JP4024568B2 - Electrochemical power storage device and method for manufacturing the same - Google Patents

Electrochemical power storage device and method for manufacturing the same Download PDF

Info

Publication number
JP4024568B2
JP4024568B2 JP2002081781A JP2002081781A JP4024568B2 JP 4024568 B2 JP4024568 B2 JP 4024568B2 JP 2002081781 A JP2002081781 A JP 2002081781A JP 2002081781 A JP2002081781 A JP 2002081781A JP 4024568 B2 JP4024568 B2 JP 4024568B2
Authority
JP
Japan
Prior art keywords
storage device
nitrate
electrochemical storage
ruthenium
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002081781A
Other languages
Japanese (ja)
Other versions
JP2002359155A (en
JP2002359155A5 (en
Inventor
琢磨 浅利
進 野本
幹也 嶋田
和之 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002081781A priority Critical patent/JP4024568B2/en
Publication of JP2002359155A publication Critical patent/JP2002359155A/en
Publication of JP2002359155A5 publication Critical patent/JP2002359155A5/ja
Application granted granted Critical
Publication of JP4024568B2 publication Critical patent/JP4024568B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エネルギー密度が高く、長寿命である電気化学蓄積デバイスおよびその製造方法に関するものである。
【0002】
【従来の技術】
従来、電気化学蓄電デバイスとして代表的なものに、電気二重層キャパシタ、及び二次電池があり、それぞれの特徴を生かした市場において既に使用されている。
【0003】
電気二重層キャパシタは、二次電池に比べ高出力密度であり、寿命が長く、高信頼性が要求されるバックアップ電源等に使用されている。
【0004】
一方、二次電池は電気二重層キャパシタに比べ高エネルギー密度であり、最も代表的な電気エネルギー蓄積デバイスであるが、その寿命は電気二重層キャパシタに比べ短く、一定期間の使用後は交換する必要があるという欠点を有している。
【0005】
これら両者の特徴の違いは、その電気エネルギーの蓄電メカニズムによるものであり、電気二重層キャパシタにおいては、電極と電解液のあいだでは電気化学反応は起こらず、充放電時には電解液中に含まれるイオンが移動するだけである。
【0006】
従って、電気二重層キャパシタは二次電池に比べ劣化が起こりにくく、イオンの移動速度が速いため、長寿命であり、高出力密度である。
【0007】
一方、二次電池においては、電極と電解液の間の電気化学反応を利用するため、充放電により劣化が起こり、化学反応速度が遅いため、寿命が短く、かつ出力密度は比較的小さい。
【0008】
ただし、二次電池は電極材料自体が化学エネルギーの形でエネルギーを蓄えるため、電極と電解液の界面しかエネルギーを蓄えることができない電気二重層キャパシタに比べ、高エネルギー密度を有する。
【0009】
これに対し、近年電気二重層キャパシタの特徴である高出力密度、長寿命と、二次電池の特徴である高エネルギー密度を併せ持つ、電気化学キャパシタが提案されている。
【0010】
この電気化学キャパシタに用いられる電極材料として、代表的なものとして酸化ルテニウムなどの遷移金属化合物を用いるものがある。
【0011】
しかし酸化ルテニウムの理論エネルギー密度は高いにもかかわらず、その導電性が低いためにデバイスとして試作した際の実効的エネルギー密度が低いという課題があった。
【0012】
これを解決する手段として、特開平11(1999)‐354389号公報に記載の方法、即ち塩化ルテニウムを出発原料として、これを活性炭微粒子に吸着させて空気中において470℃で40分の熱処理を行うことで酸化ルテニウムを作製する方法が提案されている。この発明によると導電性が良くなるため従来の課題が解決されると同時に、塩化ルテニウム溶液を再利用できることからルテニウムの使用効率を高める結果として、低コスト化を図ることができる。
【0013】
さらに、最終生成物として酸化ルテニウムを形成させるのではなく、塩化ルテニウムを吸着させた後にアルカリ中和処理を行い水酸化ルテニウムを最終生成物として得る方法も特開2000-36441号公報で提案されている。
【0014】
しかし、塩化ルテニウムを出発原料として、熱処理を行い酸化ルテニウムを活性炭微粒子上に担持させる従来の方法においては、下記二つの課題が存在する。
【0015】
第一の課題は、担持させる活性炭の制限によるエネルギー密度の限界である。
【0016】
一般的に塩化ルテニウムなどを含む遷移金属化合物には酸化能力の高いものが多く、一方で活性炭微粒子は一般的に酸化されやすい特性を持っている。
【0017】
実際に本発明者らが種々の活性炭について、塩化ルテニウムを吸着させて特開平11(1999)‐354389号公報に記載の方法で熱処理を行ったが、特に比表面積が大きく官能基濃度が高い活性炭を用いた系では酸化ルテニウムが生成される前に活性炭が燃焼し、それらを電極材料として用いることができない状態であった。
【0018】
熱処理時間を極端に短くすれば、ある程度燃焼を制御することも可能であるが、その場合にはより微細な細孔に吸着された塩化ルテニウムのほとんどが酸化ルテニウムに変換されないため容量密度の向上が阻害されてしまう。
【0019】
一方、官能基濃度が高い活性炭を用いるメリットとして、酸化ルテニウムが完全に担持されていない表面での電気二重層容量もエネルギー密度として利用できることから、比表面積が大きく官能基濃度が高い活性炭においても高い燃焼温度で効率よく遷移金属酸化物を担持させる必要が課題となっている。
【0020】
第二の課題は、残存ハロゲン化合物による信頼性の問題である。担持後において、活性炭上に残存した気化していない塩素イオンが電解液に溶解することは、ケースへの侵食や容量寿命試験の悪化などの信頼性低下に至るさまざまな弊害を引き起こす。この課題は、熱処理を行わず、塩化ルテニウムをアルカリ中和させて水酸化ルテニウムを形成させるプロセスにおいても同様に発生する。
【0021】
【発明が解決しようとする課題】
本発明は、前記した従来の問題を解決するため、ハロゲン化イオンの混入をできるだけ排除し、効率よく遷移金属酸化物または遷移金属水酸化物を担持させた電極材料を作製することで、高容量かつ長寿命である電気化学蓄電デバイスおよびその製造方法を提供することを目的とする。
【0022】
【課題を解決するための手段】
前記目的を達成するため、本発明の電気化学蓄電デバイスは、一対の電極と、前記一対の電極の間に介在するセパレータと、前記電極と前記セパレータに含浸させた電解質溶液を含む電気化学蓄電デバイスであって、前記電極が、硝酸ルテニウムおよび前記硝酸ルテニウムを溶かした溶液から選ばれる少なくとも一つを炭素系材料に吸着させ付加処理を行うことにより、少なくとも酸化ルテニウムまたは水酸化ルテニウムを前記炭素系材料に担持した電極であることを特徴とする。
【0023】
次に本発明の電気化学蓄電デバイスの製造方法は、一対の電極と、前記一対の電極の間に介在するセパレータと、前記電極と前記セパレータに含浸させた電解質溶液を含む電気化学蓄電デバイスの製造方法であって、前記電極を、遷移金属硝酸化合物および前記遷移金属硝酸化合物を溶かした溶液から選ばれる少なくとも一つを炭素系材料に吸着させ付加処理を行うことにより、少なくとも遷移金属酸化物または遷移金属水酸化物を前記炭素系材料に担持して形成するに際し、前記付加処理がアルカリ性水溶液中への浸漬であることを特徴とする。
本発明の別の電気化学蓄電デバイスの製造方法は、一対の電極と、前記一対の電極の間に介在するセパレータと、前記電極と前記セパレータに含浸させた電解質溶液を含む電気化学蓄電デバイスの製造方法であって、前記電極を、遷移金属硝酸化合物および前記遷移金属硝酸化合物を溶かした溶液から選ばれる少なくとも一つを炭素系材料に吸着させ付加処理を行うことにより、少なくとも遷移金属酸化物または遷移金属水酸化物を前記炭素系材料に担持して形成するに際し、前記付加処理が150℃以上750℃以下の範囲の熱処理であることを特徴とする。
【0024】
【発明の実施の形態】
出発原料として遷移金属硝酸化合物を用いて酸化物または水酸化物を生成するには、活性炭が燃焼しない温度の熱処理法もしくは活性炭が全く燃焼しないアルカリ中和処理法の2つの手段がある。
【0025】
これらの手段を用いて遷移金属酸化物または遷移金属水酸化物を比表面積が大きく官能基濃度が高い活性炭上に担持させれば、遷移金属酸化物または遷移金属水酸化物が起因する容量増大だけでなく上記の活性炭が起因する電気二重層容量も増大するので、上記の電極材料を用いた電気化学蓄電デバイスは高い容量成分を示す。
【0026】
特に、熱処理法においては遷移金属硝酸化合物中に存在する硝酸イオンが酸素原子の供給源となり、酸素原子の存在しない不活性雰囲気中においても遷移金属酸化物を生成させ電極活性炭上に担持することができ、熱処理法とアルカリ中和法の両方法において硝酸化合物を出発原料に用いることで、電極材料中の残存ハロゲン含有率を下げることができるため高い信頼性を保証できる。
【0027】
したがって、本発明においては、電極材料中に不可避的に混入される以外のハロゲン化物は含まないことが好ましい。より具体的には、10ppmオーダー程度のハロゲン化物が不可避的に混入されることは否定できないので、20ppm以下のコンタミネーションに押さえるのが好ましい。
【0028】
以下、本発明の実施の形態について図を用いて説明する。
【0029】
図1は、本発明で請求する実施形態の電気化学蓄電デバイスを断面で示している。この電気化学蓄電デバイスは、正極集電体1上に位置した正極活性炭2と負極集電体3上に位置した負極活性炭4の間にイオン透過性セパレータ5を介在させ、正極集電体1と負極集電体3の間を絶縁性ゴム6で電気的に絶縁している。
【0030】
これら正極活性炭2、負極活性炭4の少なくとも一方は酸化ルテニウムに代表される遷移金属酸化物または遷移金属水酸化物を含んでおり、これらの酸化物または水酸化物の価数が連続的に変化することにより、電気化学的エネルギーが蓄積される。従って、活性炭表面積あたりの遷移金属酸化物がより多く含まれることが、エネルギー密度向上には望ましいが、活性炭表面を被覆するほど遷移金属酸化物が含まれていると活性炭表面に形成される電気二重層容量を使用できないため、炭素系材料に対して0.01〜30重量%の範囲に抑えるのが望ましい。また使用する活性炭として、500m2/g以上で4000 m2/g以下の比表面積を持つ多孔質活性炭であれば、本発明の効果が得られる。とくに繊維状の活性炭が好ましい。
【0031】
本発明では遷移金属の中でも特にRu、V、Cr、Mn、Mo、WおよびVIII族元素(Fe、Co、Tc、Rh、Re、Os、Ir、Ni、Pd)において発明の効果が大きいと考えられる。例えば遷移金属硝酸化合物で表わすと、硝酸ルテニウム、硝酸バナジウム、硝酸タングステン、硝酸モリブデン、硝酸クロム、硝酸マンガン、硝酸鉄、硝酸ロジウム、硝酸オスミウムおよび硝酸イリジウムから選ばれる少なくとも一つが好ましい。
【0032】
本発明者らは遷移金属としてルテニウムを用いてルテニウム酸化物またはルテニウム水酸化物を電極活性炭上へ担持させるため、出発原料として硝酸ルテニウムを用いて実験した。そして、硝酸ルテニウムを出発原料としてルテニウム酸化物またはルテニウム水酸化物を活性炭へ担持させる方法として、下記に示す3つの方法が考えられる。
【0033】
第1番目は、硝酸ルテニウム水溶液に活性炭を浸漬した後に、取り出した活性炭を乾燥させ窒素雰囲気中で熱処理を行う。この熱処理をおこなうことで、硝酸ルテニウム中に存在する硝酸イオンが酸素原子の供給源となり、酸素原子の存在しない窒素雰囲気中においてもルテニウム酸化物を生成させ電極活性炭上に担持することができる。この反応は、下記化学式(1)のようになると考えられる。
【0034】
Ru(NO3)3→(1-n)Ru(NO3)3+nRuO2+3nNOx (但しx=7/3) (1)
第2番目は、硝酸ルテニウム水溶液に活性炭を浸漬した後に、取り出した活性炭を乾燥させ不活性ガス雰囲気中で酸素もしくは水蒸気を添加して熱処理を行う。
この熱処理をおこなうことで、添加した酸素もしくは水蒸気が酸素原子の供給源となり、ルテニウム酸化物を生成させ電極活性炭上に担持することができる。ただし、添加した酸素もしくは水蒸気のガス分圧によって活性炭の燃焼温度が決定されるので、活性炭を燃焼させないようにするには活性炭の種類に合わせてガス分圧を決定する必要があり、具体的には活性炭の反応性が高くなればなるほど酸素または水蒸気の分圧が低いほうが望ましいが、酸素または水蒸気の分圧が高いほうが熱処理時間は短縮できる。特に不活性ガス中に0〜30体積%の酸素を供給する場合、150〜750℃の熱処理が必要だが、酸素分量が多いほど活性炭の燃焼温度は低くなるので低温熱処理が必要となる。
【0035】
この反応は酸素を添加した場合、下記化学式(2)のようになると考えられる。
【0036】
Ru(NO3)3+xO2→RuO2+3NOy (但しy=(2x+7)/3) (2)
第3番目は、硝酸ルテニウム水溶液に活性炭を浸漬し、NaOH水溶液をゆっくりと滴下する。このアルカリ中和処理に用いるアルカリ性水溶液としてはNaOH以外に、KOH、NaHCO3、Na2CO3、NH4OHの水溶液でも使用可能であるが、NaOH水溶液が最も好ましく付加処理過程においてpHが7より大きくないことが好ましい。
【0037】
前記アルカリ性水溶液中のアルカリ物質の濃度は、0.001〜10Nの範囲が好ましく、さらには0.01〜4Nの範囲が好ましい。
【0038】
このアルカリ中和処理によって生成するのはルテニウム水酸化物であり、このルテニウム水酸化物が吸着した活性炭を水洗することで残存するナトリウムイオンと硝酸イオンを除去したあと、110℃で乾燥させることでルテニウム酸化物もしくはルテニウム水酸化物を生成させ電極活性炭上に担持することができる。
【0039】
上記に挙げた第1番目および第2番目の方法では400℃以上の熱処理温度を少なくとも必要とするが、第3番目のアルカリ中和処理法では低温で行えるため官能基が多い活性炭においてもルテニウム酸化物もしくはルテニウム水酸化物を生成させることができる長所がある。
【0040】
この反応は、下記化学式(3)のようになると考えられる。
【0041】
Ru(OH)3→RuO2+H2O (3)
ただし、以上に述べた化学反応式はあくまでも一例であって、これにより本発明が限定されるわけではない。
【0042】
上記に述べた方法により、従来に比べより多くのルテニウム酸化物またはルテニウム水酸化物を活性炭上に形成されるため、高いエネルギー密度を持つデバイスが達成できると共に、電極材料中の残存ハロゲン含有率を下げることができるため長寿命化ができる。
【0043】
以上のように本発明は、種々の活性炭、例えば電気二重層容量も大きく発現する比表面積が大きいものや官能基濃度が高いものにおいてもより効率よく遷移金属酸化物または遷移金属水酸化物を担持させた電極材料を作製し、さらに残存ハロゲン含有率を下げることにより高容量かつ長寿命である電気化学蓄電デバイスを作製することができる。
【0044】
【実施例】
以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
【0045】
(実施例1)
本実施例1では硝酸ルテニウムを活性炭繊維に吸着させ窒素雰囲気下で熱処理を行った試料の静電容量測定について以下に説明する。
【0046】
硝酸ルテニウム溶液(田中貴金属社製、ルテニウム含有量50g/L)50mlに比表面積1500m2/gの活性炭繊維(Kynol社製、商品No."#5092")5gを浸漬させ、真空下での含浸後に静地させた。
【0047】
一昼夜後には水溶液の上澄み液は濃茶褐色の水溶液からより薄い茶褐色に変化したことから、活性炭繊維中に硝酸ルテニウムが吸着されたことがわかる。
【0048】
吸着させた活性炭繊維を取り出して110℃で乾燥後、窒素雰囲気下で昇温速度300℃/hrで室温から600℃まで昇温し、次に冷却速度1200℃/hrで室温まで冷却させる熱処理を行った。
【0049】
この熱処理により活性炭繊維に吸着している硝酸ルテニウムは酸化ルテニウムまたは水酸化ルテニウムにした。
【0050】
吸着後に熱処理した活性炭繊維0.1362gと対極である活性炭繊維(Kynol社製、商品No."#5092")0.2823gにそれぞれ白金線を巻きつけ30wt%希硫酸水溶液に浸漬し、真空下で含浸を行った。
【0051】
図2に示した実施例1のTG(熱重量分析:thermogravimetry)曲線が示すように750℃以上の熱処理では活性炭繊維が燃焼しているため、窒素雰囲気中での熱処理では750℃を超えない温度で熱処理をする必要がある。図2において、DTAは示差熱分析(differential thermal analysis)、DTGは示差熱重量分析(differential thermogravimetry)曲線をそれぞれ示す。DTAとDTG曲線からも、窒素雰囲気中での熱処理では750℃を超えない温度で熱処理をする必要がある。
【0052】
また、本実施例1で得られた上記の熱処理後の活性炭繊維をX線解析した結果を図3に示したが、熱処理後の活性炭繊維に吸着したRuO2の生成が確認できた。
【0053】
次に、電解液として30wt%希硫酸水溶液、参照電極として銀-塩化銀電極、測定法として三電極でサイクリックボルタングラム法を用いて酸化ルテニウムまたは水酸化ルテニウムが吸着された活性炭繊維電極の静電容量を評価した。
【0054】
本実施例1と比較例1における電圧掃引速度0.25 mV/secで行ったサイクリックボルタンメトリ測定結果を図4に示したが、以降の比較例と実施例においても同様の測定を行った。その際、Ag/Ag+参照極に対して作用極電位を-0.2〜+0.8Vまで掃引した時の電流量をクーロンメーターにより積算し試料重量あたりで換算して評価を行ったが、この算出法は以下に述べる実施例において全て共通であり、以下重量あたりの静電容量のみ記載する。
【0055】
上記の評価を行った結果、重量あたりの静電容量は(表1)に示すように、この酸化ルテニウムを吸着させた活性炭繊維電極では283.80 F/gとなり、比較例1である活性炭繊維電極の215.26 F/gに比べて1.32倍を示し、比較例2である塩化ルテニウムを出発原料とした試料の248.26 F/gに比べて1.14倍を示した。
【0056】
(実施例2)
本実施例2では硝酸ルテニウムを活性炭繊維に吸着させ、窒素:酸素分圧比90:10の混合気体雰囲気下で熱処理を行った試料の静電容量測定について以下に説明する。
【0057】
硝酸ルテニウム溶液(田中貴金属社製、ルテニウム含有量50g/L)50mlに比表面積1500m2/gの活性炭繊維(Kynol社製、商品No."#5092")5gを浸漬させ、真空下での含浸後に静地させた。
【0058】
一昼夜後には水溶液の上澄み液は濃茶褐色の水溶液からより薄い茶褐色に変化したことから、活性炭繊維中に硝酸ルテニウムが吸着されたことがわかる。
【0059】
吸着させた活性炭繊維を取り出して110℃で乾燥後、窒素:酸素分圧比90:10の混合気体雰囲気下で昇温速度300℃/hrで室温から520℃まで昇温し、次に冷却速度1200℃/hrで室温まで冷却させる熱処理を行った。
【0060】
この熱処理により活性炭繊維に吸着している硝酸ルテニウムは酸化ルテニウムまたは水酸化ルテニウムにした。
【0061】
吸着後に熱処理した活性炭繊維0.1382gと対極である活性炭繊維(Kynol社製、商品No."#5092")0.2823gにそれぞれ白金線を巻きつけ30wt%希硫酸水溶液に浸漬し、真空下で含浸を行った。
【0062】
次に、電解液として30wt%希硫酸水溶液、参照電極として銀-塩化銀電極、測定法として三電極でサイクリックボルタングラム法を用いて酸化ルテニウムまたは水酸化ルテニウムが吸着された活性炭繊維電極の静電容量を評価した。
【0063】
上記の評価を行った結果、重量あたりの静電容量は(表1)に示すように、この酸化ルテニウムまたは水酸化ルテニウムを吸着させた活性炭繊維電極では415.95 F/gとなり、比較例1である活性炭繊維電極の215.26 F/gに比べて1.93倍を示し、比較例2である塩化ルテニウムを出発原料とした試料の248.26 F/gに比べて1.68倍を示した。
【0064】
(実施例3)
本実施例3では硝酸ルテニウムを活性炭繊維に吸着させアルカリ中和処理した試料の静電容量測定について以下に説明する。
【0065】
硝酸ルテニウム溶液(田中貴金属社製、ルテニウム含有量50g/L)50mlに比表面積1500m2/gの活性炭繊維(Kynol社製、商品No."#5092")5gを浸漬させ、真空下での含浸後に静地させた。
【0066】
一昼夜後には水溶液の上澄み液は濃茶褐色の水溶液からより薄い茶褐色に変化したことから、活性炭繊維中に硝酸ルテニウムが吸着されたことがわかる。
【0067】
この溶液に水酸化ナトリウム水溶液を滴下した後、活性炭繊維を取り出して水洗することで残存するナトリウムイオンと硝酸イオンを除去したあと、110℃の乾燥器中で乾燥した。
【0068】
アルカリ中和処理した酸化ルテニウム吸着後の活性炭繊維0.1372gと対極である活性炭繊維(Kynol社製、商品No."#5092")0.2823gにそれぞれ白金線を巻きつけ30wt%希硫酸水溶液に浸漬し、真空下で含浸を行った。
【0069】
次に、電解液として30wt%希硫酸水溶液、参照電極として銀-塩化銀電極、測定法として三電極でサイクリックボルタングラム法を用いて酸化ルテニウムまたは水酸化ルテニウムが吸着された活性炭繊維電極の静電容量を評価した。
【0070】
上記の評価を行った結果、重量あたりの静電容量は(表1)に示すように、この酸化ルテニウムまたは水酸化ルテニウムを吸着させた活性炭繊維電極では385.37 F/gとなり、比較例1である活性炭繊維電極の215.26 F/gに比べて1.79倍を示し、比較例2である塩化ルテニウムを出発原料とした試料の248.26 F/gに比べて1.55倍を示した。
【0071】
(比較例1)
本比較例では、活性炭繊維の静電容量測定について以下に説明する。
【0072】
吸着処理を行っていない活性炭繊維(Kynol社製、商品No."#5092")0.0803g、対極として用いる活性炭繊維(Kynol社製、商品No."#5092")0.2823gに白金線を巻きつけて30wt%希硫酸水溶液に浸漬し、真空下で含浸を行った。
【0073】
次に、電解液として30wt%希硫酸水溶液、参照電極として銀-塩化銀電極、測定法として三電極でサイクリックボルタングラム法を用いて吸着処理を行っていない活性炭繊維電極の静電容量を評価した。
【0074】
この評価を行った結果を表1に示す。本比較例1における吸着処理を行っていない活性炭繊維電極の重量あたりの静電容量は215.26 F/gとなった。
【0075】
(比較例2)
本比較例2では塩化ルテニウムを活性炭繊維に吸着させ窒素雰囲気下で熱処理を行った試料の静電容量測定について以下に説明する。
【0076】
塩化ルテニウム0.25gを50mlの蒸留水に溶解し濃赤色の水溶液を作製し、比表面積1500m2/gの活性炭繊維(Kynol社製、商品No."#5092")5gをその溶液中に浸漬させ、真空下での含浸後に静地させた。
【0077】
一昼夜後には水溶液の上澄み液は濃赤色の水溶液からより薄い赤色に変化したことから、活性炭繊維中に塩化ルテニウムが吸着されたことがわかる。
【0078】
吸着させた活性炭繊維を取り出して110℃で乾燥後、窒素雰囲気下で昇温速度300℃/hrで室温から600℃まで昇温し、次に冷却速度1200℃/hrで室温まで冷却させる熱処理を行った。
【0079】
この熱処理により活性炭繊維に吸着している塩化ルテニウムは酸化ルテニウムまたは水酸化ルテニウムにした。
【0080】
吸着後に熱処理した活性炭繊維0.1374gと対極である活性炭繊維(Kynol社製、商品No."#5092")0.2823gにそれぞれ白金線を巻きつけ30wt%希硫酸水溶液に浸漬し、真空下で含浸を行った。
【0081】
次に、電解液として30wt%希硫酸水溶液、参照電極として銀-塩化銀電極、測定法として三電極でサイクリックボルタングラム法を用いて酸化ルテニウムまたは水酸化ルテニウムが吸着された活性炭繊維電極の静電容量を評価した。
【0082】
上記の評価を行った結果、重量あたりの静電容量は(表1)に示すように、この酸化ルテニウムまたは水酸化ルテニウムを吸着させた活性炭繊維電極では248.26 F/gとなり、比較例1である活性炭繊維電極の215.26 F/gに比べて1.15倍を示した。
【0083】
【表1】

Figure 0004024568
【0084】
以上に説明したとおり本発明実施例1−3は、比較例1−2に比べていずれも重量あたりの静電容量が高い電極材料とすることができ、高容量の電気化学蓄電デバイスとすることができた。
【0085】
【発明の効果】
以上のように本発明は、種々の活性炭、例えば電気二重層容量も大きく発現する比表面積が大きいものや官能基濃度が高いものにおいてもより効率よく遷移金属酸化物または遷移金属水酸化物を担持させた電極材料を作製し、さらに残存ハロゲン含有率を下げることにより高容量かつ長寿命である電気化学蓄電デバイスを作製することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態における電気化学蓄電デバイスの構造断面図。
【図2】本発明の実施例1における熱分析結果を示すチャート。
【図3】本発明の実施例1におけるX線解析結果を示すチャート。
【図4】本発明の実施例1に示した酸化ルテニウムまたは水酸化ルテニウムが吸着した活性炭繊維電極と比較例1の吸着処理をしていない活性炭繊維電極のサイクリックボルタンメトリ測定結果である。
【符号の説明】
1 正極集電体
2 正極活性炭
3 負極集電体
4 負極活性炭
5 イオン透過性セパレータ
6 絶縁性ゴム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrochemical storage device having a high energy density and a long lifetime, and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, there are an electric double layer capacitor and a secondary battery as typical electrochemical storage devices, and they are already used in the market utilizing their respective characteristics.
[0003]
The electric double layer capacitor has a higher output density than a secondary battery, has a long life, and is used for a backup power source or the like that requires high reliability.
[0004]
On the other hand, the secondary battery has a higher energy density than the electric double layer capacitor and is the most typical electric energy storage device, but its life is shorter than that of the electric double layer capacitor and needs to be replaced after a certain period of use. Has the disadvantage of being.
[0005]
The difference between these two characteristics is due to the electrical energy storage mechanism. In an electric double layer capacitor, an electrochemical reaction does not occur between the electrode and the electrolyte, and the ions contained in the electrolyte during charging and discharging. Just move.
[0006]
Therefore, the electric double layer capacitor is less likely to be deteriorated than the secondary battery, and the ion moving speed is fast. Therefore, the electric double layer capacitor has a long life and a high output density.
[0007]
On the other hand, in a secondary battery, since an electrochemical reaction between an electrode and an electrolytic solution is used, deterioration occurs due to charging / discharging, a chemical reaction rate is slow, a life is short, and an output density is relatively small.
[0008]
However, since the secondary battery stores energy in the form of chemical energy, the secondary battery has a higher energy density than an electric double layer capacitor that can store energy only at the interface between the electrode and the electrolyte.
[0009]
On the other hand, in recent years, an electrochemical capacitor has been proposed which has both high output density and long life, which are characteristics of an electric double layer capacitor, and high energy density, which is a characteristic of a secondary battery.
[0010]
As a typical electrode material used in the electrochemical capacitor, there is a material using a transition metal compound such as ruthenium oxide.
[0011]
However, although the theoretical energy density of ruthenium oxide is high, there is a problem that the effective energy density when the device is manufactured as a prototype is low because of its low conductivity.
[0012]
As a means for solving this, the method described in JP-A-11 (1999) -354389, that is, using ruthenium chloride as a starting material, this is adsorbed on activated carbon fine particles and subjected to heat treatment in air at 470 ° C. for 40 minutes. Thus, a method for producing ruthenium oxide has been proposed. According to the present invention, since the conductivity is improved, the conventional problem is solved, and at the same time, since the ruthenium chloride solution can be reused, the use efficiency of ruthenium can be increased, thereby reducing the cost.
[0013]
Furthermore, Japanese Patent Laid-Open No. 2000-36441 also proposes a method in which ruthenium oxide is not formed as a final product, but ruthenium chloride is adsorbed and then an alkali neutralization treatment is performed to obtain ruthenium hydroxide as a final product. Yes.
[0014]
However, in the conventional method in which ruthenium chloride is used as a starting material and heat treatment is performed and ruthenium oxide is supported on the activated carbon fine particles, the following two problems exist.
[0015]
The first problem is the limit of energy density due to the limitation of the activated carbon to be supported.
[0016]
In general, many transition metal compounds containing ruthenium chloride have high oxidation ability, while activated carbon fine particles generally have a characteristic of being easily oxidized.
[0017]
Actually, the inventors of the present invention used various activated carbons to adsorb ruthenium chloride and then heat-treated by the method described in JP-A-11 (1999) -354389. In particular, activated carbon having a large specific surface area and a high functional group concentration. In the system using, activated carbon burned before ruthenium oxide was produced, and they could not be used as an electrode material.
[0018]
If the heat treatment time is extremely shortened, combustion can be controlled to some extent, but in that case, most of the ruthenium chloride adsorbed in the finer pores is not converted to ruthenium oxide, so the capacity density is improved. It will be disturbed.
[0019]
On the other hand, as an advantage of using activated carbon with a high functional group concentration, the electric double layer capacity on the surface on which ruthenium oxide is not completely supported can also be used as an energy density, so even with activated carbon having a large specific surface area and a high functional group concentration, it is high. The need to efficiently support the transition metal oxide at the combustion temperature is a problem.
[0020]
The second problem is the problem of reliability due to residual halogen compounds. After loading, dissolution of unvaporized chlorine ions remaining on the activated carbon in the electrolyte causes various adverse effects such as erosion to the case and deterioration of reliability such as deterioration of capacity life test. This problem similarly occurs in a process in which ruthenium chloride is alkali-neutralized to form ruthenium hydroxide without performing heat treatment.
[0021]
[Problems to be solved by the invention]
In order to solve the above-described conventional problems, the present invention eliminates contamination of halide ions as much as possible, and efficiently produces an electrode material carrying a transition metal oxide or transition metal hydroxide, thereby achieving a high capacity. An object of the present invention is to provide an electrochemical storage device having a long life and a method for producing the same.
[0022]
[Means for Solving the Problems]
To achieve the above object, an electrochemical electricity storage device of the present invention includes a pair of electrodes, a separator interposed between the pair of electrodes, and an electrolyte solution impregnated in the electrodes and the separator. The electrode is formed by adsorbing at least one selected from ruthenium nitrate and a solution in which ruthenium nitrate is dissolved on the carbon-based material and performing an addition treatment, thereby at least ruthenium oxide or ruthenium hydroxide is added to the carbon-based material. It is characterized by being an electrode carried on the substrate.
[0023]
Next, a method for manufacturing an electrochemical storage device according to the present invention includes manufacturing a electrochemical storage device including a pair of electrodes, a separator interposed between the pair of electrodes, and an electrolyte solution impregnated in the electrodes and the separator. In the method, the electrode is subjected to an addition treatment by adsorbing at least one selected from a transition metal nitrate compound and a solution in which the transition metal nitrate compound is dissolved in a carbon-based material, thereby at least a transition metal oxide or a transition. When the metal hydroxide is supported on the carbon-based material and formed , the addition treatment is immersion in an alkaline aqueous solution .
Another method of manufacturing an electrochemical storage device of the present invention is to manufacture an electrochemical storage device including a pair of electrodes, a separator interposed between the pair of electrodes, and an electrolyte solution impregnated in the electrode and the separator. In the method, the electrode is subjected to an addition treatment by adsorbing at least one selected from a transition metal nitrate compound and a solution in which the transition metal nitrate compound is dissolved in a carbon-based material, thereby at least a transition metal oxide or a transition. When the metal hydroxide is formed on the carbon-based material, the addition treatment is a heat treatment in a range of 150 ° C. or higher and 750 ° C. or lower.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
There are two methods for producing an oxide or hydroxide using a transition metal nitrate compound as a starting material: a heat treatment method at a temperature at which activated carbon does not burn or an alkali neutralization method at which activated carbon does not burn at all.
[0025]
If the transition metal oxide or transition metal hydroxide is supported on activated carbon having a large specific surface area and a high functional group concentration using these means, only the capacity increase caused by the transition metal oxide or the transition metal hydroxide is achieved. In addition, since the electric double layer capacity caused by the activated carbon increases, the electrochemical storage device using the electrode material exhibits a high capacity component.
[0026]
In particular, in the heat treatment method, nitrate ions present in transition metal nitrate compounds serve as a supply source of oxygen atoms, and transition metal oxides can be generated and supported on electrode activated carbon even in an inert atmosphere where no oxygen atoms are present. In addition, by using a nitric acid compound as a starting material in both the heat treatment method and the alkali neutralization method, the residual halogen content in the electrode material can be lowered, so that high reliability can be guaranteed.
[0027]
Therefore, in this invention, it is preferable not to contain the halide other than being inevitably mixed in the electrode material. More specifically, since it cannot be denied that halides of the order of 10 ppm are inevitably mixed, it is preferable to suppress contamination to 20 ppm or less.
[0028]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0029]
FIG. 1 shows a cross-sectional view of an electrochemical storage device of an embodiment claimed in the present invention. This electrochemical storage device has an ion permeable separator 5 interposed between a positive electrode activated carbon 2 located on the positive electrode current collector 1 and a negative electrode activated carbon 4 located on the negative electrode current collector 3, and the positive electrode current collector 1 and The negative electrode current collector 3 is electrically insulated by an insulating rubber 6.
[0030]
At least one of these positive electrode activated carbon 2 and negative electrode activated carbon 4 contains a transition metal oxide or transition metal hydroxide represented by ruthenium oxide, and the valence of these oxides or hydroxides changes continuously. As a result, electrochemical energy is accumulated. Therefore, it is desirable to increase the energy density to contain more transition metal oxide per activated carbon surface area, but if the transition metal oxide is contained so as to cover the activated carbon surface, the electric bismuth formed on the activated carbon surface. Since the multi-layer capacity cannot be used, it is desirable to limit the carbon content to 0.01 to 30% by weight. Moreover, if the activated carbon used is a porous activated carbon having a specific surface area of 500 m 2 / g or more and 4000 m 2 / g or less, the effect of the present invention can be obtained. In particular, fibrous activated carbon is preferable.
[0031]
In the present invention, it is considered that the effects of the invention are particularly large among the transition metals, especially Ru, V, Cr, Mn, Mo, W and Group VIII elements (Fe, Co, Tc, Rh, Re, Os, Ir, Ni, Pd). It is done. For example, in terms of a transition metal nitrate compound, at least one selected from ruthenium nitrate, vanadium nitrate, tungsten nitrate, molybdenum nitrate, chromium nitrate, manganese nitrate, iron nitrate, rhodium nitrate, osmium nitrate, and iridium nitrate is preferable.
[0032]
In order to support ruthenium oxide or ruthenium hydroxide on the electrode activated carbon using ruthenium as a transition metal, the inventors conducted experiments using ruthenium nitrate as a starting material. The following three methods are conceivable as methods for supporting ruthenium oxide or ruthenium hydroxide on activated carbon using ruthenium nitrate as a starting material.
[0033]
First, after immersing activated carbon in a ruthenium nitrate aqueous solution, the extracted activated carbon is dried and heat-treated in a nitrogen atmosphere. By performing this heat treatment, nitrate ions present in the ruthenium nitrate serve as a supply source of oxygen atoms, and ruthenium oxide can be generated and supported on the electrode activated carbon even in a nitrogen atmosphere in which no oxygen atoms are present. This reaction is considered to be represented by the following chemical formula (1).
[0034]
Ru (NO 3 ) 3 → (1-n) Ru (NO 3 ) 3 + nRuO 2 + 3nNO x (where x = 7/3) (1)
Second, after immersing activated carbon in an aqueous ruthenium nitrate solution, the extracted activated carbon is dried and heat treatment is performed by adding oxygen or water vapor in an inert gas atmosphere.
By performing this heat treatment, the added oxygen or water vapor becomes a supply source of oxygen atoms, and ruthenium oxide can be generated and supported on the electrode activated carbon. However, since the combustion temperature of the activated carbon is determined by the gas partial pressure of the added oxygen or water vapor, it is necessary to determine the gas partial pressure according to the type of activated carbon in order to prevent the activated carbon from burning. The higher the reactivity of activated carbon, the lower the partial pressure of oxygen or water vapor, but the higher the partial pressure of oxygen or water vapor, the shorter the heat treatment time. In particular, when 0 to 30% by volume of oxygen is supplied to the inert gas, a heat treatment at 150 to 750 ° C. is necessary. However, since the combustion temperature of the activated carbon decreases as the oxygen content increases, a low temperature heat treatment is necessary.
[0035]
This reaction is considered to be represented by the following chemical formula (2) when oxygen is added.
[0036]
Ru (NO 3 ) 3 + xO 2 → RuO 2 + 3NO y (where y = (2x + 7) / 3) (2)
Third, the activated carbon is immersed in an aqueous ruthenium nitrate solution, and an aqueous NaOH solution is slowly dropped. As the alkaline aqueous solution used for this alkali neutralization treatment, an aqueous solution of KOH, NaHCO 3 , Na 2 CO 3 , NH 4 OH can be used in addition to NaOH. It is preferably not large.
[0037]
The concentration of the alkaline substance in the alkaline aqueous solution is preferably in the range of 0.001 to 10N, and more preferably in the range of 0.01 to 4N.
[0038]
Ruthenium hydroxide is produced by this alkali neutralization treatment, and the activated carbon adsorbed by the ruthenium hydroxide is washed with water to remove residual sodium ions and nitrate ions, and then dried at 110 ° C. Ruthenium oxide or ruthenium hydroxide can be produced and supported on the electrode activated carbon.
[0039]
The first and second methods listed above require at least a heat treatment temperature of 400 ° C. or higher, but the third alkali neutralization method can be performed at a low temperature, so ruthenium oxidation is performed even on activated carbon with many functional groups. There is an advantage that it can form a ruthenium hydroxide.
[0040]
This reaction is considered to be represented by the following chemical formula (3).
[0041]
Ru (OH) 3 → RuO 2 + H 2 O (3)
However, the chemical reaction formulas described above are merely examples, and the present invention is not limited thereby.
[0042]
By the method described above, more ruthenium oxide or ruthenium hydroxide is formed on the activated carbon than before, so that a device having a high energy density can be achieved and the residual halogen content in the electrode material can be reduced. The life can be extended because it can be lowered.
[0043]
As described above, the present invention supports transition metal oxides or transition metal hydroxides more efficiently even in various activated carbons, for example, those having large electric double layer capacity and large specific surface areas and high functional group concentrations. An electrochemical power storage device having a high capacity and a long life can be produced by producing the electrode material thus produced and further reducing the residual halogen content.
[0044]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited to a following example.
[0045]
Example 1
In Example 1, the measurement of the capacitance of a sample in which ruthenium nitrate is adsorbed on activated carbon fibers and heat-treated in a nitrogen atmosphere will be described below.
[0046]
5 g of activated carbon fiber (Kynol, product No. “# 5092”) with a specific surface area of 1500 m 2 / g is immersed in 50 ml of ruthenium nitrate solution (Tanaka Kikinzoku Co., Ltd., ruthenium content 50 g / L) and impregnated under vacuum It was made to rest later.
[0047]
After one day and night, the supernatant of the aqueous solution changed from a dark brown solution to a lighter brown color, indicating that ruthenium nitrate was adsorbed in the activated carbon fiber.
[0048]
The adsorbed activated carbon fiber is taken out and dried at 110 ° C, then heated from room temperature to 600 ° C at a heating rate of 300 ° C / hr in a nitrogen atmosphere, and then cooled to room temperature at a cooling rate of 1200 ° C / hr. went.
[0049]
By this heat treatment, ruthenium nitrate adsorbed on the activated carbon fiber was changed to ruthenium oxide or ruthenium hydroxide.
[0050]
Wrapped with 0.1362 g of activated carbon fiber heat treated after adsorption and 0.2823 g of activated carbon fiber (product No. "# 5092" manufactured by Kynol, Inc.) as a counter electrode, each immersed in 30 wt% dilute sulfuric acid aqueous solution and impregnated under vacuum went.
[0051]
As shown by the TG (thermogravimetry) curve of Example 1 shown in FIG. 2, the activated carbon fibers are burned in the heat treatment at 750 ° C. or higher, so that the temperature does not exceed 750 ° C. in the heat treatment in the nitrogen atmosphere. It is necessary to heat-treat. In FIG. 2, DTA indicates a differential thermal analysis, and DTG indicates a differential thermogravimetry curve. From the DTA and DTG curves, it is necessary to perform heat treatment at a temperature not exceeding 750 ° C. in heat treatment in a nitrogen atmosphere.
[0052]
Further, the activated carbon fibers after heat treatment obtained in this Example 1 shows the results of X-ray analysis in Figure 3, the generation of RuO 2 adsorbed on the activated carbon fibers after the heat treatment was confirmed.
[0053]
Next, a 30 wt% dilute sulfuric acid aqueous solution as the electrolyte, a silver-silver chloride electrode as the reference electrode, and a three-electrode cyclic voltammogram method as the measurement method using an activated carbon fiber electrode adsorbed with ruthenium oxide or ruthenium hydroxide. The capacity was evaluated.
[0054]
The results of cyclic voltammetry measurements performed at a voltage sweep rate of 0.25 mV / sec in Example 1 and Comparative Example 1 are shown in FIG. 4, but the same measurement was performed in the subsequent Comparative Examples and Examples. At that time, the amount of current when the working electrode potential was swept from -0.2 to +0.8 V with respect to Ag / Ag + reference electrode was integrated with a coulomb meter and evaluated by converting it per sample weight. The method is common to all the embodiments described below, and only the capacitance per weight will be described below.
[0055]
As a result of the above evaluation, the capacitance per weight was 283.80 F / g for the activated carbon fiber electrode adsorbed with ruthenium oxide as shown in Table 1, and the capacitance of the activated carbon fiber electrode of Comparative Example 1 was 283.80 F / g. It was 1.32 times that of 215.26 F / g and 1.14 times that of 248.26 F / g of the sample using ruthenium chloride as Comparative Example 2 as a starting material.
[0056]
(Example 2)
In this Example 2, the capacitance measurement of a sample in which ruthenium nitrate is adsorbed on activated carbon fiber and heat-treated in a mixed gas atmosphere having a nitrogen: oxygen partial pressure ratio of 90:10 will be described below.
[0057]
5 g of activated carbon fiber (Kynol, product No. “# 5092”) with a specific surface area of 1500 m 2 / g is immersed in 50 ml of ruthenium nitrate solution (Tanaka Kikinzoku Co., Ltd., ruthenium content 50 g / L) and impregnated under vacuum It was made to rest later.
[0058]
After one day and night, the supernatant of the aqueous solution changed from a dark brown solution to a lighter brown color, indicating that ruthenium nitrate was adsorbed in the activated carbon fiber.
[0059]
The adsorbed activated carbon fiber is taken out and dried at 110 ° C, then the temperature is raised from room temperature to 520 ° C at a heating rate of 300 ° C / hr in a mixed gas atmosphere with a nitrogen: oxygen partial pressure ratio of 90:10, and then a cooling rate of 1200 A heat treatment for cooling to room temperature at a temperature of ° C / hr was performed.
[0060]
By this heat treatment, ruthenium nitrate adsorbed on the activated carbon fiber was changed to ruthenium oxide or ruthenium hydroxide.
[0061]
A platinum wire was wound around 0.1823 g of activated carbon fiber heat treated after adsorption and 0.2823 g of activated carbon fiber (product No. "# 5092" manufactured by Kynol, Inc.) as a counter electrode, and each was immersed in a 30 wt% dilute sulfuric acid solution and impregnated under vacuum. went.
[0062]
Next, a 30 wt% dilute sulfuric acid aqueous solution as the electrolyte, a silver-silver chloride electrode as the reference electrode, and a three-electrode cyclic voltammogram method as the measurement method using an activated carbon fiber electrode adsorbed with ruthenium oxide or ruthenium hydroxide. The capacity was evaluated.
[0063]
As a result of the above evaluation, the capacitance per weight was 415.95 F / g for the activated carbon fiber electrode on which this ruthenium oxide or ruthenium hydroxide was adsorbed as shown in (Table 1). It showed 1.93 times compared with 215.26 F / g of the activated carbon fiber electrode, and 1.68 times compared with 248.26 F / g of the sample using ruthenium chloride as a starting material in Comparative Example 2.
[0064]
(Example 3)
In the third embodiment, the capacitance measurement of a sample obtained by adsorbing ruthenium nitrate on activated carbon fiber and performing an alkali neutralization treatment will be described below.
[0065]
5 g of activated carbon fiber (Kynol, product No. “# 5092”) with a specific surface area of 1500 m 2 / g is immersed in 50 ml of ruthenium nitrate solution (Tanaka Kikinzoku Co., Ltd., ruthenium content 50 g / L) and impregnated under vacuum It was made to rest later.
[0066]
After one day and night, the supernatant of the aqueous solution changed from a dark brown solution to a lighter brown color, indicating that ruthenium nitrate was adsorbed in the activated carbon fiber.
[0067]
After dropping a sodium hydroxide aqueous solution into this solution, the activated carbon fiber was taken out and washed with water to remove residual sodium ions and nitrate ions, and then dried in a drier at 110 ° C.
[0068]
A platinum wire is wrapped around 0.2823g of activated carbon fiber (Kynol, product No. "# 5092") counteracted by 0.1372g of activated carbon fiber after adsorption of ruthenium oxide treated with alkali, and immersed in 30wt% dilute sulfuric acid aqueous solution. Impregnation was performed under vacuum.
[0069]
Next, a 30 wt% dilute sulfuric acid aqueous solution as the electrolyte, a silver-silver chloride electrode as the reference electrode, and a three-electrode cyclic voltammogram method as the measurement method using an activated carbon fiber electrode adsorbed with ruthenium oxide or ruthenium hydroxide. The capacity was evaluated.
[0070]
As a result of the above evaluation, the capacitance per weight was 385.37 F / g in the activated carbon fiber electrode on which this ruthenium oxide or ruthenium hydroxide was adsorbed as shown in (Table 1). It was 1.79 times higher than 215.26 F / g of the activated carbon fiber electrode, and 1.55 times higher than 248.26 F / g of the sample using ruthenium chloride as a starting material in Comparative Example 2.
[0071]
(Comparative Example 1)
In this comparative example, the capacitance measurement of the activated carbon fiber will be described below.
[0072]
Wrapped platinum wire around 0.0803g of activated carbon fiber (Kynol, product No. "# 5092") not treated with adsorption, and 0.2823g of activated carbon fiber (Kynol, product No. "# 5092") used as a counter electrode Were immersed in a 30 wt% dilute sulfuric acid aqueous solution and impregnated under vacuum.
[0073]
Next, the capacitance of the activated carbon fiber electrode that was not adsorbed using the 30 vol% dilute sulfuric acid aqueous solution as the electrolyte, the silver-silver chloride electrode as the reference electrode, and the three electrodes as the measurement method using the cyclic voltamgram method was evaluated. did.
[0074]
The results of this evaluation are shown in Table 1. The capacitance per weight of the activated carbon fiber electrode not subjected to the adsorption treatment in Comparative Example 1 was 215.26 F / g.
[0075]
(Comparative Example 2)
In this comparative example 2, the capacitance measurement of a sample in which ruthenium chloride is adsorbed on activated carbon fibers and heat-treated in a nitrogen atmosphere will be described below.
[0076]
Dissolve 0.25 g of ruthenium chloride in 50 ml of distilled water to prepare a dark red aqueous solution, and immerse 5 g of activated carbon fiber (product number “# 5092”, manufactured by Kynol, Inc.) with a specific surface area of 1500 m 2 / g in the solution. And allowed to settle after impregnation under vacuum.
[0077]
After one day and night, the supernatant of the aqueous solution changed from a dark red aqueous solution to a lighter red, indicating that ruthenium chloride was adsorbed in the activated carbon fiber.
[0078]
The adsorbed activated carbon fiber is taken out and dried at 110 ° C, then heated from room temperature to 600 ° C at a heating rate of 300 ° C / hr in a nitrogen atmosphere, and then cooled to room temperature at a cooling rate of 1200 ° C / hr. went.
[0079]
By this heat treatment, ruthenium chloride adsorbed on the activated carbon fiber was changed to ruthenium oxide or ruthenium hydroxide.
[0080]
Wrapped with platinum wire 0.1374g heat treated after adsorption and 0.2823g activated carbon fiber (product No. "# 5092" manufactured by Kynol, Inc.) as a counter electrode, immersed in 30wt% dilute sulfuric acid aqueous solution and impregnated under vacuum went.
[0081]
Next, a 30 wt% dilute sulfuric acid aqueous solution as the electrolyte, a silver-silver chloride electrode as the reference electrode, and a three-electrode cyclic voltammogram method as the measurement method using an activated carbon fiber electrode adsorbed with ruthenium oxide or ruthenium hydroxide. The capacity was evaluated.
[0082]
As a result of the above evaluation, the capacitance per weight was 248.26 F / g for the activated carbon fiber electrode on which this ruthenium oxide or ruthenium hydroxide was adsorbed as shown in (Table 1). It was 1.15 times that of 215.26 F / g of the activated carbon fiber electrode.
[0083]
[Table 1]
Figure 0004024568
[0084]
As described above, Example 1-3 of the present invention can be an electrode material having a higher capacitance per weight than Comparative Example 1-2, and can be a high-capacity electrochemical storage device. I was able to.
[0085]
【The invention's effect】
As described above, the present invention supports transition metal oxides or transition metal hydroxides more efficiently even in various activated carbons, for example, those having a large specific surface area and a high functional group concentration, which also have a large electric double layer capacity. An electrochemical power storage device having a high capacity and a long life can be produced by producing the electrode material thus produced and further reducing the residual halogen content.
[Brief description of the drawings]
FIG. 1 is a structural cross-sectional view of an electrochemical storage device according to an embodiment of the present invention.
FIG. 2 is a chart showing the results of thermal analysis in Example 1 of the present invention.
FIG. 3 is a chart showing X-ray analysis results in Example 1 of the present invention.
4 is a result of cyclic voltammetry measurement of the activated carbon fiber electrode adsorbed with ruthenium oxide or ruthenium hydroxide shown in Example 1 of the present invention and the activated carbon fiber electrode not subjected to the adsorption treatment of Comparative Example 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Positive electrode activated carbon 3 Negative electrode collector 4 Negative electrode activated carbon 5 Ion permeable separator 6 Insulating rubber

Claims (19)

一対の電極と、前記一対の電極の間に介在するセパレータと、前記電極と前記セパレータに含浸させた電解質溶液を含む電気化学蓄電デバイスであって、
前記電極が、硝酸ルテニウムおよび前記硝酸ルテニウムを溶かした溶液から選ばれる少なくとも一つを炭素系材料に吸着させ付加処理を行うことにより、少なくとも酸化ルテニウムまたは水酸化ルテニウムを前記炭素系材料に担持した電極であることを特徴とする電気化学蓄電デバイス。
An electrochemical energy storage device comprising a pair of electrodes, a separator interposed between the pair of electrodes, and an electrolyte solution impregnated in the electrodes and the separator,
An electrode in which at least ruthenium oxide or ruthenium hydroxide is supported on the carbon-based material by adsorbing at least one selected from ruthenium nitrate and a solution in which ruthenium nitrate is dissolved on the carbon-based material and performing an addition treatment. An electrochemical electricity storage device characterized by the above.
付加処理が熱処理である請求項1に記載の電気化学蓄電デバイス。  The electrochemical storage device according to claim 1, wherein the additional treatment is a heat treatment. 付加処理がアルカリ性水溶液中への浸漬である請求項1に記載の電気化学蓄電デバイス。  The electrochemical storage device according to claim 1, wherein the addition treatment is immersion in an alkaline aqueous solution. 炭素材料の比表面積が500m2/g以上4000m2/g以下の多孔質炭である請求項1に記載の電気化学蓄電デバイス。The electrochemical storage device according to claim 1, wherein the carbon material is a porous coal having a specific surface area of 500 m 2 / g or more and 4000 m 2 / g or less. 炭素材料が、活性炭繊維である請求項1に記載の電気化学蓄電デバイス。  The electrochemical storage device according to claim 1, wherein the carbon material is activated carbon fiber. 電極材料中には、酸化物または水酸化物の形でハロゲン化物は添加しない請求項1に記載の電気化学蓄電デバイス。  2. The electrochemical storage device according to claim 1, wherein no halide is added in the form of an oxide or hydroxide in the electrode material. 電極材料中のハロゲン化物は20ppm未満である請求項1に記載の電気化学蓄電デバイス。  The electrochemical storage device according to claim 1, wherein the halide in the electrode material is less than 20 ppm. 硝酸ルテニウムの担持量が、0.01質量%以上30質量%の範囲である請求項1に記載の電気化学蓄電デバイス。  The electrochemical storage device according to claim 1, wherein the amount of ruthenium nitrate supported is in the range of 0.01 mass% to 30 mass%. 一対の電極と、前記一対の電極の間に介在するセパレータと、前記電極と前記セパレータに含浸させた電解質溶液を含む電気化学蓄電デバイスの製造方法であって、
前記電極を、遷移金属硝酸化合物および前記遷移金属硝酸化合物を溶かした溶液から選ばれる少なくとも一つを炭素系材料に吸着させ付加処理を行うことにより、少なくとも遷移金属酸化物または遷移金属水酸化物を前記炭素系材料に担持して形成するに際し、
前記付加処理がアルカリ性水溶液中への浸漬であることを特徴とする電気化学蓄電デバイスの製造方法。
A method for producing an electrochemical storage device comprising a pair of electrodes, a separator interposed between the pair of electrodes, and an electrolyte solution impregnated in the electrodes and the separator,
The electrode is subjected to an addition treatment by adsorbing at least one selected from a transition metal nitrate compound and a solution in which the transition metal nitrate compound is dissolved to a carbonaceous material, so that at least a transition metal oxide or a transition metal hydroxide is obtained. In carrying and forming on the carbon-based material ,
The method for producing an electrochemical storage device, wherein the additional treatment is immersion in an alkaline aqueous solution .
遷移金属硝酸化合物が硝酸ルテニウム、硝酸バナジウム、硝酸タングステン、硝酸モリブデン、硝酸クロム、硝酸マンガン、硝酸鉄、硝酸ロジウム、硝酸オスミウム、硝酸イリジウム、硝酸コバルト、硝酸ニッケルおよび硝酸パラジウムから選ばれる少なくとも一つである請求項9に記載の電気化学蓄電デバイスの製造方法。  The transition metal nitrate compound is at least one selected from ruthenium nitrate, vanadium nitrate, tungsten nitrate, molybdenum nitrate, chromium nitrate, manganese nitrate, iron nitrate, rhodium nitrate, osmium nitrate, iridium nitrate, cobalt nitrate, nickel nitrate and palladium nitrate. A method for producing an electrochemical storage device according to claim 9. 炭素材料が、活性炭繊維である請求項9に記載の電気化学蓄電デバイスの製造方法。  The method for producing an electrochemical storage device according to claim 9, wherein the carbon material is activated carbon fiber. 炭素材料の比表面積が500m2/g以上4000m2/g以下の多孔質炭である請求項9に記載の電気化学蓄電デバイスの製造方法。The method for producing an electrochemical storage device according to claim 9, wherein the carbon material is a porous coal having a specific surface area of 500 m 2 / g or more and 4000 m 2 / g or less. 電極材料中には、酸化物または水酸化物の形でハロゲン化物は添加しない請求項9に記載の電気化学蓄電デバイスの製造方法。  The method for manufacturing an electrochemical storage device according to claim 9, wherein no halide is added in the form of an oxide or hydroxide in the electrode material. 電極材料中のハロゲン化物は20ppm未満である請求項9に記載の電気化学蓄電デバイスの製造方法。  The method for manufacturing an electrochemical storage device according to claim 9, wherein the halide in the electrode material is less than 20 ppm. アルカリ性水溶液が、NaOH、KOH、NaHCO3、Na2CO3およびNH4OHから選ばれる少なくとも一つのアルカリ性水溶液である請求項に記載の電気化学蓄電デバイスの製造方法。The method for producing an electrochemical storage device according to claim 9 , wherein the alkaline aqueous solution is at least one alkaline aqueous solution selected from NaOH, KOH, NaHCO 3 , Na 2 CO 3 and NH 4 OH. アルカリ性水溶液中のアルカリ物質の濃度が、0.001〜10Nの範囲である請求項15に記載の電気化学蓄電デバイスの製造方法。The method for producing an electrochemical storage device according to claim 15 , wherein the concentration of the alkaline substance in the alkaline aqueous solution is in the range of 0.001 to 10N. アルカリ性水溶液中へ浸漬した後、遊離のナトリウムイオンおよび硝酸イオンを洗浄により除去する請求項9に記載の電気化学蓄電デバイスの製造方法。  The method for producing an electrochemical storage device according to claim 9, wherein free sodium ions and nitrate ions are removed by washing after immersion in an alkaline aqueous solution. 一対の電極と、前記一対の電極の間に介在するセパレータと、前記電極と前記セパレータに含浸させた電解質溶液を含む電気化学蓄電デバイスの製造方法であって、
前記電極を、遷移金属硝酸化合物および前記遷移金属硝酸化合物を溶かした溶液から選ばれる少なくとも一つを炭素系材料に吸着させ付加処理を行うことにより、少なくとも遷移金属酸化物または遷移金属水酸化物を前記炭素系材料に担持して形成するに際し、
前記付加処理が150℃以上750℃以下の範囲の熱処理であることを特徴とする電気化学蓄電デバイスの製造方法。
A method for producing an electrochemical storage device comprising a pair of electrodes, a separator interposed between the pair of electrodes, and an electrolyte solution impregnated in the electrodes and the separator,
The electrode is subjected to an addition treatment by adsorbing at least one selected from a transition metal nitrate compound and a solution in which the transition metal nitrate compound is dissolved to a carbonaceous material, so that at least a transition metal oxide or a transition metal hydroxide is obtained. In carrying and forming on the carbon-based material,
The method for producing an electrochemical storage device, wherein the additional treatment is a heat treatment in a range of 150 ° C. or higher and 750 ° C. or lower .
熱処理が、酸素ガスが0以上30vol.%以下の不活性ガス雰囲気下である請求項18に記載の電気化学蓄電デバイスの製造方法。In the heat treatment, oxygen gas is 0 or more and 30 vol. The method for producing an electrochemical storage device according to claim 18 , wherein the method is under an inert gas atmosphere of not more than%.
JP2002081781A 2001-03-29 2002-03-22 Electrochemical power storage device and method for manufacturing the same Expired - Lifetime JP4024568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002081781A JP4024568B2 (en) 2001-03-29 2002-03-22 Electrochemical power storage device and method for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-95729 2001-03-29
JP2001095729 2001-03-29
JP2002081781A JP4024568B2 (en) 2001-03-29 2002-03-22 Electrochemical power storage device and method for manufacturing the same

Publications (3)

Publication Number Publication Date
JP2002359155A JP2002359155A (en) 2002-12-13
JP2002359155A5 JP2002359155A5 (en) 2005-06-30
JP4024568B2 true JP4024568B2 (en) 2007-12-19

Family

ID=26612536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002081781A Expired - Lifetime JP4024568B2 (en) 2001-03-29 2002-03-22 Electrochemical power storage device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4024568B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324591A (en) 2005-05-20 2006-11-30 Nisshinbo Ind Inc Electric double-layer capacitor, control method thereof, storage system using the same and secondary battery
JP2008120610A (en) 2006-11-09 2008-05-29 Sumitomo Chemical Co Ltd Activated carbon and method for producing the same
JP5116340B2 (en) * 2007-03-30 2013-01-09 国立大学法人群馬大学 Method for producing metal oxide-supported carbon
JP5347314B2 (en) 2007-10-30 2013-11-20 住友化学株式会社 Nonaqueous electrolyte secondary battery
JP5045420B2 (en) * 2007-12-21 2012-10-10 宇部興産株式会社 Electrode evaluation method and evaluation apparatus

Also Published As

Publication number Publication date
JP2002359155A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
KR101804714B1 (en) Supporting carbon material for solid polymer fuel cell, metal-catalyst-particle-supporting carbon material, and method for manufacturing said materials
JP5456797B2 (en) Fuel cell electrode catalyst
JP6037498B2 (en) Method for producing metal oxide-carrying carbon paper and metal oxide-carrying carbon paper
KR102056527B1 (en) Fuel cell electrode catalyst and method for activating catalyst
JP6965392B2 (en) Positive electrode for zinc-bromine battery and its manufacturing method
CN104769759A (en) Method for producing a catalyst for fuel cells
JP2022106781A (en) Metal-doped tin oxide for electrocatalysis applications
Adhikary et al. Remarkable performance of the unique Pd–Fe 2 O 3 catalyst towards EOR and ORR: non-Pt and non-carbon electrode materials for low-temperature fuel cells
KR102321423B1 (en) Multi-heteroatom-doped carbon catalyst from waste-yeast biomass for sustained water splitting, water splitting device comprising the same and producing method of the same
JP2017039630A (en) Porous carbon material and manufacturing method therefor
Priamushko et al. Incorporation of Cu/Ni in Ordered Mesoporous Co‐Based Spinels to Facilitate Oxygen Evolution and Reduction Reactions in Alkaline Media and Aprotic Li− O2 Batteries
JP4024568B2 (en) Electrochemical power storage device and method for manufacturing the same
Ahmad et al. Thermal optimization of manganese dioxide nanorods with enhanced ORR activity for alkaline membrane fuel cell
US20020182503A1 (en) Electrochemical storage device and method for producing the same
JP2016201417A (en) Carbon material for electricity storage device electrode and method for producing the same
Lei et al. Facile preparation of a methanol catalyst with ultra-high voltage efficiency and super-durability: Pt pollution introduction by composite electrodeposition
Yoo et al. Rational design of porous Ru‐doped CuO nanoarray on carbon cloth: toward reversible catalyst layer for efficient Li‐O2 batteries
JP2010511302A (en) Electrochemical capacitor having two carbon electrodes with different characteristics in an aqueous medium
JP5531313B2 (en) Composite electrode catalyst and method for producing the same
JP2002359155A5 (en)
JP4061100B2 (en) Electrode material for electrochemical power storage device, electrochemical power storage device using the same, and method for manufacturing electrode for electrochemical power storage device
JP4401192B2 (en) Activated carbon for capacitors
KR102062428B1 (en) Electrochemical catalyst and method of fabricating of the same
WO2023063265A1 (en) Electrode catalyst for hydrogen fuel cell anode
KR102178369B1 (en) Graphite felt having multimodal porous carbon coating layer and redox flow battery using the same as electrodes

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071003

R150 Certificate of patent or registration of utility model

Ref document number: 4024568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

EXPY Cancellation because of completion of term