JP5045262B2 - Electric melting furnace - Google Patents

Electric melting furnace Download PDF

Info

Publication number
JP5045262B2
JP5045262B2 JP2007162858A JP2007162858A JP5045262B2 JP 5045262 B2 JP5045262 B2 JP 5045262B2 JP 2007162858 A JP2007162858 A JP 2007162858A JP 2007162858 A JP2007162858 A JP 2007162858A JP 5045262 B2 JP5045262 B2 JP 5045262B2
Authority
JP
Japan
Prior art keywords
electrode
bottom electrode
main
main electrode
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007162858A
Other languages
Japanese (ja)
Other versions
JP2009002560A (en
Inventor
寿範 温見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007162858A priority Critical patent/JP5045262B2/en
Publication of JP2009002560A publication Critical patent/JP2009002560A/en
Application granted granted Critical
Publication of JP5045262B2 publication Critical patent/JP5045262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Resistance Heating (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Furnace Details (AREA)

Description

本発明は、電気溶融炉に関するものである。   The present invention relates to an electric melting furnace.

一般に、原子力施設において発生する被処理液としての高レベル放射性廃液は、高レベル放射性廃液ガラス固化施設の電気溶融炉により溶融させ、ガラス固化体として処理された後、放射性廃棄物保管施設に保管される。   In general, high-level radioactive liquid waste generated at nuclear facilities is melted in an electric melting furnace of the high-level radioactive liquid waste glass solidification facility, treated as a glass solid, and then stored in a radioactive waste storage facility. The

前記ガラス固化施設においては、電気溶融炉の内部で被溶融物としての原料ガラスを溶融する際に高レベル放射性廃液を混入し、該高レベル放射性廃液が混入した溶融ガラスをキャニスタ(ステンレス製容器)に注入し、溶融ガラスを固化させることにより、ガラス固化体を形成している。   In the vitrification facility, when melting the raw glass as a material to be melted inside the electric melting furnace, a high level radioactive waste liquid is mixed, and the molten glass mixed with the high level radioactive waste liquid is a canister (stainless steel container). The glass solidified body is formed by injecting into molten glass and solidifying the molten glass.

図13は従来の電気溶融炉の一例を示すものであって、該電気溶融炉は、内部に溶融空間1が形成されるよう耐火レンガ等の耐火物2で構築された溶融炉本体3を備え、該溶融炉本体3の上部天井壁に、被処理液としての高レベル放射性廃液及び被溶融物としてのガラスビーズのような原料ガラスが投入される投入口4を設け、前記溶融炉本体3の内壁の上下方向中間部に、相互間での通電により溶融空間1内の原料ガラスを加熱し溶融させる主電極5を対向配置すると共に、前記溶融炉本体3内の錐状に窄まる形状とした底部の下端に、前記主電極5との間での通電により溶融空間1内底部のガラスを加熱し溶融させる底部電極6を配置し、該底部電極6が配置された前記溶融炉本体3の底部に流下口7を形成してなる構成を有している。   FIG. 13 shows an example of a conventional electric melting furnace. The electric melting furnace includes a melting furnace body 3 constructed of a refractory material 2 such as a refractory brick so that a melting space 1 is formed therein. The upper ceiling wall of the melting furnace body 3 is provided with an inlet 4 into which high-level radioactive waste liquid as a liquid to be treated and raw glass such as glass beads as a material to be melted are charged. A main electrode 5 that heats and melts the raw glass in the melting space 1 by energization between each other is disposed opposite to the middle portion of the inner wall in the vertical direction, and is constricted in a conical shape in the melting furnace body 3. A bottom electrode 6 that heats and melts the glass in the bottom of the melting space 1 by energization with the main electrode 5 is disposed at the bottom of the bottom, and the bottom of the melting furnace body 3 in which the bottom electrode 6 is disposed. The flow-down port 7 is formed in the bottom.

前記主電極5には、S相及びR相の端子を有し且つ主電極5間に通電するための主電極用トランス8を有する単相交流の主電極用電源9が接続され、該主電極用電源9の主電極用トランス8の一次コイル側のR相側に主電極用スイッチング素子としてのサイリスタ10が設けられると共に、前記底部電極6と前記共用する主電極5の一方には、S相及びR相の端子を有し且つ底部電極6と共用する主電極5の一方との間に通電するための底部電極用トランス11を有する単相交流の底部電極用電源12が接続され、該底部電極用電源12の底部電極用トランス11の一次コイル側のR相側に底部電極用スイッチング素子としてのサイリスタ13が設けられている。   Connected to the main electrode 5 is a single-phase AC main electrode power source 9 which has terminals for S phase and R phase and has a main electrode transformer 8 for energizing between the main electrodes 5. A thyristor 10 serving as a main electrode switching element is provided on the R phase side of the primary coil side of the main electrode transformer 8 of the main power supply 9 and one of the main electrode 5 shared with the bottom electrode 6 has an S phase. And a single-phase AC bottom electrode power supply 12 having a bottom electrode transformer 11 for energizing between one of the main electrode 5 shared with the bottom electrode 6 and having an R-phase terminal. A thyristor 13 as a bottom electrode switching element is provided on the R phase side of the primary coil side of the bottom electrode transformer 11 of the electrode power source 12.

尚、図13中、14は主電極5間に通電される電圧を測定するための主電極用電圧計、15は主電極5間に通電される電流を測定するための主電極用電流計、16は底部電極6と主電極5の一方との間に通電される電圧を測定するための底部電極用電圧計、17は底部電極6と主電極5の一方との間に通電される電流を測定するための底部電極用電流計である。   In FIG. 13, 14 is a main electrode voltmeter for measuring the voltage passed between the main electrodes 5, 15 is a main electrode ammeter for measuring the current passed between the main electrodes 5, Reference numeral 16 denotes a bottom electrode voltmeter for measuring a voltage applied between the bottom electrode 6 and one of the main electrodes 5, and reference numeral 17 denotes a current supplied between the bottom electrode 6 and one of the main electrodes 5. It is an ammeter for bottom electrodes for measuring.

前述の如き電気溶融炉においては、溶融炉本体3の投入口4から高レベル放射性廃液及び原料ガラスを投入し、先ず、主電極5間に電流を流すことでその間の溶融ガラスのジュール熱によりその表層部付近の高レベル放射性廃液及び原料ガラスを充分に溶かし合わせ、続いて、主電極5と底部電極6との間に電流を流してジュール熱により底部電極6上部のガラスを加熱し、その流下口7内部に詰まっている固化ガラスを溶かして下方へ抜き出し、これにより、溶融炉本体3内の溶融ガラスをその下部にセットしたキャニスタ(図示せず)内に流下させ、ガラス固化体として密閉収容するようになっている。   In the electric melting furnace as described above, high-level radioactive waste liquid and raw glass are introduced from the inlet 4 of the melting furnace main body 3, and first, an electric current is passed between the main electrodes 5 to cause Joule heat of the molten glass therebetween. The high-level radioactive liquid near the surface layer and the raw glass are sufficiently melted together. Subsequently, a current is passed between the main electrode 5 and the bottom electrode 6 to heat the glass on the top of the bottom electrode 6 by Joule heat. The solidified glass clogged inside the mouth 7 is melted and extracted downward, whereby the molten glass in the melting furnace main body 3 is caused to flow down into a canister (not shown) set at the lower part thereof and hermetically accommodated as a glass solidified body. It is supposed to be.

因みに、主電極5間に通電される電圧は主電極用電圧計14によって測定され、主電極5間に通電される電流は主電極用電流計15によって測定され、底部電極6と主電極5の一方との間に通電される電圧は底部電極用電圧計16によって測定され、底部電極6と主電極5の一方との間に通電される電流は底部電極用電流計17によって測定される。   Incidentally, the voltage supplied between the main electrodes 5 is measured by the main electrode voltmeter 14, the current supplied between the main electrodes 5 is measured by the main electrode ammeter 15, and the voltage between the bottom electrode 6 and the main electrode 5 is measured. The voltage supplied between the electrodes is measured by the bottom electrode voltmeter 16, and the current supplied between the bottom electrode 6 and one of the main electrodes 5 is measured by the bottom electrode ammeter 17.

ところで、前述のような電気回路において、サイリスタ10,13は専ら主電極5及び底部電極6への電力の供給量を制御するためのものであり、この目的のためには有効であるが、反面、複数対の電極(主電極5同士と、主電極5及び底部電極6)に別個の主電極用電源9及び底部電極用電源12から同時に通電した場合に生じる電極間相互の電流干渉を回避する手段とはなり得ない。   By the way, in the electric circuit as described above, the thyristors 10 and 13 are exclusively used for controlling the amount of power supplied to the main electrode 5 and the bottom electrode 6 and are effective for this purpose. , To avoid current interference between the electrodes when a plurality of pairs of electrodes (main electrodes 5 and main electrode 5 and bottom electrode 6) are simultaneously energized from separate main electrode power source 9 and bottom electrode power source 12 It cannot be a means.

今、主電極用電源9から主電極5の間に通電した場合、主電極5の間に流れる電流の大部分は溶融したガラスを介してa方向に流れるが、一部はb方向に流れる。このb方向の電流は、底部電極6、主電極5、底部電極用トランス11および底部電極用電源12を結ぶ電気回路が接続されていないときは、そのままc方向に流れるが、この電気回路が接続されているときは、電流の一部がd方向に流れる。この場合、底部電極6と主電極5から底部電極用トランス11を介して底部電極用電源12に向かう電気回路の内部抵抗が小さいときには、d方向に流れる電流の量が大きくなり、このd方向の電流が底部電極6と主電極5に接続されている底部電極用トランス11に流れ込む、いわゆる電流干渉が発生する結果、底部電極用電源12の給電制御に障害が生じる。同様に、底部電極用電源12から底部電極6と主電極5の間に通電した場合、底部電極6と主電極5の間に流れる電流の一部が主電極5に接続された主電極用トランス8に流れ込み、電流干渉が発生する結果、主電極用電源9の給電制御に障害が生じる。   Now, when the main electrode power supply 9 is energized between the main electrodes 5, most of the current flowing between the main electrodes 5 flows in the a direction through the molten glass, but a part flows in the b direction. The electric current in the b direction flows in the c direction as it is when the electric circuit connecting the bottom electrode 6, the main electrode 5, the bottom electrode transformer 11 and the bottom electrode power source 12 is not connected. Part of the current flows in the d direction. In this case, when the internal resistance of the electric circuit from the bottom electrode 6 and the main electrode 5 to the bottom electrode power source 12 through the bottom electrode transformer 11 is small, the amount of current flowing in the d direction increases. As a result of so-called current interference that current flows into the bottom electrode transformer 11 connected to the bottom electrode 6 and the main electrode 5, the power supply control of the bottom electrode power supply 12 is hindered. Similarly, when power is supplied between the bottom electrode 6 and the main electrode 5 from the bottom electrode power source 12, a part of the current flowing between the bottom electrode 6 and the main electrode 5 is connected to the main electrode 5. 8 and current interference occurs, resulting in a failure in power supply control of the main electrode power source 9.

このような電気溶融炉において、主電極5及び底部電極6への適正な給電を実現するには、給電制御に障害となる上記の電流干渉を防止する必要があるが、電流干渉を惹起する電流、即ち干渉電流は、相互の主電極5及び底部電極6を介して主電極用トランス8及び底部電極用トランス11の二次コイル側に流れ込むために、一次コイル側にサイリスタ10,13を接続した従来の電気回路では、サイリスタ10,13は干渉電流の阻止には何ら作用せず、この結果、電流干渉の影響を回避することはできない。   In such an electric melting furnace, in order to realize proper power feeding to the main electrode 5 and the bottom electrode 6, it is necessary to prevent the above-described current interference that hinders power feeding control. That is, the interference current flows to the secondary coil side of the main electrode transformer 8 and the bottom electrode transformer 11 through the mutual main electrode 5 and the bottom electrode 6, so that the thyristors 10 and 13 are connected to the primary coil side. In the conventional electric circuit, the thyristors 10 and 13 do not act to block the interference current, and as a result, the influence of the current interference cannot be avoided.

前述の如き電流干渉の発生を阻止し個々の主電極用電源9及び底部電極用電源12において安定した給電制御を可能とすべく、図14に示されるような電気溶融炉が提案されており、該電気溶融炉は、主電極用スイッチング素子としてのサイリスタ10を主電極用電源9の主電極用トランス8の二次コイル側のR相側に設けると共に、底部電極用スイッチング素子としてのサイリスタ13を底部電極用電源12の底部電極用トランス11の二次コイル側のR相側に設けるようにしたものである。尚、図14中、図13と同一の符号を付した部分は同一物を表わしている。   An electric melting furnace as shown in FIG. 14 has been proposed in order to prevent the occurrence of current interference as described above and to enable stable power supply control in each of the main electrode power source 9 and the bottom electrode power source 12. The electric melting furnace is provided with a thyristor 10 as a main electrode switching element on the R phase side on the secondary coil side of the main electrode transformer 8 of the main electrode power source 9 and a thyristor 13 as a bottom electrode switching element. The bottom electrode transformer 11 of the bottom electrode power source 12 is provided on the R phase side on the secondary coil side. In FIG. 14, the same reference numerals as those in FIG. 13 denote the same components.

図14に示される電気溶融炉において、主電極用電源9、底部電極用電源12のそれぞれのR相が正の場合、サイリスタ10の素子S1のゲート電極にサイリスタ点弧回路(図示せず)から主電極5間への電力を供給するためのサイリスタ点弧信号が送られたときを考える。又、サイリスタ13の素子T2のゲート電極にはサイリスタ点弧回路から主電極5の一方と底部電極6との間に電力を供給するためのサイリスタ点弧信号が送られていないとする。このとき、サイリスタ13の素子T2、S2とも消弧状態にあるため、底部電極6からサイリスタ13および底部電極用トランス11を経由して主電極5の一方に通じる電路は形成されない。この結果、底部電極6に接続された底部電極用トランス11には底部電極6を介して主電極用電源9からの電流が流れ込むことがなく、主電極5間にはガラスの加熱溶融に必要な電力のみが主電極用電源9から供給される。又、逆の場合も同様に底部電極6と主電極5の一方とに接続された底部電極用トランス11には底部電極6を介して主電極用電源9からの電流が流れ込むことがなく、底部電極6と主電極5の一方との間にはガラスの加熱溶融に必要な電力のみが底部電極用電源12から供給される。   In the electric melting furnace shown in FIG. 14, when the R phase of each of the main electrode power source 9 and the bottom electrode power source 12 is positive, a thyristor ignition circuit (not shown) is applied to the gate electrode of the element S1 of the thyristor 10. Consider a case where a thyristor firing signal for supplying power between the main electrodes 5 is sent. Further, it is assumed that a thyristor ignition signal for supplying power between one of the main electrodes 5 and the bottom electrode 6 is not sent from the thyristor ignition circuit to the gate electrode of the element T2 of the thyristor 13. At this time, since the elements T2 and S2 of the thyristor 13 are also in the arc extinguishing state, an electric circuit leading from the bottom electrode 6 to one of the main electrodes 5 via the thyristor 13 and the bottom electrode transformer 11 is not formed. As a result, current from the main electrode power source 9 does not flow into the bottom electrode transformer 11 connected to the bottom electrode 6 via the bottom electrode 6, and is necessary for heating and melting the glass between the main electrodes 5. Only electric power is supplied from the main electrode power source 9. Similarly, in the reverse case, the current from the main electrode power source 9 does not flow into the bottom electrode transformer 11 connected to the bottom electrode 6 and one of the main electrodes 5 via the bottom electrode 6. Only the electric power necessary for heating and melting the glass is supplied from the bottom electrode power source 12 between the electrode 6 and one of the main electrodes 5.

尚、前述の如き電気溶融炉と関連する一般的技術水準を示すものとしては、例えば、特許文献1がある。
特開平11−38186号公報
For example, Patent Document 1 shows a general technical level related to the electric melting furnace as described above.
Japanese Patent Laid-Open No. 11-38186

しかしながら、本発明者は、図14に示される電気溶融炉おいても解決されていない課題があることを見出した。これは、電圧の干渉による電圧実効値計算の不具合であり、以下に詳述する。 However, the inventor has found that there is a problem that is not Oite also resolved to an electric melting furnace as shown in FIG. 14. This is a defect in the effective voltage value calculation due to voltage interference, which will be described in detail below.

サイリスタ10,13の導通開始点(点弧角)をα、β、通電電圧をv1、v2、正弦波交流電源としての主電極用電源9、底部電極用電源12の波高値を21/21、21/22とするとサイリスタ通電は次式で表現される。

Figure 0005045262
The conduction start points (ignition angles) of the thyristors 10 and 13 are α and β, the energization voltages are v 1 and v 2 , and the peak values of the main electrode power source 9 and the bottom electrode power source 12 as sine wave AC power sources are 2 1. Assuming that / 2 V 1 and 2 1/2 V 2 , thyristor energization is expressed by the following equation.
Figure 0005045262

尚、通常、周期は位相角360°であるが、ここでは[数1]式表現上の簡略化のために周期Tは位相角180°とした。又、括弧内に記した負符号の正弦波については、記述を省略しても一般性は失わない。
主電極用電源9、底部電極用電源12は(各々の目的に応じて)別々に制御されているため一般にα≠βであり、いずれか一方のみが通電している状態が存在する。図15にβが先に点弧した状態の例を示す。時間又は位相がβ以上α未満の区間において、通電していない方の電圧計(例えば、主電極用電圧計14)には、通電している方の電圧計(例えば、底部電極用電圧計16)の炉内抵抗で分圧された値が測定される(図16の

Figure 0005045262
参照)。これを電圧干渉と呼ぶことにする。ここで
Figure 0005045262
は測定電圧とする。又、R1 、R2 、R3は各電極5,6間で測定される(集中定数化された)抵抗値とする。 Normally, the cycle is a phase angle of 360 °, but here the cycle T is set to a phase angle of 180 ° for the sake of simplification of the expression [Formula 1]. Further, the generality of the negative sign sine wave in parentheses is not lost even if the description is omitted.
Since the main electrode power source 9 and the bottom electrode power source 12 are controlled separately (in accordance with their respective purposes), generally α ≠ β, and only one of them is energized. FIG. 15 shows an example of a state in which β is fired first. In a section where the time or phase is β or more and less than α, the non-energized voltmeter (for example, the main electrode voltmeter 14) is connected to the energized voltmeter (for example, the bottom electrode voltmeter 16). ) Is divided by the resistance in the furnace (measured in FIG. 16).
Figure 0005045262
reference). This is called voltage interference. here
Figure 0005045262
Is the measured voltage. R 1 , R 2 , and R 3 are resistance values measured between the electrodes 5 and 6 (concentrated constants).

そして、

Figure 0005045262
とすると、測定電圧は次のように表現される。
Figure 0005045262
And
Figure 0005045262
Then, the measured voltage is expressed as follows.
Figure 0005045262

従って、計測される電圧実効値は次のように表される。

Figure 0005045262
Accordingly, the measured voltage effective value is expressed as follows.
Figure 0005045262

ここに、右辺の平方根中の第1項が図15で示した分圧された見かけ上の電圧実効値を意味している。因みに、[数6]式のTをT'としT'=2Tとすれば360°周期の計算と同値となる。   Here, the first term in the square root on the right side means the divided apparent voltage effective value shown in FIG. Incidentally, if T in Equation [6] is T ′ and T ′ = 2T, the value is the same as the 360 ° period calculation.

一方、主電極用電源9、底部電極用電源12によって通電される正味の電圧実効値は、次式で与えられるべきである。

Figure 0005045262
On the other hand, the net effective voltage value energized by the main electrode power source 9 and the bottom electrode power source 12 should be given by the following equation.
Figure 0005045262

実際に計測され計算される[数6]式と、理想とする[数7]式とを比較すると、電圧干渉によって[数6]式右辺の平方根中の第1項が[数7]式と一致せず正味の電圧実効値を表していないことがわかる。従って、電圧実効値を測定する場合には[数6]式右辺の平方根中の第1項を排除して実効値を計算する必要がある。   When [Expression 6] actually measured and calculated is compared with the ideal [Expression 7], the first term in the square root of the right side of [Expression 6] is expressed by [Expression 7] due to voltage interference. It can be seen that they do not match and do not represent the net effective voltage value. Therefore, when measuring the effective voltage value, it is necessary to calculate the effective value by excluding the first term in the square root of the right side of [Formula 6].

しかしながら、図17に示される如く、従来の主電極用電圧実効値計算回路18´は、電圧の瞬時値v1 を二乗する乗算器19と、該乗算器19での演算結果を積分する積分器20と、該積分器20での演算結果の平方根を求めるルート演算器21と、該ルート演算器21での演算結果をホールドするホールド回路22とを備えてなる構成を有しているため、正味の電圧実効値を求めることはできず、同様に、従来の底部電極用電圧実効値計算回路23´は、電圧の瞬時値v2 を二乗する乗算器24と、該乗算器24での演算結果を積分する積分器25と、該積分器25での演算結果の平方根を求めるルート演算器26と、該ルート演算器26での演算結果をホールドするホールド回路27とを備えてなる構成を有しているため、正味の電圧実効値を求めることはできなかった。尚、前記積分器20,25での積分は周期毎にリセットするので、ホールド回路22,27を設けてある。 However, as shown in FIG. 17, a conventional main electrode voltage effective value calculation circuit 18 ′ includes a multiplier 19 that squares an instantaneous voltage value v 1 and an integrator that integrates the operation result of the multiplier 19. 20, a root calculator 21 for obtaining the square root of the calculation result in the integrator 20, and a hold circuit 22 for holding the calculation result in the root calculator 21. Similarly, the conventional bottom electrode voltage effective value calculation circuit 23 ′ calculates the square of the instantaneous voltage value v 2 , and the calculation result of the multiplier 24. Are integrated, a root calculator 26 for obtaining the square root of the calculation result in the integrator 25, and a hold circuit 27 for holding the calculation result in the root calculator 26. The net voltage It was not possible to determine the value. Since the integration in the integrators 20 and 25 is reset every period, hold circuits 22 and 27 are provided.

因みに、上記の問題は、図13に示される電気溶融炉においても同様に存在する。   Incidentally, the above problem also exists in the electric melting furnace shown in FIG.

尚、図13の回路方式ではサイリスタ10,13の電流容量を小さくしコストダウンが可能となるメリットがあるのに対し、図14に示される回路方式においては、主電極用トランス8、底部電極用トランス11の二次コイル側が低電圧・大電流となるため、サイリスタ10,13の電流容量を大きく設計せざるを得ず、コストダウンが困難となっていた。   13 has the merit that the current capacity of the thyristors 10 and 13 can be reduced and the cost can be reduced, whereas the circuit system shown in FIG. 14 has the transformer 8 for the main electrode and the bottom electrode. Since the secondary coil side of the transformer 11 has a low voltage and a large current, the current capacity of the thyristors 10 and 13 must be designed to be large, which makes it difficult to reduce costs.

又、以下に、電流実効値の計算に関し図13の回路方式について考える。   In the following, the circuit method of FIG. 13 will be considered with respect to the calculation of the effective current value.

主電極用電源9、底部電極用電源12は(各々の目的に応じて)別々に制御されているため一般にα≠βであり、いずれか一方のみが通電している状態が存在する。この時、非通電側の電気回路はトランス(8又は11)の二次コイル側と電極(5又は6)との間が常に導通状態にある。このため、通電側の電圧(図18の例では )が炉内抵抗で分圧され、非通電側のトランス(8又は11)の二次コイル側端子にも印加された状態となる。非通電側のトランス(8又は11)の一次コイル側に接続されているサイリスタ(10又は13)は消弧状態にあるため、二次コイル側の電圧からみると開放(無負荷)状態にある。これによってトランス(8又は11)の二次コイル側回路に励磁電流が流れ非通電側の電流計実効値計算に加算される。これを電流干渉と呼ぶことにする。ここで

Figure 0005045262
は測定電流・電圧とする。 Since the main electrode power source 9 and the bottom electrode power source 12 are controlled separately (in accordance with their respective purposes), generally α ≠ β, and only one of them is energized. At this time, the electrical circuit on the non-energized side is always in a conductive state between the secondary coil side of the transformer (8 or 11) and the electrode (5 or 6). For this reason, the voltage on the energization side (in the example of FIG. 18) is divided by the resistance in the furnace and applied to the secondary coil side terminal of the non-energization side transformer (8 or 11). Since the thyristor (10 or 13) connected to the primary coil side of the non-energized transformer (8 or 11) is in the arc extinguishing state, it is in an open (no load) state when viewed from the voltage on the secondary coil side. . As a result, an exciting current flows through the secondary coil side circuit of the transformer (8 or 11) and is added to the non-energized ammeter effective value calculation. This is called current interference. here
Figure 0005045262
Is measured current and voltage.

この時、測定電流は次の式で表される。ここで、i1、i2は両サイリスタ10,13が点弧した状態での電流、i1m、i2mは炉内抵抗で分圧された電圧による励磁電流とする。

Figure 0005045262
At this time, the measured current is expressed by the following equation. Here, i 1 and i 2 are currents when both thyristors 10 and 13 are ignited, and i 1m and i 2m are excitation currents based on voltages divided by the resistance in the furnace.
Figure 0005045262

従って、計測される電流実効値は次のように表される。

Figure 0005045262
Therefore, the measured current effective value is expressed as follows.
Figure 0005045262

ここに、右辺の平方根中の第1項が図18で示した分圧された電圧による励磁電流を意味している。因みに、[数10]式のTをT'としT'=2Tとすれば360°周期の計算と同値となる。   Here, the first term in the square root on the right side means the exciting current by the divided voltage shown in FIG. Incidentally, if T in Equation [10] is T ′ and T ′ = 2T, the value is the same as the 360 ° period calculation.

一方、主電極用電源9、底部電極用電源12によって通電される正味の電流実効値は、次式で与えられるべきである。

Figure 0005045262
On the other hand, the net effective current value energized by the main electrode power source 9 and the bottom electrode power source 12 should be given by the following equation.
Figure 0005045262

実際に計測され計算される[数10]式と理想とする[数11]式を比較すると、電流干渉によって[数10]式右辺の平方根中の第1項が[数11]式と一致せず正味の電流実効値を表していないことがわかる。従って、電流実効値を測定する場合には[数10]式右辺の平方根中の第1項を排除して実効値を計算する必要がある。   Comparing [Equation 10], which is actually measured and calculated, with the ideal [Equation 11], the first term in the square root of the right side of [Equation 10] agrees with [Equation 11] due to current interference. It can be seen that it does not represent the net current effective value. Therefore, when measuring the effective current value, it is necessary to calculate the effective value by excluding the first term in the square root of the right side of [Formula 10].

しかしながら、図19に示される如く、従来の主電極用電流実効値計算回路28´は、電流の瞬時値i1を二乗する乗算器29と、該乗算器29での演算結果を積分する積分器30と、該積分器30での演算結果の平方根を求めるルート演算器31と、該ルート演算器31での演算結果をホールドするホールド回路32とを備えてなる構成を有しているため、正味の電流実効値を求めることはできず、同様に、従来の底部電極用電流実効値計算回路33´は、電流の瞬時値i2を二乗する乗算器34と、該乗算器34での演算結果を積分する積分器35と、該積分器35での演算結果の平方根を求めるルート演算器36と、該ルート演算器36での演算結果をホールドするホールド回路37とを備えてなる構成を有しているため、正味の電流実効値を求めることはできなかった。尚、前記積分器30,35での積分は周期毎にリセットするので、ホールド回路32,37を設けてある。 However, as shown in FIG. 19, a conventional main electrode current effective value calculation circuit 28 ′ includes a multiplier 29 that squares an instantaneous current value i 1 , and an integrator that integrates the operation result of the multiplier 29. 30, a root calculator 31 for obtaining the square root of the calculation result in the integrator 30, and a hold circuit 32 for holding the calculation result in the root calculator 31. Similarly, the conventional bottom electrode current effective value calculation circuit 33 'squares the instantaneous current value i 2 , and the calculation result of the multiplier 34. Are integrated, a root calculator 36 for obtaining the square root of the calculation result in the integrator 35, and a hold circuit 37 for holding the calculation result in the root calculator 36. The net current actually It was not possible to determine the value. Since the integration in the integrators 30 and 35 is reset every period, hold circuits 32 and 37 are provided.

更に又、以下に、電力実効値の計算に関し図13の回路方式について考える。   Furthermore, the circuit scheme of FIG. 13 will be considered below for the calculation of the effective power value.

主電極用電源9、底部電極用電源12は(各々の目的に応じて)別々に制御されているため一般にα≠βであり、いずれか一方のみが通電している状態が存在する。この時、非通電側の電気回路はトランス(8又は11)の二次コイル側と電極(5又は6)との間が常に導通状態にある。このため、通電側の電圧(図20の例では

Figure 0005045262
)が炉内抵抗で分圧され、非通電側のトランス(8又は11)の二次コイル側端子にも印加された状態となる。非通電側のトランス(8又は11)の一次コイル側に接続されているサイリスタ(10又は13)は消弧状態にあるため、二次コイル側電圧からみると開放(無負荷)状態にある。これによってトランス(8又は11)の二次コイル側回路に励磁電流が流れる。 Since the main electrode power source 9 and the bottom electrode power source 12 are controlled separately (in accordance with their respective purposes), generally α ≠ β, and only one of them is energized. At this time, the electrical circuit on the non-energized side is always in a conductive state between the secondary coil side of the transformer (8 or 11) and the electrode (5 or 6). For this reason, the voltage on the energization side (in the example of FIG.
Figure 0005045262
) Is divided by the resistance in the furnace and applied to the secondary coil side terminal of the non-energized transformer (8 or 11). Since the thyristor (10 or 13) connected to the primary coil side of the non-energized transformer (8 or 11) is in an arc extinguishing state, it is in an open (no load) state when viewed from the secondary coil side voltage. As a result, an exciting current flows through the secondary coil side circuit of the transformer (8 or 11).

理想トランスにおいては励磁電流が流れてもそれは無効電力である。従って、有効電力制御には影響は及ぼさない。しかし、実際回路では巻線抵抗やケーブル抵抗などによる損失が(微少ではあるが)発生し、非通電側の有効電力計実効値計算に加算される。これを電力干渉と呼ぶことにする。   In an ideal transformer, even if an exciting current flows, it is reactive power. Therefore, the active power control is not affected. However, in an actual circuit, a loss due to winding resistance, cable resistance, etc. occurs (although it is very small) and is added to the effective power meter effective value calculation on the non-energized side. This is called power interference.

この電力干渉は、通電側が非通電側の有効電力実効値計算に影響を及ぼすだけでなく、通電側の有効電力のうち電力干渉に相当する電力が電気溶融炉外で損失となっていることをも意味する。従って、厳密な電気溶融炉の電力制御を実施したい場合は、非通電側で消費される電気溶融炉外の有効電力を把握する必要がある。   This power interference not only affects the effective power effective value calculation on the non-energized side on the energized side, but also indicates that the power corresponding to the power interference among the active power on the energized side is a loss outside the electric melting furnace. Also means. Therefore, when strict electric melting furnace power control is to be performed, it is necessary to grasp the effective electric power outside the electric melting furnace consumed on the non-energized side.

[数5][数9]式より、測定される瞬時電力は次式で表される。

Figure 0005045262
From the [Expression 5] and [Expression 9], the measured instantaneous power is expressed by the following expression.
Figure 0005045262

従って、計測される電力実効値は次のように表される。

Figure 0005045262
Therefore, the measured power effective value is expressed as follows.
Figure 0005045262

ここに、右辺の第1項が、非通電側で測定される通電側による電力干渉を意味している。又、これは同時に、通電側からすると電気溶融炉外で消費される損失電力を意味している。   Here, the first term on the right side means power interference on the energized side measured on the non-energized side. This also means the lost power consumed outside the electric melting furnace from the energization side.

一方、主電極用電源9、底部電極用電源12によって通電される正味の電力実効値は、次式で与えられるべきである。

Figure 0005045262
On the other hand, the net effective power value energized by the main electrode power source 9 and the bottom electrode power source 12 should be given by the following equation.
Figure 0005045262

実際に計測され計算される[数14]式と理想とする[数15]式を比較すると、電力干渉によって[数14]式右辺の第1項が[数15]式と一致せず正味の電力実効値を表していないことがわかる。従って、電力実効値を測定する場合には[数14]式右辺の第1項を排除して実効値を計算する必要がある。   Comparing [Equation 14], which is actually measured and calculated, with the ideal [Equation 15], the first term on the right side of [Equation 14] does not match [Equation 15] due to power interference. It can be seen that the effective power value is not represented. Therefore, when measuring the power effective value, it is necessary to calculate the effective value by excluding the first term on the right side of the equation [14].

しかしながら、図21に示される如く、従来の主電極用電力実効値計算回路38´は、主電極5間の電圧の瞬時値v1 と電流の瞬時値i1を掛けて電力の瞬時値を出力する乗算器39と、該乗算器39から出力される電力の瞬時値を積分する積分器40と、該積分器40での演算結果をホールドするホールド回路41とを備えてなる構成を有しているため、正味の電力実効値を求めることはできず、同様に、従来の底部電極用電力実効値計算回路42´は、底部電極6と主電極5の一方との間の電圧の瞬時値v2と電流の瞬時値i2を掛けて電力の瞬時値を出力する乗算器43と、該乗算器43から出力される電力の瞬時値を積分する積分器44と、該積分器44での演算結果をホールドするホールド回路45とを備えてなる構成を有しているため、正味の電力実効値を求めることはできなかった。尚、前記積分器40,44での積分は周期毎にリセットするので、ホールド回路41,45を設けてある。 However, as shown in FIG. 21, the conventional main electrode power effective value calculation circuit 38 'outputs the instantaneous value of power by multiplying the instantaneous value v 1 of the voltage between the main electrodes 5 and the instantaneous value i 1 of the current. A multiplier 39, an integrator 40 that integrates an instantaneous value of the power output from the multiplier 39, and a hold circuit 41 that holds a calculation result in the integrator 40. Therefore, the net effective power value cannot be obtained, and similarly, the conventional bottom electrode power effective value calculation circuit 42 ′ has an instantaneous voltage v between the bottom electrode 6 and one of the main electrodes 5. 2 is multiplied by the instantaneous current value i 2 to output an instantaneous power value, an integrator 44 for integrating the instantaneous power value output from the multiplier 43, and an operation performed by the integrator 44. And a hold circuit 45 for holding the result. , It has not been possible to obtain the effective value of power of the net. Since the integration in the integrators 40 and 44 is reset every cycle, hold circuits 41 and 45 are provided.

一方、以下に、電圧・電流・電力の計測位置に関し図14及び図13の回路方式について考える。   On the other hand, the circuit method of FIGS. 14 and 13 will be considered below regarding the measurement positions of voltage, current, and power.

従来の給電制御盤は、図22に示される如く、盤製作の利便性・簡便性などから溶融炉本体3から離れた位置に設置され、電圧測定部としての主電極用電圧計14、底部電極用電圧計16や電流測定部としての主電極用電流計15、底部電極用電圧計16は給電制御盤内部の計測制御部に設けられている。しかし、このような場合、ガラスなど低抵抗の被溶融物を扱う電気溶融炉においては低電圧・大電流の傾向となり、給電制御盤から電気溶融炉まで敷設された電力ケーブルやバスバーなどのケーブル抵抗や接触抵抗による電圧降下、電力損失が無視できない量になる。このため、電圧・電流・電力の各実効値の計算をより有意義に実施するためにはケーブルによる電圧降下、電力損失を除外する必要がある。   As shown in FIG. 22, the conventional power supply control panel is installed at a position away from the melting furnace body 3 for convenience and convenience of panel manufacture, and includes a main electrode voltmeter 14 as a voltage measuring unit, a bottom electrode, and the like. The main electrode ammeter 15 and the bottom electrode voltmeter 16 as a current measuring unit and the bottom electrode voltmeter 16 are provided in a measurement control unit inside the power supply control panel. However, in such a case, electric melting furnaces that handle low-resistance materials such as glass tend to have low voltage and large current, and cable resistance such as power cables and bus bars laid from the power supply control panel to the electric melting furnace. Voltage drop due to contact resistance and power loss are insignificant. For this reason, it is necessary to exclude the voltage drop and the power loss due to the cable in order to more meaningfully calculate the effective values of voltage, current, and power.

以上の課題を解決することは、図14に寄らずとも図13の回路方式を実用上問題なく採用可能であることを意味し、図14に示される電気溶融炉が残した課題も解決されるため、図14も図13も対象となるプラント毎に要求される負荷の特性などに応じて対等に選択が可能となることを本発明者は見出した。   Solving the above problems means that the circuit system shown in FIG. 13 can be employed without any practical problems without depending on FIG. 14, and the problems left by the electric melting furnace shown in FIG. 14 are also solved. Therefore, the present inventor has found that both FIG. 14 and FIG. 13 can be selected equally according to the load characteristics required for each target plant.

本発明は、斯かる実情に鑑み、電圧・電流・電力の各実効値を正確に把握し得、運転の制御性向上を図り得ると共に、電気回路におけるスイッチング素子の配置箇所の自由度を増し、コストダウンはもとより、プラント毎に異なる個別の要求にも柔軟に対応し得る電気溶融炉を提供しようとするものである。   In view of such circumstances, the present invention can accurately grasp each effective value of voltage, current, and power, can improve the controllability of operation, and increases the degree of freedom of the location of the switching element in the electric circuit, An object of the present invention is to provide an electric melting furnace capable of flexibly responding to individual requirements that differ from plant to plant as well as cost reduction.

本発明は、底部に流下口が形成された溶融炉本体と、該溶融炉本体の内壁の上下方向中間部に対向配置され且つ相互間での通電により溶融炉本体内の被溶融物を加熱し溶融させる一対の主電極と、前記溶融炉本体の底部に配置され且つ前記主電極の一方との間での通電により溶融炉本体内底部の被溶融物を加熱し溶融させる底部電極と、前記主電極間に通電するための主電極用トランスを有する主電極用電源と、該主電極用電源の主電極用トランスの一次コイル側又は二次コイル側のいずれか一方に設けられた主電極用スイッチング素子と、前記底部電極と主電極の一方との間に通電するための底部電極用トランスを有する底部電極用電源と、該底部電極用電源の底部電極用トランスの一次コイル側又は二次コイル側のいずれか一方に設けられた底部電極用スイッチング素子とを備えてなる電気溶融炉において、
前記主電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する主電極用点弧状態判定回路と、
該主電極用点弧状態判定回路からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけ主電極間の電圧の瞬時値から該電圧の実効値を求めて出力する主電極用電圧実効値計算回路と、
前記底部電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する底部電極用点弧状態判定回路と、
該底部電極用点弧状態判定回路からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけ底部電極と主電極の一方との間の電圧の瞬時値から該電圧の実効値を求めて出力する底部電極用電圧実効値計算回路と
を備えたことを特徴とする電気溶融炉にかかるものである。
In the present invention, a melting furnace main body having a flow-down port formed at the bottom, and a material to be melted in the melting furnace main body are heated by being energized between the melting furnace main body and an intermediate portion in the vertical direction of the inner wall of the melting furnace main body. A pair of main electrodes to be melted, a bottom electrode disposed at the bottom of the melting furnace body and energized between one of the main electrodes to heat and melt a material to be melted at the bottom of the melting furnace body; Main electrode power source having a main electrode transformer for energizing between electrodes, and main electrode switching provided on either the primary coil side or the secondary coil side of the main electrode transformer of the main electrode power source A power source for a bottom electrode having a transformer for a bottom electrode for energizing between the element and one of the bottom electrode and the main electrode, and a primary coil side or a secondary coil side of the bottom electrode transformer of the bottom electrode power source Provided in either one of Was made and a bottom electrode for the switching element in an electric melting furnace,
A main electrode ignition state determination circuit for determining whether the main electrode switching element is in an ignition state or an extinguishing state;
Based on information from the main electrode ignition state determination circuit, the main electrode voltage is obtained by obtaining the effective value of the voltage from the instantaneous value of the voltage between the main electrodes and outputting it only while the main electrode switching element is in the ignition state. An effective value calculation circuit;
A bottom electrode ignition state determination circuit for determining whether the bottom electrode switching element is in an ignition state or an extinguishing state; and
Based on the information from the bottom electrode ignition state determination circuit, the effective value of the voltage is obtained from the instantaneous value of the voltage between the bottom electrode and one of the main electrodes only while the bottom electrode switching element is in the ignition state. And an output voltage effective value calculation circuit for the bottom electrode that outputs the output of the electric melting furnace.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

主電極用電圧実効値計算回路においては、主電極用点弧状態判定回路からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけ主電極間の電圧の瞬時値から該電圧の実効値が求められて出力されるため、正味の電圧実効値を求めることが可能となると共に、底部電極用電圧実効値計算回路においては、底部電極用点弧状態判定回路からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけ底部電極と主電極の一方との間の電圧の瞬時値から該電圧の実効値が求められて出力されるため、正味の電圧実効値を求めることが可能となり、運転の制御性が良くなり、電気回路における主電極用スイッチング素子と底部電極用スイッチング素子の配置箇所の自由度も増し、コストダウンが可能となるばかりでなく、プラント毎に異なる個別の要求にも柔軟に対応可能となる。   In the main electrode voltage effective value calculation circuit, based on the information from the main electrode ignition state determination circuit, the effective value of the voltage is determined from the instantaneous value of the voltage between the main electrodes only while the main electrode switching element is in the ignition state. Since the value is obtained and output, it is possible to obtain the net effective voltage value, and in the bottom electrode voltage effective value calculation circuit, the bottom electrode is based on the information from the bottom electrode ignition state determination circuit. Since the effective value of the voltage is obtained and output from the instantaneous value of the voltage between the bottom electrode and one of the main electrodes only while the switching device is in the ignition state, the net effective voltage value can be obtained. This makes it possible to improve the controllability of the operation, increase the degree of freedom in the arrangement of the main electrode switching element and the bottom electrode switching element in the electric circuit, and not only reduce costs but also plan. Also flexibly adaptable to the individual requirements different for each.

又、本発明は、底部に流下口が形成された溶融炉本体と、該溶融炉本体の内壁の上下方向中間部に対向配置され且つ相互間での通電により溶融炉本体内の被溶融物を加熱し溶融させる一対の主電極と、前記溶融炉本体の底部に配置され且つ前記主電極の一方との間での通電により溶融炉本体内底部の被溶融物を加熱し溶融させる底部電極と、前記主電極間に通電するための主電極用トランスを有する主電極用電源と、該主電極用電源の主電極用トランスの一次コイル側又は二次コイル側のいずれか一方に設けられた主電極用スイッチング素子と、前記底部電極と主電極の一方との間に通電するための底部電極用トランスを有する底部電極用電源と、該底部電極用電源の底部電極用トランスの一次コイル側又は二次コイル側のいずれか一方に設けられた底部電極用スイッチング素子とを備えてなる電気溶融炉において、
前記主電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する主電極用点弧状態判定回路と、
該主電極用点弧状態判定回路からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけ主電極間の電流の瞬時値から該電流の実効値を求めて出力する主電極用電流実効値計算回路と、
前記底部電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する底部電極用点弧状態判定回路と、
該底部電極用点弧状態判定回路からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけ底部電極と主電極の一方との間の電流の瞬時値から該電流の実効値を求めて出力する底部電極用電流実効値計算回路と
を備えたことを特徴とする電気溶融炉にかかるものである。
The present invention also provides a melting furnace main body having a flow-down port formed at the bottom, and an object to be melted in the melting furnace main body that is disposed opposite to an intermediate portion in the vertical direction of the inner wall of the melting furnace main body and is energized between them. A pair of main electrodes to be heated and melted, and a bottom electrode which is arranged at the bottom of the melting furnace body and heats and melts the material to be melted in the bottom of the melting furnace body by energization between one of the main electrodes; A main electrode power source having a main electrode transformer for energizing between the main electrodes, and a main electrode provided on either the primary coil side or the secondary coil side of the main electrode transformer of the main electrode power source Power source for a bottom electrode having a transformer for a switching element, a bottom electrode transformer for energizing between one of the bottom electrode and the main electrode, and a primary coil side or a secondary of the bottom electrode transformer of the bottom electrode power source Installed on either side of coil In electric melting furnace comprising a was a bottom electrode for the switching element,
A main electrode ignition state determination circuit for determining whether the main electrode switching element is in an ignition state or an extinguishing state;
Based on the information from the main electrode ignition state determination circuit, the main electrode current is obtained by obtaining the effective value of the current from the instantaneous value of the current between the main electrodes and outputting it only while the main electrode switching element is in the ignition state. An effective value calculation circuit;
A bottom electrode ignition state determination circuit for determining whether the bottom electrode switching element is in an ignition state or an extinguishing state; and
Based on the information from the bottom electrode ignition state determination circuit, the effective value of the current is obtained from the instantaneous value of the current between the bottom electrode and one of the main electrodes only while the bottom electrode switching element is in the ignition state. And an electric current effective value calculation circuit for the bottom electrode that outputs the current.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

主電極用電流実効値計算回路においては、主電極用点弧状態判定回路からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけ主電極間の電流の瞬時値から該電流の実効値が求められて出力されるため、正味の電流実効値を求めることが可能となると共に、底部電極用電流実効値計算回路においては、底部電極用点弧状態判定回路からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけ底部電極と主電極の一方との間の電流の瞬時値から該電流の実効値が求められて出力されるため、正味の電流実効値を求めることが可能となり、運転の制御性が良くなり、電気回路における主電極用スイッチング素子と底部電極用スイッチング素子の配置箇所の自由度も増し、コストダウンが可能となるばかりでなく、プラント毎に異なる個別の要求にも柔軟に対応可能となる。   In the main electrode current effective value calculation circuit, based on the information from the main electrode ignition state determination circuit, the current effective value is calculated from the instantaneous value of the current between the main electrodes only while the main electrode switching element is in the ignition state. Since the value is obtained and output, it is possible to obtain the net current effective value, and in the bottom electrode current effective value calculation circuit, the bottom electrode is based on the information from the bottom electrode ignition state determination circuit. Since the effective value of the current is obtained and output from the instantaneous value of the current between the bottom electrode and one of the main electrodes only while the switching element is in the ignition state, the net effective current value can be obtained. This makes it possible to improve the controllability of the operation, increase the degree of freedom in the arrangement of the main electrode switching element and the bottom electrode switching element in the electric circuit, and not only reduce costs but also plan. Also flexibly adaptable to the individual requirements different for each.

又、本発明は、底部に流下口が形成された溶融炉本体と、該溶融炉本体の内壁の上下方向中間部に対向配置され且つ相互間での通電により溶融炉本体内の被溶融物を加熱し溶融させる一対の主電極と、前記溶融炉本体の底部に配置され且つ前記主電極の一方との間での通電により溶融炉本体内底部の被溶融物を加熱し溶融させる底部電極と、前記主電極間に通電するための主電極用トランスを有する主電極用電源と、該主電極用電源の主電極用トランスの一次コイル側又は二次コイル側のいずれか一方に設けられた主電極用スイッチング素子と、前記底部電極と主電極の一方との間に通電するための底部電極用トランスを有する底部電極用電源と、該底部電極用電源の底部電極用トランスの一次コイル側又は二次コイル側のいずれか一方に設けられた底部電極用スイッチング素子とを備えてなる電気溶融炉において、
前記主電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する主電極用点弧状態判定回路と、
該主電極用点弧状態判定回路からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけ主電極間の電圧の瞬時値及び主電極間の電流の瞬時値から主電極間の電力の実効値を求めて出力する主電極用電力実効値計算回路と、
前記底部電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する底部電極用点弧状態判定回路と、
該底部電極用点弧状態判定回路からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけ底部電極と主電極の一方との間の電圧の瞬時値及び底部電極と主電極の一方との間の電流の瞬時値から底部電極と主電極の一方との間の電力の実効値を求めて出力する底部電極用電力実効値計算回路と
を備えたことを特徴とする電気溶融炉にかかるものである。
The present invention also provides a melting furnace main body having a flow-down port formed at the bottom, and an object to be melted in the melting furnace main body that is disposed opposite to an intermediate portion in the vertical direction of the inner wall of the melting furnace main body and is energized between them. A pair of main electrodes to be heated and melted, and a bottom electrode which is arranged at the bottom of the melting furnace body and heats and melts the material to be melted in the bottom of the melting furnace body by energization between one of the main electrodes; A main electrode power source having a main electrode transformer for energizing between the main electrodes, and a main electrode provided on either the primary coil side or the secondary coil side of the main electrode transformer of the main electrode power source Power source for a bottom electrode having a transformer for a switching element, a bottom electrode transformer for energizing between one of the bottom electrode and the main electrode, and a primary coil side or a secondary of the bottom electrode transformer of the bottom electrode power source Installed on either side of coil In electric melting furnace comprising a was a bottom electrode for the switching element,
A main electrode ignition state determination circuit for determining whether the main electrode switching element is in an ignition state or an extinguishing state;
Based on the information from the main electrode ignition state determination circuit, the power between the main electrodes is determined from the instantaneous value of the voltage between the main electrodes and the instantaneous value of the current between the main electrodes only while the switching element for the main electrode is in the ignition state. Power effective value calculation circuit for the main electrode that calculates and outputs the effective value of
A bottom electrode ignition state determination circuit for determining whether the bottom electrode switching element is in an ignition state or an extinguishing state; and
Based on the information from the bottom electrode firing state determination circuit, the instantaneous value of the voltage between the bottom electrode and one of the main electrodes and one of the bottom electrode and the main electrode only while the bottom electrode switching element is in the firing state. An electric melting furnace comprising a bottom electrode power RMS value calculation circuit that calculates and outputs an effective value of power between the bottom electrode and one of the main electrodes from an instantaneous current value between the bottom electrode and the main electrode. It is such a thing.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

主電極用電力実効値計算回路においては、主電極用点弧状態判定回路からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけ主電極間の電圧の瞬時値及び主電極間の電流の瞬時値から主電極間の電力の実効値が求められて出力されるため、正味の電力実効値を求めることが可能となると共に、底部電極用電力実効値計算回路においては、底部電極用点弧状態判定回路からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけ底部電極と主電極の一方との間の電圧の瞬時値及び底部電極と主電極の一方との間の電流の瞬時値から底部電極と主電極の一方との間の電力の実効値が求められて出力されるため、正味の電力実効値を求めることが可能となり、運転の制御性が良くなり、電気回路における主電極用スイッチング素子と底部電極用スイッチング素子の配置箇所の自由度も増し、コストダウンが可能となるばかりでなく、プラント毎に異なる個別の要求にも柔軟に対応可能となる。   In the main electrode power effective value calculation circuit, based on the information from the main electrode ignition state determination circuit, the instantaneous value of the voltage between the main electrodes and between the main electrodes only while the main electrode switching element is in the ignition state. Since the effective value of the power between the main electrodes is obtained and output from the instantaneous value of the current, it is possible to determine the net effective power value, and in the bottom electrode power effective value calculation circuit, Based on the information from the ignition state determination circuit, the instantaneous value of the voltage between the bottom electrode and one of the main electrodes and between the bottom electrode and one of the main electrodes only while the switching element for the bottom electrode is in the ignition state. Since the effective value of the electric power between the bottom electrode and the main electrode is obtained from the instantaneous value of the current and output, the net effective electric power value can be obtained, the controllability of the operation is improved, and the electric power is improved. Switch for main electrode in circuit Also increases the degree of freedom of arrangement positions of the ring element and the bottom electrode for the switching element, not only the cost can be reduced, it is flexibly adaptable to different individual requirements for each plant.

又、本発明は、底部に流下口が形成された溶融炉本体と、該溶融炉本体の内壁の上下方向中間部に対向配置され且つ相互間での通電により溶融炉本体内の被溶融物を加熱し溶融させる一対の主電極と、前記溶融炉本体の底部に配置され且つ前記主電極の一方との間での通電により溶融炉本体内底部の被溶融物を加熱し溶融させる底部電極と、前記主電極間に通電するための主電極用トランスを有する主電極用電源と、該主電極用電源の主電極用トランスの一次コイル側又は二次コイル側のいずれか一方に設けられた主電極用スイッチング素子と、前記底部電極と主電極の一方との間に通電するための底部電極用トランスを有する底部電極用電源と、該底部電極用電源の底部電極用トランスの一次コイル側又は二次コイル側のいずれか一方に設けられた底部電極用スイッチング素子とを備えてなる電気溶融炉において、
前記主電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する主電極用点弧状態判定回路と、
前記底部電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する底部電極用点弧状態判定回路と、
前記主電極用点弧状態判定回路からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけ主電極間の電圧の瞬時値及び主電極間の電流の瞬時値から主電極間の電力の瞬時値を求めると共に、前記主電極用点弧状態判定回路及び底部電極用点弧状態判定回路からの情報に基づき主電極用スイッチング素子が点弧状態にあり且つ底部電極用スイッチング素子が消弧状態にある間だけ底部電極と主電極の一方との間の電圧の瞬時値及び底部電極と主電極の一方との間の電流の瞬時値から底部電極と主電極の一方との間の電力の瞬時値を求め、前記主電極間の電力の瞬時値から前記底部電極と主電極の一方との間の電力の瞬時値を差し引いた値に基づいて主電極間の電力の実効値を求めて出力する主電極用電力実効値計算回路と、
前記底部電極用点弧状態判定回路からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけ底部電極と主電極の一方との間の電圧の瞬時値及び底部電極と主電極の一方との間の電流の瞬時値から底部電極と主電極の一方との間の電力の瞬時値を求めると共に、前記主電極用点弧状態判定回路及び底部電極用点弧状態判定回路からの情報に基づき底部電極用スイッチング素子が点弧状態にあり且つ主電極用スイッチング素子が消弧状態にある間だけ主電極間の電圧の瞬時値及び主電極間の電流の瞬時値から主電極間の電力の瞬時値を求め、前記底部電極と主電極の一方との間の電力の瞬時値から前記主電極間の電力の瞬時値を差し引いた値に基づいて底部電極と主電極の一方との間の電力の実効値を求めて出力する底部電極用電力実効値計算回路と
を備えたことを特徴とする電気溶融炉にかかるものである。
The present invention also provides a melting furnace main body having a flow-down port formed at the bottom, and an object to be melted in the melting furnace main body that is disposed opposite to an intermediate portion in the vertical direction of the inner wall of the melting furnace main body and is energized between them. A pair of main electrodes to be heated and melted, and a bottom electrode which is arranged at the bottom of the melting furnace body and heats and melts the material to be melted in the bottom of the melting furnace body by energization between one of the main electrodes; A main electrode power source having a main electrode transformer for energizing between the main electrodes, and a main electrode provided on either the primary coil side or the secondary coil side of the main electrode transformer of the main electrode power source Power source for a bottom electrode having a transformer for a switching element, a bottom electrode transformer for energizing between one of the bottom electrode and the main electrode, and a primary coil side or a secondary of the bottom electrode transformer of the bottom electrode power source Installed on either side of coil In electric melting furnace comprising a was a bottom electrode for the switching element,
A main electrode ignition state determination circuit for determining whether the main electrode switching element is in an ignition state or an extinguishing state;
A bottom electrode ignition state determination circuit for determining whether the bottom electrode switching element is in an ignition state or an extinguishing state; and
Based on the information from the main electrode ignition state determination circuit, the power between the main electrodes is determined from the instantaneous value of the voltage between the main electrodes and the instantaneous value of the current between the main electrodes only while the switching element for the main electrode is in the ignition state. And the main electrode switching element is in an ignition state and the bottom electrode switching element is extinguished based on information from the main electrode ignition state determination circuit and the bottom electrode ignition state determination circuit. The power of the power between the bottom electrode and one of the main electrodes is determined from the instantaneous value of the voltage between the bottom electrode and one of the main electrodes and the instantaneous value of the current between the bottom electrode and one of the main electrodes only while in the state. An instantaneous value is obtained, and an effective value of the power between the main electrodes is obtained and output based on a value obtained by subtracting the instantaneous value of the power between the bottom electrode and one of the main electrodes from the instantaneous value of the power between the main electrodes. A power effective value calculation circuit for the main electrode,
Based on the information from the bottom electrode ignition state determination circuit, the instantaneous value of the voltage between the bottom electrode and one of the main electrodes and one of the bottom electrode and the main electrode only while the bottom electrode switching element is in the ignition state. The instantaneous value of the electric power between the bottom electrode and one of the main electrodes is obtained from the instantaneous value of the current between the main electrode and the information from the main electrode ignition state determination circuit and the bottom electrode ignition state determination circuit. Based on the instantaneous value of the voltage between the main electrodes and the instantaneous value of the current between the main electrodes, only when the bottom electrode switching element is in the ignition state and the main electrode switching element is in the arc extinguishing state, An instantaneous value is obtained, and the electric power between the bottom electrode and one of the main electrodes is obtained by subtracting the instantaneous value of the electric power between the main electrodes from the instantaneous value of the electric power between the bottom electrode and the main electrode. For the bottom electrode that calculates and outputs the effective value of In which according to the electric melting furnace, characterized in that a effective value calculating circuit.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

主電極用電力実効値計算回路においては、主電極用点弧状態判定回路からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけ主電極間の電圧の瞬時値及び主電極間の電流の瞬時値から主電極間の電力の瞬時値が求められると共に、前記主電極用点弧状態判定回路及び底部電極用点弧状態判定回路からの情報に基づき主電極用スイッチング素子が点弧状態にあり且つ底部電極用スイッチング素子が消弧状態にある間だけ底部電極と主電極の一方との間の電圧の瞬時値及び底部電極と主電極の一方との間の電流の瞬時値から底部電極と主電極の一方との間の電力の瞬時値が求められ、前記主電極間の電力の瞬時値から前記底部電極と主電極の一方との間の電力の瞬時値を差し引いた値に基づいて主電極間の電力の実効値が求められて出力されるため、電気炉内で消費される正味の電力実効値をより正確に求めることが可能となる。底部電極用電力実効値計算回路においては、底部電極用点弧状態判定回路からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけ底部電極と主電極の一方との間の電圧の瞬時値及び底部電極と主電極の一方との間の電流の瞬時値から底部電極と主電極の一方との間の電力の瞬時値が求められると共に、前記主電極用点弧状態判定回路及び底部電極用点弧状態判定回路からの情報に基づき底部電極用スイッチング素子が点弧状態にあり且つ主電極用スイッチング素子が消弧状態にある間だけ主電極間の電圧の瞬時値及び主電極間の電流の瞬時値から主電極間の電力の瞬時値が求められ、前記底部電極と主電極の一方との間の電力の瞬時値から前記主電極間の電力の瞬時値を差し引いた値に基づいて底部電極と主電極の一方との間の電力の実効値が求められて出力されるため、電気炉内で消費される正味の電力実効値をより正確に求めることが可能となる。これにより、運転の制御性が良くなり、電気回路における主電極用スイッチング素子と底部電極用スイッチング素子の配置箇所の自由度も増し、コストダウンが可能となるばかりでなく、プラント毎に異なる個別の要求にも柔軟に対応可能となる。   In the main electrode power effective value calculation circuit, based on the information from the main electrode ignition state determination circuit, the instantaneous value of the voltage between the main electrodes and between the main electrodes only while the main electrode switching element is in the ignition state. The instantaneous value of the power between the main electrodes is obtained from the instantaneous value of the current, and the switching element for the main electrode is ignited based on the information from the ignition state determination circuit for the main electrode and the ignition state determination circuit for the bottom electrode. The bottom electrode from the instantaneous value of the voltage between the bottom electrode and one of the main electrodes and the instantaneous value of the current between the bottom electrode and one of the main electrodes only while the switching element for the bottom electrode is in the arc extinguishing state An instantaneous value of power between the main electrode and one of the main electrodes is obtained, based on a value obtained by subtracting an instantaneous value of power between the bottom electrode and one of the main electrodes from the instantaneous value of power between the main electrodes The effective value of power between the main electrodes is obtained. To be outputted, we are possible to obtain the effective value of power of the net consumed in an electric furnace more accurately. In the bottom electrode power effective value calculation circuit, the voltage between the bottom electrode and one of the main electrodes is calculated only while the bottom electrode switching element is in the ignition state based on the information from the bottom electrode ignition state determination circuit. An instantaneous value of power between the bottom electrode and one of the main electrodes is obtained from the instantaneous value and an instantaneous value of the current between the bottom electrode and the main electrode, and the ignition state determination circuit for the main electrode and the bottom Based on the information from the electrode ignition state determination circuit, the instantaneous value of the voltage between the main electrodes and between the main electrodes only when the bottom electrode switching element is in the ignition state and the main electrode switching element is in the arc extinguishing state. Based on the value obtained by subtracting the instantaneous value of the electric power between the main electrodes from the instantaneous value of the electric power between the bottom electrode and one of the main electrodes. Between the bottom electrode and one of the main electrodes Since the effective value of the power is obtained and output, it is possible to obtain the effective value of power of the net consumed in an electric furnace more accurately. As a result, the controllability of the operation is improved, the degree of freedom of the arrangement location of the main electrode switching element and the bottom electrode switching element in the electric circuit is increased, and not only the cost can be reduced, but also different individual plants. It is possible to respond flexibly to requests.

前記電気溶融炉においては、前記主電極用スイッチング素子及び底部電極用スイッチング素子はそれぞれ、ON・OFFタイミングを任意に制御できる自励式素子とし、
前記主電極用点弧状態判定回路及び底部電極用点弧状態判定回路はそれぞれ、自励式素子のゲート制御回路から出力されるゲート信号に基づいて該自励式素子の点弧状態を判定するよう構成することができる。
In the electric melting furnace, each of the main electrode switching element and the bottom electrode switching element is a self-excited element capable of arbitrarily controlling the ON / OFF timing,
Each of the main electrode ignition state determination circuit and the bottom electrode ignition state determination circuit is configured to determine the ignition state of the self-excited element based on a gate signal output from the gate control circuit of the self-excited element. can do.

前記電気溶融炉においては、前記主電極用スイッチング素子及び底部電極用スイッチング素子はそれぞれ、ONタイミングを任意に制御できるがOFFタイミングを制御できない他励式素子とし、
前記主電極用点弧状態判定回路及び底部電極用点弧状態判定回路はそれぞれ、点弧回路から出力される点弧信号により点弧状態となる他励式素子の前後の電圧差を電圧差判定回路で検出し、該電圧差がVL以下で他励式素子が点弧状態にあると判定し、前記電圧差がVH以上で順電圧降下が大きい場合に他励式素子が消弧状態にあると判定するよう構成することもできる。
In the electric melting furnace, each of the switching element for the main electrode and the switching element for the bottom electrode is a separately excited element that can arbitrarily control the ON timing but cannot control the OFF timing,
The main electrode ignition state determination circuit and the bottom electrode ignition state determination circuit each determine a voltage difference before and after a separately excited element that is in an ignition state by an ignition signal output from the ignition circuit. When the voltage difference is V L or less and it is determined that the separately excited element is in an ignition state, and the voltage difference is V H or more and the forward voltage drop is large, the separately excited element is in an arc extinguished state. It can also be configured to determine.

前記電気溶融炉においては、前記主電極用スイッチング素子及び底部電極用スイッチング素子はそれぞれ、ONタイミングを任意に制御できるがOFFタイミングを制御できない他励式素子とし、
前記主電極用点弧状態判定回路及び底部電極用点弧状態判定回路はそれぞれ、他励式素子の点弧回路から出力される点弧信号によりシングルフリップフロップをセットして他励式素子が点弧状態にあると判定し、前記点弧回路から出力される点弧信号により点弧状態となる他励式素子の前後の電圧差を電圧差判定回路で検出し、該電圧差がVH以上で順電圧降下が大きい場合に前記シングルフリップフロップをリセットして他励式素子が消弧状態にあると判定するよう構成することもできる。
In the electric melting furnace, each of the switching element for the main electrode and the switching element for the bottom electrode is a separately excited element that can arbitrarily control the ON timing but cannot control the OFF timing,
The main electrode firing state determination circuit and the bottom electrode firing state determination circuit each set a single flip-flop by the firing signal output from the firing circuit of the separately excited element, and the separately excited element is in the firing state. The voltage difference before and after the separately excited element that is in the ignition state is detected by the voltage difference determination circuit based on the ignition signal output from the ignition circuit, and the forward voltage is detected when the voltage difference is V H or more. When the drop is large, the single flip-flop may be reset to determine that the separately excited element is in the arc extinguishing state.

前記電気溶融炉においては、前記主電極用スイッチング素子及び底部電極用スイッチング素子はそれぞれ、ONタイミングを任意に制御できるがOFFタイミングを制御できない他励式素子とし、
前記主電極用点弧状態判定回路及び底部電極用点弧状態判定回路はそれぞれ、点弧回路から出力される点弧信号により点弧状態となる他励式素子の保持電流を電流値判定回路で検出し、該保持電流がIL以下で他励式素子が点弧状態にあると判定し、前記保持電流がIH以上で他励式素子が消弧状態にあると判定するよう構成することもできる。
In the electric melting furnace, each of the switching element for the main electrode and the switching element for the bottom electrode is a separately excited element that can arbitrarily control the ON timing but cannot control the OFF timing,
The main electrode ignition state determination circuit and the bottom electrode ignition state determination circuit each detect a holding current of a separately excited element that is in an ignition state based on an ignition signal output from the ignition circuit, by a current value determination circuit. The holding current is not more than I L and it is determined that the separately excited element is in an ignition state, and the holding current is not less than I H and it is determined that the separately excited element is in an extinguished state.

前記電気溶融炉においては、前記主電極用スイッチング素子及び底部電極用スイッチング素子はそれぞれ、ONタイミングを任意に制御できるがOFFタイミングを制御できない他励式素子とし、
前記主電極用点弧状態判定回路及び底部電極用点弧状態判定回路はそれぞれ、他励式素子の点弧回路から出力される点弧信号によりシングルフリップフロップをセットして他励式素子が点弧状態にあると判定し、前記点弧回路から出力される点弧信号により点弧状態となる他励式素子の保持電流を電流値判定回路で検出し、該保持電流がIH以上で前記シングルフリップフロップをリセットして他励式素子が消弧状態にあると判定するよう構成することもできる。
In the electric melting furnace, each of the switching element for the main electrode and the switching element for the bottom electrode is a separately excited element that can arbitrarily control the ON timing but cannot control the OFF timing,
The main electrode firing state determination circuit and the bottom electrode firing state determination circuit each set a single flip-flop by the firing signal output from the firing circuit of the separately excited element, and the separately excited element is in the firing state. It determines that the said single flip-flop at said point by firing signal outputted from the firing circuit detects the holding current of the separately excited element to be firing state by the current value determination circuit, the holding current I H or Can be configured to determine that the separately excited element is in the arc extinguishing state.

前記電気溶融炉においては、主電極間の電圧及び電流のうち少なくとも電圧を主電極自体又は主電極直近から検出すると共に、底部電極と主電極の一方との間の電圧及び電流のうち少なくとも電圧を底部電極自体又は底部電極直近から検出するよう構成することが有効となる。   In the electric melting furnace, at least the voltage and the current between the main electrodes are detected from the main electrode itself or the vicinity of the main electrode, and at least the voltage and the current between the bottom electrode and one of the main electrodes are detected. It is effective to configure to detect from the bottom electrode itself or from the immediate vicinity of the bottom electrode.

本発明の電気溶融炉によれば、電圧・電流・電力の各実効値を正確に把握し得、運転の制御性向上を図り得ると共に、電気回路におけるスイッチング素子の配置箇所の自由度を増し、コストダウンはもとより、プラント毎に異なる個別の要求にも柔軟に対応し得るという優れた効果を奏し得る。   According to the electric melting furnace of the present invention, it is possible to accurately grasp each effective value of voltage, current, and power, to improve the controllability of operation, and to increase the degree of freedom of the location of the switching element in the electric circuit, In addition to cost reduction, it is possible to achieve an excellent effect of being able to flexibly respond to individual requests that differ from plant to plant.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明を実施する形態の一例における主電極用電圧実効値計算回路18及び底部電極用電圧実効値計算回路23を示すものであって、図中、図17と同一の符号を付した部分は同一物を表わしており、基本的な構成は図17に示す従来のものと同様であるが、本図示例の特徴とするところは、図1に示す如く、
主電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する主電極用点弧状態判定回路46を設け、該主電極用点弧状態判定回路46からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけa側に切り換えられて主電極5間の電圧の瞬時値を出力する切換器47を乗算器19の入力側に設けて主電極用電圧実効値計算回路18を構成すると共に、
底部電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する底部電極用点弧状態判定回路48を設け、該底部電極用点弧状態判定回路48からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけa側に切り換えられて底部電極6と主電極5の一方との間の電圧の瞬時値を出力する切換器49を乗算器24の入力側に設けて底部電極用電圧実効値計算回路23を構成した点にある。
FIG. 1 shows a main electrode voltage effective value calculation circuit 18 and a bottom electrode voltage effective value calculation circuit 23 in an example of an embodiment of the present invention. In the figure, the same reference numerals as those in FIG. The parts represent the same thing, and the basic configuration is the same as the conventional one shown in FIG. 17, but the feature of this illustrated example is as shown in FIG.
A main electrode ignition state determination circuit 46 for determining whether the main electrode switching element is in an ignition state or an extinguishing state is provided, and based on information from the main electrode ignition state determination circuit 46 Only when the main electrode switching element is in the ignition state, a switch 47 for switching to the a side and outputting an instantaneous value of the voltage between the main electrodes 5 is provided on the input side of the multiplier 19 to provide a voltage effective value for the main electrode. While configuring the calculation circuit 18,
A bottom electrode ignition state determination circuit 48 for determining whether the bottom electrode switching element is in an ignition state or an arc extinction state is provided, and based on information from the bottom electrode ignition state determination circuit 48 A switch 49 that switches to the a side and outputs an instantaneous value of the voltage between the bottom electrode 6 and one of the main electrodes 5 is provided on the input side of the multiplier 24 while the switching element for the bottom electrode is in the ignition state. The bottom electrode voltage effective value calculation circuit 23 is provided.

前記切換器47は、主電極用点弧状態判定回路46からの情報に基づき主電極用スイッチング素子が消弧状態にある間はb側に切り換えられ0(ゼロ)を出力するようになっており、前記切換器49は、底部電極用点弧状態判定回路48からの情報に基づき底部電極用スイッチング素子が消弧状態にある間はb側に切り換えられ0(ゼロ)を出力するようになっている。   The switch 47 is switched to the b side and outputs 0 (zero) while the main electrode switching element is in the extinguishing state based on the information from the main electrode ignition state determination circuit 46. The switch 49 is switched to the b side and outputs 0 (zero) while the bottom electrode switching element is in the arc extinguishing state based on the information from the bottom electrode ignition state determination circuit 48. Yes.

前記主電極用スイッチング素子及び底部電極用スイッチング素子としては、ON・OFFタイミングを任意に制御できる自励式素子(例えば、IGBT:絶縁ゲートバイポーラトランジスタ、GTO:ゲートターンオフサイリスタ、MOSFET:電界効果トランジスタなど)、或いはONタイミングは任意に制御できるがOFFタイミングは制御できない他励式素子(例えば、サイリスタ)のいずれを用いることもできる。因みに、図13及び図14には、前記主電極用スイッチング素子及び底部電極用スイッチング素子としてサイリスタ10,13を用いた例を示している。   As the main electrode switching element and the bottom electrode switching element, self-excited elements capable of arbitrarily controlling the ON / OFF timing (for example, IGBT: insulated gate bipolar transistor, GTO: gate turn-off thyristor, MOSFET: field effect transistor, etc.) Alternatively, any other excitation type element (for example, thyristor) that can control the ON timing arbitrarily but cannot control the OFF timing can be used. 13 and 14 show an example in which thyristors 10 and 13 are used as the main electrode switching element and the bottom electrode switching element.

そして、前記主電極用スイッチング素子及び底部電極用スイッチング素子として、IGBTなどの自励式素子を用いた場合、前記主電極用点弧状態判定回路46及び底部電極用点弧状態判定回路48はそれぞれ、図2に示す如く、自励式素子のゲート制御回路50から出力されるゲート信号51に基づいて該自励式素子の点弧状態を判定するよう構成することができる。   When a self-excited element such as IGBT is used as the main electrode switching element and the bottom electrode switching element, the main electrode ignition state determination circuit 46 and the bottom electrode ignition state determination circuit 48 are respectively As shown in FIG. 2, the ignition state of the self-excited element can be determined based on the gate signal 51 output from the gate control circuit 50 of the self-excited element.

前記主電極用スイッチング素子及び底部電極用スイッチング素子として、サイリスタなどの他励式素子を用いた場合、前記主電極用点弧状態判定回路46及び底部電極用点弧状態判定回路48はそれぞれ、図3に示す如く、点弧回路52から出力される点弧信号53により点弧状態となる他励式素子の前後の電圧差を電圧差判定回路54で検出し、該電圧差が正の値且つ素子の順電圧降下よりもわずかに大きい電圧閾値VL未満で他励式素子が点弧状態にあると判定し、前記電圧差が負の値又はV以上で他励式素子が消弧状態にあると判定するよう構成することができる。 When separately excited elements such as thyristors are used as the main electrode switching element and the bottom electrode switching element, the main electrode ignition state determination circuit 46 and the bottom electrode ignition state determination circuit 48 are respectively shown in FIG. As shown in FIG. 4, the voltage difference determination circuit 54 detects the voltage difference before and after the separately-excited element that is in the ignition state by the ignition signal 53 output from the ignition circuit 52, and the voltage difference is a positive value. It is determined that the separately excited element is in an ignition state at a voltage threshold value V L that is slightly larger than the forward voltage drop, and it is determined that the separately excited element is in an extinguished state if the voltage difference is a negative value or greater than V L. Can be configured to.

又、前記主電極用スイッチング素子及び底部電極用スイッチング素子として、サイリスタなどの他励式素子を用いた場合、前記主電極用点弧状態判定回路46及び底部電極用点弧状態判定回路48はそれぞれ、図4に示す如く、他励式素子の点弧回路52から出力される点弧信号53によりシングルフリップフロップ55をセットして他励式素子が点弧状態にあると判定し、前記点弧回路52から出力される点弧信号53により点弧状態となる他励式素子の前後の電圧差を電圧差判定回路54で検出し、該電圧差が負の値で前記シングルフリップフロップ55をリセットして他励式素子が消弧状態にあると判定するよう構成することもできる。   When a separately excited element such as a thyristor is used as the main electrode switching element and the bottom electrode switching element, the main electrode ignition state determination circuit 46 and the bottom electrode ignition state determination circuit 48 are respectively As shown in FIG. 4, the single flip-flop 55 is set by the ignition signal 53 output from the ignition circuit 52 of the separately excited element, and it is determined that the separately excited element is in the ignition state. A voltage difference determination circuit 54 detects a voltage difference before and after the separately excited element that is in an ignition state based on the output ignition signal 53, and resets the single flip-flop 55 when the voltage difference is a negative value, thereby separately exciting the voltage. It can also be configured to determine that the element is in an arc extinguishing state.

更に又、前記主電極用スイッチング素子及び底部電極用スイッチング素子として、サイリスタなどの他励式素子を用いた場合、前記主電極用点弧状態判定回路46及び底部電極用点弧状態判定回路48はそれぞれ、図5に示す如く、点弧回路52から出力される点弧信号53により点弧状態となる他励式素子の電流を電流値判定回路56で検出し、該電流が素子の保持電流よりわずかに大きい電流閾値I以上で他励式素子が点弧状態にあると判定し、前記電流が素子の保持電流よりわずかに小さい電流閾値I以下で他励式素子が消弧状態にあると判定するよう構成することもできる。 Furthermore, when a separately excited element such as a thyristor is used as the main electrode switching element and the bottom electrode switching element, the main electrode ignition state determination circuit 46 and the bottom electrode ignition state determination circuit 48 are respectively As shown in FIG. 5, the current of the separately excited element that is in the ignition state is detected by the current value determination circuit 56 based on the ignition signal 53 output from the ignition circuit 52, and the current is slightly smaller than the holding current of the element. as the separately excited elements at a large current threshold I H or is determined to be in the firing state, the current separately excited elements at slightly below lower current threshold I L than the holding current of the device is determined to be in extinguishing state It can also be configured.

又、前記主電極用スイッチング素子及び底部電極用スイッチング素子として、サイリスタなどの他励式素子を用いた場合、前記主電極用点弧状態判定回路46及び底部電極用点弧状態判定回路48はそれぞれ、図6に示す如く、他励式素子の点弧回路52から出力される点弧信号53によりシングルフリップフロップ57をセットして他励式素子が点弧状態にあると判定し、前記点弧回路52から出力される点弧信号53により点弧状態となる他励式素子の電流を電流値判定回路56で検出し、該電流が素子の保持電流よりわずかに小さい電流閾値I以下で前記シングルフリップフロップ57をリセットして他励式素子が消弧状態にあると判定するよう構成することもできる。 When a separately excited element such as a thyristor is used as the main electrode switching element and the bottom electrode switching element, the main electrode ignition state determination circuit 46 and the bottom electrode ignition state determination circuit 48 are respectively As shown in FIG. 6, the single flip-flop 57 is set by the ignition signal 53 output from the ignition circuit 52 of the separately excited element, and it is determined that the separately excited element is in the ignition state. detecting a current of the separately excited element by firing signal 53 that is output the firing state by the current value determination circuit 56, the single flip-flop 57 said current is below slightly smaller current threshold I L than the holding current of the element Can be configured to determine that the separately excited element is in the arc extinguishing state.

次に、上記図示例の作用を説明する。   Next, the operation of the illustrated example will be described.

主電極用電圧実効値計算回路18においては、主電極用点弧状態判定回路46からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけ切換器47がa側に切り換えられ主電極5間の電圧の瞬時値から該電圧の実効値が求められて出力され、主電極用スイッチング素子が消弧状態にあって切換器47がb側に切り換えられている間は電圧実効値計算から除外される部分となる(図7参照)。同様に、底部電極用電圧実効値計算回路23においては、底部電極用点弧状態判定回路48からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけ切換器49がa側に切り換えられ底部電極と主電極5の一方との間の電圧の瞬時値から該電圧の実効値が求められて出力され、底部電極用スイッチング素子が消弧状態にあって切換器49がb側に切り換えられている間は電圧実効値計算から除外される部分となる。このため、[数6]式右辺の平方根中の第1項が排除されて理想とする[数7]式の電圧実効値が計算され、それぞれ正味の電圧実効値を求めることが可能となる。尚、回路のインダクタンス分により消弧するタイミングが理想的なタイミングTよりも遅れ、次の周期にずれ込む場合があるが、このような場合においても本回路は正味の電圧実効値を計算できる。   In the main electrode voltage effective value calculation circuit 18, the switch 47 is switched to the a side only while the main electrode switching element is in the ignition state based on the information from the main electrode ignition state determination circuit 46. The effective value of the voltage is obtained from the instantaneous value of the voltage between 5 and output, and while the switching element 47 is switched to the b side while the main electrode switching element is in the arc extinction state, the effective voltage value is calculated. It becomes a part to be excluded (see FIG. 7). Similarly, in the bottom electrode voltage effective value calculation circuit 23, the switch 49 is switched to the a side only while the bottom electrode switching element is in the ignition state based on the information from the bottom electrode ignition state determination circuit 48. The effective value of the voltage is obtained from the instantaneous value of the voltage between the bottom electrode and one of the main electrodes 5 and output, and the switching element 49 is switched to the b side when the bottom electrode switching element is in the arc extinguishing state. While this is done, it is excluded from the voltage RMS calculation. For this reason, the first term in the square root of the right side of the [Expression 6] is eliminated, and the ideal voltage effective value of the [Expression 7] is calculated, and the net effective voltage value can be obtained for each. Note that the arc extinguishing timing may be delayed from the ideal timing T due to the inductance of the circuit and may shift to the next cycle. Even in such a case, the circuit can calculate the net effective voltage value.

この結果、電気溶融炉の運転の制御性が良くなり、電気回路における主電極用スイッチング素子と底部電極用スイッチング素子の配置箇所の自由度も増し、通電抵抗が非常に小さいガラスなどの被溶融物に対して低電圧・大電流による通電制御が必要な電気溶融炉において、サイリスタ10,13などの高価なスイッチング素子をトランス8,11の高電圧・小電流側に配置する(図13参照)ことが可能となり、低電圧・大電流側にスイッチング素子を設置する(図14参照)のと比べて定格電流容量を低く設定・設計でき、装置の大幅なコストダウンにつながるメリットがある。逆に、スイッチング素子の耐電圧の観点からトランス8,11の低電圧側への設置を必要に応じて選択することも可能となり、プラント毎に異なる個別の要求にも柔軟に対応可能となる。   As a result, the controllability of the operation of the electric melting furnace is improved, the degree of freedom of arrangement of the main electrode switching element and the bottom electrode switching element in the electric circuit is increased, and the object to be melted such as glass having a very low current resistance. On the other hand, in an electric melting furnace that requires energization control with a low voltage and a large current, expensive switching elements such as thyristors 10 and 13 are arranged on the high voltage and small current side of the transformers 8 and 11 (see FIG. 13). The rated current capacity can be set and designed lower than when a switching element is installed on the low voltage / large current side (see FIG. 14), which has the merit of leading to a significant cost reduction of the device. On the contrary, it is possible to select the installation of the transformers 8 and 11 on the low voltage side as necessary from the viewpoint of the withstand voltage of the switching element, and it is possible to flexibly respond to individual requests that differ from plant to plant.

こうして、電圧実効値を正確に把握し得、運転の制御性向上を図り得ると共に、電気回路におけるスイッチング素子の配置箇所の自由度を増し、コストダウンはもとより、プラント毎に異なる個別の要求にも柔軟に対応し得る。   In this way, the effective voltage value can be accurately grasped, the controllability of operation can be improved, the degree of freedom of the arrangement of the switching elements in the electric circuit is increased, and not only the cost is reduced, but also individual requirements that differ from plant to plant. Can respond flexibly.

図8は本発明を実施する形態の一例における主電極用電流実効値計算回路28及び底部電極用電流実効値計算回路33を示すものであって、図中、図19と同一の符号を付した部分は同一物を表わしており、基本的な構成は図19に示す従来のものと同様であるが、本図示例の特徴とするところは、図8に示す如く、主電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する主電極用点弧状態判定回路46を設け、該主電極用点弧状態判定回路46からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけa側に切り換えられて主電極5間の電流の瞬時値を出力する切換器58を乗算器29の入力側に設けて主電極用電流実効値計算回路28を構成すると共に、
底部電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する底部電極用点弧状態判定回路48を設け、該底部電極用点弧状態判定回路48からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけa側に切り換えられて底部電極6と主電極5の一方との間の電流の瞬時値を出力する切換器59を乗算器34の入力側に設けて底部電極用電流実効値計算回路33を構成した点にある。
FIG. 8 shows the current effective value calculation circuit 28 for the main electrode and the current effective value calculation circuit 33 for the bottom electrode in an example of the embodiment of the present invention, and the same reference numerals as those in FIG. The parts represent the same, and the basic configuration is the same as the conventional one shown in FIG. 19, but the feature of this example is that the switching element for the main electrode is a point as shown in FIG. A main electrode ignition state determination circuit 46 for determining whether the arc state or the arc extinguishing state is present is provided. Based on the information from the main electrode ignition state determination circuit 46, the main electrode switching element is turned on. A switch 58 that outputs the instantaneous value of the current between the main electrodes 5 and outputs the instantaneous value of the current between the main electrodes 5 is provided on the input side of the multiplier 29 to constitute the main electrode current effective value calculation circuit 28 while being in the arc state. ,
A bottom electrode ignition state determination circuit 48 for determining whether the bottom electrode switching element is in an ignition state or an arc extinction state is provided, and based on information from the bottom electrode ignition state determination circuit 48 A switch 59 that outputs the instantaneous value of the current between the bottom electrode 6 and one of the main electrodes 5 is switched to the input side of the multiplier 34 while the bottom electrode switching element is in the ignition state. The bottom electrode current effective value calculation circuit 33 is provided.

前記切換器58は、主電極用点弧状態判定回路46からの情報に基づき主電極用スイッチング素子が消弧状態にある間はb側に切り換えられ0(ゼロ)を出力するようになっており、前記切換器59は、底部電極用点弧状態判定回路48からの情報に基づき底部電極用スイッチング素子が消弧状態にある間はb側に切り換えられ0(ゼロ)を出力するようになっている。   The switch 58 is switched to the b side and outputs 0 (zero) while the main electrode switching element is in the arc extinguishing state based on the information from the main electrode ignition state determination circuit 46. The switch 59 is switched to the b side and outputs 0 (zero) while the bottom electrode switching element is in the arc extinguishing state based on the information from the bottom electrode ignition state determination circuit 48. Yes.

そして、前記主電極用スイッチング素子及び底部電極用スイッチング素子として、IGBTなどの自励式素子を用いた場合、前記主電極用点弧状態判定回路46及び底部電極用点弧状態判定回路48はそれぞれ、前記主電極用電圧実効値計算回路18及び底部電極用電圧実効値計算回路23の場合と同様、図2に示すような構成とすることができる。   When a self-excited element such as IGBT is used as the main electrode switching element and the bottom electrode switching element, the main electrode ignition state determination circuit 46 and the bottom electrode ignition state determination circuit 48 are respectively As in the case of the main electrode voltage effective value calculation circuit 18 and the bottom electrode voltage effective value calculation circuit 23, the configuration shown in FIG.

前記主電極用スイッチング素子及び底部電極用スイッチング素子として、サイリスタなどの他励式素子を用いた場合、前記主電極用点弧状態判定回路46及び底部電極用点弧状態判定回路48はそれぞれ、前記主電極用電圧実効値計算回路18及び底部電極用電圧実効値計算回路23の場合と同様、図3、図4、図5、図6のいずれかに示すような構成とすることができる。   When separately excited elements such as thyristors are used as the main electrode switching element and the bottom electrode switching element, the main electrode ignition state determination circuit 46 and the bottom electrode ignition state determination circuit 48 are respectively As in the case of the electrode voltage effective value calculation circuit 18 and the bottom electrode voltage effective value calculation circuit 23, the configuration shown in any of FIGS. 3, 4, 5, and 6 can be employed.

次に、図8に示す例の作用を説明する。   Next, the operation of the example shown in FIG. 8 will be described.

主電極用電流実効値計算回路28においては、主電極用点弧状態判定回路46からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけ切換器58がa側に切り換えられ主電極5間の電流の瞬時値から該電流の実効値が求められて出力され、主電極用スイッチング素子が消弧状態にあって切換器58がb側に切り換えられている間は電流実効値計算から除外される部分となる。同様に、底部電極用電流実効値計算回路33においては、底部電極用点弧状態判定回路48からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけ切換器59がa側に切り換えられ底部電極と主電極5の一方との間の電流の瞬時値から該電流の実効値が求められて出力され、底部電極用スイッチング素子が消弧状態にあって切換器59がb側に切り換えられている間は電流実効値計算から除外される部分となる。このため、[数6]式右辺の平方根中の第1項が排除されて理想とする[数7]式の電流実効値が計算され、それぞれ正味の電流実効値を求めることが可能となる。尚、回路のインダクタンス分により消弧するタイミングが理想的なタイミングTよりも遅れ、次の周期にずれ込む場合があるが、このような場合においても本回路は正味の電流実効値を計算できる。   In the main electrode current effective value calculation circuit 28, the switch 58 is switched to the a side only while the main electrode switching element is in the ignition state based on the information from the main electrode ignition state determination circuit 46. The effective value of the current is obtained and output from the instantaneous value of the current between 5, and the current effective value calculation is performed while the main electrode switching element is in the arc extinguishing state and the switch 58 is switched to the b side. It will be an excluded part. Similarly, in the bottom electrode current effective value calculation circuit 33, the switch 59 switches to the a side only while the bottom electrode switching element is in the ignition state based on the information from the bottom electrode ignition state determination circuit 48. The effective value of the current is obtained and output from the instantaneous value of the current between the bottom electrode and one of the main electrodes 5, and the switching element 59 is switched to the b side when the bottom electrode switching element is in the arc extinguishing state. While this is being done, it will be excluded from the calculation of the RMS current value. For this reason, the first current term in the square root of the right side of the equation [6] is eliminated to calculate the ideal current effective value of the equation [7], and it is possible to obtain the net current effective value. Note that the arc extinguishing timing may be delayed from the ideal timing T due to the inductance of the circuit and may shift to the next cycle. Even in such a case, the circuit can calculate the net effective current value.

この結果、電気溶融炉の運転の制御性が良くなり、電気回路における主電極用スイッチング素子と底部電極用スイッチング素子の配置箇所の自由度も増し、通電抵抗が非常に小さいガラスなどの被溶融物に対して低電圧・大電流による通電制御が必要な電気溶融炉において、サイリスタ10,13などの高価なスイッチング素子をトランス8,11の高電圧・小電流側に配置する(図13参照)ことが可能となり、低電圧・大電流側にスイッチング素子を設置する(図14参照)のと比べて定格電流容量を低く設定・設計でき、装置の大幅なコストダウンにつながるメリットがある。逆に、スイッチング素子の耐電圧の観点からトランス8,11の低電圧側への設置を必要に応じて選択することも可能となり、プラント毎に異なる個別の要求にも柔軟に対応可能となる。   As a result, the controllability of the operation of the electric melting furnace is improved, the degree of freedom of arrangement of the main electrode switching element and the bottom electrode switching element in the electric circuit is increased, and the object to be melted such as glass having a very low current resistance. On the other hand, in an electric melting furnace that requires energization control with a low voltage and a large current, expensive switching elements such as thyristors 10 and 13 are arranged on the high voltage and small current side of the transformers 8 and 11 (see FIG. 13). The rated current capacity can be set and designed lower than when a switching element is installed on the low voltage / large current side (see FIG. 14), which has the merit of leading to a significant cost reduction of the device. On the contrary, it is possible to select the installation of the transformers 8 and 11 on the low voltage side as necessary from the viewpoint of the withstand voltage of the switching element, and it is possible to flexibly respond to individual requests that differ from plant to plant.

こうして、電流実効値を正確に把握し得、運転の制御性向上を図り得ると共に、電気回路におけるスイッチング素子の配置箇所の自由度を増し、コストダウンはもとより、プラント毎に異なる個別の要求にも柔軟に対応し得る。   In this way, the effective current value can be accurately grasped, the controllability of operation can be improved, the degree of freedom of the arrangement of the switching elements in the electric circuit is increased, and not only costs are reduced, but also individual requirements that differ from plant to plant. Can respond flexibly.

図9は本発明を実施する形態の一例における主電極用電力実効値計算回路38及び底部電極用電力実効値計算回路42を示すものであって、図中、図21と同一の符号を付した部分は同一物を表わしており、基本的な構成は図21に示す従来のものと同様であるが、本図示例の特徴とするところは、図9に示す如く、主電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する主電極用点弧状態判定回路46を設け、該主電極用点弧状態判定回路46からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけa側に切り換えられて主電極5間の電力の瞬時値を出力する切換器60を乗算器39と積分器40との間に設けて主電極用電力実効値計算回路38を構成すると共に、
底部電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する底部電極用点弧状態判定回路48を設け、該底部電極用点弧状態判定回路48からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけa側に切り換えられて底部電極6と主電極5の一方との間の電力の瞬時値を出力する切換器61を乗算器43と積分器44との間に設けて底部電極用電力実効値計算回路42を構成した点にある。
FIG. 9 shows a main electrode power effective value calculation circuit 38 and a bottom electrode power effective value calculation circuit 42 in an example of an embodiment of the present invention, and the same reference numerals as those in FIG. The parts represent the same, and the basic configuration is the same as the conventional one shown in FIG. 21, but the feature of this example is that the switching element for the main electrode is a point as shown in FIG. A main electrode ignition state determination circuit 46 for determining whether the arc state or the arc extinguishing state is present is provided. Based on the information from the main electrode ignition state determination circuit 46, the main electrode switching element is turned on. A switch 60 is provided between the multiplier 39 and the integrator 40 to switch to the a side and output the instantaneous value of the power between the main electrodes 5 only during the arc state, and the main electrode power effective value calculation circuit 38 is provided. As well as
A bottom electrode ignition state determination circuit 48 for determining whether the bottom electrode switching element is in an ignition state or an arc extinction state is provided, and based on information from the bottom electrode ignition state determination circuit 48 Only when the switching element for the bottom electrode is in the ignition state, the switching device 61 is switched to the a side and outputs an instantaneous value of power between the bottom electrode 6 and one of the main electrodes 5. The bottom electrode power rms value calculation circuit 42 is provided.

前記切換器60は、主電極用点弧状態判定回路46からの情報に基づき主電極用スイッチング素子が消弧状態にある間はb側に切り換えられ0(ゼロ)を出力するようになっており、前記切換器61は、底部電極用点弧状態判定回路48からの情報に基づき底部電極用スイッチング素子が消弧状態にある間はb側に切り換えられ0(ゼロ)を出力するようになっている。   The switch 60 is switched to the b side and outputs 0 (zero) while the main electrode switching element is in the arc extinguishing state based on the information from the main electrode ignition state determination circuit 46. The switch 61 is switched to the b side and outputs 0 (zero) while the bottom electrode switching element is in the arc extinguishing state based on the information from the bottom electrode ignition state determination circuit 48. Yes.

そして、前記主電極用スイッチング素子及び底部電極用スイッチング素子として、IGBTなどの自励式素子を用いた場合、前記主電極用点弧状態判定回路46及び底部電極用点弧状態判定回路48はそれぞれ、前記主電極用電圧実効値計算回路18及び底部電極用電圧実効値計算回路23の場合と同様、図2に示すような構成とすることができる。   When a self-excited element such as IGBT is used as the main electrode switching element and the bottom electrode switching element, the main electrode ignition state determination circuit 46 and the bottom electrode ignition state determination circuit 48 are respectively As in the case of the main electrode voltage effective value calculation circuit 18 and the bottom electrode voltage effective value calculation circuit 23, the configuration shown in FIG.

前記主電極用スイッチング素子及び底部電極用スイッチング素子として、サイリスタなどの他励式素子を用いた場合、前記主電極用点弧状態判定回路46及び底部電極用点弧状態判定回路48はそれぞれ、前記主電極用電圧実効値計算回路18及び底部電極用電圧実効値計算回路23の場合と同様、図3、図4、図5、図6のいずれかに示すような構成とすることができる。   When separately excited elements such as thyristors are used as the main electrode switching element and the bottom electrode switching element, the main electrode ignition state determination circuit 46 and the bottom electrode ignition state determination circuit 48 are respectively As in the case of the electrode voltage effective value calculation circuit 18 and the bottom electrode voltage effective value calculation circuit 23, the configuration shown in any of FIGS. 3, 4, 5, and 6 can be employed.

次に、図9に示す例の作用を説明する。   Next, the operation of the example shown in FIG. 9 will be described.

主電極用電力実効値計算回路38においては、主電極用点弧状態判定回路46からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけ切換器60がa側に切り換えられ主電極5間の電力の瞬時値から該電力の実効値が求められて出力され、主電極用スイッチング素子が消弧状態にあって切換器60がb側に切り換えられている間は電力実効値計算から除外される部分となる。同様に、底部電極用電力実効値計算回路42においては、底部電極用点弧状態判定回路48からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけ切換器61がa側に切り換えられ底部電極6と主電極5の一方との間の電力の瞬時値から該電力の実効値が求められて出力され、底部電極用スイッチング素子が消弧状態にあって切換器61がb側に切り換えられている間は電力実効値計算から除外される部分となる。このため、[数14]式右辺の第1項が排除されて理想とする[数15]式の電力実効値が計算され、それぞれ正味の電力実効値を求めることが可能となる。尚、回路のインダクタンス分により消弧するタイミングが理想的なタイミングTよりも遅れ、次の周期にずれ込む場合があるが、このような場合においても本回路は正味の電力実効値を計算できる。   In the main electrode power effective value calculation circuit 38, the switch 60 is switched to the a side only while the main electrode switching element is in the ignition state based on the information from the main electrode ignition state determination circuit 46. The effective value of the electric power is obtained from the instantaneous value of the electric power between 5 and output, and while the switching element for the main electrode is in the arc extinguishing state and the switcher 60 is switched to the b side, the effective electric power value is calculated. It will be an excluded part. Similarly, in the bottom electrode power effective value calculation circuit 42, the switch 61 switches to the a side only while the bottom electrode switching element is in the ignition state based on the information from the bottom electrode ignition state determination circuit 48. The effective value of the electric power is obtained from the instantaneous value of the electric power between the bottom electrode 6 and one of the main electrodes 5 and output. The bottom electrode switching element is in the arc extinguishing state and the switch 61 is moved to the b side. While switching, it is a part excluded from the calculation of the effective power value. For this reason, the first term on the right side of the formula [14] is eliminated, and the ideal power effective value of the formula [15] is calculated, and the net power effective value can be obtained for each. Note that the arc extinguishing timing may be delayed from the ideal timing T due to the inductance of the circuit, and may shift to the next cycle. Even in such a case, the present circuit can calculate the net effective power value.

この結果、電気溶融炉の運転の制御性が良くなり、電気回路における主電極用スイッチング素子と底部電極用スイッチング素子の配置箇所の自由度も増し、通電抵抗が非常に小さいガラスなどの被溶融物に対して低電圧・大電流による通電制御が必要な電気溶融炉において、サイリスタ10,13などの高価なスイッチング素子をトランス8,11の高電圧・小電流側に配置する(図13参照)ことが可能となり、低電圧・大電流側にスイッチング素子を設置する(図14参照)のと比べて定格電流容量を低く設定・設計でき、装置の大幅なコストダウンにつながるメリットがある。逆に、スイッチング素子の耐電圧の観点からトランス8,11の低電圧側への設置を必要に応じて選択することも可能となり、プラント毎に異なる個別の要求にも柔軟に対応可能となる。   As a result, the controllability of the operation of the electric melting furnace is improved, the degree of freedom of arrangement of the main electrode switching element and the bottom electrode switching element in the electric circuit is increased, and the object to be melted such as glass having a very low current resistance. On the other hand, in an electric melting furnace that requires energization control with a low voltage and a large current, expensive switching elements such as thyristors 10 and 13 are arranged on the high voltage and small current side of the transformers 8 and 11 (see FIG. 13). The rated current capacity can be set and designed lower than when a switching element is installed on the low voltage / large current side (see FIG. 14), which has the merit of leading to a significant cost reduction of the device. On the contrary, it is possible to select the installation of the transformers 8 and 11 on the low voltage side as necessary from the viewpoint of the withstand voltage of the switching element, and it is possible to flexibly respond to individual requests that differ from plant to plant.

こうして、電力実効値を正確に把握し得、運転の制御性向上を図り得ると共に、電気回路におけるスイッチング素子の配置箇所の自由度を増し、コストダウンはもとより、プラント毎に異なる個別の要求にも柔軟に対応し得る。   In this way, it is possible to accurately grasp the effective power value, improve the controllability of the operation, increase the degree of freedom of the location of the switching elements in the electric circuit, and not only reduce costs but also individual requirements that differ from plant to plant. Can respond flexibly.

図10は本発明を実施する形態の一例における主電極用電力実効値計算回路38及び底部電極用電力実効値計算回路42の変形例を示すものであって、図中、図9と同一の符号を付した部分は同一物を表わしており、基本的な構成は図9に示すものと同様であるが、本図示例の特徴とするところは、図10に示す如く、底部電極6と主電極5の一方との間の電圧の瞬時値v 2 と電流の瞬時値i 2 を掛けて電力の瞬時値を出力する乗算器43´と、主電極用点弧状態判定回路46及び底部電極用点弧状態判定回路48からの情報に基づき主電極用スイッチング素子が点弧状態にあり且つ底部電極用スイッチング素子が消弧状態にある間だけc側に切り換えられ前記乗算器43´から出力される底部電極6と主電極5の一方との間の電圧の瞬時値を出力する切換器61´と、乗算器39から切換器60を介して出力される主電極5間の電力の瞬時値より、前記乗算器43´から切換器61´を介して出力される底部電極6と主電極5の一方との間の電力の瞬時値を差し引いた値を積分器40へ出力する減算器62とを追加装備し、これにより、主電極用電力実効値計算回路38において、前記主電極用点弧状態判定回路46からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけ主電極5間の電圧の瞬時値及び主電極5間の電流の瞬時値から主電極5間の電力の瞬時値を求めると共に、前記主電極用点弧状態判定回路46及び底部電極用点弧状態判定回路48からの情報に基づき主電極用スイッチング素子が点弧状態にあり且つ底部電極用スイッチング素子が消弧状態にある間だけ底部電極6と主電極5の一方との間の電圧の瞬時値及び底部電極6と主電極5の一方との間の電流の瞬時値から底部電極と主電極5の一方との間の電力の瞬時値を求め、前記主電極5間の電力の瞬時値から前記底部電極6と主電極5の一方との間の電力の瞬時値を差し引いた値に基づいて主電極5間の電力の実効値を求めて出力するよう構成し、
主電極5間の電圧の瞬時値v 1 と電流の瞬時値i 1 を掛けて電力の瞬時値を出力する乗算器39´と、底部電極用点弧状態判定回路48及び主電極用点弧状態判定回路46からの情報に基づき底部電極用スイッチング素子が点弧状態にあり且つ主電極用スイッチング素子が消弧状態にある間だけc側に切り換えられ前記乗算器39´から出力される主電極5間の電圧の瞬時値を出力する切換器60´と、乗算器43から切換器61を介して出力される底部電極6と主電極5の一方との間の電力の瞬時値より、前記乗算器39´から切換器60´を介して出力される主電極5間の電力の瞬時値を差し引いた値を積分器44へ出力する減算器63とを追加装備し、これにより、底部電極用電力実効値計算回路42において、前記底部電極用点弧状態判定回路48からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけ底部電極6と主電極5の一方との間の電圧の瞬時値及び底部電極と主電極5の一方との間の電流の瞬時値から底部電極6と主電極5の一方との間の電力の瞬時値を求めると共に、前記主電極用点弧状態判定回路46及び底部電極用点弧状態判定回路48からの情報に基づき底部電極用スイッチング素子が点弧状態にあり且つ主電極用スイッチング素子が消弧状態にある間だけ主電極5間の電圧の瞬時値及び主電極5間の電流の瞬時値から主電極5間の電力の瞬時値を求め、前記底部電極6と主電極5の一方との間の電力の瞬時値から前記主電極5間の電力の瞬時値を差し引いた値に基づいて底部電極6と主電極5の一方との間の電力の実効値を求めて出力するよう構成した点にある。
FIG. 10 shows a modification of the main electrode power effective value calculation circuit 38 and the bottom electrode power effective value calculation circuit 42 in the example of the embodiment of the present invention. The parts marked with are the same, and the basic configuration is the same as that shown in FIG. 9, but the feature of this example is that the bottom electrode 6 and the main electrode are shown in FIG. 5, a multiplier 43 ′ that multiplies the instantaneous voltage value v 2 and the instantaneous current value i 2 to output an instantaneous power value, a main electrode ignition state determination circuit 46, and a bottom electrode point. Based on the information from the arc state determination circuit 48, the bottom part output from the multiplier 43 'is switched to the c side only while the main electrode switching element is in the ignition state and the bottom electrode switching element is in the arc extinguishing state. The instantaneous value of the voltage between the electrode 6 and one of the main electrodes 5 The bottom electrode output from the multiplier 43 'via the switch 61' based on the instantaneous power value between the main electrode 5 output from the multiplier 39 via the switch 60. 6 and a subtractor 62 that outputs a value obtained by subtracting the instantaneous value of power between one of the main electrodes 5 and the integrator 40 to the integrator 40. Based on the information from the main electrode ignition state determination circuit 46, the main electrode 5 is obtained from the instantaneous value of the voltage between the main electrodes 5 and the instantaneous value of the current between the main electrodes 5 only while the switching element for main electrode is in the ignition state. And the switching element for the main electrode is in the ignition state based on the information from the ignition state determination circuit 46 for the main electrode and the ignition state determination circuit 48 for the bottom electrode. While the switching element is extinguished Only between the instantaneous value of the voltage between the bottom electrode 6 and one of the main electrodes 5 and the instantaneous value of the current between the bottom electrode 6 and one of the main electrodes 5, the power between the bottom electrode and one of the main electrodes 5. Of the power between the main electrodes 5 based on a value obtained by subtracting the instantaneous value of the power between the bottom electrode 6 and one of the main electrodes 5 from the instantaneous value of the power between the main electrodes 5. Configure to find and output the value,
Multiplier 39 ′ that multiplies the instantaneous voltage value v 1 between the main electrodes 5 and the instantaneous current value i 1 to output the instantaneous power value, the bottom electrode ignition state determination circuit 48, and the main electrode ignition state Based on the information from the determination circuit 46, the main electrode 5 output from the multiplier 39 'is switched to the c side only while the bottom electrode switching element is in the ignition state and the main electrode switching element is in the arc extinction state. Based on the instantaneous value of the power between the bottom electrode 6 and one of the main electrodes 5 output from the multiplier 43 through the switch 61, the multiplier 60 'that outputs the instantaneous value of the voltage between the multiplier 43' And a subtractor 63 that outputs to the integrator 44 a value obtained by subtracting the instantaneous value of the power between the main electrodes 5 output from 39 'through the switch 60'. In the value calculation circuit 42, the bottom electrode ignition state determination Based on the information from the circuit 48, the instantaneous value of the voltage between the bottom electrode 6 and one of the main electrodes 5 and between the bottom electrode and one of the main electrodes 5 only while the switching element for the bottom electrode is in an ignition state. The instantaneous value of the electric power between the bottom electrode 6 and one of the main electrodes 5 is obtained from the instantaneous value of the current, and information from the main electrode ignition state determination circuit 46 and the bottom electrode ignition state determination circuit 48 is used as information. On the basis of the instantaneous value of the voltage between the main electrodes 5 and the instantaneous value of the current between the main electrodes 5 only when the bottom electrode switching element is in the ignition state and the main electrode switching element is in the arc extinguishing state, And the bottom electrode 6 and the main electrode based on a value obtained by subtracting the instantaneous value of the power between the main electrodes 5 from the instantaneous value of the power between the bottom electrode 6 and one of the main electrodes 5. Obtain and output the effective value of power between one of 5 It is in the point constituted as follows.

前記切換器61´は、主電極用点弧状態判定回路46及び底部電極用点弧状態判定回路48からの情報に基づき主電極用スイッチング素子が消弧状態にあるか又は底部電極用スイッチング素子が点弧状態にある間はd側に切り換えられ0(ゼロ)を出力するようになっており、前記切換器60´は、底部電極用点弧状態判定回路48及び主電極用点弧状態判定回路46からの情報に基づき底部電極用スイッチング素子が消弧状態にあるか又は主電極用スイッチング素子が点弧状態にある間はd側に切り換えられ0(ゼロ)を出力するようになっている。   Based on information from the main electrode ignition state determination circuit 46 and the bottom electrode ignition state determination circuit 48, the switch 61 ′ indicates that the main electrode switching element is in the extinguishing state or the bottom electrode switching element is While it is in the ignition state, it is switched to the d side and outputs 0 (zero), and the switch 60 'includes the bottom electrode ignition state determination circuit 48 and the main electrode ignition state determination circuit. Based on the information from 46, while the bottom electrode switching element is in the arc extinguishing state or the main electrode switching element is in the ignition state, it is switched to the d side and outputs 0 (zero).

そして、前記主電極用スイッチング素子及び底部電極用スイッチング素子として、IGBTなどの自励式素子を用いた場合、前記主電極用点弧状態判定回路46及び底部電極用点弧状態判定回路48はそれぞれ、前記主電極用電圧実効値計算回路18及び底部電極用電圧実効値計算回路23の場合と同様、図2に示すような構成とすることができる。   When a self-excited element such as IGBT is used as the main electrode switching element and the bottom electrode switching element, the main electrode ignition state determination circuit 46 and the bottom electrode ignition state determination circuit 48 are respectively As in the case of the main electrode voltage effective value calculation circuit 18 and the bottom electrode voltage effective value calculation circuit 23, the configuration shown in FIG.

前記主電極用スイッチング素子及び底部電極用スイッチング素子として、サイリスタなどの他励式素子を用いた場合、前記主電極用点弧状態判定回路46及び底部電極用点弧状態判定回路48はそれぞれ、前記主電極用電圧実効値計算回路18及び底部電極用電圧実効値計算回路23の場合と同様、図3、図4、図5、図6のいずれかに示すような構成とすることができる。   When separately excited elements such as thyristors are used as the main electrode switching element and the bottom electrode switching element, the main electrode ignition state determination circuit 46 and the bottom electrode ignition state determination circuit 48 are respectively As in the case of the electrode voltage effective value calculation circuit 18 and the bottom electrode voltage effective value calculation circuit 23, the configuration shown in any of FIGS. 3, 4, 5, and 6 can be employed.

次に、図10に示す例の作用を説明する。   Next, the operation of the example shown in FIG. 10 will be described.

主電極用電力実効値計算回路38においては、主電極用点弧状態判定回路46からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけ切換器60がa側に切り換えられ、乗算器39からの主電極5間の電力の瞬時値が減算器62へ出力されると共に、主電極用点弧状態判定回路46及び底部電極用点弧状態判定回路48からの情報に基づき主電極用スイッチング素子が点弧状態にあり且つ底部電極用スイッチング素子が消弧状態にある間だけ切換器61´がc側に切り換えられ、乗算器43´からの底部電極6と主電極5の一方との間の電力の瞬時値が減算器62へ出力され、該減算器62において前記主電極5間の電力の瞬時値から前記底部電極6と主電極5の一方との間の電力の瞬時値を差し引いた値が求められて積分器40へ出力され、主電極5間の電力の実効値が求められて出力されるため、正味の電力実効値をより正確に求めることが可能となる。   In the main electrode power effective value calculation circuit 38, the switch 60 is switched to the a side only while the main electrode switching element is in the ignition state based on the information from the main electrode ignition state determination circuit 46, and multiplication is performed. The instantaneous value of the power between the main electrodes 5 from the device 39 is output to the subtractor 62, and based on the information from the main electrode ignition state determination circuit 46 and the bottom electrode ignition state determination circuit 48, The switch 61 'is switched to the c side only while the switching element is in an ignition state and the bottom electrode switching element is in an arc extinction state, and the bottom electrode 6 from the multiplier 43' and one of the main electrodes 5 are switched. Between the bottom electrode 6 and one of the main electrodes 5 is subtracted from the instantaneous power value between the main electrodes 5 in the subtractor 62. The value obtained by the integrator 4 Since the effective value of power between the main electrodes 5 is obtained and outputted, the net effective power value can be obtained more accurately.

底部電極用電力実効値計算回路42においては、底部電極用点弧状態判定回路48からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけ切換器61がa側に切り換えられ、乗算器43からの底部電極6と主電極5の一方との間の電力の瞬時値が減算器63へ出力されると共に、前記主電極用点弧状態判定回路46及び底部電極用点弧状態判定回路48からの情報に基づき底部電極用スイッチング素子が点弧状態にあり且つ主電極用スイッチング素子が消弧状態にある間だけ切換器60´がc側に切り換えられ、乗算器39´からの主電極5間の電力の瞬時値が減算器63へ出力され、該減算器63において前記底部電極6と主電極5の一方との間の電力の瞬時値から前記主電極5間の電力の瞬時値を差し引いた値が求められて積分器44へ出力され、底部電極6と主電極5の一方との間の電力の実効値が求められて出力されるため、正味の電力実効値をより正確に求めることが可能となる。   In the bottom electrode power effective value calculation circuit 42, the switch 61 is switched to the a side only while the bottom electrode switching element is in the ignition state based on the information from the bottom electrode ignition state determination circuit 48. The instantaneous value of the electric power between the bottom electrode 6 and one of the main electrodes 5 from the device 43 is output to the subtractor 63, and the main electrode ignition state determination circuit 46 and the bottom electrode ignition state determination circuit Based on the information from 48, the switch 60 'is switched to the c side only while the bottom electrode switching element is in the ignition state and the main electrode switching element is in the arc extinction state, and the main electrode from the multiplier 39' 5 is output to the subtracter 63, and the subtracter 63 calculates the instantaneous power value between the main electrodes 5 from the instantaneous power value between the bottom electrode 6 and one of the main electrodes 5. The subtracted value is obtained Since this is output to the integrator 44 and the effective value of the power between the bottom electrode 6 and the main electrode 5 is obtained and output, the net effective power value can be obtained more accurately.

ここで、電気溶融炉外で消費される損失を除いた電気溶融炉内で正味投入される電力は[数15]式より炉外で消費される電力を引いて次式で与えられる。

Figure 0005045262
Here, the net electric power charged in the electric melting furnace excluding the loss consumed outside the electric melting furnace is given by the following expression by subtracting the electric power consumed outside the furnace from the equation [15].
Figure 0005045262

尚、回路のインダクタンス分により消弧するタイミングが理想的なタイミングTよりも遅れ、次の周期にずれ込む場合があるが、このような場合においても本回路は正味の電力実効値を計算できる。   Note that the arc extinguishing timing may be delayed from the ideal timing T due to the inductance of the circuit, and may shift to the next cycle. Even in such a case, the present circuit can calculate the net effective power value.

この結果、電気溶融炉の運転の制御性が良くなり、電気回路における主電極用スイッチング素子と底部電極用スイッチング素子の配置箇所の自由度も増し、通電抵抗が非常に小さいガラスなどの被溶融物に対して低電圧・大電流による通電制御が必要な電気溶融炉において、サイリスタ10,13などの高価なスイッチング素子をトランス8,11の高電圧・小電流側に配置する(図13参照)ことが可能となり、低電圧・大電流側にスイッチング素子を設置する(図14参照)のと比べて定格電流容量を低く設定・設計でき、装置の大幅なコストダウンにつながるメリットがある。逆に、スイッチング素子の耐電圧の観点からトランス8,11の低電圧側への設置を必要に応じて選択することも可能となり、プラント毎に異なる個別の要求にも柔軟に対応可能となる。   As a result, the controllability of the operation of the electric melting furnace is improved, the degree of freedom of arrangement of the main electrode switching element and the bottom electrode switching element in the electric circuit is increased, and the object to be melted such as glass having a very low current resistance. On the other hand, in an electric melting furnace that requires energization control with a low voltage and a large current, expensive switching elements such as thyristors 10 and 13 are arranged on the high voltage and small current side of the transformers 8 and 11 (see FIG. 13). The rated current capacity can be set and designed lower than when a switching element is installed on the low voltage / large current side (see FIG. 14), which has the merit of leading to a significant cost reduction of the device. On the contrary, it is possible to select the installation of the transformers 8 and 11 on the low voltage side as necessary from the viewpoint of the withstand voltage of the switching element, and it is possible to flexibly respond to individual requests that differ from plant to plant.

こうして、電力実効値をより正確に把握し得、運転の制御性向上を図り得ると共に、電気回路におけるスイッチング素子の配置箇所の自由度を増し、コストダウンはもとより、プラント毎に異なる個別の要求にも柔軟に対応し得る。   In this way, the effective power value can be grasped more accurately, the controllability of the operation can be improved, the degree of freedom of the arrangement of the switching elements in the electric circuit is increased, and the individual requirements that differ from plant to plant as well as cost reduction. Can respond flexibly.

図11は本発明を実施する形態の一例における給電制御盤の第一例を示す概要構成図であって、図中、図22と同一の符号を付した部分は同一物を表わしており、基本的な構成は図22に示す従来のものと同様であるが、本図示例の特徴とするところは、図11に示す如く、主電極5間の電圧及び電流を主電極5自体又は主電極5直近から検出すると共に、底部電極6と主電極5の一方との間の電圧及び電流を底部電極6自体又は底部電極6直近から検出するよう構成した点にある。   FIG. 11 is a schematic configuration diagram showing a first example of a power supply control panel in an example of an embodiment of the present invention. In the figure, parts denoted by the same reference numerals as those in FIG. The general configuration is the same as that of the conventional one shown in FIG. 22, but the characteristic feature of this illustrated example is that the voltage and current between the main electrodes 5 or the main electrode 5 itself are changed as shown in FIG. In addition to the detection from the latest, the voltage and current between the bottom electrode 6 and one of the main electrodes 5 are detected from the bottom electrode 6 itself or from the immediate vicinity of the bottom electrode 6.

ガラスなど低抵抗の被溶融物を扱う電気溶融炉においては低電圧・大電流の傾向となり、給電制御盤から電気溶融炉まで敷設された電力ケーブルやバスバーなどのケーブル抵抗や接触抵抗による電圧降下、電力損失が無視できない量になるが、前述の如く、主電極5間の電圧及び電流を主電極5自体又は主電極5直近から検出すると共に、底部電極6と主電極5の一方との間の電圧及び電流を底部電極6自体又は底部電極6直近から検出するよう構成すると、ケーブルによる電圧降下、電力損失を除外することが可能となり、電圧・電流・電力の各実効値の計算をより有意義に実施することが可能となる。   In electric melting furnaces that handle low resistance materials such as glass, there is a tendency for low voltage and large current, voltage drop due to cable resistance and contact resistance such as power cables and bus bars laid from the power supply control panel to the electric melting furnace, Although the power loss is a non-negligible amount, as described above, the voltage and current between the main electrodes 5 are detected from the main electrode 5 itself or from the vicinity of the main electrode 5 and between the bottom electrode 6 and one of the main electrodes 5. By configuring the voltage and current to be detected from the bottom electrode 6 itself or from the immediate vicinity of the bottom electrode 6, it is possible to exclude the voltage drop and power loss due to the cable, and the calculation of the effective values of voltage, current, and power becomes more meaningful. It becomes possible to carry out.

又、回路上の浮遊容量成分が充分小さく無視できる場合には、回路上を流れる電流は計測場所によらず一意であるため、図12の本発明を実施する形態の一例における給電制御盤の第二例のように、主電極5間の電圧のみを主電極5自体から検出すると共に、底部電極6と主電極5の一方との間の電圧のみを底部電極6自体から検出するよう構成しても良く、このようにしても、電圧・電流・電力の各実効値の計算をより有意義に実施する上で改善効果が充分に得られる。   In addition, when the stray capacitance component on the circuit is sufficiently small and can be ignored, the current flowing on the circuit is unique regardless of the measurement location. Therefore, the first example of the power supply control panel in the embodiment of the present invention shown in FIG. As in the two examples, only the voltage between the main electrodes 5 is detected from the main electrode 5 itself, and only the voltage between the bottom electrode 6 and one of the main electrodes 5 is detected from the bottom electrode 6 itself. Even in this case, an improvement effect can be sufficiently obtained when the effective values of voltage, current, and power are calculated more meaningfully.

尚、本発明の電気溶融炉は、上述の図示例にのみ限定されるものではなく、主電極用スイッチング素子及び底部電極用スイッチング素子としては、サイリスタやIGBTに限らず、それ以外のスイッチング素子も採用可能であること等、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the electric melting furnace of the present invention is not limited to the above-described illustrated examples, and the switching element for the main electrode and the switching element for the bottom electrode are not limited to thyristors and IGBTs, and other switching elements are also available. It goes without saying that various changes can be made without departing from the scope of the present invention, such as being employable.

本発明を実施する形態の一例における主電極用電圧実効値計算回路及び底部電極用電圧実効値計算回路を示すブロック図である。It is a block diagram which shows the voltage effective value calculation circuit for main electrodes and the voltage effective value calculation circuit for bottom electrodes in an example of embodiment which implements this invention. 本発明を実施する形態の一例における主電極用点弧状態判定回路及び底部電極用点弧状態判定回路の第一例を示すブロック図である。It is a block diagram which shows the 1st example of the ignition state determination circuit for main electrodes and the ignition state determination circuit for bottom electrodes in an example of embodiment which implements this invention. 本発明を実施する形態の一例における主電極用点弧状態判定回路及び底部電極用点弧状態判定回路の第二例を示すブロック図である。It is a block diagram which shows the 2nd example of the ignition state determination circuit for main electrodes and the ignition state determination circuit for bottom electrodes in an example which implements this invention. 本発明を実施する形態の一例における主電極用点弧状態判定回路及び底部電極用点弧状態判定回路の第三例を示すブロック図である。It is a block diagram which shows the 3rd example of the ignition state determination circuit for main electrodes and the ignition state determination circuit for bottom electrodes in an example which implements this invention. 本発明を実施する形態の一例における主電極用点弧状態判定回路及び底部電極用点弧状態判定回路の第四例を示すブロック図である。It is a block diagram which shows the 4th example of the ignition state determination circuit for main electrodes and the ignition state determination circuit for bottom electrodes in an example of embodiment which implements this invention. 本発明を実施する形態の一例における主電極用点弧状態判定回路及び底部電極用点弧状態判定回路の第五例を示すブロック図である。It is a block diagram which shows the 5th example of the ignition state determination circuit for main electrodes and the ignition state determination circuit for bottom electrodes in an example which implements this invention. 本発明を実施する形態の一例における電圧実効値を示す線図である。It is a diagram which shows the voltage effective value in an example of embodiment which implements this invention. 本発明を実施する形態の一例における主電極用電流実効値計算回路及び底部電極用電流実効値計算回路を示すブロック図である。It is a block diagram which shows the current effective value calculation circuit for main electrodes and the current effective value calculation circuit for bottom electrodes in an example of embodiment which implements this invention. 本発明を実施する形態の一例における主電極用電力実効値計算回路及び底部電極用電力実効値計算回路を示すブロック図である。It is a block diagram which shows the power effective value calculation circuit for main electrodes and the power effective value calculation circuit for bottom electrodes in an example which implements this invention. 本発明を実施する形態の一例における主電極用電力実効値計算回路及び底部電極用電力実効値計算回路の変形例を示すブロック図である。It is a block diagram which shows the modification of the electric power effective value calculation circuit for main electrodes and the electric power effective value calculation circuit for bottom electrodes in an example of embodiment which implements this invention. 本発明を実施する形態の一例における給電制御盤の第一例を示す概要構成図である。It is a schematic block diagram which shows the 1st example of the electric power feeding control panel in an example of embodiment which implements this invention. 本発明を実施する形態の一例における給電制御盤の第二例を示す概要構成図である。It is a schematic block diagram which shows the 2nd example of the electric power feeding control board in an example of embodiment which implements this invention. 従来の電気溶融炉の一例を示す概略図である。It is the schematic which shows an example of the conventional electric melting furnace. 従来の電気溶融炉の他の例を示す概略図である。It is the schematic which shows the other example of the conventional electric melting furnace. (a)は主電極用スイッチング素子及び底部電極用スイッチング素子への通電電圧波形を示す線図、(b)は電気溶融炉の等価炉内モデルを示す図である。(A) is a diagram which shows the energization voltage waveform to the switching element for main electrodes and the switching element for bottom electrodes, (b) is a figure which shows the equivalent in-furnace model of an electric melting furnace. 測定電圧波形(β<αの場合)を示す線図である。It is a diagram which shows a measurement voltage waveform (when β <α). 従来の主電極用電圧実効値計算回路及び底部電極用電圧実効値計算回路を示すブロック図である。It is a block diagram which shows the conventional voltage effective value calculation circuit for main electrodes, and the voltage effective value calculation circuit for bottom electrodes. 測定電流・電圧波形(β<αの場合)を示す線図である。It is a diagram which shows a measurement current and a voltage waveform (when β <α). 従来の主電極用電流実効値計算回路及び底部電極用電流実効値計算回路を示すブロック図である。It is a block diagram which shows the conventional current effective value calculation circuit for main electrodes and the current effective value calculation circuit for bottom electrodes. 測定電力・電圧波形(β<αの場合)を示す線図である。It is a diagram which shows measured electric power and a voltage waveform (when β <α). 従来の主電極用電力実効値計算回路及び底部電極用電力実効値計算回路を示すブロック図である。It is a block diagram which shows the conventional power effective value calculation circuit for main electrodes and the power effective value calculation circuit for bottom electrodes. 従来の給電制御盤の一例を示す概要構成図である。It is a schematic block diagram which shows an example of the conventional electric power feeding control panel.

符号の説明Explanation of symbols

1 溶融空間
3 溶融炉本体
4 投入口
5 主電極
6 底部電極
7 流下口
8 主電極用トランス
9 主電極用電源
10 サイリスタ(主電極用スイッチング素子)
11 底部電極用トランス
12 底部電極用電源
13 サイリスタ(底部電極用スイッチング素子)
14 主電極用電圧計
15 主電極用電流計
16 底部電極用電圧計
17 底部電極用電流計
18 主電極用電圧実効値計算回路
23 底部電極用電圧実効値計算回路
28 主電極用電流実効値計算回路
33 底部電極用電流実効値計算回路
38 主電極用電力実効値計算回路
42 底部電極用電力実効値計算回路
46 主電極用点弧状態判定回路
47 切換器
48 底部電極用点弧状態判定回路
49 切換器
50 ゲート制御回路
51 ゲート信号
52 点弧回路
53 点弧信号
54 電圧差判定回路
55 シングルフリップフロップ
56 電流値判定回路
57 シングルフリップフロップ
58 切換器
59 切換器
60 切換器
60´ 切換器
61 切換器
61´ 切換器
62 減算器
63 減算器
DESCRIPTION OF SYMBOLS 1 Melting space 3 Melting furnace main body 4 Input port 5 Main electrode 6 Bottom electrode 7 Downflow port 8 Main electrode transformer 9 Main electrode power source 10 Thyristor (main electrode switching element)
11 Transformer for bottom electrode 12 Power supply for bottom electrode 13 Thyristor (switching element for bottom electrode)
14 Main Electrode Voltmeter 15 Main Electrode Ammeter 16 Bottom Electrode Voltmeter 17 Bottom Electrode Ammeter 18 Main Electrode Voltage RMS Calculation Circuit 23 Bottom Electrode Voltage RMS Calculation Circuit 28 Main Electrode Current RMS Calculation Circuit 33 RMS current calculation circuit for bottom electrode 38 RMS power calculation circuit for main electrode 42 RMS power calculation circuit for bottom electrode 46 ignition condition determination circuit for main electrode 47 switch 48 ignition condition determination circuit for bottom electrode 49 Switcher 50 Gate control circuit 51 Gate signal 52 Start circuit 53 Start signal 54 Voltage difference determination circuit 55 Single flip-flop 56 Current value determination circuit 57 Single flip-flop 58 Switcher 59 Switcher 60 Switcher 60 'Switcher 61 Switch 61 'Changer 62 Subtractor 63 Subtractor

Claims (10)

底部に流下口が形成された溶融炉本体と、該溶融炉本体の内壁の上下方向中間部に対向配置され且つ相互間での通電により溶融炉本体内の被溶融物を加熱し溶融させる一対の主電極と、前記溶融炉本体の底部に配置され且つ前記主電極の一方との間での通電により溶融炉本体内底部の被溶融物を加熱し溶融させる底部電極と、前記主電極間に通電するための主電極用トランスを有する主電極用電源と、該主電極用電源の主電極用トランスの一次コイル側又は二次コイル側のいずれか一方に設けられた主電極用スイッチング素子と、前記底部電極と主電極の一方との間に通電するための底部電極用トランスを有する底部電極用電源と、該底部電極用電源の底部電極用トランスの一次コイル側又は二次コイル側のいずれか一方に設けられた底部電極用スイッチング素子とを備えてなる電気溶融炉において、
前記主電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する主電極用点弧状態判定回路と、
該主電極用点弧状態判定回路からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけ主電極間の電圧の瞬時値から該電圧の実効値を求めて出力する主電極用電圧実効値計算回路と、
前記底部電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する底部電極用点弧状態判定回路と、
該底部電極用点弧状態判定回路からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけ底部電極と主電極の一方との間の電圧の瞬時値から該電圧の実効値を求めて出力する底部電極用電圧実効値計算回路と
を備えたことを特徴とする電気溶融炉。
A pair of a melting furnace body in which a flow-down port is formed at the bottom, and a pair of the melting furnace body that is disposed opposite to an intermediate portion in the vertical direction of the inner wall of the melting furnace body and that heats and melts the melt in the melting furnace body by energization between them. An electric current is passed between the main electrode and the bottom electrode which is disposed at the bottom of the melting furnace body and heats and melts the material to be melted inside the melting furnace body by energization between the main electrode and one of the main electrodes. A main electrode power source having a main electrode transformer for the main electrode, a main electrode switching element provided on either the primary coil side or the secondary coil side of the main electrode transformer of the main electrode power source, A bottom electrode power source having a bottom electrode transformer for energizing between the bottom electrode and one of the main electrodes, and either the primary coil side or the secondary coil side of the bottom electrode transformer of the bottom electrode power source Bottom power provided on In electric melting furnace comprising a use switching elements,
A main electrode ignition state determination circuit for determining whether the main electrode switching element is in an ignition state or an extinguishing state;
Based on information from the main electrode ignition state determination circuit, the main electrode voltage is obtained by obtaining the effective value of the voltage from the instantaneous value of the voltage between the main electrodes and outputting it only while the main electrode switching element is in the ignition state. An effective value calculation circuit;
A bottom electrode ignition state determination circuit for determining whether the bottom electrode switching element is in an ignition state or an extinguishing state; and
Based on the information from the bottom electrode ignition state determination circuit, the effective value of the voltage is obtained from the instantaneous value of the voltage between the bottom electrode and one of the main electrodes only while the bottom electrode switching element is in the ignition state. An electric melting furnace comprising: a voltage effective value calculation circuit for a bottom electrode that outputs power at a bottom.
底部に流下口が形成された溶融炉本体と、該溶融炉本体の内壁の上下方向中間部に対向配置され且つ相互間での通電により溶融炉本体内の被溶融物を加熱し溶融させる一対の主電極と、前記溶融炉本体の底部に配置され且つ前記主電極の一方との間での通電により溶融炉本体内底部の被溶融物を加熱し溶融させる底部電極と、前記主電極間に通電するための主電極用トランスを有する主電極用電源と、該主電極用電源の主電極用トランスの一次コイル側又は二次コイル側のいずれか一方に設けられた主電極用スイッチング素子と、前記底部電極と主電極の一方との間に通電するための底部電極用トランスを有する底部電極用電源と、該底部電極用電源の底部電極用トランスの一次コイル側又は二次コイル側のいずれか一方に設けられた底部電極用スイッチング素子とを備えてなる電気溶融炉において、
前記主電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する主電極用点弧状態判定回路と、
該主電極用点弧状態判定回路からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけ主電極間の電流の瞬時値から該電流の実効値を求めて出力する主電極用電流実効値計算回路と、
前記底部電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する底部電極用点弧状態判定回路と、
該底部電極用点弧状態判定回路からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけ底部電極と主電極の一方との間の電流の瞬時値から該電流の実効値を求めて出力する底部電極用電流実効値計算回路と
を備えたことを特徴とする電気溶融炉。
A pair of a melting furnace body in which a flow-down port is formed at the bottom, and a pair of the melting furnace body that is disposed opposite to an intermediate portion in the vertical direction of the inner wall of the melting furnace body and that heats and melts the melt in the melting furnace body by energization between them. An electric current is passed between the main electrode and the bottom electrode which is disposed at the bottom of the melting furnace body and heats and melts the material to be melted inside the melting furnace body by energization between the main electrode and one of the main electrodes. A main electrode power source having a main electrode transformer for the main electrode, a main electrode switching element provided on either the primary coil side or the secondary coil side of the main electrode transformer of the main electrode power source, A bottom electrode power source having a bottom electrode transformer for energizing between the bottom electrode and one of the main electrodes, and either the primary coil side or the secondary coil side of the bottom electrode transformer of the bottom electrode power source Bottom power provided on In electric melting furnace comprising a use switching elements,
A main electrode ignition state determination circuit for determining whether the main electrode switching element is in an ignition state or an extinguishing state;
Based on the information from the main electrode ignition state determination circuit, the main electrode current is obtained by obtaining the effective value of the current from the instantaneous value of the current between the main electrodes and outputting it only while the main electrode switching element is in the ignition state. An effective value calculation circuit;
A bottom electrode ignition state determination circuit for determining whether the bottom electrode switching element is in an ignition state or an extinguishing state; and
Based on the information from the bottom electrode ignition state determination circuit, the effective value of the current is obtained from the instantaneous value of the current between the bottom electrode and one of the main electrodes only while the bottom electrode switching element is in the ignition state. And an electric current effective value calculation circuit for the bottom electrode that outputs the electric current.
底部に流下口が形成された溶融炉本体と、該溶融炉本体の内壁の上下方向中間部に対向配置され且つ相互間での通電により溶融炉本体内の被溶融物を加熱し溶融させる一対の主電極と、前記溶融炉本体の底部に配置され且つ前記主電極の一方との間での通電により溶融炉本体内底部の被溶融物を加熱し溶融させる底部電極と、前記主電極間に通電するための主電極用トランスを有する主電極用電源と、該主電極用電源の主電極用トランスの一次コイル側又は二次コイル側のいずれか一方に設けられた主電極用スイッチング素子と、前記底部電極と主電極の一方との間に通電するための底部電極用トランスを有する底部電極用電源と、該底部電極用電源の底部電極用トランスの一次コイル側又は二次コイル側のいずれか一方に設けられた底部電極用スイッチング素子とを備えてなる電気溶融炉において、
前記主電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する主電極用点弧状態判定回路と、
該主電極用点弧状態判定回路からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけ主電極間の電圧の瞬時値及び主電極間の電流の瞬時値から主電極間の電力の実効値を求めて出力する主電極用電力実効値計算回路と、
前記底部電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する底部電極用点弧状態判定回路と、
該底部電極用点弧状態判定回路からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけ底部電極と主電極の一方との間の電圧の瞬時値及び底部電極と主電極の一方との間の電流の瞬時値から底部電極と主電極の一方との間の電力の実効値を求めて出力する底部電極用電力実効値計算回路と
を備えたことを特徴とする電気溶融炉。
A pair of a melting furnace body in which a flow-down port is formed at the bottom, and a pair of the melting furnace body that is disposed opposite to an intermediate portion in the vertical direction of the inner wall of the melting furnace body and that heats and melts the melt in the melting furnace body by energization between them. An electric current is passed between the main electrode and the bottom electrode which is disposed at the bottom of the melting furnace body and heats and melts the material to be melted inside the melting furnace body by energization between the main electrode and one of the main electrodes. A main electrode power source having a main electrode transformer for the main electrode, a main electrode switching element provided on either the primary coil side or the secondary coil side of the main electrode transformer of the main electrode power source, A bottom electrode power source having a bottom electrode transformer for energizing between the bottom electrode and one of the main electrodes, and either the primary coil side or the secondary coil side of the bottom electrode transformer of the bottom electrode power source Bottom power provided on In electric melting furnace comprising a use switching elements,
A main electrode ignition state determination circuit for determining whether the main electrode switching element is in an ignition state or an extinguishing state;
Based on the information from the main electrode ignition state determination circuit, the power between the main electrodes is determined from the instantaneous value of the voltage between the main electrodes and the instantaneous value of the current between the main electrodes only while the switching element for the main electrode is in the ignition state. Power effective value calculation circuit for the main electrode that calculates and outputs the effective value of
A bottom electrode ignition state determination circuit for determining whether the bottom electrode switching element is in an ignition state or an extinguishing state; and
Based on the information from the bottom electrode firing state determination circuit, the instantaneous value of the voltage between the bottom electrode and one of the main electrodes and one of the bottom electrode and the main electrode only while the bottom electrode switching element is in the firing state. An electric melting furnace comprising: a bottom electrode power rms value calculation circuit that obtains and outputs an effective value of power between the bottom electrode and one of the main electrodes from an instantaneous current value between the bottom electrode and the main electrode.
底部に流下口が形成された溶融炉本体と、該溶融炉本体の内壁の上下方向中間部に対向配置され且つ相互間での通電により溶融炉本体内の被溶融物を加熱し溶融させる一対の主電極と、前記溶融炉本体の底部に配置され且つ前記主電極の一方との間での通電により溶融炉本体内底部の被溶融物を加熱し溶融させる底部電極と、前記主電極間に通電するための主電極用トランスを有する主電極用電源と、該主電極用電源の主電極用トランスの一次コイル側又は二次コイル側のいずれか一方に設けられた主電極用スイッチング素子と、前記底部電極と主電極の一方との間に通電するための底部電極用トランスを有する底部電極用電源と、該底部電極用電源の底部電極用トランスの一次コイル側又は二次コイル側のいずれか一方に設けられた底部電極用スイッチング素子とを備えてなる電気溶融炉において、
前記主電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する主電極用点弧状態判定回路と、
前記底部電極用スイッチング素子が点弧状態・消弧状態のいずれの状態にあるかを判定する底部電極用点弧状態判定回路と、
前記主電極用点弧状態判定回路からの情報に基づき主電極用スイッチング素子が点弧状態にある間だけ主電極間の電圧の瞬時値及び主電極間の電流の瞬時値から主電極間の電力の瞬時値を求めると共に、前記主電極用点弧状態判定回路及び底部電極用点弧状態判定回路からの情報に基づき主電極用スイッチング素子が点弧状態にあり且つ底部電極用スイッチング素子が消弧状態にある間だけ底部電極と主電極の一方との間の電圧の瞬時値及び底部電極と主電極の一方との間の電流の瞬時値から底部電極と主電極の一方との間の電力の瞬時値を求め、前記主電極間の電力の瞬時値から前記底部電極と主電極の一方との間の電力の瞬時値を差し引いた値に基づいて主電極間の電力の実効値を求めて出力する主電極用電力実効値計算回路と、
前記底部電極用点弧状態判定回路からの情報に基づき底部電極用スイッチング素子が点弧状態にある間だけ底部電極と主電極の一方との間の電圧の瞬時値及び底部電極と主電極の一方との間の電流の瞬時値から底部電極と主電極の一方との間の電力の瞬時値を求めると共に、前記主電極用点弧状態判定回路及び底部電極用点弧状態判定回路からの情報に基づき底部電極用スイッチング素子が点弧状態にあり且つ主電極用スイッチング素子が消弧状態にある間だけ主電極間の電圧の瞬時値及び主電極間の電流の瞬時値から主電極間の電力の瞬時値を求め、前記底部電極と主電極の一方との間の電力の瞬時値から前記主電極間の電力の瞬時値を差し引いた値に基づいて底部電極と主電極の一方との間の電力の実効値を求めて出力する底部電極用電力実効値計算回路と
を備えたことを特徴とする電気溶融炉。
A pair of a melting furnace body in which a flow-down port is formed at the bottom, and a pair of the melting furnace body that is disposed opposite to an intermediate portion in the vertical direction of the inner wall of the melting furnace body and that heats and melts the melt in the melting furnace body by energization between them. An electric current is passed between the main electrode and the bottom electrode which is disposed at the bottom of the melting furnace body and heats and melts the material to be melted inside the melting furnace body by energization between the main electrode and one of the main electrodes. A main electrode power source having a main electrode transformer for the main electrode, a main electrode switching element provided on either the primary coil side or the secondary coil side of the main electrode transformer of the main electrode power source, A bottom electrode power source having a bottom electrode transformer for energizing between the bottom electrode and one of the main electrodes, and either the primary coil side or the secondary coil side of the bottom electrode transformer of the bottom electrode power source Bottom power provided on In electric melting furnace comprising a use switching elements,
A main electrode ignition state determination circuit for determining whether the main electrode switching element is in an ignition state or an extinguishing state;
A bottom electrode ignition state determination circuit for determining whether the bottom electrode switching element is in an ignition state or an extinguishing state; and
Based on the information from the main electrode ignition state determination circuit, the power between the main electrodes is determined from the instantaneous value of the voltage between the main electrodes and the instantaneous value of the current between the main electrodes only while the switching element for the main electrode is in the ignition state. And the main electrode switching element is in an ignition state and the bottom electrode switching element is extinguished based on information from the main electrode ignition state determination circuit and the bottom electrode ignition state determination circuit. The power of the power between the bottom electrode and one of the main electrodes is determined from the instantaneous value of the voltage between the bottom electrode and one of the main electrodes and the instantaneous value of the current between the bottom electrode and one of the main electrodes only while in the state. An instantaneous value is obtained, and an effective value of the power between the main electrodes is obtained and output based on a value obtained by subtracting the instantaneous value of the power between the bottom electrode and one of the main electrodes from the instantaneous value of the power between the main electrodes. A power effective value calculation circuit for the main electrode,
Based on the information from the bottom electrode ignition state determination circuit, the instantaneous value of the voltage between the bottom electrode and one of the main electrodes and one of the bottom electrode and the main electrode only while the bottom electrode switching element is in the ignition state. The instantaneous value of the electric power between the bottom electrode and one of the main electrodes is obtained from the instantaneous value of the current between the main electrode and the information from the main electrode ignition state determination circuit and the bottom electrode ignition state determination circuit. Based on the instantaneous value of the voltage between the main electrodes and the instantaneous value of the current between the main electrodes, only when the bottom electrode switching element is in the ignition state and the main electrode switching element is in the arc extinguishing state, An instantaneous value is obtained, and the electric power between the bottom electrode and one of the main electrodes is obtained by subtracting the instantaneous value of the electric power between the main electrodes from the instantaneous value of the electric power between the bottom electrode and the main electrode. For the bottom electrode that calculates and outputs the effective value of Electric melting furnace, characterized in that a effective value calculating circuit.
前記主電極用スイッチング素子及び底部電極用スイッチング素子はそれぞれ、ON・OFFタイミングを任意に制御できる自励式素子とし、
前記主電極用点弧状態判定回路及び底部電極用点弧状態判定回路はそれぞれ、自励式素子のゲート制御回路から出力されるゲート信号に基づいて該自励式素子の点弧状態を判定するよう構成した請求項1〜4のいずれか一つに記載の電気溶融炉。
Each of the main electrode switching element and the bottom electrode switching element is a self-excited element capable of arbitrarily controlling the ON / OFF timing,
Each of the main electrode ignition state determination circuit and the bottom electrode ignition state determination circuit is configured to determine the ignition state of the self-excited element based on a gate signal output from the gate control circuit of the self-excited element. The electric melting furnace as described in any one of Claims 1-4.
前記主電極用スイッチング素子及び底部電極用スイッチング素子はそれぞれ、ONタイミングを任意に制御できるがOFFタイミングを制御できない他励式素子とし、
前記主電極用点弧状態判定回路及び底部電極用点弧状態判定回路はそれぞれ、点弧回路から出力される点弧信号により点弧状態となる他励式素子の前後の電圧差を電圧差判定回路で検出し、該電圧差がVL以下で他励式素子が点弧状態にあると判定し、前記電圧差がVH以上で順電圧降下が大きい場合に他励式素子が消弧状態にあると判定するよう構成した請求項1〜4のいずれか一つに記載の電気溶融炉。
Each of the main electrode switching element and the bottom electrode switching element is a separately excited element that can arbitrarily control the ON timing but cannot control the OFF timing.
The main electrode ignition state determination circuit and the bottom electrode ignition state determination circuit each determine a voltage difference before and after a separately excited element that is in an ignition state by an ignition signal output from the ignition circuit. When the voltage difference is V L or less and it is determined that the separately excited element is in an ignition state, and the voltage difference is V H or more and the forward voltage drop is large, the separately excited element is in an arc extinguished state. The electric melting furnace as described in any one of Claims 1-4 comprised so that it might determine.
前記主電極用スイッチング素子及び底部電極用スイッチング素子はそれぞれ、ONタイミングを任意に制御できるがOFFタイミングを制御できない他励式素子とし、
前記主電極用点弧状態判定回路及び底部電極用点弧状態判定回路はそれぞれ、他励式素子の点弧回路から出力される点弧信号によりシングルフリップフロップをセットして他励式素子が点弧状態にあると判定し、前記点弧回路から出力される点弧信号により点弧状態となる他励式素子の前後の電圧差を電圧差判定回路で検出し、該電圧差がVH以上で順電圧降下が大きい場合に前記シングルフリップフロップをリセットして他励式素子が消弧状態にあると判定するよう構成した請求項1〜4のいずれか一つに記載の電気溶融炉。
Each of the main electrode switching element and the bottom electrode switching element is a separately excited element that can arbitrarily control the ON timing but cannot control the OFF timing.
The main electrode firing state determination circuit and the bottom electrode firing state determination circuit each set a single flip-flop by the firing signal output from the firing circuit of the separately excited element, and the separately excited element is in the firing state. The voltage difference before and after the separately excited element that is in the ignition state is detected by the voltage difference determination circuit based on the ignition signal output from the ignition circuit, and the forward voltage is detected when the voltage difference is V H or more. The electric melting furnace as described in any one of Claims 1-4 comprised so that it might be determined that the single flip-flop is reset and the separately excited element is in an arc extinguishing state when the descent is large.
前記主電極用スイッチング素子及び底部電極用スイッチング素子はそれぞれ、ONタイミングを任意に制御できるがOFFタイミングを制御できない他励式素子とし、
前記主電極用点弧状態判定回路及び底部電極用点弧状態判定回路はそれぞれ、点弧回路から出力される点弧信号により点弧状態となる他励式素子の保持電流を電流値判定回路で検出し、該保持電流がIL以下で他励式素子が点弧状態にあると判定し、前記保持電流がIH以上で他励式素子が消弧状態にあると判定するよう構成した請求項1〜4のいずれか一つに記載の電気溶融炉。
Each of the main electrode switching element and the bottom electrode switching element is a separately excited element that can arbitrarily control the ON timing but cannot control the OFF timing.
The main electrode ignition state determination circuit and the bottom electrode ignition state determination circuit each detect a holding current of a separately excited element that is in an ignition state based on an ignition signal output from the ignition circuit, by a current value determination circuit. Wherein the holding current is not more than I L and it is determined that the separately excited element is in an ignition state, and the holding current is not less than I H and it is determined that the separately excited element is in an arc extinguishing state. 4. The electric melting furnace according to any one of 4 above.
前記主電極用スイッチング素子及び底部電極用スイッチング素子はそれぞれ、ONタイミングを任意に制御できるがOFFタイミングを制御できない他励式素子とし、
前記主電極用点弧状態判定回路及び底部電極用点弧状態判定回路はそれぞれ、他励式素子の点弧回路から出力される点弧信号によりシングルフリップフロップをセットして他励式素子が点弧状態にあると判定し、前記点弧回路から出力される点弧信号により点弧状態となる他励式素子の保持電流を電流値判定回路で検出し、該保持電流がIH以上で前記シングルフリップフロップをリセットして他励式素子が消弧状態にあると判定するよう構成した請求項1〜4のいずれか一つに記載の電気溶融炉。
Each of the main electrode switching element and the bottom electrode switching element is a separately excited element that can arbitrarily control the ON timing but cannot control the OFF timing.
The main electrode firing state determination circuit and the bottom electrode firing state determination circuit each set a single flip-flop by the firing signal output from the firing circuit of the separately excited element, and the separately excited element is in the firing state. It determines that the said single flip-flop at said point by firing signal outputted from the firing circuit detects the holding current of the separately excited element to be firing state by the current value determination circuit, the holding current I H or The electric melting furnace as described in any one of Claims 1-4 comprised so that it might determine that a separately excited type element is in an arc extinguishing state by resetting.
主電極間の電圧及び電流のうち少なくとも電圧を主電極自体又は主電極直近から検出すると共に、底部電極と主電極の一方との間の電圧及び電流のうち少なくとも電圧を底部電極自体又は底部電極直近から検出するよう構成した請求項1〜9のいずれか一つに記載の電気溶融炉。   At least the voltage and current between the main electrodes are detected from the main electrode itself or from the vicinity of the main electrode, and at least the voltage and current between the bottom electrode and one of the main electrodes is detected from the bottom electrode itself or the vicinity of the bottom electrode. The electric melting furnace as described in any one of Claims 1-9 comprised so that it might detect from.
JP2007162858A 2007-06-20 2007-06-20 Electric melting furnace Active JP5045262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007162858A JP5045262B2 (en) 2007-06-20 2007-06-20 Electric melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007162858A JP5045262B2 (en) 2007-06-20 2007-06-20 Electric melting furnace

Publications (2)

Publication Number Publication Date
JP2009002560A JP2009002560A (en) 2009-01-08
JP5045262B2 true JP5045262B2 (en) 2012-10-10

Family

ID=40319136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007162858A Active JP5045262B2 (en) 2007-06-20 2007-06-20 Electric melting furnace

Country Status (1)

Country Link
JP (1) JP5045262B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029128A1 (en) 2008-09-12 2010-03-18 Boehringer Ingelheim International Gmbh Packaging unit
JP2021059459A (en) * 2019-10-02 2021-04-15 Agc株式会社 Glass melting method, glass melting furnace, and manufacturing method of glass

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291423A (en) * 1985-06-17 1986-12-22 Ishikawajima Harima Heavy Ind Co Ltd Method for heating electrically conductive material and apparatus therefor
JPH1138186A (en) * 1997-07-15 1999-02-12 Nippon Electric Glass Co Ltd Electric melting furnace for vitrification processing high level radioactive waste

Also Published As

Publication number Publication date
JP2009002560A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
US3949151A (en) Arc furnaces
CN103840685B (en) The direct current electric arc furnace supply unit of the controlled polarity of three-phase
JP5045262B2 (en) Electric melting furnace
WO1991014911A1 (en) Dc electric furnace for melting metal
CA2583481C (en) Electronic circuit and method for feeding electric power to a alternating-current electric-arc furnace
JP5391825B2 (en) Uninterruptible power supply system
US5036181A (en) Method and apparatus for supplying and controlling power to a resistance furnace
JP5862523B2 (en) Electrode lifting device
JP5109339B2 (en) Method and apparatus for melting control of electric melting furnace
JP6345490B2 (en) Power supply for welding
RU2104450C1 (en) Method of electric melting and electric arc furnace for its realization
US20160131428A1 (en) Method for detection of the loss of an electric arc furnace measurement reference
JP4786244B2 (en) AC power controller
JPS61291423A (en) Method for heating electrically conductive material and apparatus therefor
KR20070066759A (en) Scr power controller for zinc pot with three inductor and controlling method therefore
RU2630133C2 (en) Method of operation of arc electric furnace and melting unit equipped with the operated this method of the arc electric furnace
Saevarsdottir Electric and thermal operations of furnaces for ferroalloys production
SU924924A1 (en) Device for control of electric mode of three-phase electric arc furnace electric mode
JP4563241B2 (en) Incineration ash melting electric furnace
RU2368670C2 (en) Method of steel melting in arc steel-making furnace of three-phase current
JPH02302581A (en) Dc arc furnace
JP3300080B2 (en) Electric furnace equipment
JP6071247B2 (en) Replacement method of construction transformer and pole transformer with automatic tap changer
JP2001133167A (en) Voltage control device of dc arc furnace
SU1031011A1 (en) Process for melting metallized pellets in polyphase steel melting electric-arc furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5045262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250