JP5045420B2 - Electrode evaluation method and evaluation apparatus - Google Patents
Electrode evaluation method and evaluation apparatus Download PDFInfo
- Publication number
- JP5045420B2 JP5045420B2 JP2007330156A JP2007330156A JP5045420B2 JP 5045420 B2 JP5045420 B2 JP 5045420B2 JP 2007330156 A JP2007330156 A JP 2007330156A JP 2007330156 A JP2007330156 A JP 2007330156A JP 5045420 B2 JP5045420 B2 JP 5045420B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- potential
- evaluated
- reference electrode
- electric quantity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
本発明は、蓄電デバイスの電極の評価方法に関し、より詳細には単電極としての特性を測定・評価する方法および装置に関する。 The present invention relates to a method for evaluating an electrode of a power storage device, and more particularly to a method and apparatus for measuring and evaluating characteristics as a single electrode.
電気化学キャパシタなどの蓄電デバイス用電極は正極と負極で構成されており、そのデバイスの特性は、単極の特性を組み合わせたもので現れる。そのため、種々の負極や正極が検討されており、高容量で耐電圧の高いものなどが出現している。例えば特許文献1(WO2006/054747)には、容量が大きく信頼性の高い電気二重層キャパシタが開示されている。
一般に、電極を選択、設計し、それを用いてたとえば蓄電デバイスとして最高の容量を得るためには、現状では正極と負極の量を変えて、電気容量や充放電効率や電圧保持特性等を総合的に調べることにより、最も適切な正極/負極比が決められている。正極・負極を組み合わせた状態では、総合的に判断できるが、それぞれの単極の性能や改良の方向について判断するのは困難である。 Generally, in order to select and design an electrode and use it to obtain the highest capacity as an electricity storage device, for example, the amount of positive and negative electrodes is changed at present, and the total capacity, charge / discharge efficiency, voltage holding characteristics, etc. By examining the results, the most appropriate positive / negative electrode ratio is determined. In a state where the positive electrode and the negative electrode are combined, it can be comprehensively determined, but it is difficult to determine the performance of each single electrode and the direction of improvement.
従来、単極を評価する方法としては第三電極(参照電極)を使用する方法がある。しかし、第三電極を実際に蓄電デバイスに組み込むのは難しく、簡単な2極セルやコイン電池の構造に第三電極を設置することはほとんど不可能である。また、単極を評価する他の方法として、金属リチウムを対極として測定する方法があるが、測定できるデバイスは限られており、また金属リチウムの応答性が悪いためハイレートでの評価はできないという問題がある。 Conventionally, as a method for evaluating a single electrode, there is a method using a third electrode (reference electrode). However, it is difficult to actually incorporate the third electrode into the electricity storage device, and it is almost impossible to install the third electrode in a simple two-pole cell or coin battery structure. In addition, as another method of evaluating a single electrode, there is a method of measuring metal lithium as a counter electrode, but there are limited devices that can be measured, and the problem that metal lithium is not responsive and cannot be evaluated at a high rate. There is.
本発明は、これらの問題に鑑み、簡便に単電極を評価する方法および装置を提供することを目的とする。 In view of these problems, an object of the present invention is to provide a method and an apparatus for simply evaluating a single electrode.
本発明は、以下の事項に関する。 The present invention relates to the following matters.
1. 正極、負極および電解液を有する蓄電デバイスに使用される電極の評価方法であって、
被評価電極、電位−電気量特性が既知である材料を使用した基準電極、および電解液とを少なくとも有する2極セルを作製する工程と、
作製した2極セルを用いて、電圧−電気量特性を測定する工程と、
測定された電圧−電気量特性と、前記基準電極の電位−電気量特性に基づいて、前記被評価電極の単極の電位−電気量特性を得る工程と
を有することを特徴とする電極評価方法。
1. An evaluation method of an electrode used in an electricity storage device having a positive electrode, a negative electrode, and an electrolyte solution,
Producing a bipolar cell having at least an electrode to be evaluated, a reference electrode using a material having a known potential-electrical quantity characteristic, and an electrolyte;
A step of measuring voltage-electrical quantity characteristics using the produced bipolar cell;
And a step of obtaining a single electrode potential-electric quantity characteristic of the electrode under evaluation based on the measured voltage-electric quantity characteristic and the potential-electric quantity characteristic of the reference electrode. .
2. 前記基準電極を構成する材料が、活性炭であることを特徴とする上記1記載の電極評価方法。 2. 2. The electrode evaluation method according to 1 above, wherein the material constituting the reference electrode is activated carbon.
3. 前記基準電極を構成する材料が、活性炭繊維であることを特徴とする上記2記載の電極評価方法。 3. 3. The electrode evaluation method according to 2 above, wherein the material constituting the reference electrode is activated carbon fiber.
4. 前記基準電極と前記被評価電極の容量比が1以上となるように、前記基準電極を設定することを特徴とする上記1〜3のいずれかに記載の電極評価方法。
4). 4. The electrode evaluation method according to any one of the
5. 前記基準電極と前記被評価電極の容量比が2以上となるように、前記基準電極を設定することを特徴とする上記4記載の電極評価方法。
5). 5. The electrode evaluation method according to
6. 作製した2極セルでの測定条件において、前記基準電極の電位変化量が2極セル最大電圧の20%以下となる基準電極を使用することを特徴とする上記1〜5のいずれかに記載の電極評価方法。 6). 6. The measurement electrode according to any one of 1 to 5 above, wherein a reference electrode is used in which the potential change amount of the reference electrode is 20% or less of the maximum voltage of the bipolar cell in the measurement conditions of the prepared bipolar cell. Electrode evaluation method.
7. 前記基準電極を構成する材料は、電位に対する単位質量あたりの電気量特性が測定されており、使用する量を調整して、容量比が定められることを特徴とする上記4または5記載の電極評価方法。 7). 6. The electrode evaluation according to 4 or 5 above, wherein the material constituting the reference electrode has an electric quantity characteristic per unit mass measured with respect to an electric potential, and a capacity ratio is determined by adjusting an amount used. Method.
8. 前記基準電極を構成する材料が、電位に対する単位質量あたりの電気量特性が測定された活性炭繊維であり、枚数を調節して、容量比が定められることを特徴とする上記7記載の電極評価方法。 8). 8. The electrode evaluation method as described in 7 above, wherein the material constituting the reference electrode is activated carbon fiber whose electric quantity characteristic per unit mass with respect to the potential is measured, and the capacity ratio is determined by adjusting the number of sheets. .
9. 前記被評価電極の電位−電気量特性として、電位−微分容量特性を得ることを特徴とする上記1〜8のいずれかに記載の電極評価方法。 9. 9. The electrode evaluation method according to any one of 1 to 8, wherein a potential-differential capacity characteristic is obtained as the potential-electric quantity characteristic of the electrode to be evaluated.
10. 前記被評価電極の電位−電気量特性として、不可逆反応量を求めることを特徴とする上記1〜9のいずれかに記載の電極評価方法。 10. 10. The electrode evaluation method according to any one of 1 to 9, wherein an irreversible reaction amount is obtained as the potential-electric quantity characteristic of the electrode to be evaluated.
11. 電圧−電気量特性の測定を定電流法で行うことを特徴とする上記1〜10のいずれかに記載の電極評価方法。 11. 11. The electrode evaluation method according to any one of 1 to 10 above, wherein the voltage-electrical quantity characteristic is measured by a constant current method.
12. 電圧−電気量特性の測定を定電位法で行うことを特徴とする上記1〜10のいずれかに記載の電極評価方法。 12 11. The electrode evaluation method as described in any one of 1 to 10 above, wherein the voltage-electric quantity characteristic is measured by a constant potential method.
13. 蓄電デバイスの単極電位特性の評価装置であって、
(a)電位−電気量特性が既知である材料を使用した基準電極および電解液を少なくとも備え、被評価電極と共に2極セルを構成できる2極セル部、および
(b)前記被評価電極を組み込んだ2極セルの電圧−電気量特性を測定する測定部
を有することを特徴とする電極評価装置。
13. An apparatus for evaluating unipolar potential characteristics of an electricity storage device,
(A) a bipolar electrode unit comprising at least a reference electrode using a material having a known potential-electrical quantity characteristic and an electrolyte, and capable of forming a bipolar cell together with the electrode to be evaluated; and (b) incorporating the electrode to be evaluated. An electrode evaluation apparatus comprising a measuring unit for measuring voltage-electricity characteristics of a bipolar cell.
14. (c)測定された前記2極セルの電圧−電気量特性と、前記基準電極の電位−電気量特性に基づいて、前記被評価電極の単極の電位−電気量特性を算出する手段をさらに有することを特徴とする上記13記載の電極評価装置。 14 (C) means for calculating a single electrode potential-electric quantity characteristic of the electrode to be evaluated based on the measured voltage-electric quantity characteristic of the bipolar cell and the potential-electric quantity characteristic of the reference electrode; 14. The electrode evaluation apparatus as described in 13 above, comprising:
15. 前記基準電極を構成する材料が、活性炭であることを特徴とする上記13または14記載の電極評価装置。 15. 15. The electrode evaluation apparatus as described in 13 or 14 above, wherein the material constituting the reference electrode is activated carbon.
16. 前記基準電極を構成する材料が、活性炭繊維であることを特徴とする上記15記載の電極評価装置。 16. 16. The electrode evaluation apparatus according to 15 above, wherein the material constituting the reference electrode is activated carbon fiber.
17. 前記基準電極と前記被評価電極の容量比が1以上となるように、前記基準電極が設定されることを特徴とする上記13〜16のいずれかに記載の電極評価装置。 17. 17. The electrode evaluation apparatus according to any one of 13 to 16, wherein the reference electrode is set so that a capacitance ratio between the reference electrode and the electrode to be evaluated is 1 or more.
18. 前記基準電極と前記被評価電極の容量比が2以上となるように、前記基準電極が設定されることを特徴とする上記17記載の電極評価装置。 18. 18. The electrode evaluation apparatus according to claim 17, wherein the reference electrode is set so that a capacity ratio between the reference electrode and the electrode to be evaluated is 2 or more.
本発明によれば、実際に近いデバイス形態中で、単電極の評価を簡便に行うことができる。 According to the present invention, it is possible to easily evaluate a single electrode in a device configuration that is close to reality.
本発明により評価される被評価電極は、2極セル型蓄電デバイスに使用される正極または負極である。好ましくは、活性炭、黒鉛、黒鉛質材料(黒鉛より面間隔の広い炭素材料)等の炭素材料で構成される電極であり、充放電が、イオンの吸着によるもの、インターカレーションにより生ずるもの、その両方の組み合わせによるもの等のいずれでもよい。 The electrode to be evaluated evaluated according to the present invention is a positive electrode or a negative electrode used for a bipolar cell type electricity storage device. Preferably, an electrode composed of a carbon material such as activated carbon, graphite, or graphite material (a carbon material having a larger interplanar spacing than graphite), in which charging / discharging is caused by ion adsorption, caused by intercalation, Any of a combination of both may be used.
正極と負極を有する蓄電デバイスでは、充電していくと、正極は高い電位に移行し、負極は低い電位に移行する。各々の電位は各々の電気量によって決まる。通常のデバイスの電極間電圧は、正極の電位から負極の電位を引いたものであり、外からの観察(充電電気量と電圧測定)では、単極が充電によりどのような電位変化をするのかを判断することができない。 In an electricity storage device having a positive electrode and a negative electrode, as the battery is charged, the positive electrode shifts to a high potential and the negative electrode shifts to a low potential. Each electric potential is determined by each electric quantity. The voltage between the electrodes of a normal device is obtained by subtracting the potential of the negative electrode from the potential of the positive electrode. In observation from the outside (measurement of charge amount and voltage), what kind of potential changes the single electrode changes due to charging? Cannot be judged.
そこで、本発明では、対極として電位−電気量特性がすでに評価された基準電極を用いて、被評価電極と組み合わせて蓄電デバイス構造を作製し、その充放電特性を測定し、基準電極の特性に基づいて補正することで、被評価電極の単極としての特性を得ることができる。 Therefore, in the present invention, a reference electrode whose potential-electrical quantity characteristics have already been evaluated as a counter electrode is used to produce an electricity storage device structure in combination with an electrode to be evaluated, its charge / discharge characteristics are measured, and the characteristics of the reference electrode are obtained. By correcting based on this, the characteristics of the electrode under evaluation as a single electrode can be obtained.
図5は、基準電極を負極側に使用し、正極の評価を行う代表的な例である(後述の実施例参照)。曲線(b)は正極−負極間の実測された電圧−電気量特性曲線を示す。ここで、負極の基準電極の電位(対標準水素電極電位)−電気量特性は、線(a)のように測定・算出済みである。ここで、
電圧=正極電位−負極電位(=基準電極電位)、従って、
正極電位=電圧+負極電位(=基準電極電位) (式1)
より、図5の横軸の電位に関して、特性曲線(b)に特性線(a)を加算し、正極の電位−電気量特性(対標準水素電極電位)として曲線(c)が得られる。
FIG. 5 shows a typical example in which the positive electrode is evaluated using the reference electrode on the negative electrode side (see Examples described later). A curve (b) shows an actually measured voltage-electric quantity characteristic curve between the positive electrode and the negative electrode. Here, the potential of the negative electrode reference electrode (vs. the standard hydrogen electrode potential) -electric quantity characteristic has been measured and calculated as shown by the line (a). here,
Voltage = positive electrode potential−negative electrode potential (= reference electrode potential), therefore
Positive electrode potential = voltage + negative electrode potential (= reference electrode potential) (Formula 1)
Thus, the characteristic line (a) is added to the characteristic curve (b) with respect to the potential on the horizontal axis in FIG.
また、基準電極を正極側に使用し、負極の評価を行う場合には、
電圧=正極電位(=基準電極電位)−負極電位、従って、
負極電位=正極電位(=基準電極電位)−電圧 (式2)
より、負極電位の特性を評価することができる。
When using the reference electrode on the positive electrode side and evaluating the negative electrode,
Voltage = positive electrode potential (= reference electrode potential) −negative electrode potential, therefore
Negative electrode potential = positive electrode potential (= reference electrode potential) −voltage (Formula 2)
Thus, the characteristics of the negative electrode potential can be evaluated.
予め測定および/または算出しておくことで、基準電極の特性が既知であれば、実際の使用形態に近い2極セルの特性を測定することにより、評価したい電極の単極の特性を評価することができる。 If the characteristics of the reference electrode are known by measuring and / or calculating in advance, the characteristics of the single electrode of the electrode to be evaluated are evaluated by measuring the characteristics of the bipolar cell that is close to the actual usage pattern. be able to.
基準電極としては、充放電がイオンの吸着・脱着によるものが好ましい。即ち、イオンの吸脱着による電極では、電位−電気量特性の直線性が高いため、式(1)または式(2)による計算の際に、基準電極の電位−電気量特性を直線として近似することができるため、計算が簡便であることに加え、計算を行わなくても、評価電極の特性を定性的に把握することができる。ここで、もし基準電極の充放電がインターカレーション等を伴うと、充電電気量により電位が直線的に変化しないために、2極セルの電圧特性には基準電極の影響が強く現れてしまい、その結果、被評価電極の特性が見えにくくなってしまう。 The reference electrode is preferably one in which charging / discharging is performed by ion adsorption / desorption. That is, in the electrode by ion adsorption / desorption, since the linearity of the potential-electric quantity characteristic is high, the potential-electric quantity characteristic of the reference electrode is approximated as a straight line in the calculation by the formula (1) or the formula (2). Therefore, in addition to simple calculation, the characteristics of the evaluation electrode can be qualitatively understood without performing calculation. Here, if charging / discharging of the reference electrode is accompanied by intercalation or the like, the potential does not change linearly depending on the amount of charge, so the influence of the reference electrode appears strongly in the voltage characteristics of the bipolar cell, As a result, it becomes difficult to see the characteristics of the electrode to be evaluated.
また、分解電位に達するまでの充電電気量を限界容量とするとき基準電極の限界容量が小さいと、充電を進める際に、基準電極側が先に限界容量に達して反応電流がのってしまい、基準電極側の電位−電気量特性の直線性が低下し、被評価電極の特性算出が複雑になる。 Also, if the limit capacity of the reference electrode is small when the amount of electricity charged until reaching the decomposition potential is the limit capacity, when proceeding with charging, the reference electrode side first reaches the limit capacity and the reaction current is carried, The linearity of the potential-electric quantity characteristic on the reference electrode side is lowered, and the characteristic calculation of the electrode to be evaluated becomes complicated.
従って、基準電極の限界容量は、被評価電極の充電電気量を入れても限界容量に達しない容量以上が好ましく、
容量比=(基準電極限界容量)/(被評価電極限界容量)
で定義される容量比が、1以上が好ましい。ある程度の余裕をみると、容量比はより好ましくは2以上である。
Therefore, the limit capacity of the reference electrode is preferably equal to or more than the capacity that does not reach the limit capacity even if the charge electricity amount of the electrode to be evaluated is inserted.
Capacity ratio = (reference electrode limit capacity) / (evaluated electrode limit capacity)
The capacity ratio defined by is preferably 1 or more. Taking a certain margin, the capacity ratio is more preferably 2 or more.
また、容量比が大きいほど、基準電極の電位−電気量特性の傾きが大きくなる。即ち、図5では、基準電極の電位−電気量特性線(a)の傾きがより垂直に立ってくる(図5の線(a)も充分に傾きが大きい。)。式(1)または式(2)に従って被評価電極の特性を算出すると、被評価電極の特性は、2極セルで測定される電圧−電気量特性曲線の形状をほぼ保ったまま電圧・電位をシフトさせた形状に相当する。このため、換算が非常に簡単である上、2極セルの電圧−電気量特性曲線形状から、直ちに被評価電極の特性を簡便に把握することができる。従って、容量比は、さらに好ましくは5以上である。 In addition, the larger the capacitance ratio, the greater the slope of the potential-electric quantity characteristic of the reference electrode. That is, in FIG. 5, the inclination of the potential-electric quantity characteristic line (a) of the reference electrode stands more vertically (the line (a) of FIG. 5 is also sufficiently inclined). When the characteristics of the electrode to be evaluated are calculated according to the formula (1) or the formula (2), the voltage and potential of the electrode to be evaluated can be determined while maintaining the shape of the voltage-electric quantity characteristic curve measured by the bipolar cell. Corresponds to the shifted shape. For this reason, the conversion is very simple and the characteristics of the electrode to be evaluated can be easily grasped immediately from the voltage-electric quantity characteristic curve shape of the bipolar cell. Therefore, the capacity ratio is more preferably 5 or more.
作製した2極セルでの測定条件において、基準電極の電位変化量は2極セル最大電圧の20%以下が好ましく、10%以下がより好ましい。 In the measurement conditions of the produced bipolar cell, the potential change amount of the reference electrode is preferably 20% or less, more preferably 10% or less, of the maximum voltage of the bipolar cell.
このようなことから、基準電極の材料としては、特に重量あたりのイオン吸着量が大きいものが好ましく、活性炭が好ましい。活性炭は、粉末状の通常の活性炭でもよいが、より好ましくは活性炭繊維である。活性炭繊維は、繊維そのものが活性炭の性質を有するものであり、表面積として、800m2/g以上を有するものが好ましく、典型的には1500〜2000m2/gのものが使用される。 For this reason, as the material for the reference electrode, a material having a particularly large ion adsorption amount per weight is preferable, and activated carbon is preferable. The activated carbon may be powdered normal activated carbon, more preferably activated carbon fiber. Activated carbon fibers are those fibers themselves have properties of activated carbon, as the surface area, preferably those having more than 800 m 2 / g, are typically used. For 1500~2000m 2 / g.
本発明を実施する最初のステップとして、まず基準電極材料を用意し、その一部をとり、基準電極材料の電位−電気量特性を測定する。測定は、詳細には後述する参考例1のように、参照極を加えた3極セル、評価に用いる電解液系を使用し、電位−電気量特性を測定する。これを単位質量あたりに換算することで、基準電極材料の特性を得る。特に、レート特性評価を行う場合には、評価電流における基準電極のDCIR(直流電圧降下)を測定しておき、基準電極電位のIR(電圧降下)補正を行うことにより正確な評価が可能である。尚、この基準電極材料の評価は、材料が同一であるとみなすことができる範囲で行うことが好ましい。一般に、同一製造ロット内では材料の特性のばらつきは小さい。もし製造ロットごとに材料の特性に無視できないばらつきがあるときは、製造ロットごとに特性の評価を行うことが好ましく、また、特性が安定していることがわかっていればその必要はない。材料の特性のばらつきにより、適宜評価を行えばよい。 As an initial step for carrying out the present invention, first, a reference electrode material is prepared, a part thereof is taken, and the potential-electric quantity characteristic of the reference electrode material is measured. In detail, as in Reference Example 1 to be described later, a three-electrode cell to which a reference electrode is added and an electrolyte system used for evaluation are used to measure potential-electric quantity characteristics. By converting this per unit mass, the characteristics of the reference electrode material are obtained. In particular, when performing rate characteristic evaluation, accurate evaluation is possible by measuring the DCIR (DC voltage drop) of the reference electrode at the evaluation current and performing IR (voltage drop) correction of the reference electrode potential. . In addition, it is preferable to perform evaluation of this reference electrode material in the range which can consider that material is the same. Generally, variation in material characteristics is small within the same production lot. If there is a non-negligible variation in material characteristics for each production lot, it is preferable to evaluate the characteristics for each production lot, and this is not necessary if it is known that the characteristics are stable. Evaluation may be performed as appropriate depending on variations in material characteristics.
次に、基準電極材料の所定量、即ち被評価電極との容量比が1以上、好ましくは2以上、より好ましくは5以上となる量をとり、被評価電極と、電解液、必要によりセパレータを用いて、蓄電デバイス(2極セル)を組み、特性を測定することにより、多数の被評価電極の特性を簡便に評価することができる。 Next, a predetermined amount of the reference electrode material, that is, a volume ratio of 1 or more, preferably 2 or more, more preferably 5 or more with respect to the electrode to be evaluated is taken. It is possible to easily evaluate the characteristics of a large number of electrodes to be evaluated by assembling an electricity storage device (bipolar cell) and measuring the characteristics.
基準電極材料としては、電極の製造が簡単で、かつ電極の製造により電極特性の変動・ばらつきが小さいものが好ましい。活性炭粉末を使用する場合は、活性炭をバインダーと共に固める必要があり、測定した電極と評価に使用する電極との間での操作によって、ばらつきが生じる可能性がある。一方、活性炭繊維、特に布状(織布、不織布)のものは、所定の形状に切断し、所定の枚数を用いて電極を構成することができるため、変動・ばらつきが小さく、容量の調整も非常に簡便に行うことができる。 As the reference electrode material, it is preferable that the electrode is easily manufactured and the fluctuation and variation in electrode characteristics are small due to the manufacture of the electrode. When using activated carbon powder, it is necessary to harden the activated carbon together with the binder, and there is a possibility that variation may occur depending on the operation between the measured electrode and the electrode used for evaluation. On the other hand, activated carbon fibers, especially those in the form of cloth (woven fabric, non-woven fabric), can be cut into a predetermined shape and an electrode can be configured using a predetermined number of sheets, so fluctuations and variations are small and capacity adjustment is also possible. It can be done very simply.
以上のように、本発明により、単電極の電位−電気量特性、加えて電位−微分容量特性の測定が可能になる。 As described above, according to the present invention, it is possible to measure the potential-electric quantity characteristic of a single electrode, in addition to the potential-differential capacity characteristic.
ところで、容量特性および/または微分容量特性の測定において、通常、電位や電圧の操作はdV/dtを一定として測定され、その時の電流を測定することによりi・dt/dV=Cの関係から微分容量を測定している。しかし、この場合、ΔV移動する間に電流値が変わるため、抵抗Rが存在すると抵抗による電圧変化ΔVR=iRが変わるため、高電流が流れる容量の大きい所では電圧が少し大きくなり、測定上の電位も変わってくる。そのため、iを一定にしてdt/dVを求めることにより、ΔVRを一定にすることができ、ΔVRが無視出来る電流で測定することにより正確な微分容量が測定できる。 By the way, in the measurement of the capacity characteristic and / or the differential capacity characteristic, the operation of the potential or voltage is usually measured with dV / dt constant, and the current at that time is measured to differentiate from the relationship of i · dt / dV = C. The capacity is being measured. However, in this case, since the current value changes while moving ΔV, the voltage change ΔV R = iR due to the resistance changes when the resistor R is present. The potential of will also change. Therefore, by obtaining the dt / dV to the i constant, can be constant [Delta] V R, can be measured accurately differentiation capacity by measuring by [Delta] V R is negligible current.
また、本発明では、被評価電極における不可逆反応を評価することができる。例えば正極にある電位からインターカレートする被評価電極を用い、負極に本発明の容量比が2〜5の比較的低い、基準電極を用いた場合、正極で反応が発生しない電位内で充電し、同じ電気量を放電すると、正負極とも元の電位に戻り、再充電を行うと、同じ電位で充電が開始される。この時負極も同じ電気量で充電されているため、正極が充電され始める時の負極電位は変わらないため、観察される充電開始電圧も変わらない。一方、被測定電極で不可逆反応が発生する場合、例えば正極で溶媒の分解等の不可逆反応が発生したとすると、正極に充電された電気量と正極での反応電流に使われた電気量の合計が負極の充電に使われることになる。この状態で放電すると、正極が元の電位に戻った時、負極は正極での反応電流分だけ充電されたままになる。すなわち負極電位は低くなっている。次の充電はこの状態からスタートするため、正極がインターカレートする電位になった時、負極ははじめから低い電位でスタートし、同電気量分だけ負にずれることになる。すなわち、2極セルで観察されるインターカレーション開始電圧が、電圧の高い方にシフトする。このシフト量から、反応に使われた電気量を求めることが可能になる。 Moreover, in this invention, the irreversible reaction in an electrode to be evaluated can be evaluated. For example, when an electrode to be evaluated that intercalates from a potential at the positive electrode is used and a reference electrode having a relatively low capacity ratio of 2 to 5 according to the present invention is used as the negative electrode, charging is performed within a potential at which no reaction occurs at the positive electrode. When the same amount of electricity is discharged, both the positive and negative electrodes return to the original potential, and when recharging is performed, charging starts at the same potential. At this time, since the negative electrode is charged with the same amount of electricity, the negative electrode potential when the positive electrode starts to be charged does not change, and thus the observed charge start voltage does not change. On the other hand, if an irreversible reaction occurs at the electrode to be measured, for example, if an irreversible reaction such as solvent decomposition occurs at the positive electrode, the total amount of electricity charged to the positive electrode and the amount of electricity used for the reaction current at the positive electrode Will be used to charge the negative electrode. When discharging in this state, when the positive electrode returns to the original potential, the negative electrode remains charged by the reaction current at the positive electrode. That is, the negative electrode potential is low. Since the next charge starts from this state, when the positive electrode reaches an intercalating potential, the negative electrode starts at a low potential from the beginning and shifts negatively by the same amount of electricity. That is, the intercalation start voltage observed in the bipolar cell is shifted to the higher voltage. The amount of electricity used for the reaction can be obtained from this shift amount.
また、容量比が5以上の基準電極を用いた場合、サイクルを繰り返して充放電曲線を測定し、インターカレーションの開始電圧が変化しない状況を観察することにより、正極で反応が起こらない使用可能電位を求めることもできる。 In addition, when a reference electrode with a capacity ratio of 5 or more is used, the cycle can be repeated to measure the charge / discharge curve and observe the situation where the start voltage of intercalation does not change, so that no reaction occurs at the positive electrode. The potential can also be obtained.
以上のように、本発明では、所定の基準電極を使用することで、被評価電極の単極の特性を簡便に評価することが可能になり、蓄電デバイスを設計する上で非常に有用であることがわかった。 As described above, in the present invention, by using a predetermined reference electrode, it is possible to easily evaluate the unipolar characteristics of the electrode to be evaluated, which is very useful in designing an electricity storage device. I understood it.
さらに本発明は、上記の方法に使用される電極評価装置にも関し、(a)電位−電気量特性が既知である材料を使用した基準電極および電解液を少なくとも備え、被評価電極と共に2極セルを構成できる2極セル部、および(b)前記被評価電極を組み込んだ2極セルの電圧−電気量特性を測定する測定部を有する。 Furthermore, the present invention relates to an electrode evaluation apparatus used in the above method, and (a) at least a reference electrode using a material having a known potential-electric quantity characteristic and an electrolytic solution, and two electrodes together with an electrode to be evaluated. A bipolar cell part that can constitute the cell; and (b) a measurement part that measures voltage-electricity characteristics of the bipolar cell incorporating the electrode to be evaluated.
基準電極および電解液の選定についてはすでに説明したとおりであり、その他必要な2極セル部材は公知である。また、2極セルの電圧−電気量特性の測定部も公知の装置の使用が可能であり、好ましくは少なくとも定電流法の場合にはガルバノスタット、エレクトロメーターおよびレコーダー、定電位法の場合にはポテンシオスタット、ファンクションジェネレーターなどの電位掃引装置およびレコーダーを備える。レコーダーは計時機能、演算機能、表示機能の少なくとも1つ備えていることも好ましい。これらの機能により、例えばデバイス中の電気量の蓄電量が容易に算出、表示される。 The selection of the reference electrode and the electrolytic solution is as described above, and other necessary bipolar cell members are known. The measuring unit for the voltage-electric quantity characteristic of the bipolar cell can also use a known device, preferably at least in the case of constant current method, galvanostat, electrometer and recorder, in the case of constant potential method. Equipped with a potential sweep device such as a potentiostat and a function generator, and a recorder. It is also preferable that the recorder has at least one of a clocking function, a calculation function, and a display function. With these functions, for example, the amount of electricity stored in the device can be easily calculated and displayed.
本発明の電極評価装置は、好ましくはさらに、(c)測定された前記2極セルの電圧−電気量特性と、前記基準電極の電位−電気量特性に基づいて、前記被評価電極の単極の電位−電気量特性を算出する手段をさらに有する。算出手段における算出方法は、すでに説明したとおりである。この算出手段は、2極セルの電圧−電気量特性の測定装置の演算機能が兼ねることができる。また、これら算出手段、計時機能、演算機能、表示機能等は、専用または汎用のコンピュータのハード的な構成として、および/またはソフトウェアによる論理的な構成として存在することができる。 The electrode evaluation apparatus according to the present invention preferably further includes (c) a single electrode of the electrode to be evaluated based on the measured voltage-electricity characteristic of the two-pole cell and the potential-electricity characteristic of the reference electrode. There is further provided a means for calculating the potential-electric quantity characteristic of. The calculation method in the calculation means is as already described. This calculation means can also serve as the calculation function of the voltage-electric quantity characteristic measuring device of the bipolar cell. Further, these calculation means, timing function, calculation function, display function, etc. can exist as a hardware configuration of a dedicated or general-purpose computer and / or as a logical configuration by software.
<参考例1> 基準電極材料の評価
図1に模式的に示すように、3極スクリューセルを用いて、正極1、負極2ともに活性炭繊維布(ACC−5092−10、表面積800m2/g、日本カイノール(株))を使用し、負極容量/正極容量比を0.5となるように、負極2では活性炭繊維布1枚、正極1では活性炭繊維布2枚を重ね、セパレータ3を間に挟み、正極側集電体4a、負極側集電体4bで両側から圧力をかけて押さえ、電解液6を浸し、さらに参照極5としてAg/AgCl電極を用いてキャパシタを組んだ。
Reference Example 1 Evaluation of Reference Electrode Material As schematically shown in FIG. 1, activated carbon fiber cloth (ACC-5092-10, surface area 800 m 2 / g, both of
ACD-01 充放電試験装置(アスカ電子(株))にて、電圧0V〜1.5V間で充放電サイクルを行った。充放電操作とは別に、他の2チャンネルを用いて、参照極と正極および参照極と負極にそれぞれ電圧端子を接続し、電圧をモニターした。安定した10サイクル目の電位を確認した。測定の条件は以下の通りである。 ACD-01 A charge / discharge cycle was performed at a voltage of 0 V to 1.5 V using a charge / discharge test apparatus (Asuka Electronics Co., Ltd.). Separately from the charge / discharge operation, voltage terminals were connected to the reference electrode and the positive electrode and the reference electrode and the negative electrode, respectively, using the other two channels, and the voltage was monitored. A stable potential at the 10th cycle was confirmed. The measurement conditions are as follows.
(1)セル:3極スクリューセル;
(2)正極(C):活性炭繊維布88.7mg(16mmφ)×2枚 [ACC−5092−10 日本カイノール(株)];
(3)負極(A):活性炭繊維布43.1mg(16mmφ)×1枚 [ACC−5092−10 日本カイノール(株)];
(4)参照極:Ag/AgCl [EE009(CYPRESS SYSTEMS製)];
(5)セパレータ:ガラス繊維濾紙 GF/C[ワットマン];
(6)電解液:1.5M TEMA・BF4[PC] (トリエチルメチルアンモニウムテトラフルオロボレート、プロピレンカーボネート溶液);
(7)充放電条件:CCCV充電(1.0mA、1.5V、CV2min)、CC放電(1.0mA、0V)、休止(2min)。
(1) Cell: Tripolar screw cell;
(2) Positive electrode (C): Activated carbon fiber cloth 88.7 mg (16 mmφ) × 2 sheets [ACC-5092-10 Nippon Kainol Co., Ltd.];
(3) Negative electrode (A): Activated carbon fiber cloth 43.1 mg (16 mmφ) × 1 sheet [ACC-5092-10 Nippon Kainol Co., Ltd.];
(4) Reference electrode: Ag / AgCl [EE009 (manufactured by CYPRESS SYSTEMS)];
(5) Separator: Glass fiber filter paper GF / C [Whatman];
(6) Electrolytic solution: 1.5M TEMA · BF 4 [PC] (triethylmethylammonium tetrafluoroborate, propylene carbonate solution);
(7) Charging / discharging conditions: CCCV charging (1.0 mA, 1.5 V,
10サイクル目の標準水素電極基準(以下、vs.NHE)に変換した正・負極電位と電気量の関係を図2に示す。 FIG. 2 shows the relationship between the positive and negative electrode potentials converted to the standard hydrogen electrode standard (hereinafter referred to as vs. NHE) at the 10th cycle and the quantity of electricity.
これを、単位質量あたりに換算することで、この活性炭繊維布の負極単極としての特性、正極単極としての特性は、それぞれ図3、図4に示すようになる。この活性炭繊維布を使用する基準電極の特性は、図3または図4のグラフを元に使用する質量換算により得ることができる。 By converting this per unit mass, the characteristics of the activated carbon fiber cloth as a single negative electrode and the single positive electrode are as shown in FIGS. 3 and 4, respectively. The characteristics of the reference electrode using this activated carbon fiber cloth can be obtained by mass conversion using the graph of FIG. 3 or FIG.
<実施例1> 被評価電極(正極)の評価
負極側の基準電極として参考例1で特性を測定した活性炭繊維布を使用し、正極の評価を行った。評価対象の正極は、活物質としてTIMCAL社製黒鉛ティムレックスKS−6(002層間距離0.3357nm、平均粒子径3.4μm、表面積20m2/g)100部に対し、電気化学社製アセチレンブラック(ABと略記)8部を粉体混合後、ダイセル化学工業社製カルボキシメチルセルロース(CMC;バインダー)1.5部と水200部を混合した水溶液を加え混合する。最後に、アクリル系樹脂バインダー2部と水33部を加え軽く混合しスラリーを調製し、アルミ箔上に厚み50ミクロンの電極を調製した。各材料および測定の条件を次にまとめて示す。
<Example 1> Evaluation of electrode to be evaluated (positive electrode) The activated carbon fiber cloth whose characteristics were measured in Reference Example 1 was used as a reference electrode on the negative electrode side, and the positive electrode was evaluated. The positive electrode to be evaluated is acetylene black manufactured by Electrochemical Co., Ltd. with respect to 100 parts of graphite Timrex KS-6 (002 interlayer distance 0.3357 nm, average particle diameter 3.4 μm, surface area 20 m 2 / g) manufactured by TIMCAL as an active material. (Abbreviated as AB) After 8 parts of powders are mixed, an aqueous solution in which 1.5 parts of carboxymethyl cellulose (CMC; binder) manufactured by Daicel Chemical Industries, Ltd. and 200 parts of water are mixed is added and mixed. Finally, 2 parts of an acrylic resin binder and 33 parts of water were added and mixed gently to prepare a slurry, and an electrode having a thickness of 50 microns was prepared on an aluminum foil. Each material and measurement conditions are summarized below.
(1)正極(C):KS−6 :6.37mg(16mmφ)[CMC(1.3%)、アクリル系樹脂バインダー(1.8%)、AB(7.2%)/エッチドAl];
(2)負極(A):活性炭繊維布: 188.6mg(16mmφ)×4枚 [ACC−5092−10 日本カイノール(株)];
(3)セパレータ:ガラス繊維濾紙 GF/C[ワットマン];
(4)電解液:1.5M TEMA・BF4[PC];
(5)充放電条件:CCCV充電(1.0mA、2.1V、CV2min)、CC放電(1.0mA、0V)、休止(2min)、10サイクル。[ACD−01 充放電試験装置 アスカ電子(株)]
(1) Positive electrode (C): KS-6: 6.37 mg (16 mmφ) [CMC (1.3%), acrylic resin binder (1.8%), AB (7.2%) / etched Al];
(2) Negative electrode (A): Activated carbon fiber cloth: 188.6 mg (16 mmφ) × 4 sheets [ACC-5092-10 Nippon Kainol Co., Ltd.];
(3) Separator: Glass fiber filter paper GF / C [Whatman];
(4) Electrolytic solution: 1.5M TEMA · BF 4 [PC];
(5) Charging / discharging conditions: CCCV charging (1.0 mA, 2.1 V,
図5に、10サイクル後の実測した電圧−電気量特性(曲線(b))、負極の基準電極の特性(線(a))およびそれらから求めた正極の被評価電極の特性(曲線(c))を示す。このグラフから明らかなように、負極の基準電極の特性(線(a))は、直線性がよく、また急峻であるため、実測した電圧−電気量特性(曲線(b))から、形状が大きく変化せずに正極の被評価電極の特性(曲線(c))が得られる。従って、被評価電極を簡便に評価できる。 FIG. 5 shows measured voltage-electricity characteristics after 10 cycles (curve (b)), characteristics of the negative reference electrode (line (a)), and characteristics of the electrode to be evaluated (curve (c) )). As is apparent from this graph, the characteristics of the negative reference electrode (line (a)) have good linearity and are steep, so that the shape is determined from the actually measured voltage-electric quantity characteristics (curve (b)). The characteristic (curve (c)) of the positive electrode to be evaluated can be obtained without largely changing. Therefore, the electrode to be evaluated can be easily evaluated.
また、図6に、このときのセルの電圧−被評価電極基準微分容量特性を示す(上側:充電、下側:放電)。また、図7に、被評価電極(正極)単極の充電時の電位−微分容量(重量あたり)特性を示す。図6と図7を比較すると、充電時の微分容量特性の形状が、類似しており、図6のみからでも単極の特性を直ちに理解することができる。 FIG. 6 shows the cell voltage-evaluated electrode reference differential capacity characteristics at this time (upper side: charging, lower side: discharging). FIG. 7 shows the potential-differential capacity (per weight) characteristic during charging of the electrode to be evaluated (positive electrode). Comparing FIG. 6 and FIG. 7, the shapes of the differential capacity characteristics at the time of charging are similar, and the unipolar characteristics can be immediately understood from FIG. 6 alone.
<実施例2> 被評価電極(負極)の評価
正極側の基準電極として参考例1で特性を測定した活性炭繊維布を使用し、負極の評価を行った。評価対象の負極は、活物質としてクラレケミカル社製活性炭RP−20(平均粒子径2μm、表面積1800m2/g)に変えた以外は、実施例1の正極と同様に調製した。各材料および測定の条件を次にまとめて示す。
<Example 2> Evaluation of electrode to be evaluated (negative electrode) The negative electrode was evaluated using the activated carbon fiber cloth whose characteristics were measured in Reference Example 1 as a reference electrode on the positive electrode side. The negative electrode to be evaluated was prepared in the same manner as the positive electrode of Example 1, except that the active material was changed to activated carbon RP-20 (
(1)正極(C):活性炭繊維布:183.2mg(16mmφ)×4枚[ACC−5092−10 日本カイノール(株)];
(2)負極(A):RP−20:7.35mg(16mmφ)[CMC(1.3%)、アクリル系樹脂バインダー(1.8%)、AB(7.2%)/エッチドAl;
(3)セパレータ:ガラス繊維濾紙 GF/C[ワットマン];
(4)電解液:1.5M TEMA・BF4[PC];
(5)充放電条件:CCCV充電(1.0mA、2.1V、CV2min)、CC放電(1.0mA、0V)、休止(2min)、10サイクル。[ACD−01 充放電試験装置 アスカ電子(株)]
(1) Positive electrode (C): Activated carbon fiber cloth: 183.2 mg (16 mmφ) × 4 sheets [ACC-5092-10 Nippon Kainol Co., Ltd.];
(2) Negative electrode (A): RP-20: 7.35 mg (16 mmφ) [CMC (1.3%), acrylic resin binder (1.8%), AB (7.2%) / etched Al;
(3) Separator: Glass fiber filter paper GF / C [Whatman];
(4) Electrolytic solution: 1.5M TEMA · BF 4 [PC];
(5) Charging / discharging conditions: CCCV charging (1.0 mA, 2.1 V,
図8に、10サイクル後の実測した電圧−電気量特性(曲線(b))、正極の基準電極の特性(線(a))およびそれらから求めた負極の被評価電極の特性(曲線(c))を示す。このグラフから明らかなように、正極の基準電極の特性(線(a))は、直線性がよく、また急峻であるため、実測した電圧−電気量特性(曲線(b))から、形状が大きく変化せずにちょうど反転した形状の負極の被評価電極の特性(曲線(c))が得られる。従って、被評価電極を簡便に評価できる。 FIG. 8 shows the measured voltage-electricity characteristics (curve (b)) after 10 cycles, the characteristics of the positive reference electrode (line (a)) and the characteristics of the negative electrode to be evaluated (curve (c) )). As is clear from this graph, the characteristic of the positive electrode reference electrode (line (a)) has good linearity and is steep, so that the shape is determined from the actually measured voltage-electric quantity characteristic (curve (b)). The characteristic (curve (c)) of the negative electrode to be evaluated having a shape that is just inverted without greatly changing is obtained. Therefore, the electrode to be evaluated can be easily evaluated.
また、図9に、このときのセルの電圧−被評価電極基準微分容量特性を示す(上側:充電、下側:放電)。また、図10に、被評価電極(負極)単極の充電時の電位−微分容量(重量あたり)特性を示す。図10のグラフは、図9の充電時の微分容量特性の形状を左右反転した形状と類似しており、図9からでも単極の特性を直ちに理解することができることがわかる。 FIG. 9 shows the cell voltage-evaluated electrode reference differential capacity characteristics at this time (upper side: charging, lower side: discharging). FIG. 10 shows the potential-differential capacity (per weight) characteristic during charging of the electrode under evaluation (negative electrode). The graph of FIG. 10 is similar to the shape of the differential capacity characteristic at the time of charging in FIG. 9 that is horizontally reversed, and it can be seen that the unipolar characteristic can be immediately understood from FIG.
<参考例2> 基準電極材料の評価2
参考例1では、3極スクリューセルを用いて基準電極材料の評価を行ったが、3極スクリューセルを利用できない場合には、一般的な3極ビーカーセルを用いて測定した自然電位と、2極セルによって測定した電圧特性から、次のように基準電極材料を評価することができる。
Reference Example 2 Evaluation of
In Reference Example 1, the reference electrode material was evaluated using a three-pole screw cell. However, when the three-pole screw cell cannot be used, the natural potential measured using a general three-pole beaker cell and 2 From the voltage characteristics measured by the polar cell, the reference electrode material can be evaluated as follows.
(i)理論
基準電極材料(例えば活性炭繊維布)を正極および負極とし、セパレータを介して重ね、電解液を注入して構成され2極セル(図11(a)参照)は、図11(b)の等価回路図で表せる。正極および負極の静電容量をそれぞれC+、C−とした場合、正極と負極に蓄えられる電気量Qは等しく、電圧はQ/C+、Q/C−に分圧される。ここで、正負極が同じ材料かつ同じ重量である場合、C+≒C−と仮定でき、電圧は電極の自然電位(以下、R.P.)からセル電圧の半分がそれぞれに分圧され、
正極電位= R.P.+セル電圧/2
負極電位= R.P.−セル電圧/2
となる。
(I) Theory A reference electrode material (for example, activated carbon fiber cloth) is used as a positive electrode and a negative electrode, stacked with a separator interposed between them, and an electrolyte solution is injected into the two-electrode cell (see FIG. 11A) is shown in FIG. ) Equivalent circuit diagram. When the positive and negative electrode capacities are C + and C − , respectively, the amount of electricity Q stored in the positive and negative electrodes is equal, and the voltage is divided into Q / C + and Q / C − . Here, when the positive and negative electrodes are the same material and have the same weight, it can be assumed that C + ≈C −, and the voltage is divided into half of the cell voltage from the natural potential of the electrode (hereinafter referred to as RP),
Positive electrode potential = R. P. + Cell voltage / 2
Negative electrode potential = R. P. -Cell voltage / 2
It becomes.
すなわち、基準電極材料のR.P.と2極セルの電圧−電気量特性が得られれば、単極電位が求められる。以下、具体的に示す。 That is, the reference electrode material R.I. P. If the voltage-electric quantity characteristics of the bipolar cell are obtained, a monopolar potential can be obtained. Specific description will be given below.
(ii)基準電極の自然電位(R.P.)の測定
図12に示すように容器に電解液(1.5M TEMA BF4 [PC])、活性炭繊維布(ACC−5092−20、表面積1800m2/g、日本カイノール(株))およびAg/AgCl参照電極を入れて3極セルを構成し、ポテンシオスタット(北斗電工(株) HA−151)で活性炭繊維布と参照電極の電位差を測定した。活性炭繊維を電解液につけたときのR.P.の値を表1に示す。
(Ii) Measurement of natural potential (RP) of reference electrode As shown in FIG. 12, an electrolyte solution (1.5M TEMA BF 4 [PC]), activated carbon fiber cloth (ACC-5092-20, surface area 1800 m) in a container 2 / g, Nippon Kainol Co., Ltd.) and an Ag / AgCl reference electrode to form a three-electrode cell, and the potential difference between the activated carbon fiber cloth and the reference electrode was measured with a potentiostat (Hokuto Denko Co., Ltd. HA-151). did. R.C. when activated carbon fiber is attached to the electrolyte. P. Table 1 shows the values.
12枚測定した平均値 0.392V(vs.NHE)を活性炭繊維布 ACC−5092−20 のR.P.とした。 The average value of 0.392 V (vs. NHE) measured on 12 sheets was measured using an activated carbon fiber cloth ACC-5092-20 R.D. P. It was.
(iii)基準電極電位の確認
正極となる活性炭繊維布をセパレータを介して重ね、電解液を注入して2極スクリューセルを組み立て、下記条件にて測定を行った。
(Iii) Confirmation of reference electrode potential Activated carbon fiber cloth serving as a positive electrode was stacked through a separator, an electrolyte was injected, a two-pole screw cell was assembled, and measurement was performed under the following conditions.
(1)正極(C):活性炭繊維布: 30.5mg(16mmφ)×1枚 [ACC−5092−20 日本カイノール(株)];
(2)負極(A):活性炭繊維布: 30.5mg(16mmφ)×1枚 [ACC−5092−20 日本カイノール(株)];
(3)セパレータ:ガラス繊維濾紙 GF/C[ワットマン];
(4)電解液:1.5M TEMA・BF4[PC];
(5)充放電条件:CC充電(1.0mA、1.0V)、CC放電(1.0mA、0V)5サイクル。CCCV充電(1.0mA、1.0V、CV10時間)[ACD−01 充放電試験装置 アスカ電子(株)]
(1) Positive electrode (C): Activated carbon fiber cloth: 30.5 mg (16 mmφ) × 1 sheet [ACC-5092-20 Nippon Kainol Co., Ltd.];
(2) Negative electrode (A): Activated carbon fiber cloth: 30.5 mg (16 mmφ) × 1 sheet [ACC-5092-20 Nippon Kainol Co., Ltd.];
(3) Separator: Glass fiber filter paper GF / C [Whatman];
(4) Electrolytic solution: 1.5M TEMA · BF 4 [PC];
(5) Charging / discharging conditions: CC charging (1.0 mA, 1.0 V), CC discharging (1.0 mA, 0 V) 5 cycles. CCCV charge (1.0 mA, 1.0 V,
このCCCV充電後のセル電圧は0.94Vであった。したがって単極電位は
正極電位=R.P.+セル電圧/2
=0.39+(0.94/2)=+0.86 V
負極電位=R.P.−セル電圧/2
=0.39−(0.94/2)=−0.08 V
と計算できる。
The cell voltage after this CCCV charge was 0.94V. Therefore, the unipolar potential is: positive electrode potential = R. P. + Cell voltage / 2
= 0.39 + (0.94 / 2) = +0.86 V
Negative electrode potential = R. P. -Cell voltage / 2
= 0.39- (0.94 / 2) =-0.08 V
Can be calculated.
このセルを解体して正極、負極の電位を3極ビーカーセルにて測定した結果、正極電位+0.88V vs. NHE、負極電位−0.06Vvs. NHEとなり、計算値とほぼ一致した。 As a result of disassembling this cell and measuring the potential of the positive electrode and the negative electrode in a tripolar beaker cell, the positive electrode potential +0.88 V vs. NHE, negative electrode potential -0.06 Vvs. NHE was obtained, which almost coincided with the calculated value.
(iv)基準電極の電気量測定
正極、負極ともに活性炭繊維布(ACC−5092−20、表面積1800m2/g、日本カイノール(株))を1枚ずつ、セパレータを介して重ね、電解液を注入して2極スクリューセルを組み立て立て、下記条件にて測定を行った。
(Iv) Measurement of Electricity of Reference Electrode Activated carbon fiber cloth (ACC-5092-20, surface area 1800 m 2 / g, Nippon Kainol Co., Ltd.) one by one with a separator interposed between the positive electrode and the negative electrode, and an electrolyte solution was injected Then, a two-pole screw cell was assembled and measured under the following conditions.
(1)正極(C):活性炭繊維布: 30.1mg(16mmφ)×1枚 [ACC−5092−20 日本カイノール(株)];
(2)負極(A):活性炭繊維布: 30.1mg(16mmφ)×1枚 [ACC−5092−20 日本カイノール(株)];
(3)セパレータ:ガラス繊維濾紙 GA−100 [アドバンテック東洋(株)];
(4)電解液:1.5M TEMA・BF4[PC];
(5)充放電条件:CC充電(1.0mA、1.0V)、CC放電(1.0mA、0V) [ACD-01 充放電試験装置 アスカ電子(株)]
(1) Positive electrode (C): Activated carbon fiber cloth: 30.1 mg (16 mmφ) × 1 sheet [ACC-5092-20 Nippon Kainol Co., Ltd.];
(2) Negative electrode (A): Activated carbon fiber cloth: 30.1 mg (16 mmφ) × 1 sheet [ACC-5092-20 Nippon Kainol Co., Ltd.];
(3) Separator: Glass fiber filter paper GA-100 [Advantech Toyo Co., Ltd.];
(4) Electrolytic solution: 1.5M TEMA · BF 4 [PC];
(5) Charging / discharging conditions: CC charging (1.0 mA, 1.0 V), CC discharging (1.0 mA, 0 V) [ACD-01 Charging / discharging test equipment Asuka Electronics Co., Ltd.]
10サイクル目のセル電圧−正極基準電気量の測定結果を図13示す。この測定結果と、(ii)で求めたR.P.=0.39V、(i)の式から、負極および正極の単極電位−電気量(重量あたり)特性は、それぞれ図14、図15のグラフで得られる。 FIG. 13 shows the measurement results of the cell voltage at the 10th cycle—the positive reference electric quantity. This measurement result and the R.D. P. = 0.39 V, from the equation (i), the unipolar potential-electric quantity (per weight) characteristics of the negative electrode and the positive electrode can be obtained from the graphs of FIGS. 14 and 15, respectively.
<実施例3>基準電極 表面積1800m2/g活性炭繊維布を用いた評価
負極側の基準電極として参考例2で特性を測定した活性炭繊維布を使用した以外は実施例1と同様にセルを作製し、正極の評価を行った。
Example 3 Evaluation Using Reference Electrode Surface Area 1800 m 2 / g Activated Carbon Fiber Cloth A cell was prepared in the same manner as in Example 1 except that the activated carbon fiber cloth whose characteristics were measured in Reference Example 2 was used as the reference electrode on the negative electrode side. Then, the positive electrode was evaluated.
(1)正極(C):KS−6 :8.46mg(16mmφ)[CMC(1.3%)、アクリル系樹脂バインダー(1.8%)、AB(7.2%)/エッチドAl];
(2)負極(A):活性炭繊維布: 188.6mg(16mmφ)×4枚 [ACC−5092−20 日本カイノール(株)];
(3)セパレータ:ガラス繊維濾紙 GA−100 [アドバンテック東洋(株)];
(4)電解液:1.5M TEMA・BF4[PC];
(5)充放電条件:CC充電(1.0mA、2.2V)、CC放電(1.0mA、0V)、休止(2min)、10サイクル。[ACD−01 充放電試験装置 アスカ電子(株)]
(1) Positive electrode (C): KS-6: 8.46 mg (16 mmφ) [CMC (1.3%), acrylic resin binder (1.8%), AB (7.2%) / etched Al];
(2) Negative electrode (A): Activated carbon fiber cloth: 188.6 mg (16 mmφ) × 4 sheets [ACC-5092-20 Nippon Kainol Co., Ltd.];
(3) Separator: Glass fiber filter paper GA-100 [Advantech Toyo Co., Ltd.];
(4) Electrolytic solution: 1.5M TEMA · BF 4 [PC];
(5) Charge / discharge conditions: CC charge (1.0 mA, 2.2 V), CC discharge (1.0 mA, 0 V), rest (2 min), 10 cycles. [ACD-01 Charge / Discharge Test Equipment Asuka Electronics Co., Ltd.]
図16に、10サイクル後の実測した電圧−電気量特性(曲線(b))、負極の基準電極の特性(線(a))およびそれらから求めた正極の被評価電極の特性(曲線(c))を示す。 FIG. 16 shows the measured voltage-electricity characteristics (curve (b)) after 10 cycles, the characteristics of the negative electrode reference (line (a)), and the characteristics of the positive electrode to be evaluated (curve (c) determined therefrom). )).
図17にセルの電圧−被評価電極基準微分容量特性を、図18に被評価電極(正極)単極の電位−微分容量(重量あたり)特性を示す。 FIG. 17 shows cell voltage-evaluated electrode reference differential capacity characteristics, and FIG. 18 shows potential-differential capacity (per weight) characteristics of the evaluated electrode (positive electrode) single electrode.
<実施例4> 不可逆反応量の評価
容量比を小さくした以外は実施例3と同様にセルを作製し、不可逆反応量の評価を行った。
<Example 4> Evaluation of irreversible reaction amount A cell was prepared in the same manner as in Example 3 except that the volume ratio was reduced, and the irreversible reaction amount was evaluated.
(1)正極(C):KS−6 :6.70mg(16mmφ)[CMC(1.3%)、アクリル系樹脂バインダー(1.8%)、AB(7.2%)/エッチドAl];
(2)負極(A):活性炭繊維布: 53.8mg(16mmφ)×2枚 [ACC−5092−20 日本カイノール(株)];
(3)セパレータ:ガラス繊維濾紙 GA−100 [アドバンテック東洋(株)];
(4)電解液:1.5M TEMA・BF4[PC];
(5)充放電条件:CC充電(1.0mA、2.2V)、CC放電(1.0mA、0V)、休止(2min)、10サイクル。[ACD−01 充放電試験装置 アスカ電子(株)]
(1) Positive electrode (C): KS-6: 6.70 mg (16 mmφ) [CMC (1.3%), acrylic resin binder (1.8%), AB (7.2%) / etched Al];
(2) Negative electrode (A): Activated carbon fiber cloth: 53.8 mg (16 mmφ) × 2 sheets [ACC-5092-20 Nippon Kainol Co., Ltd.];
(3) Separator: Glass fiber filter paper GA-100 [Advantech Toyo Co., Ltd.];
(4) Electrolytic solution: 1.5M TEMA · BF 4 [PC];
(5) Charge / discharge conditions: CC charge (1.0 mA, 2.2 V), CC discharge (1.0 mA, 0 V), rest (2 min), 10 cycles. [ACD-01 Charge / Discharge Test Equipment Asuka Electronics Co., Ltd.]
図19、図20に、セルの電圧−微分容量特性および被評価電極(正極)単極の電位−微分容量(重量あたり)特性をそれぞれ示す。図20より被測定電極のインターカレート開始電位は一定であることから、図19のインターカレート開始電圧の高電圧側へのシフトは、不可逆反応によるものと確認できる。 FIGS. 19 and 20 show the voltage-differential capacity characteristics of the cell and the potential-differential capacity (per weight) characteristics of the single electrode to be evaluated (positive electrode), respectively. Since the intercalation start potential of the electrode to be measured is constant from FIG. 20, it can be confirmed that the shift of the intercalation start voltage to the high voltage side in FIG. 19 is due to an irreversible reaction.
図19から微分容量0.1mAh/g/mVとなるインターカレート電圧を求めると、1.797V(1サイクル)、1.894V(2サイクル)、1.956V(10サイクル)となり、1サイクルと2サイクルのインターカレート電圧差は0.101V、1サイクルと10サイクルのインターカレート電圧差は0.163Vとなる。したがって、基準電極電位が0.291V(R.P.−0.101V)および0.229V(R.P.−0.163V)となる電気量から、1サイクル目の不可逆反応量は0.093mAh、10サイクル目までの不可逆反応量は0.173mAhとそれぞれ計算できる。 When the intercalation voltage at which the differential capacity becomes 0.1 mAh / g / mV is obtained from FIG. 19, it becomes 1.797V (1 cycle), 1.894V (2 cycles), 1.956V (10 cycles) and 1 cycle. The intercalation voltage difference between two cycles is 0.101V, and the intercalation voltage difference between one cycle and 10 cycles is 0.163V. Accordingly, the amount of irreversible reaction in the first cycle is 0.093 mAh from the amount of electricity at which the reference electrode potential becomes 0.291 V (RP-0.101 V) and 0.229 V (RP-0.163 V). The amount of irreversible reaction up to the 10th cycle can be calculated as 0.173 mAh.
<実施例5> 定電位法による評価
(i)基準電極の電気量測定
正極、負極ともに活性炭繊維布(ACC−5092−20、表面積1800m2/g、日本カイノール(株))を1枚ずつ、セパレータを介して重ね、電解液を注入して2極スクリューセルを組み立て、下記条件にて測定を行った。
<Example 5> Evaluation by a constant potential method (i) Measurement of electric quantity of reference electrode For each of the positive electrode and the negative electrode, activated carbon fiber cloth (ACC-5092-20, surface area 1800 m 2 / g, Nippon Kainol Co., Ltd.) one by one, It piled up through the separator, the electrolyte solution was inject | poured, the bipolar battery cell was assembled, and the measurement was performed on the following conditions.
(1)正極(C):活性炭繊維布: 27.1mg(16mmφ)×1枚 [ACC−5092−20 日本カイノール(株)];
(2)負極(A):活性炭繊維布: 27.1mg(16mmφ)×1枚 [ACC−5092−20 日本カイノール(株)];
(3)セパレータ:ガラス繊維濾紙 GA−100 [アドバンテック東洋(株)];
(4)電解液:1.5M TEMA・BF4[PC];
(5)測定装置:ポテンシオスタット HA−151 [北斗電工(株)]、簡易型関数発生器 HB−111 [北斗電工(株)];
測定条件: 電圧 0〜1.0V、掃引速度 1mV/sec
(1) Positive electrode (C): Activated carbon fiber cloth: 27.1 mg (16 mmφ) × 1 sheet [ACC-5092-20 Nippon Kainol Co., Ltd.];
(2) Negative electrode (A): Activated carbon fiber cloth: 27.1 mg (16 mmφ) × 1 sheet [ACC-5092-20 Nippon Kainol Co., Ltd.];
(3) Separator: Glass fiber filter paper GA-100 [Advantech Toyo Co., Ltd.];
(4) Electrolytic solution: 1.5M TEMA · BF 4 [PC];
(5) Measuring apparatus: Potentiostat HA-151 [Hokuto Denko Co., Ltd.], simplified function generator HB-111 [Hokuto Denko Co., Ltd.];
Measurement conditions: Voltage 0-1.0V, sweep speed 1mV / sec
10サイクル目のセル電圧−正極基準電気量の測定結果を図21に示す。この測定結果と、参考例2(ii)で求めたR.P.=0.39V、参考例2(i)の式から、負極および正極の単極電位−電気量(重量あたり)特性は、それぞれ図22、図23に示すようになる。 FIG. 21 shows the measurement results of the cell voltage at the 10th cycle—the positive reference electric quantity. This measurement result and R.D. obtained in Reference Example 2 (ii). P. = 0.39 V, from the formula of Reference Example 2 (i), the unipolar potential-electric quantity (per weight) characteristics of the negative electrode and the positive electrode are as shown in FIGS. 22 and 23, respectively.
(ii)被評価電極(正極)の評価
実施例3と同様にセルを作製し、下記条件にて正極の評価を行った。
(Ii) Evaluation of electrode to be evaluated (positive electrode) A cell was prepared in the same manner as in Example 3, and the positive electrode was evaluated under the following conditions.
(1)正極(C):KS−6 :9.10mg(16mmφ)[CMC(1.3%)、アクリル系樹脂バインダー(1.8%)、AB(7.2%)/エッチドAl];
(2)負極(A):活性炭繊維布: 107.3mg(16mmφ)×4枚 [ACC−5092−20 日本カイノール(株)];
(3)セパレータ:ガラス繊維濾紙 GA−100 [アドバンテック東洋(株)];
(4)電解液:1.5M TEMA・BF4[PC];
(5)測定装置:ポテンシオスタット HA−151 [北斗電工(株)]、簡易型関数発生器 HB−111 [北斗電工(株)];
測定条件: 電圧 0〜1.0V、掃引速度 1mV/sec
(1) Positive electrode (C): KS-6: 9.10 mg (16 mmφ) [CMC (1.3%), acrylic resin binder (1.8%), AB (7.2%) / etched Al];
(2) Negative electrode (A): Activated carbon fiber cloth: 107.3 mg (16 mmφ) × 4 sheets [ACC-5092-20 Nippon Kainol Co., Ltd.];
(3) Separator: Glass fiber filter paper GA-100 [Advantech Toyo Co., Ltd.];
(4) Electrolytic solution: 1.5M TEMA · BF 4 [PC];
(5) Measuring apparatus: Potentiostat HA-151 [Hokuto Denko Co., Ltd.], simplified function generator HB-111 [Hokuto Denko Co., Ltd.];
Measurement conditions: Voltage 0-1.0V, sweep speed 1mV / sec
図24に、10サイクル後の実測した電圧−電気量特性(曲線(b))、負極の基準電極の特性(線(a))およびそれらから求めた正極の被評価電極の特性(曲線(c))を示す。図25にセルの電圧−被評価電極基準微分容量特性を、図26に被評価電極(正極)単極の電位−微分容量(重量あたり)特性を示す。定電流法(実施例3)ではピークがはっきり観察できるのに対して、定電位法ではピーク位置で電流が多くなりIRドロップの影響が出るため、ピークがブロードになっている。ピーク時点の電流値を定電流法の時と同じ電流値になるように、掃引速度を遅く設定することにより、ブロード化は改善するが、測定には非常に時間を要する。 FIG. 24 shows the actually measured voltage-electricity characteristics after 10 cycles (curve (b)), the characteristics of the negative reference electrode (line (a)), and the characteristics of the positive electrode to be evaluated (curve (c) )). FIG. 25 shows the cell voltage-evaluated electrode reference differential capacity characteristic, and FIG. 26 shows the potential-differential capacity (per weight) characteristic of the evaluated electrode (positive electrode) single electrode. In contrast to the constant current method (Example 3), the peak can be clearly observed, whereas in the constant potential method, the current increases at the peak position and the influence of IR drop appears, so the peak is broad. Broadening is improved by setting the sweep speed slower so that the current value at the peak time becomes the same as that in the constant current method, but the measurement takes a very long time.
1 正極
2 負極
3 セパレータ
4a 正極側集電体
4b 負極側集電体
5 参照極
6 電解液
DESCRIPTION OF
Claims (18)
被評価電極、電位−電気量特性が既知である材料を使用した基準電極、および電解液とを少なくとも有する2極セルを作製する工程と、
作製した2極セルを用いて、電圧−電気量特性を測定する工程と、
測定された電圧−電気量特性と、前記基準電極の電位−電気量特性に基づいて、前記被評価電極の単極の電位−電気量特性を得る工程と
を有することを特徴とする電極評価方法。 An evaluation method of an electrode used in an electricity storage device having a positive electrode, a negative electrode, and an electrolyte solution,
Producing a bipolar cell having at least an electrode to be evaluated, a reference electrode using a material having a known potential-electrical quantity characteristic, and an electrolyte;
A step of measuring voltage-electrical quantity characteristics using the produced bipolar cell;
And a step of obtaining a single electrode potential-electric quantity characteristic of the electrode under evaluation based on the measured voltage-electric quantity characteristic and the potential-electric quantity characteristic of the reference electrode. .
(a)電位−電気量特性が既知である材料を使用した基準電極および電解液を少なくとも備え、被評価電極と共に2極セルを構成できる2極セル部、および
(b)前記被評価電極を組み込んだ2極セルの電圧−電気量特性を測定する測定部
を有することを特徴とする電極評価装置。 An apparatus for evaluating unipolar potential characteristics of an electricity storage device,
(A) a bipolar electrode unit comprising at least a reference electrode using a material having a known potential-electrical quantity characteristic and an electrolyte, and capable of forming a bipolar cell together with the electrode to be evaluated; and (b) incorporating the electrode to be evaluated. An electrode evaluation apparatus comprising a measuring unit for measuring voltage-electricity characteristics of a bipolar cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007330156A JP5045420B2 (en) | 2007-12-21 | 2007-12-21 | Electrode evaluation method and evaluation apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007330156A JP5045420B2 (en) | 2007-12-21 | 2007-12-21 | Electrode evaluation method and evaluation apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009152446A JP2009152446A (en) | 2009-07-09 |
JP5045420B2 true JP5045420B2 (en) | 2012-10-10 |
Family
ID=40921232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007330156A Expired - Fee Related JP5045420B2 (en) | 2007-12-21 | 2007-12-21 | Electrode evaluation method and evaluation apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5045420B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6442681B2 (en) * | 2013-12-02 | 2018-12-26 | 株式会社サンエイト | Manufacturing method of electric double layer capacitor |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3293520B2 (en) * | 1997-05-30 | 2002-06-17 | トヨタ自動車株式会社 | Method and apparatus for measuring potential window of electric double layer capacitor |
JP4024568B2 (en) * | 2001-03-29 | 2007-12-19 | 松下電器産業株式会社 | Electrochemical power storage device and method for manufacturing the same |
JP2006156918A (en) * | 2004-11-30 | 2006-06-15 | Fumihiko Yazaki | Method for manufacturing fibrous carbon material used for electric double layer capacitor |
JP2006278364A (en) * | 2005-03-28 | 2006-10-12 | Nippon Steel Chem Co Ltd | Polarizable electrode for electric double layer capacitor and electric double layer capacitor |
EP1924849B1 (en) * | 2005-08-03 | 2018-07-25 | California Institute of Technology | Electrochemical thermodynamic measurement system |
JP2007142325A (en) * | 2005-11-22 | 2007-06-07 | Hitachi Vehicle Energy Ltd | Energy conversion device and lithium-ion secondary battery |
JP4892964B2 (en) * | 2005-12-26 | 2012-03-07 | パナソニック株式会社 | Charging method of lithium ion secondary battery |
JP5245203B2 (en) * | 2006-03-29 | 2013-07-24 | 株式会社Gsユアサ | Nonaqueous electrolyte secondary battery |
WO2007132896A1 (en) * | 2006-05-16 | 2007-11-22 | Ube Industries, Ltd. | Electric storage device and electric storage system |
-
2007
- 2007-12-21 JP JP2007330156A patent/JP5045420B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009152446A (en) | 2009-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Krishnan et al. | Improving the symmetry of asymmetric supercapacitors using battery-type positive electrodes and activated carbon negative electrodes by mass and charge balance | |
Yuan et al. | Electrochemical capacitance of NiO/Ru0. 35V0. 65O2 asymmetric electrochemical capacitor | |
Qin et al. | Electrochemical hydrogen storage of multiwalled carbon nanotubes | |
Stoller et al. | Activated graphene as a cathode material for Li-ion hybrid supercapacitors | |
Hu et al. | A high rate, high capacity and long life (LiMn2O4+ AC)/Li4Ti5O12 hybrid battery–supercapacitor | |
Chen et al. | Investigations on capacitive properties of the AC/V2O5 hybrid supercapacitor in various aqueous electrolytes | |
CN101730661B (en) | Process for producing activated carbon for electric double layer capacitor electrode | |
US20120050948A1 (en) | Carbon material for electric double layer capacitor electrode and method for producing the carbon material | |
Nasibi et al. | Nano zirconium oxide/carbon black as a new electrode material for electrochemical double layer capacitors | |
KR102159201B1 (en) | Activated carbon for electric double layer capacitor electrode and production method for same | |
Aswathy et al. | Octahedral high voltage LiNi 0.5 Mn 1.5 O 4 spinel cathode: Enhanced capacity retention of hybrid aqueous capacitors with nitrogen doped graphene | |
US8858654B2 (en) | Activated carbon for electric double layer capacitor electrode and method for producing the activated carbon | |
Chiou et al. | Cycle stability of the electrochemical capacitors patterned with vertically aligned carbon nanotubes in an LiPF 6-based electrolyte | |
JP5042754B2 (en) | Electrochemical capacitor | |
JP2009260177A (en) | Activated charcoal for electric double-layer capacitor electrode and manufacturing method thereof | |
Lang et al. | Three-Dimensional Hierarchical Nanoporosity for Ultrahigh Power and Excellent Cyclability of Electrochemical Pseudocapacitors. | |
JP5242090B2 (en) | Method for producing activated carbon for electric double layer capacitor electrode | |
Wu et al. | Hierarchical porous arrays of mesoporous Co3O4 nanosheets grown on graphene skin for high-rate and high-capacity energy storage | |
An et al. | Characterization of supercapacitors using singlewalled carbon nanotube electrodes | |
US6496357B2 (en) | Metal oxide electrochemical psedocapacitor employing organic electrolyte | |
JP2017135154A (en) | Active carbon and method for manufacturing the same | |
JP5045420B2 (en) | Electrode evaluation method and evaluation apparatus | |
Pan et al. | Bamboo-based self-supporting electrodes via green activation for high-performance supercapacitors | |
CN106158410B (en) | A kind of preparation method of zinc oxide/graphene composite electrode material for super capacitor | |
Chen et al. | Electrochemically stabilized porous nickel foam as current collector and counter electrode in alkaline electrolyte for supercapacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100916 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120229 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120619 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120702 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150727 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |