JP5047078B2 - gas turbine - Google Patents

gas turbine Download PDF

Info

Publication number
JP5047078B2
JP5047078B2 JP2008171501A JP2008171501A JP5047078B2 JP 5047078 B2 JP5047078 B2 JP 5047078B2 JP 2008171501 A JP2008171501 A JP 2008171501A JP 2008171501 A JP2008171501 A JP 2008171501A JP 5047078 B2 JP5047078 B2 JP 5047078B2
Authority
JP
Japan
Prior art keywords
pressure surface
blade
front edge
turbine
suction surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008171501A
Other languages
Japanese (ja)
Other versions
JP2010007650A (en
Inventor
進 若園
雅則 由里
哲 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008171501A priority Critical patent/JP5047078B2/en
Publication of JP2010007650A publication Critical patent/JP2010007650A/en
Application granted granted Critical
Publication of JP5047078B2 publication Critical patent/JP5047078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、特にガスタービンのタービン動翼に用いて好適なタービン翼およびガスタービンに関する。   The present invention relates to a turbine blade and a gas turbine particularly suitable for use in a turbine rotor blade of a gas turbine.

一般に、ガスタービンの動翼は高温ガスにさらされるため、動翼の強度を確保するために、耐熱性を有する材料から形成されている。さらに、熱負荷の高い動翼の前縁部では、動翼内に形成された冷却室(キャビティ)にタービュレータを設けたタービュレータ付き対流冷却や、冷却空気を外部に吹き出すシャワーヘッド冷却孔を設けて行うフィルム冷却などの種々の方法による冷却が行われている(例えば、特許文献1参照。)。
特表平8−505917号公報
In general, a moving blade of a gas turbine is exposed to a high-temperature gas, and is therefore formed of a material having heat resistance to ensure the strength of the moving blade. Furthermore, convection cooling with a turbulator provided with a turbulator in the cooling chamber (cavity) formed in the blade and a shower head cooling hole for blowing cooling air to the outside are provided at the leading edge of the blade with high heat load. Cooling by various methods such as film cooling is performed (for example, see Patent Document 1).
JP-T 8-5055917

しかしながら、近年のガスタービンの高効率化にともなう動翼の周囲を流れるガス温度の高温化により、従来から行われていた動翼の前縁に対する冷却方法では冷却が不足することが予想され、冷却能力の向上が求められている。   However, due to the increase in the temperature of the gas flowing around the moving blades as the efficiency of gas turbines increases in recent years, it is expected that the conventional cooling method for the leading edge of the moving blades will be insufficient. There is a need for improved capabilities.

例えば、動翼の前縁におけるシャワーヘッド冷却孔を設ける領域を広げ、動翼の前縁におけるハブ側、つまり径方向内側の端部までシャワーヘッド冷却孔を形成して、前縁における冷却能力の向上を図る方法が考えられる。   For example, the area where the shower head cooling hole is provided at the leading edge of the moving blade is widened, and the shower head cooling hole is formed up to the hub side at the leading edge of the moving blade, i.e., at the radially inner end. A method for improvement is conceivable.

特に、前縁とハブとの間のフィレット部(接続部)は、熱負荷が高く、かつ、動翼の表面に形成された遮熱コーティング(TBC)が剥がれやすい領域であるため、シャワーヘッド冷却孔を流れる冷却空気による対流冷却により、動翼のメタル温度(金属部分の温度)を所定の範囲に抑えることが望まれている。
言い換えると、上述のTBCが剥がれた領域では、高温ガスが動翼の金属部分と直接接触して、メタル温度が上昇しやすく動翼強度が低下しやすい。この動翼強度の低下を抑制するために、上述のフィレット部の近傍にシャワーヘッド冷却孔を形成することが望まれている。
In particular, the fillet portion (connecting portion) between the leading edge and the hub has a high thermal load and is a region where the thermal barrier coating (TBC) formed on the surface of the moving blade is likely to be peeled off. It is desired to keep the metal temperature of the rotor blade (the temperature of the metal part) within a predetermined range by convection cooling with cooling air flowing through the holes.
In other words, in the region where the TBC is peeled off, the high temperature gas is in direct contact with the metal portion of the blade, and the metal temperature is likely to rise, and the blade strength is likely to be lowered. In order to suppress the decrease in the blade strength, it is desired to form a shower head cooling hole in the vicinity of the fillet portion described above.

しかしながら、シャワーヘッド冷却孔が形成された領域は貫通孔が複数形成されることから、シャワーヘッド冷却孔が形成されない領域と比較して、動翼の強度が低下するおそれがある。特に、前縁におけるハブ側端部(フィレット部)の近傍は、動翼の振動に対する強度を確保する必要があることから、前縁におけるハブ側端部の近傍へのシャワーヘッド冷却孔の形成が困難であるという問題があった。   However, since a plurality of through holes are formed in the region where the shower head cooling hole is formed, the strength of the moving blade may be reduced as compared with a region where the shower head cooling hole is not formed. In particular, the vicinity of the hub side end portion (fillet portion) at the leading edge needs to ensure the strength against vibration of the moving blade, so the shower head cooling hole is formed near the hub side end portion at the leading edge. There was a problem that it was difficult.

その一方で、いわゆる高負荷翼、つまり転向角が大きな動翼においては、前縁に熱応力が集中しやすいため、前縁へのシャワーヘッド冷却孔の形成が困難という問題があった。   On the other hand, a so-called high load blade, that is, a moving blade with a large turning angle, has a problem that it is difficult to form a shower head cooling hole on the leading edge because thermal stress tends to concentrate on the leading edge.

具体的には、転向角が大きな動翼は、その翼断面視において、凹状に湾曲した正圧面(腹側の面)の長さと、凸状に湾曲した負圧面(背側の面)の長さとの間の差が大きくなっている。このような動翼が高温ガスにより加熱されると、転向角が小さな動翼と比較して、正圧面と負圧面との間の熱伸び量の差が大きくなる。そのため、前縁における正圧面側の領域には、この熱伸び量の差による歪み、つまり熱応力が集中しやすい。   Specifically, a moving blade with a large turning angle has a length of a pressure surface (abdominal side) curved in a concave shape and a length of a suction surface (back side surface) curved in a convex shape in the blade cross-sectional view. The difference between is large. When such a moving blade is heated by high-temperature gas, the difference in the amount of thermal elongation between the pressure surface and the suction surface becomes larger than that of a moving blade having a small turning angle. Therefore, distortion due to the difference in the amount of thermal expansion, that is, thermal stress tends to concentrate on the region on the pressure surface side at the leading edge.

このように応力が集中する領域にシャワーヘッド冷却孔などの貫通孔を形成すると、亀裂などの欠陥が発生しやすくなるため、前縁へのシャワーヘッド冷却孔の形成が困難であった。   When a through hole such as a shower head cooling hole is formed in a region where stress is concentrated in this way, defects such as cracks are likely to occur, and it is difficult to form the shower head cooling hole on the front edge.

本発明は、上記の課題を解決するためになされたものであって、高温ガスと接触する翼の信頼性向上を図ることができるタービン翼を備えたガスタービンを提供することを目的とする。 The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a gas turbine including a turbine blade that can improve the reliability of the blade that contacts the high-temperature gas.

上記目的を達成するために、本発明は、以下の手段を提供する。
本発明のガスタービンは、凹状に湾曲した正圧面と、凸状に湾曲した負圧面と、前記正圧面および前記負圧面の端部が接続する前縁および後縁とを有する翼形部と、前記正圧面と前記負圧面との間に延びて前記翼形部の内部を区切り、前記翼形部を冷却する冷却流体が流れる複数の冷却通路を形成する複数の板部と、が設けられ、前記複数の板部のうち、少なくとも前記前縁に最も近い前記板部は、前記負圧面側から前記正圧面側に向かって、その厚さがテーパー状に薄くなっており、前記板部における前記正圧面との接続部は、前記負圧面との接続部よりも剛性が低いタービン翼が設けられていることを特徴とする。
In order to achieve the above object, the present invention provides the following means.
The gas turbine of the present invention includes a pressure surface curved in a concave shape, a suction pressure surface curved in a convex shape, and an airfoil portion having a front edge and a rear edge to which the pressure surface and an end of the suction surface are connected, A plurality of plate portions extending between the pressure surface and the suction surface to divide the inside of the airfoil portion and to form a plurality of cooling passages through which a cooling fluid for cooling the airfoil portion flows; Among the plurality of plate portions, at least the plate portion closest to the front edge is tapered from the suction surface side toward the pressure surface side, and the thickness thereof decreases in a tapered shape. The connecting portion with the positive pressure surface is provided with a turbine blade having lower rigidity than the connecting portion with the negative pressure surface.

本発明によれば、前縁に最も近い板部による圧面の拘束は、圧面の拘束よりも弱くなるため、圧面は変形しやすくなる。そのため、高温ガスなどによりタービン翼が加熱された際、正圧面における熱伸び量と負圧面における熱伸び量との間に差があっても、圧面が変形つまり伸びやすいため、前縁における応力集中が緩和される。
また、板部の厚さを負圧面から正圧面に向かってテーパー状に薄くすることにより、板部における正圧面との接続部は、確実に負圧面との接続部よりも剛性が低くなる。
そして、これらにより、高温ガスと接触するタービン翼の信頼性向上を図ることができる。
According to the present invention, the pressure surface restraint by the plate portion closest to the front edge is weaker than the suction surface restraint, so that the pressure surface is easily deformed. Therefore, when the turbine blades are heated by high-temperature gas, etc., even if there is a difference between the amount of thermal elongation on the pressure surface and the amount of heat elongation on the suction surface, the pressure surface is easily deformed, that is, the stress at the leading edge. Concentration is eased.
Further, by reducing the thickness of the plate portion in a tapered shape from the suction surface toward the pressure surface, the connection portion of the plate portion with the pressure surface is surely lower in rigidity than the connection portion with the suction surface.
And these can improve the reliability of the turbine blade in contact with the high-temperature gas.

上記発明においては、前記正圧面における前記前縁から、該前縁に最も近い前記板部との接続部までの距離と、前記負圧面における前記前縁から、該前縁に最も近い前記板部との接続部までの距離とが略等しいことが望ましい。 In the above invention, the distance from the front edge on the pressure surface to the connecting portion with the plate portion closest to the front edge, and the plate portion closest to the front edge from the front edge on the suction surface It is desirable that the distance to the connection part is substantially equal.

本発明によれば、タービン翼が加熱された際、正圧面における前縁から接続部までの熱伸び量と、負圧面における前縁から接続部までの熱伸び量とが略等しくなるため、前縁における応力集中が緩和される。   According to the present invention, when the turbine blade is heated, the amount of thermal elongation from the leading edge to the connection portion on the pressure surface and the amount of thermal elongation from the leading edge to the connection portion on the suction surface become substantially equal. Stress concentration at the edge is relaxed.

本発明のガスタービンによれば、タービン翼の板部による圧面の拘束は圧面の拘束よりも弱く、圧面が変形つまり伸びやすいため、前縁における応力集中が緩和されることから、高温ガスと接触する翼の信頼性向上を図ることができるという効果を奏する。 According to the gas turbine of the present invention, restraint of the pressure side by the plate portion of the turbine blade weaker than constraint on the suction surface, since the positive pressure surface is easily deformed That elongation, since the stress concentration at the leading edge is reduced, high temperature There is an effect that the reliability of the blade in contact with the gas can be improved.

本発明のガスタービンによれば、タービン翼が加熱された際、正圧面における前縁から接続部までの熱伸び量と、負圧面における前縁から接続部までの熱伸び量とが略等しくなるため、高温ガスと接触する翼の信頼性向上を図ることができるという効果を奏する。 According to the gas turbine of the present invention, when the turbine blade is heated, and the thermal extension amount from the leading edge to the connecting portion of the pressure side, it becomes substantially equal to the thermal extension amount from the leading edge to the connecting portion of the suction surface Therefore, there is an effect that it is possible to improve the reliability of the blade in contact with the high temperature gas.

この発明の一実施形態に係るガスタービンのタービン動翼について、図1および図2を参照して説明する。
図1は、本実施形態に係るタービン動翼の翼形などを説明する断面視図である。図2は、図1のタービン動翼の概略構成を説明する斜視図である。
なお、本実施形態では、本願の発明にかかるタービン翼を、ガスタービンにおけるタービン部の1段動翼に適用して説明するが、1段動翼に限られることなく他の動翼に適用してもよく、特に限定するものではない。
さらに、ガスタービンおよびタービン部としては公知の構成を用いることができ、特に限定するものではない。
A turbine rotor blade of a gas turbine according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 is a cross-sectional view for explaining the blade shape and the like of the turbine rotor blade according to the present embodiment. FIG. 2 is a perspective view illustrating a schematic configuration of the turbine rotor blade of FIG.
In the present embodiment, the turbine blade according to the invention of the present application is described as being applied to a first stage blade in a turbine section of a gas turbine. However, the present invention is not limited to a single stage blade and is applied to other blades. There is no particular limitation.
Furthermore, a well-known structure can be used as a gas turbine and a turbine part, and it does not specifically limit.

タービン動翼(タービン翼)1には、図1および図2に示すように、翼取付部2と、プラットフォーム3と、翼形部4と、が設けられている。   As shown in FIG. 1 and FIG. 2, the turbine rotor blade (turbine blade) 1 is provided with a blade attachment portion 2, a platform 3, and an airfoil portion 4.

翼取付部2は、図2に示すように、径方向内側(図2の下側)に向かって延び、タービンのロータ(図示せず)に対して着脱可能に嵌め合わされるものであり、タービン動翼1をロータに取り付ける際に用いられる部分である。
なお、翼取付部2の形状としては、シャンク21の端部にいわゆるクリスマスツリー形状を設けた形状などの公知の形状を採用することができ、特に限定するものではない。
As shown in FIG. 2, the blade attachment portion 2 extends radially inward (lower side in FIG. 2) and is detachably fitted to a rotor (not shown) of the turbine. It is a part used when attaching the moving blade 1 to a rotor.
In addition, as a shape of the wing | blade attachment part 2, well-known shapes, such as the shape which provided the so-called Christmas tree shape in the edge part of the shank 21, can be employ | adopted and it does not specifically limit.

シャンク21は、図2に示すように、プラットフォーム3から径方向内側、つまりロータ側に向かって延びる略角柱状に形成された部材である。言い換えると、プラットフォーム3とロータとの間に配置された部材である。   As shown in FIG. 2, the shank 21 is a member formed in a substantially prismatic shape extending from the platform 3 in the radial direction, that is, toward the rotor. In other words, it is a member arranged between the platform 3 and the rotor.

プラットフォーム3は、図2に示すように、シャンク21における径方向外側の端部に配置された略板状の部材である。   As shown in FIG. 2, the platform 3 is a substantially plate-like member that is disposed at the radially outer end of the shank 21.

翼形部4は、図2に示すように、プラットフォーム3における外周面(図2における上側の面)から、径方向外側(図2の上側)に向かって延びる部材である。
本実施形態では、タービン動翼1がいわゆる高負荷翼、つまり転向角が大きな動翼である場合に適用して説明する。
ここで、転向角が大きな動翼としては、例えば転向角が約110°以上の動翼を例示することができる。
As shown in FIG. 2, the airfoil 4 is a member that extends from the outer peripheral surface of the platform 3 (the upper surface in FIG. 2) toward the radially outer side (the upper side in FIG. 2).
In the present embodiment, description will be made by applying to a case where the turbine rotor blade 1 is a so-called high-load blade, that is, a rotor blade having a large turning angle.
Here, as a moving blade having a large turning angle, for example, a moving blade having a turning angle of about 110 ° or more can be exemplified.

翼形部4には、図1に示すように、凹状の曲面である正圧面41と、凸状の曲面である負圧面42と、タービン部を流れる高温流体における上流側(図1の左側)の端部である前縁43と、下流側(図1の右側)の端部である後縁44と、が設けられている。   As shown in FIG. 1, the airfoil portion 4 includes a positive pressure surface 41 that is a concave curved surface, a negative pressure surface 42 that is a convex curved surface, and an upstream side of the high-temperature fluid flowing through the turbine portion (left side in FIG. 1). A front edge 43 that is an end of the rear edge 44 and a rear edge 44 that is an end on the downstream side (the right side in FIG. 1) are provided.

翼形部4の内部には、さらに、正圧面41と負圧面42との間に延びて翼形部4の内部を区切る複数のリブ(板部)45と、翼形部4を冷却する冷却空気が流れる冷却通路46と、が設けられている。   Inside the airfoil portion 4, a plurality of ribs (plate portions) 45 extending between the pressure surface 41 and the suction surface 42 to divide the inside of the airfoil portion 4, and cooling for cooling the airfoil portion 4. And a cooling passage 46 through which air flows.

リブ45は、図1に示すように、正圧面41や負圧面42と交差する方向に延びる略板状の部材であり、前縁43から後縁44に向かって、間隔をあけて複数設けられた部材である。
複数のリブ45のうち、最も前縁43側に配置された第1リブ45Aは、負圧面42から正圧面41に向かって、その板厚がテーパー状に薄くなるように形成された略板状の部材である。
As shown in FIG. 1, the rib 45 is a substantially plate-like member that extends in a direction intersecting the positive pressure surface 41 and the negative pressure surface 42, and a plurality of ribs 45 are provided from the front edge 43 toward the rear edge 44 at intervals. It is a member.
Among the plurality of ribs 45, the first rib 45 </ b> A disposed on the most front edge 43 side is a substantially plate shape formed such that the plate thickness decreases in a tapered shape from the negative pressure surface 42 toward the positive pressure surface 41. It is a member.

さらに、第1リブ45Aと正圧面41との接続部47Aから、前縁43までの距離L1と、第1リブ45Aと負圧面42との接続部47Bから、前縁43までの距離L2と、が略等しい長さとされている。   Furthermore, the distance L1 from the connection portion 47A between the first rib 45A and the positive pressure surface 41 to the front edge 43, the distance L2 from the connection portion 47B between the first rib 45A and the negative pressure surface 42 to the front edge 43, Are approximately equal in length.

冷却通路46は、翼形部4の内部に形成された空間であって、リブ45により区切られた空間である。冷却通路46の内部には、翼形部4の正圧面41、負圧面42、前縁43および後縁44などを冷却する冷却空気(冷却流体)が供給されている。   The cooling passage 46 is a space formed inside the airfoil portion 4 and is a space partitioned by the ribs 45. Cooling air (cooling fluid) that cools the pressure surface 41, the suction surface 42, the front edge 43, the rear edge 44, and the like of the airfoil 4 is supplied to the inside of the cooling passage 46.

次に、上記の構成からなるタービン動翼1の前縁43における応力集中の緩和について説明する。
タービン動翼1を有するガスタービンが運転されている間は、タービン動翼1の周囲に高温ガスが流れ、タービン動翼1の温度が上昇する。
Next, relaxation of stress concentration at the leading edge 43 of the turbine rotor blade 1 having the above-described configuration will be described.
While the gas turbine having the turbine blade 1 is in operation, the high-temperature gas flows around the turbine blade 1 and the temperature of the turbine blade 1 rises.

すると、タービン動翼1の正圧面41および負圧面42は、図1に示すように、それぞれ熱膨張によりその長さが長くなる。正圧面41および負圧面42の熱伸び量は、構成する材料が同じつまり線膨張係数が同じであるため、正圧面41および負圧面42の長さに影響される。
本実施形態のように、転向角が大きなタービン動翼1の場合には、正圧面41よりも負圧面42が長く、その長さに差があるため、正圧面41よりも負圧面42の熱伸び量が長く、その熱伸び量に差が生じる。
Then, the pressure surface 41 and the suction surface 42 of the turbine rotor blade 1 are each increased in length by thermal expansion, as shown in FIG. The amount of thermal expansion of the pressure surface 41 and the suction surface 42 is affected by the length of the pressure surface 41 and the suction surface 42 because the constituent materials are the same, that is, the linear expansion coefficient is the same.
In the case of the turbine rotor blade 1 having a large turning angle as in the present embodiment, the suction surface 42 is longer than the pressure surface 41 and there is a difference in the length thereof, so that the heat of the suction surface 42 is higher than the pressure surface 41. The elongation amount is long and a difference occurs in the thermal elongation amount.

第1リブ45Aは、負圧面42側の接続部47Bよりも正圧面41側の接続部47Aの幅方向の寸法がく形成されているため、接続部47A側の剛性が接続部47B側の剛性よりも低くなっている。そのため、第1リブ45Aは、比較すると、負圧面42の熱伸びを拘束し、正圧面41の熱伸びを許容する。
そのため、正圧面41と負圧面42とが接合される前縁43の近傍における正圧面41と負圧面42との熱伸び量差が軽減される。
The first rib 45A is the width dimension of the connecting portion 47A of the positive pressure surface 41 side is thin rather than the connecting portion 47B of the suction surface 42 side, the rigidity of the connection portion 47A side of the connecting portion 47B side It is low Kuna' than rigidity. Therefore, the first rib 45 </ b> A restrains the thermal expansion of the suction surface 42 and allows the thermal expansion of the pressure surface 41 in comparison.
Therefore, the difference in thermal elongation between the positive pressure surface 41 and the negative pressure surface 42 in the vicinity of the front edge 43 where the positive pressure surface 41 and the negative pressure surface 42 are joined is reduced.

さらに、接続部47Aから前縁43までの距離L1と、接続部47Bから前縁43までの距離L2とが略等しい長さとされているため、正圧面41と負圧面42とが接合される前縁43の近傍における正圧面41と負圧面42との熱伸び量差がさらに軽減される。   Further, since the distance L1 from the connecting portion 47A to the front edge 43 and the distance L2 from the connecting portion 47B to the front edge 43 are substantially equal to each other, before the positive pressure surface 41 and the negative pressure surface 42 are joined together. The difference in thermal elongation between the pressure surface 41 and the suction surface 42 in the vicinity of the edge 43 is further reduced.

上述のように、前縁43の近傍における熱伸び量差が軽減されるため、熱伸び量差に起因する応力集中が緩和される。   As described above, since the difference in thermal elongation near the front edge 43 is reduced, stress concentration caused by the difference in thermal elongation is reduced.

上記の構成によれば、第1リブ45Aの厚さを負圧面42から正圧面41に向かってテーパー状に薄くすることにより、第1リブ45Aによる正圧面41の拘束は、負圧面42の拘束よりも弱くなり、正圧面41は変形しやすくなる。そのため、高温ガスなどによりタービン動翼1が加熱された際、正圧面41における熱伸び量と負圧面42における熱伸び量との間に差があっても、正圧面41負圧面42における熱伸びに追従して変形しやすくなっているため、前縁43における応力集中が緩和される。 According to the above configuration, by reducing the thickness of the first rib 45A from the negative pressure surface 42 side in a tapered shape toward the positive pressure surface 41 side, restraining of the pressure surface 41 by the first rib 45A is suction surface 42 Therefore, the positive pressure surface 41 is easily deformed. Therefore, when the turbine rotor blade 1 is heated by a high-temperature gas or the like, even if there is a difference between the thermal elongation amount at the pressure surface 41 and the thermal elongation amount at the suction surface 42, the pressure surface 41 is heated at the suction surface 42 . Since the deformation easily follows the elongation, the stress concentration at the leading edge 43 is alleviated.

その結果、前縁43の付け根における構造上の強度に余裕ができるため、翼形部4の内部の冷却通路46から冷却用空気を供給する貫通孔、いわゆるシャワーヘッド冷却孔を前縁43の付け根まで形成することができる。これにより、タービン動翼1の冷却性能の向上を図ることができ、特に高温の作動流体に対する強度上の信頼性向上を図ることができる。 As a result, since the structural strength at the base of the leading edge 43 can be afforded, a through hole for supplying cooling air from the cooling passage 46 inside the airfoil portion 4, a so-called shower head cooling hole is provided at the root of the leading edge 43 . Can be formed. Thereby, the cooling performance of the turbine rotor blade 1 can be improved, and in particular, the reliability in strength against a high-temperature working fluid can be improved.

さらに、接続部47Aから前縁43までの距離L1と、接続部47Bから前縁43までの距離L2と、が略等しい長さとされているため、タービン動翼1が加熱された際、正圧面41における前縁43から接続部47Aまでの熱伸び量と、負圧面42における前縁43から接続部47Bまでの熱伸び量とが略等しくなるため、前縁43の正圧面41側における応力集中が緩和される。   Furthermore, since the distance L1 from the connecting portion 47A to the front edge 43 and the distance L2 from the connecting portion 47B to the front edge 43 are substantially equal in length, when the turbine rotor blade 1 is heated, the pressure surface 41, the amount of thermal elongation from the leading edge 43 to the connecting portion 47A and the amount of thermal elongation from the leading edge 43 to the connecting portion 47B of the suction surface 42 are substantially equal, so that the stress concentration on the pressure surface 41 side of the leading edge 43 Is alleviated.

本発明の一実施形態に係るタービン動翼の翼形などを説明する断面視図である。It is a sectional view explaining the airfoil etc. of the turbine rotor blade concerning one embodiment of the present invention. 図1のタービン動翼の概略構成を説明する斜視図である。It is a perspective view explaining schematic structure of the turbine rotor blade of FIG.

符号の説明Explanation of symbols

1 タービン動翼(タービン翼)
4 翼形部
41 正圧面
42 負圧面
43 前縁
44 後縁
45 リブ(板部)
46 冷却通路
47A,47B 接続部
L1,L2 距離
1 Turbine blade (turbine blade)
4 Airfoil part 41 Positive pressure surface 42 Negative pressure surface 43 Front edge 44 Rear edge 45 Rib (plate part)
46 Cooling passage 47A, 47B Connection L1, L2 distance

Claims (2)

凹状に湾曲した正圧面と、凸状に湾曲した負圧面と、前記正圧面および前記負圧面の端部が接続する前縁および後縁とを有する翼形部と、
前記正圧面と前記負圧面との間に延びて前記翼形部の内部を区切り、前記翼形部を冷却する冷却流体が流れる複数の冷却通路を形成する複数の板部と、
が設けられ、
前記複数の板部のうち、少なくとも前記前縁に最も近い前記板部は、前記負圧面側から前記正圧面側に向かって、その厚さがテーパー状に薄くなっており、
前記板部における前記正圧面との接続部は、前記負圧面との接続部よりも剛性が低いタービン翼が設けられていることを特徴とするガスタービン
An airfoil having a pressure surface curved in a concave shape, a suction surface curved in a convex shape, and a leading edge and a trailing edge to which the pressure surface and an end of the suction surface are connected;
A plurality of plate portions extending between the pressure surface and the suction surface to divide the inside of the airfoil portion and form a plurality of cooling passages through which a cooling fluid for cooling the airfoil portion flows;
Is provided,
Of the plurality of plate portions, at least the plate portion closest to the front edge is tapered from the suction surface side toward the pressure surface side, and the thickness thereof is tapered.
Connecting portions between the pressure surface of the plate portion, the gas turbine rigidity than connection portion between the negative pressure surface, characterized in that the lower plate turbine blades is provided.
前記正圧面における前記前縁から、該前縁に最も近い前記板部との接続部までの距離と、
前記負圧面における前記前縁から、該前縁に最も近い前記板部との接続部までの距離とが略等しいことを特徴とする請求項1記載のガスタービン
A distance from the front edge of the positive pressure surface to the connecting portion with the plate portion closest to the front edge ;
The gas turbine according to claim 1, wherein a distance from the front edge on the suction surface to a connection portion with the plate portion closest to the front edge is substantially equal.
JP2008171501A 2008-06-30 2008-06-30 gas turbine Active JP5047078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008171501A JP5047078B2 (en) 2008-06-30 2008-06-30 gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008171501A JP5047078B2 (en) 2008-06-30 2008-06-30 gas turbine

Publications (2)

Publication Number Publication Date
JP2010007650A JP2010007650A (en) 2010-01-14
JP5047078B2 true JP5047078B2 (en) 2012-10-10

Family

ID=41588418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008171501A Active JP5047078B2 (en) 2008-06-30 2008-06-30 gas turbine

Country Status (1)

Country Link
JP (1) JP5047078B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174135B1 (en) * 1999-06-30 2001-01-16 General Electric Company Turbine blade trailing edge cooling openings and slots
US6398501B1 (en) * 1999-09-17 2002-06-04 General Electric Company Apparatus for reducing thermal stress in turbine airfoils
JP2006242050A (en) * 2005-03-02 2006-09-14 Mitsubishi Heavy Ind Ltd Blade cooling structure for gas turbine

Also Published As

Publication number Publication date
JP2010007650A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
EP1927727B1 (en) Turbine blade with cooled blade tip and method for cooling the said blade
EP1870561B1 (en) Leading edge cooling of a gas turbine component using staggered turbulator strips
EP2154333B1 (en) Airfoil and corresponding turbine assembly
US7862300B2 (en) Turbomachinery blade having a platform relief hole
JP4902157B2 (en) Turbine blade with a groove at the tip
US8057177B2 (en) Turbine blade tip shroud
US8348612B2 (en) Turbine blade tip shroud
US8668453B2 (en) Cooling system having reduced mass pin fins for components in a gas turbine engine
US7946816B2 (en) Turbine blade tip shroud
US20140023497A1 (en) Cooled turbine blade tip shroud with film/purge holes
EP2374998B1 (en) Turbine bucket having radial cooling holes
US7845907B2 (en) Blade cooling passage for a turbine engine
US7946817B2 (en) Turbine blade tip shroud
US10577936B2 (en) Mateface surfaces having a geometry on turbomachinery hardware
JP2009047177A (en) Gas turbine moving blade having platform and method for forming same
US20090180894A1 (en) Turbine blade tip shroud
EP3318717B1 (en) Undercut on airfoil coversheet support member
KR20170128127A (en) Intermediate central passage spanning outer walls aft of airfoil leading edge passage
US20110038708A1 (en) Turbine endwall cooling arrangement
US10119406B2 (en) Blade with stress-reducing bulbous projection at turn opening of coolant passages
JP2013503289A (en) Cooling of gas turbine elements designed as rotor disks or turbine blades
CN105683505B (en) Turbine blade or vane with central blow-out at the trailing edge
JP5047078B2 (en) gas turbine
KR20190083974A (en) Method of forming cooling passage for turbine component with cap element
US20160298465A1 (en) Gas turbine engine component cooling passage with asymmetrical pedestals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5047078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350