) * | 2005-06-28 | 2010-01-12 | Siemens Medical Solutions Usa, Inc. | Ultrasound imaging system having motion adaptive gain |
US7695439B2 (en) * | 2005-08-22 | 2010-04-13 | Siemens Medical Solutions Usa, Inc. | Automated identification of cardiac events with medical ultrasound |
US8761477B2 (en) * | 2005-09-19 | 2014-06-24 | University Of Virginia Patent Foundation | Systems and method for adaptive beamforming for image reconstruction and/or target/source localization |
US7983456B2 (en) * | 2005-09-23 | 2011-07-19 | Siemens Medical Solutions Usa, Inc. | Speckle adaptive medical image processing |
JP2007111316A (ja) * | 2005-10-21 | 2007-05-10 | Toshiba Corp | 3次元超音波診断装置及びそのレベル調整方法 |
EP2007285B1 (en) | 2006-03-31 | 2014-02-26 | Hitachi Aloka Medical, Ltd. | Method and apparatus for automatic gain compensation in ultrasound imaging |
JP4945273B2 (ja) * | 2006-04-24 | 2012-06-06 | 株式会社東芝 | 超音波診断装置、及び超音波診断装置の制御プログラム |
JP2008253549A (ja) * | 2007-04-05 | 2008-10-23 | Toshiba Corp | 超音波診断装置 |
US8414493B2 (en) * | 2007-08-29 | 2013-04-09 | Siemens Medical Solutions Usa, Inc. | Automatic gain control in medical diagnostic ultrasound imaging |
US8435180B2 (en) * | 2007-09-17 | 2013-05-07 | Siemens Medical Solutions Usa, Inc. | Gain optimization of volume images for medical diagnostic ultrasonic imaging |
US20090112096A1 (en) * | 2007-10-29 | 2009-04-30 | Aloka Co., Ltd. | Methods and apparatus for ultrasound imaging |
US9451929B2 (en) | 2008-04-17 | 2016-09-27 | Boston Scientific Scimed, Inc. | Degassing intravascular ultrasound imaging systems with sealed catheters filled with an acoustically-favorable medium and methods of making and using |
US20100016719A1 (en) * | 2008-07-16 | 2010-01-21 | Siemens Medical Solutions Usa, Inc. | Adaptive regulation of acoustic output power in medical ultrasound imaging |
JP5248961B2 (ja) * | 2008-09-18 | 2013-07-31 | パナソニック株式会社 | 超音波診断装置 |
US8545412B2 (en) * | 2009-05-29 | 2013-10-01 | Boston Scientific Scimed, Inc. | Systems and methods for making and using image-guided intravascular and endocardial therapy systems |
JP2010274068A (ja) * | 2009-06-01 | 2010-12-09 | Toshiba Corp | 超音波診断装置及び超音波診断装置における画像表示方法 |
US8818064B2 (en) * | 2009-06-26 | 2014-08-26 | University Of Virginia Patent Foundation | Time-domain estimator for image reconstruction |
JP5433348B2 (ja) * | 2009-08-26 | 2014-03-05 | 株式会社東芝 | 超音波診断装置 |
CN102210595B (zh) * | 2010-04-07 | 2013-11-20 | 深圳迈瑞生物医疗电子股份有限公司 | B超成像增益控制方法、增益控制模块及b超成像系统 |
US20120330284A1 (en) * | 2011-06-23 | 2012-12-27 | Elwha LLC, a limited liability corporation of the State of Delaware | Systems, devices, and methods to induce programmed cell death in adipose tissue |
US9081097B2 (en) * | 2012-05-01 | 2015-07-14 | Siemens Medical Solutions Usa, Inc. | Component frame enhancement for spatial compounding in ultrasound imaging |
JP5987548B2 (ja) | 2012-08-10 | 2016-09-07 | コニカミノルタ株式会社 | 超音波画像診断装置及び超音波画像診断装置の制御方法 |
WO2014143258A1 (en) * | 2013-03-11 | 2014-09-18 | Untited Technologies Corporation | Phased array billet data evaluation software |
US9996935B2 (en) | 2014-10-10 | 2018-06-12 | Edan Instruments, Inc. | Systems and methods of dynamic image segmentation |
US10376240B2 (en) | 2015-05-15 | 2019-08-13 | Siemens Medical Solutions Usa, Inc. | Contrast agent sensitive medical ultrasound imaging |
US20160377717A1 (en) * | 2015-06-29 | 2016-12-29 | Edan Instruments, Inc. | Systems and methods for adaptive sampling of doppler spectrum |
CN106251304B (zh) * | 2015-09-11 | 2019-09-17 | 深圳市理邦精密仪器股份有限公司 | 动态图像分段系统和方法 |
US11617560B2 (en) * | 2016-09-16 | 2023-04-04 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Method for imaging a sample with blood and associated devices |
US10958899B2 (en) * | 2017-07-26 | 2021-03-23 | Hewlett-Packard Development Company, L.P. | Evaluation of dynamic ranges of imaging devices |
JP7336443B2 (ja) * | 2018-01-10 | 2023-08-31 | コーニンクレッカ フィリップス エヌ ヴェ | 超音波撮像システム、装置、方法及び記憶媒体 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4852576A (en) | 1985-04-02 | 1989-08-01 | Elscint Ltd. | Time gain compensation for ultrasonic medical imaging systems |
US4751846A (en) * | 1985-10-16 | 1988-06-21 | Kontron Holding A.G. | Reducing noise in ultrasonic images |
US4662380A (en) * | 1985-10-31 | 1987-05-05 | General Electric Company | Adaptive time gain compensation system for ultrasound imaging |
US4907156A (en) * | 1987-06-30 | 1990-03-06 | University Of Chicago | Method and system for enhancement and detection of abnormal anatomic regions in a digital image |
US5299577A (en) * | 1989-04-20 | 1994-04-05 | National Fertility Institute | Apparatus and method for image processing including one-dimensional clean approximation |
US5799111A (en) * | 1991-06-14 | 1998-08-25 | D.V.P. Technologies, Ltd. | Apparatus and methods for smoothing images |
DE69119589T2 (de) * | 1991-09-26 | 1996-12-19 | Dornier Medizintechnik | Automatische Optimalisierung der gleichmässigen Intensität eines Bildes für ein Ultraschallabbildungsystem |
US5313948A (en) * | 1991-11-28 | 1994-05-24 | Aloka Co., Ltd. | Ultrasonic diagnostic apparatus |
US5289374A (en) * | 1992-02-28 | 1994-02-22 | Arch Development Corporation | Method and system for analysis of false positives produced by an automated scheme for the detection of lung nodules in digital chest radiographs |
JPH05261095A (ja) * | 1992-03-17 | 1993-10-12 | Toshiba Corp | 超音波診断装置 |
IL102314A0 (en) * | 1992-06-25 | 1993-01-14 | Elscint Ltd | Gray scale windowing |
US5426684A (en) * | 1993-11-15 | 1995-06-20 | Eastman Kodak Company | Technique for finding the histogram region of interest for improved tone scale reproduction of digital radiographic images |
JP2949186B2 (ja) * | 1994-03-18 | 1999-09-13 | 富士通株式会社 | 画像処理方法及び画像処理装置 |
US5594807A (en) * | 1994-12-22 | 1997-01-14 | Siemens Medical Systems, Inc. | System and method for adaptive filtering of images based on similarity between histograms |
US5579768A (en) | 1995-03-21 | 1996-12-03 | Acuson Corporation | Automatic gain compensation in an ultrasound imaging system |
US5933540A (en) * | 1995-05-11 | 1999-08-03 | General Electric Company | Filter system and method for efficiently suppressing noise and improving edge definition in a digitized image |
US5574212A (en) * | 1995-06-14 | 1996-11-12 | Wisconsin Alumni Research Foundation | Automated system and method for testing resolution of ultrasound scanners |
US5841889A (en) * | 1995-12-29 | 1998-11-24 | General Electric Company | Ultrasound image texture control using adaptive speckle control algorithm |
US5647366A (en) * | 1996-09-17 | 1997-07-15 | Siemens Medical Systems, Inc. | Method and system for automatic measurements of doppler waveforms |
US5993392A (en) | 1996-11-05 | 1999-11-30 | Atl Ultrasound, Inc. | Variable compression of ultrasonic image data with depth and lateral scan dimensions |
US5846203A (en) * | 1997-03-27 | 1998-12-08 | Siemens Medical Systems, Inc. | Method and apparatus for noise suppression in a doppler ultrasound system. |
US5954653A (en) | 1997-05-07 | 1999-09-21 | General Electric Company | Method and apparatus for automatically enhancing contrast in projected ultrasound image |
US6050942A (en) * | 1997-07-11 | 2000-04-18 | Atl Ultrasound | Digital scanline signal processor for an ultrasonic diagnostic imaging system |
US5910115A (en) * | 1997-09-22 | 1999-06-08 | General Electric Company | Method and apparatus for coherence filtering of ultrasound images |
US5827942A (en) * | 1997-10-16 | 1998-10-27 | Wisconsin Alumni Research Foundation | System and method for testing imaging performance of ultrasound scanners and other medical imagers |
US5882315A (en) | 1997-12-23 | 1999-03-16 | Acuson Corporation | Ultrasonic imaging method and image for doppler tissue parameters |
US6102859A (en) * | 1998-12-01 | 2000-08-15 | General Electric Company | Method and apparatus for automatic time and/or lateral gain compensation in B-mode ultrasound imaging |
US6120446A (en) | 1998-12-17 | 2000-09-19 | Acuson Corporation | Diagnostic medical ultrasonic imaging system and method with adaptive gain |
US6176828B1 (en) * | 1998-12-24 | 2001-01-23 | General Electric Company | Method and apparatus for optimal data mapping of power doppler images |
US6245016B1 (en) * | 1999-03-12 | 2001-06-12 | General Electric Company | Ultrasound imaging system having post-beamformer signal processing using deconvolution algorithm |
US6142942A (en) * | 1999-03-22 | 2000-11-07 | Agilent Technologies, Inc. | Ultrasound imaging system and method employing an adaptive filter |
-
2001
- 2001-02-23 US US09/791,405 patent/US6579238B1/en not_active Expired - Lifetime
- 2001-04-17 AU AU2001253580A patent/AU2001253580A1/en not_active Abandoned
- 2001-04-17 WO PCT/US2001/012438 patent/WO2001080714A2/en active Application Filing
- 2001-04-17 JP JP2001577820A patent/JP5048903B2/ja not_active Expired - Lifetime
- 2001-04-17 DE DE10196119T patent/DE10196119B4/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
AU2001253580A1 (en) | 2001-11-07 |
WO2001080714A3 (en) | 2002-04-11 |
DE10196119B4 (de) | 2008-07-24 |
WO2001080714A2 (en) | 2001-11-01 |
DE10196119T1 (de) | 2003-06-18 |
JP2004500915A (ja) | 2004-01-15 |
US6579238B1 (en) | 2003-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5048903B2 (ja) | 適応形多次元バックエンドマッピングを有する医用超音波イメージングシステム | |
US6398733B1 (en) | Medical ultrasonic imaging system with adaptive multi-dimensional back-end mapping | |
JP5675069B2 (ja) | 医用診断イメージングシステム上のイメージの利得を適応的に制御するためのシステム | |
US7787680B2 (en) | System and method for processing an image | |
US6733454B1 (en) | Automatic optimization methods and systems for doppler ultrasound imaging | |
US8435180B2 (en) | Gain optimization of volume images for medical diagnostic ultrasonic imaging | |
US6346079B1 (en) | Method and apparatus for adaptive frame-rate adjustment in ultrasound imaging system | |
US6663566B2 (en) | Method and apparatus for automatic control of spectral doppler imaging | |
US9420997B2 (en) | Motion artifact suppression in ultrasound diagnostic imaging | |
US6162176A (en) | Ultrasound color flow display optimization | |
KR20060079838A (ko) | 초음파 이미징 시스템 | |
US6858008B2 (en) | Automatic ultrasound transmit power setting method and system | |
JP2002534185A (ja) | ドプラ超音波における自動的なスペクトル最適化法 | |
US20140066768A1 (en) | Frequency Distribution in Harmonic Ultrasound Imaging | |
WO2000040996A1 (en) | Ultrasound color flow display optimization by adjusting color maps | |
JP5069022B2 (ja) | 超音波撮像で使用するための正確な時間遅延推定の方法及びシステム | |
US6932770B2 (en) | Method and apparatus for ultrasonic imaging | |
US6704437B1 (en) | Noise estimation method and apparatus for noise adaptive ultrasonic image processing | |
JP4481386B2 (ja) | 超音波診断装置 | |
US20050187476A1 (en) | Automatic settings for quantification | |
US8891840B2 (en) | Dynamic steered spatial compounding in ultrasound imaging | |
CN111035410B (zh) | 超声系统和生成图像数据的方法及存储介质 | |
US20220091243A1 (en) | Systems and Methods for Ultrasound Attenuation Coefficient Estimation | |
EP3213109B1 (en) | Method and system for adjusting image gain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101217 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20101228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110121 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20110324 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20110401 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20110419 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20110426 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20110519 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20110526 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20110621 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20110628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110817 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20111117 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20111130 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20111219 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20111227 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20120117 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20120124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120217 |
|
A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A524 Effective date: 20120217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120621 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120720 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150727 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5048903 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |