JP5046075B2 - Glass article molding method and molding apparatus - Google Patents

Glass article molding method and molding apparatus Download PDF

Info

Publication number
JP5046075B2
JP5046075B2 JP2005325174A JP2005325174A JP5046075B2 JP 5046075 B2 JP5046075 B2 JP 5046075B2 JP 2005325174 A JP2005325174 A JP 2005325174A JP 2005325174 A JP2005325174 A JP 2005325174A JP 5046075 B2 JP5046075 B2 JP 5046075B2
Authority
JP
Japan
Prior art keywords
molding
chamber
internal space
glass
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005325174A
Other languages
Japanese (ja)
Other versions
JP2007131475A (en
Inventor
衛 窪坂
隆行 野田
高志 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2005325174A priority Critical patent/JP5046075B2/en
Publication of JP2007131475A publication Critical patent/JP2007131475A/en
Application granted granted Critical
Publication of JP5046075B2 publication Critical patent/JP5046075B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガラス物品の成形方法及び成形装置に係り、詳しくは、一または複数の成形凹部を有する成形型にガラス製素材を載置して、負圧による吸引力を利用して一または複数の凹部が形成されたガラス物品を成形する方法及び装置に関する。   The present invention relates to a method and apparatus for molding a glass article. More specifically, the present invention relates to a glass material placed on a molding die having one or a plurality of molding recesses, and one or more using a suction force due to negative pressure. The present invention relates to a method and an apparatus for forming a glass article having a concave portion.

近年においては、ガラス製容器或いはイメージセンサ用カバーガラスや液晶バックライト用ガラス等のように一または複数の凹部を有するガラス物品を製作する手法として、平板状のガラス板からなるガラス製素材を加熱して軟化させ、負圧により成形型の成形凹部になじませながら変形させ且つ固化する手法が採用されるに至っている。   In recent years, as a method for producing a glass article having one or a plurality of recesses such as a glass container or a cover glass for an image sensor or a glass for a liquid crystal backlight, a glass material made of a flat glass plate is heated. Thus, a method of softening and deforming and solidifying while conforming to a molding concave portion of a mold by a negative pressure has been adopted.

その一例として、例えば下記の特許文献1によれば、加熱炉(電気炉チャンバ)の底部に、上面が凹凸の成形面とされ且つ多数の貫通孔(通気孔)が形成された成形型を固定すると共に、この成形型に板ガラスを載せて加熱し、貫通孔を通じて成形面上に負圧を作用させることにより、板ガラスを成形面の凹凸に倣う形状に成形する手法が開示されている。   As an example, according to Patent Document 1 below, for example, a molding die having a molding surface with an uneven upper surface and a large number of through holes (ventilation holes) is fixed to the bottom of a heating furnace (electric furnace chamber). In addition, a technique is disclosed in which a plate glass is placed on the mold and heated, and a negative pressure is applied to the molding surface through a through hole to form the plate glass into a shape that follows the irregularities of the molding surface.

この場合、上記の成形型に形成された多数の貫通孔は、成形型の底部であって加熱炉の底壁に形成された座ぐり部で合流すると共に、この座ぐり部が、ロータリーポンプに連結された吸引管に接続されている。したがって、ロータリーポンプが作動することにより、吸引管を通じて座ぐり部に負圧が発生し、この負圧が更に多数の貫通孔を通じて成形型の成形面上に作用することになる。   In this case, the large number of through holes formed in the mold are joined at the counterbore formed at the bottom of the mold and on the bottom wall of the heating furnace, and the counterbore is connected to the rotary pump. It is connected to a connected suction tube. Accordingly, when the rotary pump is operated, a negative pressure is generated in the counterbore portion through the suction pipe, and this negative pressure acts on the molding surface of the mold through a large number of through holes.

また、特許文献2の図6によれば、板ガラスとの接触面に凹部が形成された金型の上に軟化点以上に加熱された板ガラスを載せ、板ガラスと凹部とで囲まれる空間を真空に引き、板ガラスを金型の凹部に吸引して成形した直後に、電極を取り付けるための取付孔を設け、この板ガラスを炉内に入れて徐冷することが開示されている。   According to FIG. 6 of Patent Document 2, a plate glass heated to a softening point or higher is placed on a mold having a recess formed on the contact surface with the plate glass, and the space surrounded by the plate glass and the recess is evacuated. It is disclosed that immediately after forming a glass sheet by drawing and sucking the glass sheet into a recess of the mold, an attachment hole for attaching an electrode is provided, and this glass sheet is placed in a furnace and gradually cooled.

この場合、上記の金型には複数の凹部に通じる複数の貫通孔が形成され、これらの貫通孔は、金型の背面を覆うカバーの内部空間で合流すると共に、このカバーの内部空間は、配管及びバルブを介してロータリーポンプに連結されている。したがって、ロータリーポンプによりバルブ及び配管を介してカバーの内部空間の空気を吸引し、且つ貫通孔を介して金型の凹部内を真空に引くことにより、板ガラスが金型の成形面の形状に真空成形される。   In this case, a plurality of through holes that lead to the plurality of recesses are formed in the mold, and these through holes merge in the internal space of the cover that covers the back surface of the mold, and the internal space of the cover is It is connected to a rotary pump through piping and valves. Therefore, the plate glass is evacuated to the shape of the molding surface of the mold by sucking the air in the inner space of the cover through a valve and piping by a rotary pump and drawing the inside of the mold recess through a through hole. Molded.

特開平4−275930号公報JP-A-4-275930 特開平11−204035号公報(図6)JP-A-11-204035 (FIG. 6)

ところで、上記の特許文献1に開示された板ガラスの成形装置によれば、多数の貫通孔が合流している座ぐり部の上端開口部全域を、成形型の底面が覆っていることにより、座ぐり部は加熱炉の内部空間から遮断された状態にある。詳述すると、成形型の上に板ガラスを載せた状態の下では、成形面の凹部と板ガラスの裏面とで囲まれる成形空間から多数の貫通孔を介して座ぐり部に至る全空間が、加熱炉の内部空間から完全に遮断された状態となる。   By the way, according to the sheet glass forming apparatus disclosed in Patent Document 1, the bottom surface of the forming die covers the entire upper end opening of the counterbore part where a large number of through-holes merge. The bore is in a state of being cut off from the internal space of the heating furnace. In detail, under the state where the plate glass is placed on the mold, the entire space from the forming space surrounded by the concave portion of the forming surface and the back surface of the plate glass to the counterbore portion through the many through holes is heated. It is in a state of being completely cut off from the interior space of the furnace.

このため、加熱炉の内部空間が板ガラスを軟化させるに足る高温状態となっても、座ぐり部の温度は相対的に低い状態に維持され、したがって座ぐり部に貫通孔を介して連通している板ガラス裏面側の成形空間も相対的に低温状態に維持される。このように、軟化している板ガラスの表面側空間が加熱により高温となっているのに対して、該板ガラスの裏面側の成形空間が低温であれば、成形空間に負圧が未だ発生していない段階であっても、上記両空間の気圧差に起因して、板ガラスが成形空間側に撓む変形が生じる。   For this reason, even if the internal space of the heating furnace is in a high temperature state sufficient to soften the plate glass, the temperature of the counterbore part is maintained at a relatively low state, and therefore, the counterbore part communicates with the counterbore through the through hole. The forming space on the back side of the plate glass is also maintained at a relatively low temperature. As described above, when the space on the front side of the softened glass sheet is heated to a high temperature, if the molding space on the back surface side of the glass sheet is low in temperature, negative pressure is still generated in the molding space. Even if there is no stage, due to the pressure difference between the two spaces, the glass plate is deformed to be bent toward the forming space.

この場合、特殊な材質のものを除外すれば板ガラスは、多量の熱線を透過させる特性を有しているため、上記のように成形型に板ガラスを載せて加熱する手法では、その加熱の過程において、板ガラスよりも成形型の方が先に加熱される傾向にあり、したがって板ガラスは成形型から熱の供給を受けて軟化温度に達することとなる。このような現象に鑑みれば、板ガラスは、先ず成形型との接触部が軟化状態に達するのに対して、成形型との非接触部は未だ軟化状態に達することができず、このため板ガラスには、軟化状態となった部分とそうでない部分とが混在するという事態を招く。   In this case, if a special glass is excluded, the plate glass has a characteristic of transmitting a large amount of heat rays. Therefore, in the method of heating the plate glass on the mold as described above, in the heating process, The mold tends to be heated earlier than the plate glass. Therefore, the plate glass is supplied with heat from the mold and reaches the softening temperature. In view of such a phenomenon, the plate glass first reaches the softened state of the contact portion with the mold, whereas the non-contact portion with the mold cannot yet reach the softened state. Causes a situation in which a softened part and a non-soft part are mixed.

そして、このように不均一に軟化状態となった板ガラスに、上記両空間の気圧差に起因する窪み変形が生じた場合には、軟化の進んでいる部分のみが極度に変形して、最終的に本来の目的とする形状を得る上で弊害となるばかりでなく、軟化の進んでいる部分のみに不当な伸びが生じて、均等な肉厚分布を得ることが極めて困難となる。尚、このような問題に対しては、加熱速度(昇温速度)を遅くして板ガラスの軟化状態を均一化することが考えられるが、このような単純な手法では、生産性の著しい低下等の致命的な問題を招くばかりでなく、板ガラスの自重による窪み変形等が生じることと相俟って最終形状に悪影響を及ぼす余計な変形が依然として生じ得ることとなる。   And, when the dent deformation resulting from the pressure difference between the two spaces occurs in the plate glass softened in a non-uniform manner in this way, only the softened part is extremely deformed and finally In addition to being an adverse effect in obtaining the original target shape, unreasonable elongation occurs only in the softened part, and it is extremely difficult to obtain a uniform thickness distribution. For such a problem, it is conceivable to make the softened state of the plate glass uniform by slowing the heating rate (temperature increase rate). However, with such a simple method, the productivity is significantly reduced. In addition to causing a fatal problem, an additional deformation that adversely affects the final shape may still occur in combination with the occurrence of a depression deformation due to the weight of the plate glass.

また、上記の特許文献2に開示された成形方法によれば、500℃程度に加熱された金型の上に、軟化点以上の温度(略900℃)に加熱された板ガラスを載せ、金型の凹部内を真空引きするものであるため、板ガラスを金型の上に載せた時点で、板ガラスの金型との接触部が低温になるのに対して、非接触部が高温に維持される。したがって、この場合にも、板ガラスの自重による窪み変形等が生じることによる不具合の発生確率が高くなると共に、板ガラスの軟化の度合いが接触部付近と非接触部付近とで相違することに起因して、肉厚分布が不均一となる。   Further, according to the molding method disclosed in Patent Document 2, a plate glass heated to a temperature higher than the softening point (approximately 900 ° C.) is placed on a mold heated to about 500 ° C. Since the inside of the concave portion of the plate is evacuated, when the plate glass is placed on the mold, the contact portion with the plate glass mold becomes low temperature, whereas the non-contact portion is maintained at high temperature. . Therefore, in this case as well, the probability of occurrence of defects due to depression deformation due to the weight of the plate glass is increased, and the degree of softening of the plate glass is different between the vicinity of the contact portion and the vicinity of the non-contact portion. , Wall thickness distribution is non-uniform.

しかも、この成形方法は、板ガラスを金型の上に載せて真空引きする成形工程が、加熱炉等の炉内で行われるわけではないので、成形時における真空引きの前段階で、板ガラスの表面側空間と、その裏面側の凹部により囲まれる空間とについて、適切な温度管理は何らなされていない。このため、上記両空間に不当な気圧差が生じるおそれがあり、この気圧差によっても、上記のように軟化の度合いが不均一な板ガラスに窪み変形が生じる確率が高くなることから、既述の場合と同様に、均等な肉厚分布を得ることが極めて困難となる。   Moreover, in this molding method, since the molding process of placing the plate glass on the mold and evacuating is not performed in a furnace such as a heating furnace, the surface of the sheet glass is in the stage before evacuation at the time of molding. Appropriate temperature control is not performed for the side space and the space surrounded by the concave portion on the back surface side. For this reason, there is a possibility that an unreasonable air pressure difference may occur between the two spaces, and this air pressure difference also increases the probability that the dent deformation occurs in the plate glass having the non-uniform degree of softening as described above. As in the case, it is extremely difficult to obtain an even thickness distribution.

本発明は、上記事情に鑑みなされたものであり、板ガラス等のガラス製素材を加熱軟化させた状態で負圧を作用させることにより目的形状に成形するに際して、負圧を作用させる前段階でガラス製素材に不当な変形が生じることを回避しつつ、肉厚分布が均一なガラス物品を成形することを技術的課題とする。   The present invention has been made in view of the above circumstances, and in forming a target shape by applying a negative pressure in a state where a glass material such as plate glass is heated and softened, the glass is formed in a stage before applying the negative pressure. An object of the present invention is to form a glass article having a uniform wall thickness distribution while avoiding undue deformation of the manufactured material.

記技術的課題を解決するためになされた本発明に係る方法は、加熱炉の内部空間に、一または複数の成形凹部と該成形凹部の内側に通じる通気孔とが形成された成形型を配備し、且つ、前記成形凹部の上を覆うようにガラス製素材を成形型に載置した状態で、前記成形凹部とガラス製素材の裏面とで囲まれる成形空間に前記通気孔を通じて負圧を作用させることにより、一または複数の凹部が形成されたガラス物品を成形する方法において、前記成形型の底部に、前記通気孔に通じ且つ前記成形型の底面の全域または略全域を下方より覆うチャンバを装着すると共に、該チャンバの一部または全部を前記加熱炉の内部空間に位置させ、且つ前記加熱炉の内部空間及び前記チャンバの内部空間を加熱した後に、該チャンバの内部空間に負圧を発生させることに特徴づけられる。 The method according to the present invention has been made to solve the above SL technical problem, the interior space of the heating furnace, a mold and the vent hole is formed leading to the inside of one or more shaped recesses and the shaped recesses In a state where the glass material is placed on the mold so as to cover the molding recess, a negative pressure is applied to the molding space surrounded by the molding recess and the back surface of the glass material through the vent hole. In the method of forming a glass article in which one or a plurality of recesses are formed by acting, a chamber that communicates with the vent hole at the bottom of the mold and covers the entire or substantially entire area of the bottom surface of the mold from below. And after placing a part or all of the chamber in the internal space of the heating furnace and heating the internal space of the heating furnace and the internal space of the chamber, a negative pressure is applied to the internal space of the chamber. Characterized in that to produce.

このような構成によれば、成形型の底部に装着され且つ成形空間に通気孔を介して通じるチャンバは、その一部または全部が加熱炉の内部に位置しているので、チャンバの内部空間は、加熱炉内の熱気によって加熱される。したがって、チャンバの内部空間の温度は、加熱炉の内部空間の温度つまりガラス製素材の表面側空間の温度と同等になり得る。これにより、チャンバの内部空間に通じているガラス製素材の裏面側の成形空間と、ガラス製素材の表面側空間との温度差が極めて小さくなり、これに伴ってその両空間の気圧差も極めて小さくなる。その結果、加熱炉の内部空間で、成形凹部の上を覆うように成形型に載置されたガラス製素材が加熱される過程(負圧による吸引が開始されるまでの過程)においては、ガラス製素材に上記の気圧差に起因する不当な窪み変形が生じ難くなる。換言すれば、ガラス製素材の軟化状態が全域に亘って適切に均一化されるまでの間に不当な窪み変形が生じ難くなる。この後において、負圧の作用により(ここではチャンバの内部空間に負圧を発生させることにより)最終的に目的とする理想形状に近く且つ肉厚分布が均一化されたガラス物品が得られる。 According to such a configuration, the chamber that is attached to the bottom of the mold and communicates with the molding space via the vent hole is partially or entirely located inside the heating furnace. It is heated by the hot air in the heating furnace. Therefore, the temperature of the internal space of the chamber can be equivalent to the temperature of the internal space of the heating furnace, that is, the temperature of the surface side space of the glass material. As a result, the temperature difference between the molding space on the back side of the glass material that communicates with the internal space of the chamber and the space on the front surface side of the glass material becomes extremely small. Get smaller. As a result, in the process of heating the glass material placed on the mold so as to cover the molding recess in the internal space of the heating furnace (the process until suction by negative pressure is started), the glass Unjust dent deformation resulting from the above-mentioned pressure difference is less likely to occur in the manufactured material. In other words, it is difficult for unjust dent deformation to occur until the softened state of the glass material is appropriately uniformed over the entire area. In Thereafter, that obtained glass article and thickness distribution close to the ideal shape of the final object are equalized (by generating negative pressure in the internal space of the chamber in this case) by the action of negative pressure .

この場合、前記チャンバの内部空間に負圧を発生させるべく該内部空間に通じる連通路は、開通及び閉鎖可能とされていることが好ましい。   In this case, it is preferable that the communication path that communicates with the internal space so as to generate a negative pressure in the internal space of the chamber can be opened and closed.

このようにすれば、ガラス製素材の加熱開始から負圧による吸引開始までの間に、チャンバの内部空間に通じている連通路を開閉バルブ等のバルブ手段により閉鎖しておけば、チャンバの内部空間の熱気が外部に逃げることを確実に阻止できると共にチャンバの内部空間の気圧の逃げも阻止できるため、チャンバの内部空間の温度及び気圧を上記の適正値に維持する上で好都合となる。   In this way, if the communication path leading to the internal space of the chamber is closed by valve means such as an open / close valve between the start of heating of the glass material and the start of suction by negative pressure, the interior of the chamber Since the hot air in the space can be surely prevented from escaping to the outside and the atmospheric pressure in the chamber internal space can also be prevented from escaping, it is advantageous in maintaining the temperature and pressure in the internal space of the chamber at the above-described appropriate values.

また、前記チャンバの全部が前記加熱炉の内部空間に位置し、且つ前記チャンバの底面が前記加熱炉の底面から離反していることが好ましい。   Further, it is preferable that the entire chamber is located in the internal space of the heating furnace, and the bottom surface of the chamber is separated from the bottom surface of the heating furnace.

このようにすれば、加熱炉の内部空間の熱気に曝されるチャンバの表面積が広くなり、チャンバの内部空間に対する加熱効率が高められることから、チャンバの内部空間に通じているガラス製素材の裏面側の成形空間と、ガラス製素材の表面側空間との温度調整を、迅速且つ確実に行うことが可能となり、ひいては両空間の気圧調整を迅速且つ確実に行うことが可能となる。   In this way, the surface area of the chamber exposed to the hot air in the internal space of the heating furnace is increased, and the heating efficiency for the internal space of the chamber is increased, so that the back surface of the glass material that communicates with the internal space of the chamber It is possible to quickly and surely adjust the temperature of the molding space on the side and the surface side space of the glass material, and consequently, it is possible to quickly and surely adjust the pressure in both spaces.

また、前記加熱炉の内部空間に補助加熱手段を配備し、該補助加熱手段により前記チャンバの内部空間を加熱することが好ましい。   Moreover, it is preferable that an auxiliary heating means is provided in the internal space of the heating furnace, and the internal space of the chamber is heated by the auxiliary heating means.

このようにすれば、チャンバの内部空間に通じているガラス製素材の裏面側の成形空間と、ガラス製素材の表面側空間との温度調整を、より迅速且つ確実に行うことが可能になると共に、成形空間の温度をガラス製素材の表面側空間の温度よりも高くし、成形空間の気圧をガラス製素材の表面側空間の気圧よりも高くする要請に応じる上で好都合となる。   In this way, it is possible to more quickly and reliably adjust the temperature of the molding space on the back side of the glass material that communicates with the internal space of the chamber and the surface side space of the glass material. This is advantageous in responding to a request for making the temperature of the molding space higher than the temperature of the surface side space of the glass material and making the pressure of the molding space higher than the pressure of the surface side space of the glass material.

以上の方法において、ガラス製素材は、一または複数の凹部を形成する部位が平板状であることが好ましい。   In the above method, it is preferable that the glass material has a flat plate-shaped portion where one or a plurality of recesses are formed.

このようにすれば、品位に優れたイメージセンサ用カバーガラスや液晶バックライト用ガラス等を得ることが可能となる。   By doing so, it is possible to obtain an image sensor cover glass, a liquid crystal backlight glass, and the like having excellent quality.

一方、上記技術的課題を解決するためになされた本発明に係る装置は、加熱炉の内部空間に、一または複数の成形凹部と該成形凹部の内側に通じる通気孔とが形成された成形型を配備し、且つ、前記成形凹部の上を覆うようにガラス製素材を成形型に載置した状態で、前記成形凹部とガラス製素材の裏面とで囲まれる成形空間に前記通気孔を通じて負圧を作用させることにより、一または複数の凹部が形成されたガラス物品を成形するように構成した装置において、前記成形型の底部に、前記通気孔に通じ且つ前記成形型の底面の全域または略全域を下方より覆うチャンバを装着すると共に、該チャンバの一部または全部を前記加熱炉の内部空間に位置させ、且つ前記加熱炉の内部空間及び前記チャンバの内部空間を加熱した後に、該チャンバの内部空間に負圧を発生させるように構成したことに特徴づけられる。 On the other hand, an apparatus according to the present invention made to solve the above technical problem is a molding die in which one or a plurality of molding recesses and a vent hole leading to the inside of the molding recess are formed in the internal space of the heating furnace. In a state where the glass material is placed on the mold so as to cover the molding recess, a negative pressure is applied to the molding space surrounded by the molding recess and the back surface of the glass material through the vent hole. In the apparatus configured to mold a glass article in which one or a plurality of recesses are formed by acting, the entire bottom area of the mold and the entire bottom surface of the mold or substantially the entire area together with mounting the chamber cover from below, some or all of the chamber is positioned in the internal space of the furnace, and after heating the interior space of the inner space and the chamber of the furnace, said Chang Characterized in that constitutes the negative pressure in the internal space of so as to generate.

この装置に係る発明は、上記方法に係る発明と実質的に同一の構成であり、その作用効果も実質的に同一であるので、ここでは便宜上、その説明を省略する。 The invention according to this apparatus has substantially the same configuration as the invention according to the above method , and the operation and effect thereof are also substantially the same. Therefore, the description thereof is omitted here for convenience.

以上のように本発明によれば、加熱炉の内部空間で、成形凹部の上を覆うように成形型に載置されたガラス製素材が加熱される過程において、ガラス製素材の表面側空間とその裏面側の成形空間との温度差あるいは気圧差が適切に調整されるので、負圧による吸引の前段階でガラス製素材に不当な窪み変形が生じ難くなると共に、ガラス製素材の軟化状態を全域に亘って適切に均一化できることになり、一または複数の凹部を有するガラス物品として、最終的に目的とする理想形状に近く且つ肉厚分布が均一化されたガラス物品を得ることが可能となる。   As described above, according to the present invention, in the process of heating the glass material placed on the mold so as to cover the molding recess in the internal space of the heating furnace, the surface side space of the glass material and Since the temperature difference or atmospheric pressure difference with the molding space on the back side is appropriately adjusted, it becomes difficult for undue dent deformation to occur in the glass material before the suction by negative pressure, and the glass material is softened. It will be possible to achieve uniform uniformity over the entire area, and as a glass article having one or a plurality of recesses, it is possible to finally obtain a glass article that is close to the desired ideal shape and has a uniform thickness distribution. Become.

以下、本発明の実施形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

先ず、図1に基づいて、本発明の第1実施形態に係るガラス物品の成形装置の概略構成を説明する。同図に示すように、成形装置1は、加熱炉2の内部空間2aに、上面に1つの略半球状をなす成形凹部3aが形成され且つ該成形凹部3aの内側における底部中央に通じる1本の通気孔3bが形成された成形型3を備えてなる。この成形型3の底部には、全部が加熱炉2の内部空間2aに位置するチャンバ4が固定され、このチャンバ4の側壁部4cと底壁部4dとの全域が、加熱炉2の内部空間2aにおける高温雰囲気(熱気)に曝されるようになっている。そして、このチャンバ4の内部空間4aは、成形型3の通気孔3bを介して成形凹部3aの内側に通じている。   First, based on FIG. 1, schematic structure of the shaping | molding apparatus of the glass article which concerns on 1st Embodiment of this invention is demonstrated. As shown in the figure, the molding apparatus 1 has one molding recess 3a having a substantially hemispherical shape formed in the upper surface of the internal space 2a of the heating furnace 2 and leading to the center of the bottom inside the molding recess 3a. The mold 3 is provided with a vent hole 3b. A chamber 4 is fixed to the bottom of the mold 3 and is entirely located in the internal space 2 a of the heating furnace 2, and the entire area of the side wall 4 c and the bottom wall 4 d of the chamber 4 is the internal space of the heating furnace 2. It is exposed to a high temperature atmosphere (hot air) in 2a. The internal space 4 a of the chamber 4 communicates with the inside of the molding recess 3 a through the vent hole 3 b of the molding die 3.

更に、チャンバ4の底壁部4dには、加熱炉2の外部に配設された排気装置5に通じる排気管(連通路)6が接続され、排気装置5の作動によりチャンバ4の内部空間4aに負圧が発生するようになっている。この排気装置5としては、どのような機構のものを用いてもよいが、特に吸引作用の応答性に優れたベンチュリー機構を有している。また、排気管6の加熱炉2外部には、排気管6内の連通路を開通及び閉鎖する開閉バルブ7が取り付けられている。そして、この第1実施形態では、加熱炉2の側壁部2c全周の内面側にのみ加熱源8が設置されている。この加熱源8の加熱方式は、電熱線によるものであってもよく、燃焼ガスによるものであってもよい。尚、成形型3の上方には、該成形型3の上面に載せられたガラス製素材としてのガラス板Gの周縁部を押さえて保持する押さえ板9が配設されている。   Further, an exhaust pipe (communication path) 6 communicating with an exhaust device 5 disposed outside the heating furnace 2 is connected to the bottom wall portion 4 d of the chamber 4, and the internal space 4 a of the chamber 4 is operated by the operation of the exhaust device 5. Negative pressure is generated in the. The exhaust device 5 may be of any mechanism, but has a venturi mechanism that is particularly excellent in the responsiveness of the suction action. An open / close valve 7 that opens and closes the communication path in the exhaust pipe 6 is attached to the outside of the heating furnace 2 of the exhaust pipe 6. And in this 1st Embodiment, the heating source 8 is installed only in the inner surface side of the side wall part 2c of the heating furnace 2. As shown in FIG. The heating method of the heating source 8 may be based on heating wires or based on combustion gas. A pressing plate 9 is provided above the molding die 3 to hold and hold the peripheral edge of the glass plate G as a glass material placed on the upper surface of the molding die 3.

このような構成によれば、成形型3の上面にガラス板Gが載せられている時には、成形凹部3aとガラス板Gの裏面とで囲まれる成形空間3xと、チャンバ4の内部空間4aとは、通気孔3bを介して通じた状態にあると共に、排気管6は開閉バルブ7により閉鎖された状態にある。そして、チャンバ4は、その全部が加熱炉2の内部空間2aに位置しているので、チャンバ4の内部空間4aは、加熱炉2の内部空間2aの熱気によって加熱されると共に、この加熱された熱気がチャンバ4の内部空間4aから外部に逃げることはない。したがって、チャンバ4の内部空間4aの温度は、加熱炉2の内部空間2aの温度、詳しくはガラス板Gの表面側空間2xの温度と実質的に同等になり得る。これにより、チャンバ4の内部空間4aに通じているガラス板Gの裏面側の成形空間3xと、ガラス板Gの表面側空間2xとの温度差が実質的に零または極めて小さくなり、これに伴ってその両空間2x、3xの気圧差も実質的に零または極めて小さくなる。   According to such a configuration, when the glass plate G is placed on the upper surface of the mold 3, the molding space 3 x surrounded by the molding recess 3 a and the back surface of the glass plate G and the internal space 4 a of the chamber 4 are The exhaust pipe 6 is in a closed state by the open / close valve 7. Since the chamber 4 is entirely located in the internal space 2a of the heating furnace 2, the internal space 4a of the chamber 4 is heated by the hot air in the internal space 2a of the heating furnace 2 and is heated. Hot air does not escape from the internal space 4 a of the chamber 4 to the outside. Therefore, the temperature of the internal space 4a of the chamber 4 can be substantially equal to the temperature of the internal space 2a of the heating furnace 2, specifically, the temperature of the surface side space 2x of the glass plate G. Thereby, the temperature difference between the molding space 3x on the back side of the glass plate G communicating with the internal space 4a of the chamber 4 and the surface side space 2x of the glass plate G becomes substantially zero or extremely small. The atmospheric pressure difference between the two spaces 2x and 3x is also substantially zero or extremely small.

その結果、加熱炉2の内部空間2aで、成形凹部3aの上を覆うように成形型3に載せられたガラス板Gが加熱される過程、つまり負圧による吸引が開始されるまでの過程においては、ガラス板Gに上記の気圧差に起因する不当な窪み変形が生じ難くなる。したがって、ガラス板Gの軟化状態が全域に亘って適切に均一化されるまでの間に、不当な窪み変形を生じ難くすることが可能となる。そして、ガラス板Gの軟化状態が全域に亘ってできる限り適切に均一化され且つガラス板Gが好適に変形すべく充分に軟化した時点で、開閉バルブ7により排気管6を開通させてチャンバ4の内部空間4aから通気孔3bを通じて成形空間3xに負圧を作用させる。これにより、ガラス板Gは成形凹部3aに吸引されつつ適正になじみながら窪み変形し、図2に示すように単一の略半球状をなす凹部10aが形成されたガラス物品(例えばガラス製容器)10を得ることができる。このガラス物品10は、全体として、目的とする理想形状に近く且つ肉厚分布が均一化された高品位のものとなる。   As a result, in the process in which the glass plate G placed on the molding die 3 is heated so as to cover the molding recess 3a in the internal space 2a of the heating furnace 2, that is, in the process until suction by negative pressure is started. The glass plate G is unlikely to be unduely deformed due to the pressure difference. Therefore, it is possible to make it difficult to cause an inappropriate depression deformation until the softened state of the glass plate G is appropriately uniformed over the entire region. When the softened state of the glass plate G is made uniform as much as possible over the entire region and the glass plate G is sufficiently softened to be suitably deformed, the exhaust pipe 6 is opened by the opening / closing valve 7 to open the chamber 4. A negative pressure is applied to the molding space 3x from the inner space 4a through the vent hole 3b. As a result, the glass plate G is deformed while being properly fitted while being sucked into the molding recess 3a, and a glass article (for example, a glass container) having a single substantially hemispherical recess 10a as shown in FIG. 10 can be obtained. The glass article 10 as a whole has a high quality that is close to the target ideal shape and has a uniform thickness distribution.

図3は、本発明の第2実施形態に係る成形装置1の概略構成を例示するものである。この第2実施形態に係る成形装置1が、上述の第1実施形態に係る成形装置1と相違する点は、加熱炉2の側壁部2c全周の内面側のみならず、加熱炉2の底壁部2dの内面側にも加熱源8が設置されている点である。その他の構成は、第1実施形態に係る成形装置1と同一であるので、共通する構成要素については同一符号を付し、その説明を省略する。この第2実施形態に係る成形装置1によれば、チャンバ4が側方からのみならず下方からも加熱源8によって加熱されるため、ガラス板Gに対する加熱過程(負圧による吸引が開始されるまでの過程)においては、チャンバ4の内部空間4aの温度つまり成形空間3xの温度を、ガラス板Gの表面側空間2xの温度よりも所定温度だけ高くなるように調整することができる。これにより、ガラス板Gの軟化状態が全域に亘って適切に均一化されるまでの間に、ガラス板Gの厚みや、成形凹部3a上に位置するガラス板Gの面積、或いはガラス板G自体の組成が原因となって、自重により不当な窪み変形が生じようとしても、裏面側の成形空間3xの方が表面側空間2xよりも気圧が高くなることから、ガラス板Gを裏面側から適度に持ち上げようとする力が発生し、ガラス板Gは平面に沿う状態に維持される。したがって、この場合にも、上述の第1実施形態の場合と実質的に同等の作用効果が得られる。   FIG. 3 illustrates a schematic configuration of the molding apparatus 1 according to the second embodiment of the present invention. The molding apparatus 1 according to the second embodiment is different from the molding apparatus 1 according to the first embodiment described above in that not only the inner surface side of the entire circumference of the side wall 2c of the heating furnace 2 but also the bottom of the heating furnace 2 is used. The heating source 8 is also installed on the inner surface side of the wall 2d. Since other configurations are the same as those of the molding apparatus 1 according to the first embodiment, common components are denoted by the same reference numerals, and description thereof is omitted. According to the molding apparatus 1 according to the second embodiment, since the chamber 4 is heated not only from the side but also from the lower side by the heating source 8, the heating process for the glass sheet G (suction by negative pressure is started). In the process up to this step, the temperature of the internal space 4a of the chamber 4, that is, the temperature of the molding space 3x, can be adjusted to be higher than the temperature of the surface side space 2x of the glass plate G by a predetermined temperature. Thus, the thickness of the glass plate G, the area of the glass plate G positioned on the molding recess 3a, or the glass plate G itself until the softened state of the glass plate G is appropriately uniformed over the entire area. Even if an inappropriate depression deformation is caused by its own weight due to the composition of the glass plate G, the pressure on the back surface side molding space 3x is higher than that on the front surface side space 2x. A force to lift is generated, and the glass plate G is maintained in a state along the plane. Accordingly, also in this case, substantially the same effect as that of the first embodiment described above can be obtained.

図4は、本発明の第3実施形態に係る成形装置1の概略構成を例示するものである。この第3実施形態に係る成形装置1が、上述の第1実施形態に係る成形装置1と相違する点は、加熱炉2の側壁部2c全周の内面側に加熱源8を設置することに加えて、チャンバ4(図例ではチャンバ4の底壁部4d)の外面に補助加熱手段としての補助加熱源8aを設置した点である。その他の構成は、第1実施形態に係る成形装置1と同一であるので、共通する構成要素については同一符号を付し、その説明を省略する。この第3実施形態のような構成によっても、チャンバ4の内部空間4aの温度つまり成形空間3xの温度を、ガラス板Gの表面側空間2xの温度よりも所定温度だけ高くなるように調整することができ、上述の第2実施形態の場合と同様の作用効果が得られる。   FIG. 4 illustrates a schematic configuration of the molding apparatus 1 according to the third embodiment of the present invention. The molding apparatus 1 according to the third embodiment is different from the molding apparatus 1 according to the first embodiment described above in that the heating source 8 is installed on the inner surface side of the entire circumference of the side wall 2c of the heating furnace 2. In addition, an auxiliary heating source 8a as auxiliary heating means is provided on the outer surface of the chamber 4 (in the figure, the bottom wall portion 4d of the chamber 4). Since other configurations are the same as those of the molding apparatus 1 according to the first embodiment, common components are denoted by the same reference numerals, and description thereof is omitted. Even with the configuration of the third embodiment, the temperature of the internal space 4a of the chamber 4, that is, the temperature of the forming space 3x is adjusted to be higher than the temperature of the surface side space 2x of the glass plate G by a predetermined temperature. The same effects as those of the second embodiment described above can be obtained.

図5は、本発明の第4実施形態に係る成形装置1の概略構成を例示するものである。この第4実施形態に係る成形装置1が、上述の第1実施形態に係る成形装置1と相違する点は、成形型3の上面に、横方向(図面における左右方向)及び縦方向(紙面と直交する方向)に複数の略半球状をなす成形凹部3aが形成されると共に、各成形凹部3aの内側(底部中央)とチャンバ4の内部空間4aとがそれぞれ通気孔3bを介して連通されている点である。その他の構成は、第1実施形態に係る成形装置1と同一であるので、共通する構成要素については同一符号を付し、その説明を省略する。この第4実施形態の構成によれば、上述の第1実施形態の場合と同様の作用効果を得つつ、図6に示すような多数のディンプル11aが形成されたガラス物品11を製作することができる。尚、この第4実施形態に係る成形装置1についても、上述の第2、第3実施形態と同様に、加熱炉2における底壁部2dの内面に加熱源8を設置し、或いはチャンバ4の外面に補助加熱源8aを設置してもよい。   FIG. 5 illustrates a schematic configuration of the molding apparatus 1 according to the fourth embodiment of the present invention. The molding apparatus 1 according to the fourth embodiment is different from the molding apparatus 1 according to the first embodiment described above in that the upper surface of the molding die 3 has a horizontal direction (left-right direction in the drawing) and a vertical direction (paper surface). A plurality of substantially hemispherical molding recesses 3a are formed in the direction orthogonal to each other, and the inner side (bottom center) of each molding recess 3a and the internal space 4a of the chamber 4 are communicated with each other via a vent hole 3b. It is a point. Since other configurations are the same as those of the molding apparatus 1 according to the first embodiment, common components are denoted by the same reference numerals, and description thereof is omitted. According to the configuration of the fourth embodiment, it is possible to manufacture the glass article 11 on which a large number of dimples 11a as shown in FIG. 6 are formed while obtaining the same operational effects as in the case of the first embodiment described above. it can. In the molding apparatus 1 according to the fourth embodiment, the heating source 8 is installed on the inner surface of the bottom wall portion 2d in the heating furnace 2 as in the second and third embodiments, or the chamber 4 An auxiliary heating source 8a may be installed on the outer surface.

本発明の第5実施形態に係る成形装置1は、図5に示す成形型3に形成されている成形凹部3aが、断面略半円形をなす複数の溝状凹部(紙面と直交する方向に延びる溝状凹部)であって、これによっても、上述の第1実施形態の場合と同様の作用効果を得つつ、図7に示すような多数の溝状凹部12aが形成されたガラス物品(例えば液晶バックライト用ガラス)12を製作することができる。尚、この第5実施形態における上記の成形型3が、隣り合う成形凹部3a間を滑らかに繋ぐ成形凸部を有している場合には、波形状のガラス物品を製作することができる。   In the molding apparatus 1 according to the fifth embodiment of the present invention, the molding recess 3a formed in the molding die 3 shown in FIG. 5 has a plurality of groove-like recesses (in a direction perpendicular to the paper surface) having a substantially semicircular cross section. A glass article (for example, liquid crystal) in which a number of groove-like recesses 12a as shown in FIG. 7 are formed while obtaining the same operational effects as in the case of the first embodiment. Backlight glass) 12 can be manufactured. In addition, when said shaping | molding die 3 in this 5th Embodiment has a shaping | molding convex part which connects between adjacent shaping | molding recessed parts 3a smoothly, a corrugated glass article can be manufactured.

図8は、本発明の第6実施形態に係る成形装置1の概略構成を例示するものである。この第6実施形態に係る成形装置1が、上述の第1実施形態に係る成形装置1と相違する点は、チャンバ4の一部(上部)のみが加熱炉2の内部空間2aに位置している点である。その他の構成は、第1実施形態に係る成形装置1と同一であるので、共通する構成要素については同一符号を付し、その説明を省略する。この第6実施形態のような構成によっても、チャンバ4の一部が加熱炉2の内部空間2aの熱気に曝されることにより、或いはチャンバ4の一部外面に補助加熱源を設置することにより、チャンバ4の内部空間4aが高温になり得ることから、上述の第1実施形態の場合と同様の作用効果を得ることが可能である。   FIG. 8 illustrates a schematic configuration of the molding apparatus 1 according to the sixth embodiment of the present invention. The molding apparatus 1 according to the sixth embodiment is different from the molding apparatus 1 according to the first embodiment described above in that only a part (upper part) of the chamber 4 is located in the internal space 2a of the heating furnace 2. It is a point. Since other configurations are the same as those of the molding apparatus 1 according to the first embodiment, common components are denoted by the same reference numerals, and description thereof is omitted. Even in the configuration of the sixth embodiment, a part of the chamber 4 is exposed to the hot air in the internal space 2a of the heating furnace 2, or an auxiliary heating source is installed on a part of the outer surface of the chamber 4. Since the internal space 4a of the chamber 4 can be at a high temperature, it is possible to obtain the same effect as in the case of the first embodiment described above.

本発明の実施例1として、厚さが1mm、縦が306mm、横が408mmの長方形のガラス板Gを、図5に示す成形装置1を用いて成形することにより、図6に示す直径10mmで深さ10mmの多数のディンプル11aが形成されてなるガラス物品11を製作した。この場合、成形装置1の成形型3には、上記のディンプルに対応する多数の成形凹部3aと、直径が0.5mmの多数の通気孔3bとを形成し、成形型3の底部には、ステンレス製のチャンバ4を取り付けた。また、加熱炉2としては、内部高さが400mmのものを使用し、チャンバ4の底面(外底面)を加熱炉2の底面(内底面)から10mm離反させると共に、チャンバ4の底壁部4dに直径が10mmのステンレス製パイプからなる排気管6を接続して加熱炉2の外部に引き出し、開閉バルブ7及びベンチュリー機構を有する排気装置5を設置した。尚、加熱源8は、加熱炉2の天井壁部と底壁部2dには設置せずに、側壁部2cのみに設置した。   As Example 1 of the present invention, a rectangular glass plate G having a thickness of 1 mm, a length of 306 mm, and a width of 408 mm was formed using the forming apparatus 1 shown in FIG. A glass article 11 formed with a large number of dimples 11a having a depth of 10 mm was manufactured. In this case, the molding die 3 of the molding apparatus 1 is formed with a large number of molding recesses 3a corresponding to the above dimples and a large number of air holes 3b having a diameter of 0.5 mm. A stainless steel chamber 4 was attached. Further, the heating furnace 2 having an inner height of 400 mm is used, the bottom surface (outer bottom surface) of the chamber 4 is separated from the bottom surface (inner bottom surface) of the heating furnace 2 by 10 mm, and the bottom wall portion 4d of the chamber 4 is used. An exhaust pipe 6 made of a stainless steel pipe having a diameter of 10 mm was connected to the outside and pulled out to the outside of the heating furnace 2, and an exhaust device 5 having an open / close valve 7 and a venturi mechanism was installed. The heating source 8 was installed only on the side wall 2c, not on the ceiling wall and bottom wall 2d of the heating furnace 2.

このような構造の成形装置1を用いて、成形型3の上に既述のガラス板(厚さ1mm、縦306mm、横408mm)を載せ、排気管6の開閉バルブ7を閉じた状態で加熱を開始した。ガラス板Gの温度が約500℃に達して軟化状態になった時点で炉内温度をその時点の温度に5分間保持した。この5分間の初期段階で、ガラス板Gは、成形型3との接触部から軟化し始め、5分間保持の間にガラス板Gの全面が軟化状態となるが、ガラス板Gと成形型3とが接触していない成形凹部3a上では、軟化状態にあるガラス板Gの自重により、ガラス板Gに窪み変形が生じる虞がある。しかしながら、既に述べたようにガラス板Gを窪み変形させるような気圧差が生じていないことに加えて、成形凹部3aの直径が10mm程度と比較的小さいためにガラスの表面張力がガラス板Gの垂れ下がりを有効に抑制していること等に由来して、軟化状態にあるガラス板Gの形状を平板状に維持することができた。そして、5分が経過した後に、加熱を止めて自然冷却され得る状態とした上で、排気管6の開閉バルブ7を全開にして真空排気(負圧による吸引)を行った。この真空排気は、自然冷却をしながら10分間行い、真空排気の終了後は開閉バルブ7を全開に維持し、成形空間3xの温度を表面側空間2xの温度よりも低温にすることにより気圧差を生じさせて、冷却中もガラスが成形凹部3aに密着しやすいようにした。この冷却後のガラス物品(図6に示すガラス物品11)の肉厚分布を確認したところ、肉厚のバラツキを±0.05mmに抑えることができた。   Using the molding apparatus 1 having such a structure, the above-described glass plate (thickness 1 mm, length 306 mm, width 408 mm) is placed on the mold 3 and heated while the open / close valve 7 of the exhaust pipe 6 is closed. Started. When the temperature of the glass plate G reached about 500 ° C. and was in a softened state, the furnace temperature was held at that temperature for 5 minutes. At the initial stage of 5 minutes, the glass plate G begins to soften from the contact portion with the mold 3, and the entire surface of the glass plate G is softened while being held for 5 minutes. There is a possibility that the glass plate G may be deformed by depression due to the weight of the glass plate G in a softened state on the molding recess 3a that is not in contact with the glass plate G. However, as described above, in addition to the fact that there is no atmospheric pressure difference that causes the glass plate G to be depressed and deformed, the diameter of the molding recess 3a is relatively small, about 10 mm. The shape of the glass plate G in the softened state was able to be maintained in a flat plate shape due to the fact that drooping was effectively suppressed. Then, after 5 minutes had elapsed, the heating was stopped to allow natural cooling, and the open / close valve 7 of the exhaust pipe 6 was fully opened to perform vacuum exhaust (suction by negative pressure). This evacuation is performed for 10 minutes with natural cooling, and after the evacuation is completed, the opening and closing valve 7 is kept fully open, and the temperature of the molding space 3x is made lower than the temperature of the surface side space 2x, thereby changing the pressure difference. In order to make the glass easily adhere to the molding recess 3a even during cooling. When the thickness distribution of the cooled glass article (glass article 11 shown in FIG. 6) was confirmed, the thickness variation could be suppressed to ± 0.05 mm.

本発明の実施例2として、厚さが1.5mmで1辺が100mmの正方形のガラス板Gを、図4に示す成形装置1を用いて成形することにより、図2に示す正方形の平面部中央に直径60mmで深さ15mmの凹部10aが形成されてなるガラス物品10を製作した。この場合、成形装置1の成形型3には、上記の凹部10aに対応する単一の成形凹部3aと、この成形凹部3aの底部中央に通じる直径が0.5mmの1本の通気孔3bとを形成し、成形型3の底部には、ステンレス製のチャンバ4を取り付けた。また、加熱炉2としては、内部高さが300mmのものを使用し、チャンバ4の外底面を加熱炉2の内底面から80mm離反させると共に、チャンバ4の底壁部4dに直径が10mmのステンレス製パイプからなる排気管6を接続して加熱炉2の外部に引き出し、開閉バルブ7及びベンチュリー機構を有する排気装置5を設置した。また、加熱炉2の側壁部2cに加熱源8を設置することに加えて、補助加熱源8aをチャンバ4の底壁部4dに設置した。この補助加熱源8aとしては、チャンバ4の内部空間4aを集中して加熱する上で有利であるとの理由から、電熱線によるものを使用した。   As Example 2 of the present invention, a square glass plate G having a thickness of 1.5 mm and a side of 100 mm is formed by using the forming apparatus 1 shown in FIG. A glass article 10 was produced in which a recess 10a having a diameter of 60 mm and a depth of 15 mm was formed in the center. In this case, the molding die 3 of the molding apparatus 1 includes a single molding recess 3a corresponding to the above-described recess 10a, and one vent hole 3b having a diameter of 0.5 mm leading to the center of the bottom of the molding recess 3a. A stainless steel chamber 4 was attached to the bottom of the mold 3. Further, as the heating furnace 2, one having an internal height of 300 mm is used, the outer bottom surface of the chamber 4 is separated from the inner bottom surface of the heating furnace 80 by 80 mm, and the bottom wall portion 4d of the chamber 4 is made of stainless steel having a diameter of 10 mm. An exhaust pipe 6 made of a pipe made was connected and pulled out of the heating furnace 2, and an exhaust device 5 having an opening / closing valve 7 and a venturi mechanism was installed. In addition to installing the heating source 8 on the side wall 2 c of the heating furnace 2, the auxiliary heating source 8 a is installed on the bottom wall 4 d of the chamber 4. As the auxiliary heating source 8a, a heating wire is used because it is advantageous in concentrating and heating the internal space 4a of the chamber 4.

このような構造の成形装置1を用いて、成形型3の上に既述のガラス板(厚さ1.5mm、各辺が100mm)を載せ、排気管6の開閉バルブ7を閉じた状態で加熱を開始した。ガラス板Gの温度が約500℃に達して軟化状態になった時点で炉内温度をその時点の温度に5分間保持した。この5分間の初期段階で、ガラス板Gは、成形型3との接触部から軟化し始め、5分間保持の間にガラス板Gの全面が軟化状態となるが、ガラス板Gと成形型3とが接触していない成形凹部3a上では、軟化状態にあるガラス板Gの自重により、ガラス板Gに窪み変形が生じる虞がある。特に、この実施例2に係るガラス物品10は、凹部10aの面積が広く且つ板厚も厚いことから、軟化状態にあるガラス板Gは、その自重により容易に窪み変形する虞がある。しかしながら、ガラス板Gが加熱される過程では、補助加熱源8aによってチャンバ4の内部空間4aを積極的に加熱し、炉内温度(表面側空間2xの温度)よりもチャンバ4の内部空間4aの温度が2℃から10℃(好ましくは5℃)ほど高くなるように温度調整した。これにより、ガラス板Gの裏面側における成形空間3xの気圧が、表面側空間2xの気圧よりも高くなり、ガラス板Gを下方から気圧差で支えることにより、広い成形凹部3a上で軟化した状態にあるガラス板Gを平板状に維持することができた。そして、5分が経過した後に、全ての加熱を止めて自然冷却され得る状態とした上で、排気管6の開閉バルブ7を全開にして真空排気(負圧による吸引)を行った。この真空排気は、自然冷却をしながら10分間行い、真空排気の終了後は開閉バルブ7を全開に維持し、成形空間3xの温度を表面側空間2xの温度よりも低温にすることにより気圧差を生じさせて、冷却中もガラスが成形凹部3aに密着しやすいようにした。この冷却後のガラス物品(図2に示すガラス物品10)の肉厚分布を確認したところ、肉厚のバラツキを±0.03mmに抑えることができた。   Using the molding apparatus 1 having such a structure, the above-described glass plate (thickness 1.5 mm, each side is 100 mm) is placed on the molding die 3, and the open / close valve 7 of the exhaust pipe 6 is closed. Heating was started. When the temperature of the glass plate G reached about 500 ° C. and was in a softened state, the furnace temperature was held at that temperature for 5 minutes. At the initial stage of 5 minutes, the glass plate G begins to soften from the contact portion with the mold 3, and the entire surface of the glass plate G is softened while being held for 5 minutes. There is a possibility that the glass plate G may be deformed by depression due to the weight of the glass plate G in a softened state on the molding recess 3a that is not in contact with the glass plate G. In particular, since the glass article 10 according to Example 2 has a large area of the recess 10a and a large plate thickness, the glass plate G in a softened state may be easily depressed due to its own weight. However, in the process in which the glass plate G is heated, the internal space 4a of the chamber 4 is positively heated by the auxiliary heating source 8a, and the temperature of the internal space 4a of the chamber 4 is higher than the furnace temperature (temperature of the surface side space 2x). The temperature was adjusted so that the temperature increased from 2 ° C. to 10 ° C. (preferably 5 ° C.). Thereby, the pressure of the molding space 3x on the back surface side of the glass plate G becomes higher than the pressure of the surface side space 2x, and the glass plate G is softened on the wide molding recess 3a by supporting the glass plate G with a pressure difference from below. It was possible to maintain the glass plate G in the flat plate shape. Then, after 5 minutes had elapsed, all heating was stopped and the system was allowed to cool naturally, and the exhaust valve 6 of the exhaust pipe 6 was fully opened to perform vacuum exhaust (suction by negative pressure). This evacuation is performed for 10 minutes with natural cooling, and after the evacuation is completed, the opening and closing valve 7 is kept fully open, and the temperature of the molding space 3x is made lower than the temperature of the surface side space 2x, thereby changing the pressure difference. In order to make the glass easily adhere to the molding recess 3a even during cooling. When the thickness distribution of the cooled glass article (glass article 10 shown in FIG. 2) was confirmed, the variation in thickness could be suppressed to ± 0.03 mm.

尚、上述の各実施例(各実施形態)においては、ガラス板Gの表面側空間2xと裏面側の成形空間3xの温度を制御することにより、両空間2x、3xの圧力調節を行っているが、例えば加圧装置や減圧装置といった別個の圧力制御装置を加熱炉2またはチャンバ4に取り付けることにより、前記両空間2x、3xに所期の圧力を付与するようにしてもよく、この場合には、前記両空間2x、3xにおける上述の温度調節は必ずしも必要ではない。   In each of the above-described examples (each embodiment), the pressures of both the spaces 2x and 3x are adjusted by controlling the temperatures of the front surface side space 2x and the rear surface side forming space 3x of the glass plate G. However, by attaching a separate pressure control device such as a pressurization device or a decompression device to the heating furnace 2 or the chamber 4, the desired pressure may be applied to both the spaces 2x and 3x. The above-described temperature control in both the spaces 2x and 3x is not necessarily required.

また、上述の各実施例(各実施形態)においては、ガラス製素材としてガラス板Gを用いたが、これ以外に、例えば、凹部10a(11a、12a)が形成されるべき平板状部の外周縁に、その凹部10a(11a、12a)の窪み方向と反対方向に立ち上がる周壁部が形成されたガラス製素材などのように、単なるガラス板ではないガラス製素材を用いるようにしてもよい。   Moreover, in each above-mentioned Example (each embodiment), although the glass plate G was used as a glass-made raw material, outside this, for example, the outer side of the flat plate part in which the recessed part 10a (11a, 12a) should be formed A glass material that is not a mere glass plate may be used, such as a glass material having a peripheral wall portion that rises in the opposite direction to the recess direction of the concave portion 10a (11a, 12a).

本発明の第1実施形態に係る成形装置の概略構成を示す縦断正面図である。It is a vertical front view which shows schematic structure of the shaping | molding apparatus which concerns on 1st Embodiment of this invention. 前記第1実施形態に係る成形装置を用いて作製されたガラス物品を示す斜視図である。It is a perspective view which shows the glass article produced using the shaping | molding apparatus which concerns on the said 1st Embodiment. 本発明の第2実施形態に係る成形装置の概略構成を示す縦断正面図である。It is a vertical front view which shows schematic structure of the shaping | molding apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る成形装置の概略構成を示す縦断正面図である。It is a vertical front view which shows schematic structure of the shaping | molding apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4、第5実施形態に係る成形装置の概略構成を示す縦断正面図である。It is a vertical front view which shows schematic structure of the shaping | molding apparatus which concerns on 4th, 5th embodiment of this invention. 前記第4実施形態に係る成形装置を用いて作製されたガラス物品を示す斜視図である。It is a perspective view which shows the glass article produced using the shaping | molding apparatus which concerns on the said 4th Embodiment. 前記第5実施形態に係る成形装置を用いて作製されたガラス物品を示す斜視図である。It is a perspective view which shows the glass article produced using the shaping | molding apparatus which concerns on the said 5th Embodiment. 本発明の第6実施形態に係る成形装置の概略構成を示す縦断正面図である。It is a vertical front view which shows schematic structure of the shaping | molding apparatus which concerns on 6th Embodiment of this invention.

符号の説明Explanation of symbols

1 成形装置
2 加熱炉
2a 加熱炉の内部空間
3 成形型
3a 成形凹部
3b 通気孔
3x 成形空間
4 チャンバ
4a チャンバの内部空間
6 連通路(排気管)
8a 補助加熱源(補助加熱手段)
G ガラス板(ガラス製素材)

DESCRIPTION OF SYMBOLS 1 Molding apparatus 2 Heating furnace 2a Heating furnace internal space 3 Mold 3a Molding recessed part 3b Vent hole 3x Molding space 4 Chamber 4a Chamber internal space 6 Communication path (exhaust pipe)
8a Auxiliary heating source (auxiliary heating means)
G Glass plate (glass material)

Claims (6)

加熱炉の内部空間に、一または複数の成形凹部と該成形凹部の内側に通じる通気孔とが形成された成形型を配備し、且つ、前記成形凹部の上を覆うようにガラス製素材を成形型に載置した状態で、前記成形凹部とガラス製素材の裏面とで囲まれる成形空間に前記通気孔を通じて負圧を作用させることにより、一または複数の凹部が形成されたガラス物品を成形する方法において、
前記成形型の底部に、前記通気孔に通じ且つ前記成形型の底面の全域または略全域を下方より覆うチャンバを装着すると共に、該チャンバの一部または全部を前記加熱炉の内部空間に位置させ、且つ前記加熱炉の内部空間及び前記チャンバの内部空間を加熱した後に、該チャンバの内部空間に負圧を発生させることを特徴とするガラス物品の成形方法。
A molding die in which one or a plurality of molding recesses and a vent hole leading to the inside of the molding recess is formed in the internal space of the heating furnace, and a glass material is molded so as to cover the molding recesses. In a state where the glass article is placed on a mold, a negative pressure is applied to the molding space surrounded by the molding recess and the back surface of the glass material, thereby molding a glass article having one or more recesses. In the method
At the bottom of the mold, a chamber that is connected to the vent hole and covers the entire bottom surface of the mold or substantially the entire region from below is mounted, and a part or all of the chamber is positioned in the internal space of the heating furnace. And after heating the internal space of the said heating furnace and the internal space of the said chamber, a negative pressure is generated in the internal space of this chamber, The shaping | molding method of the glass article characterized by the above-mentioned.
前記チャンバの内部空間に負圧を発生させるべく該内部空間に通じる連通路が、開通及び閉鎖可能とされていることを特徴とする請求項に記載のガラス物品の成形方法。 The method for forming a glass article according to claim 1 , wherein the communication passage that communicates with the internal space so as to generate a negative pressure in the internal space of the chamber can be opened and closed. 前記チャンバの全部が前記加熱炉の内部空間に位置し、且つ前記チャンバの底面が前記加熱炉の底面から離反していることを特徴とする請求項またはに記載のガラス物品の成形方法。 Located in the inner space of all of the heating furnace of the chamber, and molding method of a glass article according to claim 1 or 2 a bottom surface of said chamber characterized in that it moves away from the bottom of the furnace. 前記加熱炉の内部空間に補助加熱手段を配備し、該補助加熱手段により前記チャンバの内部空間を加熱することを特徴とする請求項の何れかに記載のガラス物品の成形方法。 The method for forming a glass article according to any one of claims 1 to 3 , wherein auxiliary heating means is provided in the internal space of the heating furnace, and the internal space of the chamber is heated by the auxiliary heating means. 前記ガラス製素材は、前記一または複数の凹部を形成する部位が、平板状であることを特徴とする請求項1〜の何れかに記載のガラス物品の成形方法。 The method for molding a glass article according to any one of claims 1 to 4 , wherein the glass material has a flat plate-shaped portion forming the one or more recesses. 加熱炉の内部空間に、一または複数の成形凹部と該成形凹部の内側に通じる通気孔とが形成された成形型を配備し、且つ、前記成形凹部の上を覆うようにガラス製素材を成形型に載置した状態で、前記成形凹部とガラス製素材の裏面とで囲まれる成形空間に前記通気孔を通じて負圧を作用させることにより、一または複数の凹部が形成されたガラス物品を成形するように構成した装置において、
前記成形型の底部に、前記通気孔に通じ且つ前記成形型の底面の全域または略全域を下方より覆うチャンバを装着すると共に、該チャンバの一部または全部を前記加熱炉の内部空間に位置させ、且つ前記加熱炉の内部空間及び前記チャンバの内部空間を加熱した後に、該チャンバの内部空間に負圧を発生させるように構成したことを特徴とするガラス物品の成形装置。
A molding die in which one or a plurality of molding recesses and a vent hole leading to the inside of the molding recess is formed in the internal space of the heating furnace, and a glass material is molded so as to cover the molding recesses. In a state where the glass article is placed on a mold, a negative pressure is applied to the molding space surrounded by the molding recess and the back surface of the glass material, thereby molding a glass article having one or more recesses. In an apparatus configured as follows,
At the bottom of the mold, a chamber that is connected to the vent hole and covers the entire bottom surface of the mold or substantially the entire region from below is mounted, and a part or all of the chamber is positioned in the internal space of the heating furnace. The glass article forming apparatus is configured to generate a negative pressure in the internal space of the chamber after heating the internal space of the heating furnace and the internal space of the chamber.
JP2005325174A 2005-11-09 2005-11-09 Glass article molding method and molding apparatus Expired - Fee Related JP5046075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005325174A JP5046075B2 (en) 2005-11-09 2005-11-09 Glass article molding method and molding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005325174A JP5046075B2 (en) 2005-11-09 2005-11-09 Glass article molding method and molding apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011286290A Division JP5448254B2 (en) 2011-12-27 2011-12-27 Glass article molding method and molding apparatus

Publications (2)

Publication Number Publication Date
JP2007131475A JP2007131475A (en) 2007-05-31
JP5046075B2 true JP5046075B2 (en) 2012-10-10

Family

ID=38153440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005325174A Expired - Fee Related JP5046075B2 (en) 2005-11-09 2005-11-09 Glass article molding method and molding apparatus

Country Status (1)

Country Link
JP (1) JP5046075B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9512029B2 (en) 2012-05-31 2016-12-06 Corning Incorporated Cover glass article

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011110166A1 (en) * 2011-08-12 2013-02-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for structuring a glassy material consisting of surface substrate and optical component
WO2013027808A1 (en) * 2011-08-25 2013-02-28 旭硝子株式会社 Optical element manufacturing method and manufacturing device
JP6762914B2 (en) * 2017-07-18 2020-09-30 株式会社テクニスコ Glass molding method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236622A (en) * 1985-04-09 1986-10-21 Nippon Sheet Glass Co Ltd Molding method of glass product
JPH04275930A (en) * 1991-02-26 1992-10-01 Asahi Optical Co Ltd Method and device for thermally dropping molding thermosoftening substance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9512029B2 (en) 2012-05-31 2016-12-06 Corning Incorporated Cover glass article
US10051753B2 (en) 2012-05-31 2018-08-14 Corning Incorporated Cover glass article
US10575422B2 (en) 2012-05-31 2020-02-25 Corning Incorporated Cover glass article
US11297726B2 (en) 2012-05-31 2022-04-05 Corning Incorporated Cover glass article

Also Published As

Publication number Publication date
JP2007131475A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
TWI447080B (en) Method and apparatus for manufacturing curved glass sheet
KR101075825B1 (en) Thermoforming apparatus and thermoforming method using hot plate heating
JP4861715B2 (en) Manufacturing method of vacuum insulation
JP5886291B2 (en) Apparatus and method for forming glass substrate
EP3315282B1 (en) Molding device and method thereof
JP5046075B2 (en) Glass article molding method and molding apparatus
JP2002527349A (en) Method and apparatus for bending sheet glass
WO2014188800A1 (en) Forming device for metal separator and forming method for same
JPH03228840A (en) Molding method for glass vessel
JP2018531866A (en) Gravity curve method assisted by positive pressure and apparatus suitable for this method
JP2018534227A (en) Positive pressure assisted gravity bending method and apparatus suitable for this method
TW201722871A (en) Vacuum-molding apparatus for bend molding glass and methods for the use thereof
JP4444316B2 (en) Vacuum forming apparatus and vacuum forming method
WO2015166889A1 (en) Thermoforming apparatus
JP5957131B1 (en) Thermoforming apparatus and thermoforming method
JPH0558659A (en) Device for bending flat glass and method for bending
JP5448254B2 (en) Glass article molding method and molding apparatus
JP2020500816A (en) Thin glass bending
JP5003858B2 (en) Glass article molding method and molding apparatus
JP4367515B2 (en) Manufacturing method of speaker diaphragm and speaker diaphragm, speaker and electronic device formed thereby
JP6384342B2 (en) Film-coated component manufacturing apparatus and method
JP2012076997A (en) Glass article
US544248A (en) William cutler
TW201408604A (en) Mould and apparatus of glass molding and method using same
TWI641565B (en) Molded three-dimensional glass mold and mold forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080722

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5046075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees