JP5044423B2 - Pressure detection device - Google Patents

Pressure detection device Download PDF

Info

Publication number
JP5044423B2
JP5044423B2 JP2008007083A JP2008007083A JP5044423B2 JP 5044423 B2 JP5044423 B2 JP 5044423B2 JP 2008007083 A JP2008007083 A JP 2008007083A JP 2008007083 A JP2008007083 A JP 2008007083A JP 5044423 B2 JP5044423 B2 JP 5044423B2
Authority
JP
Japan
Prior art keywords
pressure
pressure detection
detection signal
sensor
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008007083A
Other languages
Japanese (ja)
Other versions
JP2009168616A (en
Inventor
隆規 井川
健太郎 高橋
治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2008007083A priority Critical patent/JP5044423B2/en
Publication of JP2009168616A publication Critical patent/JP2009168616A/en
Application granted granted Critical
Publication of JP5044423B2 publication Critical patent/JP5044423B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、圧力検出装置、特に入力される圧力を受圧部材に受圧させその状態変化に応じた圧力検出信号を出力する圧力検出装置に関する。   The present invention relates to a pressure detection device, and more particularly to a pressure detection device that receives an input pressure on a pressure receiving member and outputs a pressure detection signal corresponding to the state change.

気体や液体等の流体の圧力を検出する圧力検出装置として、流体の圧力を受圧部材に受圧させて受圧部材の状態を変化させ、その変化に応じた圧力検出信号を出力する圧力検出装置が知られている。   As a pressure detection device that detects the pressure of a fluid such as gas or liquid, a pressure detection device that receives a pressure of a fluid on a pressure receiving member to change the state of the pressure receiving member and outputs a pressure detection signal corresponding to the change is known. It has been.

従来のこの種の圧力検出装置としては、例えば車両用内燃機関の吸入空気圧力を検出する機械振動式のものとして、空気圧を受圧する一端開口の振動体に加振子と検出子を装着し、振動体の内外圧力差により変化する振動体の共振周波数を検出することで、電気的に圧力を求めるものがあり、この装置では、加振子と検出子を振動体に一対ずつ装着した2重系のセンサ構成とすることで、振動体に比して信頼性の低い電気的な信号検出系の信頼性を高めている(例えば、特許文献1参照)。   As a conventional pressure detection device of this type, for example, as a mechanical vibration type that detects the intake air pressure of an internal combustion engine for a vehicle, a vibrator and a detector are attached to a vibrating body with one end opening that receives air pressure, and vibration is generated. Some devices obtain electrical pressure by detecting the resonance frequency of a vibrating body that changes due to the pressure difference between the inside and outside of the body. In this device, a double system in which a vibrator and a detector are attached to the vibrating body in pairs. By adopting the sensor configuration, the reliability of the electrical signal detection system having lower reliability than that of the vibrating body is increased (for example, see Patent Document 1).

なお、2つのセンサを用いる検出技術として、光電変換に係る感度特性の異なる2つのセンサのうち低感度のセンサを広範な照度領域用に、高感度のセンサを低照度領域用に、それぞれ使用し、広ダイナミックレンジと高分解能を両立させるようにした電子的撮像装置も知られている(例えば、特許文献2参照)。
特開平05−34223号公報 特開平08−340486号公報
Of the two sensors with different sensitivity characteristics related to photoelectric conversion, a low-sensitivity sensor is used for a wide illuminance region and a high-sensitivity sensor is used for a low illuminance region. There is also known an electronic imaging device that achieves both a wide dynamic range and high resolution (see, for example, Patent Document 2).
JP 05-34223 A JP 08-340486 A

しかしながら、上述の2重系のセンサ構成とした従来の圧力検出装置にあっては、振動体の構成に起因し低圧側や高圧側の圧力領域で圧力感度の線形性が低下するため、2つの検出子の検出誤差をそれぞれ全圧力領域で許容誤差内に抑えたものとする必要から歩留まりが悪く、コスト高になるか、あるいは、圧力計測可能なレンジ(以下、単に計測レンジという)が狭いものになってしまうという問題があった。   However, in the conventional pressure detection device having the above-described double sensor configuration, the linearity of the pressure sensitivity is reduced in the pressure region on the low pressure side or the high pressure side due to the configuration of the vibrating body. Yields are low because the detection errors of the detectors must be kept within the allowable error in the entire pressure range, and the cost is high, or the pressure measurement range (hereinafter simply referred to as the measurement range) is narrow There was a problem of becoming.

これに対し、上述の従来の電子的撮像装置の場合のように、単に感度と計測レンジの異なる2つのセンサを組み合わせてダイナミックレンジを広くするというものでは、受圧部材を共通の圧力感応部材とする圧力検出装置、特に燃料噴射量の計算に使用される燃料圧力を検出するために全圧力検出領域での高圧力感度が要求される圧力検出装置には、適用できない。   On the other hand, as in the case of the above-described conventional electronic imaging apparatus, in the case where the dynamic range is widened simply by combining two sensors having different sensitivities and measurement ranges, the pressure receiving member is a common pressure sensitive member. The present invention is not applicable to pressure detection devices, particularly pressure detection devices that require high pressure sensitivity in the entire pressure detection region in order to detect the fuel pressure used for calculating the fuel injection amount.

したがって、センサを2重化した従来の圧力検出装置では、同一計測レンジ、同一圧力感度のセンサを用いることになり、各センサで全計測レンジをカバーするために要求レベルに比して線形性が良好でなく、例えば近時のディーゼルエンジンにおけるコモンレール圧の高圧化や精密な燃料噴射量制御の要求に対して、十分な圧力検出精度が得られていなかった。   Therefore, in the conventional pressure detection device in which the sensors are duplicated, sensors having the same measurement range and the same pressure sensitivity are used, and each sensor has a linearity compared to the required level in order to cover the entire measurement range. For example, sufficient pressure detection accuracy has not been obtained in response to demands for higher common rail pressure and precise fuel injection amount control in recent diesel engines.

本発明は、上述のような従来の問題を解決するためになされたもので、広範囲の全圧力検出領域で高圧力感度が得られる低コストの圧力検出装置を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a low-cost pressure detection device capable of obtaining high pressure sensitivity in a wide range of total pressure detection regions.

本発明に係る圧力検出装置は、上記目的達成のため、(1)入力される圧力を受圧する受圧部材と、それぞれ前記入力される圧力に応じた前記受圧部材の状態変化を検出し、該状態変化に対応する圧力検出信号を同一の計測圧力レンジに対し互いに異なるオフセット量および出力レンジで出力する第1の圧力検出手段および第2の圧力検出手段と、前記第1の圧力検出手段からの圧力検出信号と前記第2の圧力検出手段からの圧力検出信号とのうち予め設定された検出特性基準に対し検出誤差の小さい側となる大小いずれか一方の圧力値を示す圧力検出信号を選択して検出圧力を示す計測値を決定する出力選定手段と、を備え、前記オフセット量は前記第1の圧力検出手段の方が前記第2の圧力検出手段より小さくなる一方、前記出力レンジは前記第1の圧力検出手段の方が前記第2の圧力検出手段より大きくなり、前記第1の圧力検出手段の圧力検出信号と前記第2の圧力検出手段の圧力検出信号との差が予め設定された閾値よりも常時小さくなるように、前記第1の圧力検出手段および前記第2の圧力検出手段における前記オフセット量および前記出力レンジがそれぞれ設定されており、前記第1の圧力検出手段の圧力検出信号および前記第2の圧力検出手段の圧力検出信号のうちいずれかに異常が発生したとき、前記差が前記閾値より大きくなるようにしたことを特徴とするIn order to achieve the above object, the pressure detection device according to the present invention detects (1) a pressure receiving member that receives an input pressure, and changes in the state of the pressure receiving member according to the input pressure, First pressure detection means and second pressure detection means for outputting pressure detection signals corresponding to changes in different offset amounts and output ranges with respect to the same measurement pressure range, and pressure from the first pressure detection means A pressure detection signal indicating either a large or small pressure value on the side having a small detection error with respect to a preset detection characteristic reference is selected from the detection signal and the pressure detection signal from the second pressure detection means. includes an output selecting means for determining the measurement value indicating the detected pressure, wherein the offset amount while the direction of the first pressure detecting means is less than said second pressure detecting means, the output range The first pressure detection means is larger than the second pressure detection means, and the difference between the pressure detection signal of the first pressure detection means and the pressure detection signal of the second pressure detection means is preset. The offset amount and the output range in the first pressure detection means and the second pressure detection means are set to be always smaller than the set threshold value, and the pressure of the first pressure detection means The difference is set to be larger than the threshold when an abnormality occurs in either the detection signal or the pressure detection signal of the second pressure detection means .

この構成により、受圧部材の状態変化に応じて、第1の圧力検出手段および第2の圧力検出手段のうち出力レンジの広い圧力検出手段からオフセット量の小さい圧力検出信号が出力され、出力レンジの狭い圧力検出手段からオフセット量の大きい圧力検出信号が出力されることで、入力される圧力に応じた2種類の圧力検出信号が、低圧力側では出力レンジの狭い圧力検出手段からの圧力検出信号が大きくなり、高圧力側では出力レンジの広い圧力検出手段からの圧力検出信号が大きくなる傾向で、それぞれ出力される。そして、これらの圧力検出信号のうち要求される線形特性に近く、検出誤差の少ない側の圧力検出信号が選択されて、計測値が決定される。したがって、比較的類似する感度を有する複数の圧力検出手段を用いながらも、それら単独では得られない圧力検出精度が得られるとともに、歩留まりが向上することになる。しかも、両圧力検出手段の圧力検出信号の信号レベルの差が閾値よりも大きくなると、いずれかの圧力検出手段に異常が発生したことが検出可能となり、圧力検出手段の2重化による信頼性の向上を図ることができる。なお、本発明にいう異なるオフセット量および出力レンジは、例えば受圧部材の状態変化を検出する検出素子の特性の相違によるものであってもよいし、検出素子の特性調整の相違によるもののいずれであってもよく、後者の場合には例えば信頼性の高い共通する単一の検出素子を用いてもよい。また、受圧部材は、同等なひずみを生じる複数の検出部位を有するものでもよいし、複数の受圧部材であってよく、後者の場合には受圧部材によって検出特性の相違を生じさせることもできる。 With this configuration, a pressure detection signal with a small offset amount is output from the pressure detection means having a wide output range among the first pressure detection means and the second pressure detection means in response to a change in the state of the pressure receiving member. By outputting a pressure detection signal with a large offset amount from the narrow pressure detection means, two types of pressure detection signals corresponding to the input pressure are detected, and the pressure detection signal from the pressure detection means having a narrow output range on the low pressure side. The pressure detection signal from the pressure detection means having a wide output range tends to increase on the high pressure side, and is output respectively. Of these pressure detection signals, the pressure detection signal that is close to the required linear characteristic and has a smaller detection error is selected, and the measurement value is determined. Therefore, while using a plurality of pressure detection means having relatively similar sensitivities, pressure detection accuracy that cannot be obtained by themselves can be obtained, and the yield can be improved. In addition, when the difference between the signal levels of the pressure detection signals of the two pressure detection means becomes larger than the threshold value, it becomes possible to detect that an abnormality has occurred in one of the pressure detection means, and the reliability due to the duplication of the pressure detection means. Improvements can be made. The different offset amount and output range in the present invention may be due to, for example, a difference in characteristics of the detection element that detects a change in the state of the pressure receiving member, or due to a difference in characteristic adjustment of the detection element. In the latter case, for example, a single detection element having high reliability may be used. Further, the pressure receiving member may be one having a plurality of detection sites resulting equivalent strain may be a plurality of receiving members, in the latter case it is also possible to produce a difference in detection characteristics by the pressure-receiving member .

上記(1)に記載の構成を有する圧力検出装置においては、(2)前記第1の圧力検出手段および前記第2の圧力検出手段が、それぞれ前記入力される圧力に応じた前記受圧部材のひずみを検出し、該ひずみに対応する圧力検出信号を出力する第1センサおよび第2センサと、前記受圧部材に入力される圧力の計測レンジに対する前記第1センサからの圧力検出信号のオフセット量および出力レンジと前記計測レンジに対する前記第2センサからの圧力検出信号のオフセット量および出力レンジとを異なる大きさに設定する特性調整回路と、によって構成されているのが好ましい。   In the pressure detecting device having the configuration described in (1) above, (2) the first pressure detecting means and the second pressure detecting means are configured so that the pressure receiving member is distorted according to the input pressure. And a first sensor and a second sensor that output a pressure detection signal corresponding to the strain, and an offset amount and output of the pressure detection signal from the first sensor with respect to a pressure measurement range input to the pressure receiving member It is preferable that the characteristic adjustment circuit is configured to set the offset and the output range of the pressure detection signal from the second sensor with respect to the measurement range to different sizes.

この構成により、同一計測レンジの2重センサ構成による信頼性向上を図りながら、従来の2重センサ構成では達成できなかった圧力検出精度が得られるとともに、歩留まりが向上することになる。なお、ここにいう2重とは、多重構成の場合にその一部を構成する2重構成部分を含む意である。   With this configuration, while improving reliability by the dual sensor configuration of the same measurement range, pressure detection accuracy that cannot be achieved by the conventional dual sensor configuration can be obtained, and the yield can be improved. Note that the term “duplex” as used herein means that a double component that constitutes a part of the multiple configuration is included.

上記(2)に記載の構成を有する圧力検出装置においては、(3)前記第1センサおよび前記第2センサが、同一仕様のセンサで、前記受圧部材のうち互いに同等なひずみを生じる第1の検出部位および第2の検出部位に装着されているのがよい。   In the pressure detection device having the configuration described in (2) above, (3) the first sensor and the second sensor are sensors of the same specification, and the first pressure that causes the same strain among the pressure receiving members is generated. It is preferable to be mounted on the detection site and the second detection site.

この構成により、既存の2重のセンサ構成にそれらのセンサの出力信号のオフセット量および出力レンジを互いに相違させる特性調整回路を採用し、要求される線形特性に近く、検出誤差の少ない側の圧力検出信号を選択する処理を実行するだけで、高精度の圧力検出が可能になり、低コストで高圧力検出精度の圧力検出装置となる。   With this configuration, the existing dual sensor configuration employs a characteristic adjustment circuit that makes the offset amount and output range of the output signals of these sensors different from each other. By simply executing the process of selecting a detection signal, highly accurate pressure detection is possible, and a pressure detection device with high pressure detection accuracy can be obtained at low cost.

また、上記(2)または(3)に記載の圧力検出装置においては、(4)前記受圧部材が前記入力される圧力の変化に応じて前記ひずみを生じる特性が、前記入力される圧力の計測レンジの中間領域内で前記検出特性基準に相当する直線に近付き、前記計測レンジの中間領域外で前記直線から前記ひずみの小さい側に離れる特性を有し、前記出力選定手段が、前記第1の圧力検出手段からの圧力検出信号と前記第2の圧力検出手段からの圧力検出信号とのうち高い圧力を示す圧力検出信号を選択して前記計測値を決定するのが好ましい。 In the pressure detection device according to the above (2) or (3), (4) a characteristic that the pressure receiving member causes the distortion in accordance with a change in the input pressure is a measurement of the input pressure. The output selection means has a characteristic of approaching a straight line corresponding to the detection characteristic reference in the intermediate region of the range and moving away from the straight line to the smaller side of the distortion outside the intermediate region of the measurement range. Preferably, the measurement value is determined by selecting a pressure detection signal indicating a high pressure from the pressure detection signal from the pressure detection means and the pressure detection signal from the second pressure detection means.

この構成により、受圧部材の圧力に応じた歪み特性に起因して中間領域外の圧力領域で理想直線からひずみの小さい側に誤差が大きくなる検出特性を、線形特性の傾きの異なる2つの圧力検出手段からの圧力検出信号のうち高い圧力を示す圧力検出信号を選択することで、線形性を高め、高圧力検出精度とすることができる。   With this configuration, the detection characteristic in which the error increases from the ideal straight line to the smaller distortion side in the pressure region outside the intermediate region due to the strain characteristic according to the pressure of the pressure receiving member, and two pressure detections with different linear characteristic slopes By selecting a pressure detection signal indicating a high pressure among the pressure detection signals from the means, linearity can be improved and high pressure detection accuracy can be achieved.

また、上記(4)に記載の圧力検出装置においては、(5)前記第1センサは、前記検出特性基準に対する検出誤差が前記計測レンジのうち高圧側で小さく、かつ、前記第2センサは、前記検出特性基準に対する検出誤差が前記計測レンジのうち低圧側で小さくなっており、前記出力選定手段は、前記大小いずれか一方の圧力値を示す圧力検出信号として、前記計測レンジのうち低圧側では前記第2センサからの圧力検出信号を選択し、前記計測レンジのうち高圧側では前記第1センサからの圧力検出信号を選択するようになっているのがより好ましい。 In the pressure detection device according to (4) , (5) the first sensor has a small detection error with respect to the detection characteristic reference on the high pressure side of the measurement range, and the second sensor The detection error with respect to the detection characteristic reference is small on the low pressure side of the measurement range, and the output selection means uses a pressure detection signal indicating either the large or small pressure value on the low pressure side of the measurement range. More preferably, the pressure detection signal from the second sensor is selected, and the pressure detection signal from the first sensor is selected on the high pressure side of the measurement range .

また、上記(1)〜(5)に記載の圧力検出装置は、(6)前記受圧部材が車両用の内燃機関の燃料蓄圧手段に蓄圧状態で貯留された燃料の圧力を受圧し、前記出力選定手段が前記内燃機関の運転を制御する電子制御ユニットによって構成されるものであっても好ましい。   Further, in the pressure detection device according to the above (1) to (5), (6) the pressure receiving member receives the pressure of the fuel stored in the pressure accumulation state in the fuel pressure accumulation means of the internal combustion engine for the vehicle, and the output It is also preferable that the selecting means is constituted by an electronic control unit that controls the operation of the internal combustion engine.

この場合、線形性が良好で、燃料蓄圧手段の蓄圧レベルの高圧化や精密な燃料噴射量制御の要求に対して、十分な圧力検出精度を得ることができる低コストの圧力検出装置となる。また、第1および第2の圧力検出手段の間のオフセット量および出力レンジの差を異常検出可能な範囲内で設定すれば、圧力センサの異常検知と燃料圧力制御の信頼性が向上し、蓄圧される燃料圧力の上限値を規定するプレッシャリミッタ等も省略可能となる。   In this case, the linearity is good, and a low-cost pressure detection device capable of obtaining sufficient pressure detection accuracy with respect to the demand for high pressure accumulation level of the fuel pressure accumulation means and precise fuel injection amount control is obtained. Further, if the difference between the offset amount and the output range between the first and second pressure detecting means is set within a range where the abnormality can be detected, the abnormality detection of the pressure sensor and the reliability of the fuel pressure control are improved, and the accumulated pressure is increased. It is also possible to omit a pressure limiter that defines the upper limit value of the fuel pressure.

本発明によれば、圧力検出信号出力のオフセット量および出力レンジが相違する第1の圧力検出手段および第2の圧力検出手段から、低圧力側では出力レンジの狭い圧力検出手段からの圧力検出信号が大きくなり、高圧力側では出力レンジの広い圧力検出手段からの圧力検出信号が大きくなる傾向で、それぞれ圧力検出信号を出力させるようにしているので、これらの圧力検出信号のうち要求される線形特性に近く、検出誤差の少ない側の圧力検出信号を選択して計測値を決定し、類似する感度を有する複数の圧力検出手段を用いながらも、それら単独では得られない圧力検出精度が得られる、歩留まりの良好な低コストの圧力検出装置を提供することができる。しかも、両圧力検出手段の圧力検出信号の信号レベルの差が閾値よりも大きくなると、いずれかの圧力検出手段に異常が発生したことが検出可能となり、圧力検出手段の2重化により信頼性の向上を図ることのできる圧力検出装置を提供することができる。 According to the present invention, the pressure detection signal from the pressure detection means having a narrow output range on the low pressure side from the first pressure detection means and the second pressure detection means having different offset amounts and output ranges of the pressure detection signal output. Since the pressure detection signal from the pressure detection means with a wide output range tends to increase on the high pressure side, and each pressure detection signal is output, the required linearity of these pressure detection signals Selects the pressure detection signal that is close to the characteristic and has the least detection error, determines the measurement value, and uses multiple pressure detection means with similar sensitivities, but provides pressure detection accuracy that cannot be obtained by themselves. Thus, it is possible to provide a low-cost pressure detection device with good yield. In addition, when the difference between the signal levels of the pressure detection signals of the two pressure detection means is larger than the threshold value, it is possible to detect that an abnormality has occurred in one of the pressure detection means, and the reliability of the pressure detection means is increased by duplication of the pressure detection means. A pressure detection device that can be improved can be provided.

以下、本発明の好ましい実施の形態について、図面を参照しつつ説明する。
(第1の実施の形態)
図1は、本発明の第1実施形態に係る圧力検出装置の概略ブロック構成図である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a schematic block diagram of a pressure detection device according to the first embodiment of the present invention.

まず、構成について説明する。   First, the configuration will be described.

図1に示すように、本実施形態の圧力検出装置は、入力される流体の圧力を受圧しその圧力に応じたひずみを生じる少なくとも1つの受圧部材、例えば同一仕様の第1および第2の受圧部材11A、11B(以下、各受圧部材11A、11Bをさして単に受圧部材11という)と、この受圧部材11に入力される圧力に応じた受圧部材11の状態変化、例えばひずみ量の変化を同一の計測レンジ(ひずみ量の変化量を計測可能な範囲)で検出し、その状態変化に対応する圧力検出信号を出力する第1の圧力検出手段12および第2の圧力検出手段13と、を備えている。   As shown in FIG. 1, the pressure detection device of the present embodiment receives at least one pressure receiving member that receives the pressure of an input fluid and generates a strain corresponding to the pressure, for example, first and second pressure receiving members of the same specification. The members 11A and 11B (hereinafter referred to as pressure receiving members 11A and 11B are simply referred to as pressure receiving members 11) and the pressure change of the pressure receiving member 11 according to the pressure input to the pressure receiving member 11, for example, the change in strain amount are the same. First pressure detecting means 12 and second pressure detecting means 13 for detecting in a measurement range (a range in which the amount of change in strain can be measured) and outputting a pressure detection signal corresponding to the state change are provided. Yes.

受圧部材11は、有底円筒状のステムで構成されており、その底部側の感圧部11aが筒状部11bに比べて相対的に薄肉に形成され、筒状部11bの内方には圧力導入孔11hが形成され、筒状部11bの外周には雄ねじ11cが形成されている。この受圧部材11は、例えば車両用ディーゼルエンジン(内燃機関)の燃料蓄圧手段であるコモンレールCの一端部にねじ結合によって締結固定されている。また、受圧部材11の圧力導入孔11hはコモンレールC内に開口しており、コモンレールC内に蓄圧される燃料(流体)の圧力が受圧部材11の感圧部11aに圧力導入孔11h側から直接に作用するようになっている。そして、そのエンジンの運転によりコモンレールC内の燃料の圧力が高くなるとき、受圧部材11が感圧部11aの内面側では燃料圧力を受け、感圧部11aの外面側(背面側)では大気圧を受けて、感圧部11aが外方側に撓むようにひずみを生じる。また、その燃料の圧力が低下すると、受圧部材11の感圧部11aが内方側に弾性回復するとともに感圧部11aに生じるひずみが減少するようになっている。   The pressure receiving member 11 is configured by a bottomed cylindrical stem, and a pressure-sensitive portion 11a on the bottom side thereof is formed relatively thin compared to the cylindrical portion 11b, and on the inner side of the cylindrical portion 11b. A pressure introducing hole 11h is formed, and a male screw 11c is formed on the outer periphery of the cylindrical portion 11b. The pressure receiving member 11 is fastened and fixed to one end portion of a common rail C, which is a fuel pressure accumulating means of a vehicular diesel engine (internal combustion engine), for example, by screw connection. Further, the pressure introducing hole 11h of the pressure receiving member 11 is opened in the common rail C, and the pressure of the fuel (fluid) accumulated in the common rail C is directly applied to the pressure sensing portion 11a of the pressure receiving member 11 from the pressure introducing hole 11h side. It comes to act on. When the pressure of the fuel in the common rail C increases due to the operation of the engine, the pressure receiving member 11 receives the fuel pressure on the inner surface side of the pressure sensing portion 11a, and the atmospheric pressure on the outer surface side (back side) of the pressure sensing portion 11a. In response, the pressure-sensitive part 11a is distorted so as to bend outward. Further, when the pressure of the fuel is reduced, the pressure sensitive portion 11a of the pressure receiving member 11 is elastically recovered inward and the strain generated in the pressure sensitive portion 11a is reduced.

図2は、この受圧部材11の中心軸線から特定の半径位置にある感圧部11aの外面側の検出部位のひずみ特性を示すグラフであり、縦軸がその検出部位におけるひずみ量、横軸が受圧部材11の感圧部11aが受ける圧力(以下、受圧圧力ともいう)である。   FIG. 2 is a graph showing the strain characteristics of the detection site on the outer surface side of the pressure-sensitive part 11a located at a specific radial position from the central axis of the pressure receiving member 11. The vertical axis is the strain amount at the detection site, and the horizontal axis is the horizontal axis. This is the pressure received by the pressure sensing part 11a of the pressure receiving member 11 (hereinafter also referred to as pressure receiving pressure).

同図に示されるように、機械的な圧力感応部分である受圧部材11の感圧部11aは、受圧圧力が非常に小さくなる低圧力領域と弾性限度に近付くほどに受圧圧力が非常に大きくなる高圧力領域ではそれぞれ圧力感度の直線性が低下する。したがって、受圧部材11の感圧部11aのひずみ量変化にある程度の直線性が得られる圧力範囲を本実施形態の圧力検出装置の計測レンジ(圧力計測可能な範囲)として使用するようになっている。   As shown in the figure, the pressure sensing part 11a of the pressure sensing member 11 which is a mechanical pressure sensing part has a very large pressure receiving pressure as it approaches the low pressure region where the pressure receiving pressure is very small and the elastic limit. In the high pressure region, the linearity of the pressure sensitivity decreases. Therefore, a pressure range in which a certain degree of linearity is obtained in the strain amount change of the pressure-sensitive member 11a of the pressure receiving member 11 is used as a measurement range (a range in which pressure can be measured) of the pressure detection device of the present embodiment. .

第1の圧力検出手段12および第2の圧力検出手段13は、それぞれ受圧部材11の受圧圧力(入力される圧力)に応じた受圧部材11の感圧部11aのひずみ量を検出し、検出されたひずみ量に対応する圧力検出信号を出力する第1センサ21および第2センサ22と、これらの特性を調整する特性調整回路23とによって構成されている。特性調整回路23は、受圧部材11に入力される圧力の計測レンジRpvに対する第1センサ21からの圧力検出信号vs1のオフセット量および出力レンジと、同一の計測レンジに対する第2センサ22からの圧力検出信号vs2のオフセット量および出力レンジとを、それぞれ異なる大きさに設定するように構成されており、ゲイン設定部24a、24bおよびオフセット調整部25a、25bを有している。   The first pressure detecting means 12 and the second pressure detecting means 13 detect and detect the strain amount of the pressure sensing part 11a of the pressure receiving member 11 corresponding to the pressure receiving pressure (input pressure) of the pressure receiving member 11, respectively. The first sensor 21 and the second sensor 22 that output a pressure detection signal corresponding to the strain amount, and a characteristic adjustment circuit 23 that adjusts these characteristics. The characteristic adjustment circuit 23 detects the offset amount and output range of the pressure detection signal vs1 from the first sensor 21 with respect to the measurement range Rpv of the pressure input to the pressure receiving member 11, and the pressure detection from the second sensor 22 with respect to the same measurement range. The offset amount and the output range of the signal vs2 are configured to be different from each other, and have gain setting units 24a and 24b and offset adjustment units 25a and 25b.

すなわち、第1の圧力検出手段12および第2の圧力検出手段13は、受圧部材11の感圧部11aのひずみ量の変化に対応する圧力検出信号を、互いに異なるオフセット量および出力レンジで出力させるようになっている。ここにいうオフセット量とは、計測レンジ中で最も低い圧力を検出するときの計測値(出力信号の値)に相当し、出力レンジとは、計測レンジ中で最も低い圧力を検出するときの計測値から最も高い圧力を検出するときの計測値までの計測値の変動幅を意味する。   That is, the first pressure detection unit 12 and the second pressure detection unit 13 output pressure detection signals corresponding to changes in the strain amount of the pressure sensing portion 11a of the pressure receiving member 11 with different offset amounts and output ranges. It is like that. The offset amount here corresponds to the measurement value (output signal value) when detecting the lowest pressure in the measurement range, and the output range is the measurement when detecting the lowest pressure in the measurement range. It means the fluctuation range of the measured value from the value to the measured value when detecting the highest pressure.

具体的には、第1センサ21および第2センサ22は、同一仕様のセンサで構成され、受圧部材11の感圧部11aのうち互いに同等なひずみを生じる検出部位、例えば中心の検出部位にそれぞれ装着されている。また、各センサ21、22は、特殊合金のダイヤフラムである受圧部材11の感圧部11aに、図示しないガラス膜を介し薄膜形半導体歪抵抗21a、22aを一体に装着して2つのホイートストンブリッジ回路を構成し、入力される圧力に応じた受圧部材11の感圧部11aのひずみをそれぞれ検出するものであり、薄膜形半導体歪抵抗21a、22aの検出電圧を基にASIC(Application Specific Integrated Circuit)およびEEPROM(Electronically Erasable and Programmable Read Only Memory)を内蔵する信号処理部21b、22bにより、それぞれ公知のトリミング処理やキャリブレーション補正等を実行することで、オフセット量や増幅ゲインの補正および温度補償等を行った上で、圧力検出信号vs1、vs2を出力するようになっている。   Specifically, the first sensor 21 and the second sensor 22 are composed of sensors of the same specification, and each of the pressure sensing portions 11a of the pressure receiving member 11 is detected at a detection site that generates equivalent strain, for example, a central detection site. It is installed. In addition, each sensor 21, 22 has two Wheatstone bridge circuits in which thin-film semiconductor strain resistors 21 a, 22 a are integrally attached to a pressure sensing part 11 a of a pressure receiving member 11, which is a special alloy diaphragm, via a glass film (not shown). The ASIC (Application Specific Integrated Circuit) is detected based on the detection voltages of the thin film semiconductor strain resistors 21a and 22a. And signal processing units 21b and 22b with built-in EEPROM (Electronically Erasable and Programmable Read Only Memory), respectively, perform known trimming processing, calibration correction, etc., thereby performing offset amount and amplification gain correction, temperature compensation, etc. Then, pressure detection signals vs1 and vs2 are output.

特性調整回路23は、2つの信号処理部21b、22b内のEEPROMに格納された異なる特性調整用のデータを含み、例えば2つの信号処理部21b、22bの一部として構成され、あるいは、その一部または全部が後述するECU30の機能部の一つとして構成される。従来の2重センサ構成の圧力検出装置でもセンサ出力のオフセット量補正やゲイン調整(感度調整)が公知のトリミング処理等によって実行されるが、その場合、2重化されたセンサのそれぞれを同一の検出特性(感度および出力の特性)に調整するものである。これに対し、本実施形態においては、第1センサ21および第2センサ22についてのそのような特性調整の条件を互いに異ならせ、図3(a)および図3(b)に示すような検出特性の差を生じさせる構成となっている。   The characteristic adjustment circuit 23 includes different characteristic adjustment data stored in the EEPROM in the two signal processing units 21b and 22b, and is configured as, for example, a part of the two signal processing units 21b and 22b. All or part of the ECU 30 is configured as one of functional units of the ECU 30 described later. Even in a conventional pressure detection device having a dual sensor configuration, sensor output offset amount correction and gain adjustment (sensitivity adjustment) are performed by a known trimming process or the like. Adjustment is made to the detection characteristics (sensitivity and output characteristics). On the other hand, in the present embodiment, the conditions for adjusting the characteristics of the first sensor 21 and the second sensor 22 are made different from each other, and the detection characteristics as shown in FIGS. 3A and 3B are obtained. It is the structure which produces the difference of.

そのため、特性調整回路23のゲイン設定部24a、24bは、第1センサ21からの圧力検出信号vs1と第2センサ22からの圧力検出信号vs2との入力値(以下、単に入力値vs1、vs2ともいう)に対する圧力検出信号値の倍率、すなわち増幅ゲインを異なる値k1、k2に設定する機能を有し、ゲイン設定部24aで入力値vs1にゲインk1を乗じるとともに、ゲイン設定部24bで入力値vs2にゲインk1とは異なるゲインk2を乗じる演算処理を実行するようになっている。   For this reason, the gain setting units 24a and 24b of the characteristic adjustment circuit 23 input values of the pressure detection signal vs1 from the first sensor 21 and the pressure detection signal vs2 from the second sensor 22 (hereinafter simply referred to as input values vs1 and vs2). The gain setting unit 24a multiplies the input value vs1 by the gain k1 and the gain setting unit 24b inputs the input value vs2. Is multiplied by a gain k2 different from the gain k1.

また、特性調整回路23のオフセット調整部25a、25bは、ゲイン設定部24a、24bからの圧力検出信号vs1・k1、vs2・k2に対して互いに異なるオフセット量Sf1、Sf2を設定するよう、例えば信号処理部21b、22b内の図示しないオフセットADC等へのオフセットデータを異なる値としてEEPROMに格納し、異なるオフセット量の設定を行うようになっている。   In addition, the offset adjustment units 25a and 25b of the characteristic adjustment circuit 23 are configured to set different offset amounts Sf1 and Sf2 with respect to the pressure detection signals vs1 and k1 and vs2 and k2 from the gain setting units 24a and 24b, for example. Offset data to an offset ADC (not shown) in the processing units 21b and 22b is stored in the EEPROM as different values, and different offset amounts are set.

図3(a)および図3(b)に示すように、ゲイン設定部24a、24bで設定されるゲインk1とゲインk2の相違およびオフセット調整部25a、25bで設定されるオフセット量Sf1、Sf2に起因して、オフセット調整部25aから出力される圧力検出信号vs1・k1(オフセット量を含むvs1・k1+Sf1の意であるが、単にvs1・k1という)は、受圧部材11に入力される圧力の計測が可能な範囲、すなわち計測レンジRpvに対して、出力レンジRg1の範囲内で変動する。一方、オフセット調整部25bから出力される圧力検出信号vs2・k2(オフセット量を含むvs2・k2+Sf2の意であるが、単にvs2・k2という)は、計測レンジRpvに対して、出力レンジRg1とは異なる出力レンジRg2の範囲内で変動することになる。なお、図3中では、出力レンジRg1が出力レンジRg2より大きくなる場合を例示しているが、勿論これと逆の大小関係であってもよい。   As shown in FIGS. 3A and 3B, the difference between the gain k1 and the gain k2 set by the gain setting units 24a and 24b and the offset amounts Sf1 and Sf2 set by the offset adjusting units 25a and 25b are set. Due to this, the pressure detection signal vs1 · k1 output from the offset adjustment unit 25a (which means vs1 · k1 + Sf1 including the offset amount, simply referred to as vs1 · k1) is a measurement of the pressure input to the pressure receiving member 11. Is within the range of the output range Rg1 with respect to the range in which measurement is possible, ie, the measurement range Rpv. On the other hand, the pressure detection signal vs 2 · k 2 output from the offset adjustment unit 25 b (which is the meaning of vs 2 · k 2 + Sf 2 including the offset amount, simply referred to as vs 2 · k 2) is the output range Rg 1 with respect to the measurement range Rpv. It fluctuates within the range of the different output range Rg2. In FIG. 3, the case where the output range Rg1 is larger than the output range Rg2 is illustrated, but of course, the magnitude relationship may be reversed.

オフセット調整部25a、25bから出力される圧力検出信号vs1・k1、vs2・k2は、それぞれ車両用内燃機関を電子制御するECU(電子制御ユニット)30に取り込まれる。   The pressure detection signals vs1 · k1 and vs2 · k2 output from the offset adjusters 25a and 25b are respectively taken into an ECU (electronic control unit) 30 that electronically controls the vehicle internal combustion engine.

ECU30は、詳細なハードウェア構成を図示しないが、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、EEPROM(Electronically Erasable and Programmable Read Only Memory)等のバックアップ用の不揮発メモリ、A/D変換器やバッファ等を含む入力インターフェース回路、および、駆動回路等を含む出力インターフェース回路を含んで構成されており、ROM内に予め格納された制御プログラムに従ってCPUによりバックアップメモリ内のマップ情報や設定値情報、センサ情報等に基づいて、RAMとの間でデータを授受しながら演算処理を実行して公知の電子制御を実行する一方で、後述する出力選定手段の機能あるいは更に特性調整回路23の機能を発揮するようになっている。   Although the detailed hardware configuration is not illustrated, the ECU 30 is used for backup such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an EEPROM (Electronically Erasable and Programmable Read Only Memory), and the like. Non-volatile memory, an input interface circuit including an A / D converter and a buffer, and an output interface circuit including a drive circuit and the like are configured. In the backup memory by the CPU according to a control program stored in the ROM in advance. On the basis of the map information, set value information, sensor information, etc., while performing data processing with the RAM and executing arithmetic processing to execute known electronic control, the function of the output selecting means described later or further The function of the characteristic adjustment circuit 23 is exhibited.

このECU30は、第1の圧力検出手段12からの圧力検出信号に相当するオフセット調整部25aからの圧力検出信号vs1・k1と、第2の圧力検出手段13からの圧力検出信号に相当するオフセット調整部25bからの圧力検出信号vs2・k2とのうち、検出誤差の小さい側となる大小いずれか一方の圧力値を示す圧力検出信号を選択するようになっており、圧力検出装置としての最終的な検出圧力を示す計測値を決定する出力選定部26(出力選定手段)の機能を有している。すなわち、出力選定部26は、圧力値vs1・k1を第1関数とし、圧力検出信号vs2・k2を第2関数とするとき、検出誤差の小さい側となる大小いずれか一方の圧力値を生成する合成関数として機能する。   The ECU 30 adjusts an offset adjustment corresponding to the pressure detection signal vs1 · k1 from the offset adjustment unit 25 a corresponding to the pressure detection signal from the first pressure detection means 12 and the pressure detection signal from the second pressure detection means 13. Among the pressure detection signals vs2 and k2 from the unit 25b, a pressure detection signal indicating either the large or small pressure value on the side where the detection error is small is selected. It has the function of the output selection part 26 (output selection means) which determines the measured value which shows detected pressure. That is, the output selection unit 26 generates either the large or small pressure value on the side where the detection error is small when the pressure value vs1 · k1 is the first function and the pressure detection signal vs2 · k2 is the second function. Functions as a composite function.

本実施形態では、受圧部材11がその感圧部11aに入力される圧力の変化に応じてひずみを生じる特性は、図2に示したように、入力される圧力の計測レンジRpvの中間領域内で直線に近付き、計測レンジRpvの中間領域外となる低圧力側および高圧力側ではその直線からひずみの小さい側に離れる特性を有している。そこで、出力選定部26では、図4に示すように、第1の圧力検出手段12からの圧力検出信号vs1・k1と、第2センサからの圧力検出信号vs2・k2とのうち高い圧力を示す圧力検出信号を選択して計測値Pdを決定するようになっている。   In the present embodiment, as shown in FIG. 2, the characteristic that the pressure receiving member 11 is distorted in accordance with the change in pressure input to the pressure sensing portion 11a is within the intermediate region of the input pressure measurement range Rpv. The low pressure side and the high pressure side, which are close to a straight line and are outside the intermediate region of the measurement range Rpv, have a characteristic of moving away from the straight line to the side with less strain. Therefore, as shown in FIG. 4, the output selection unit 26 indicates a higher pressure among the pressure detection signals vs1 · k1 from the first pressure detection means 12 and the pressure detection signals vs2 · k2 from the second sensor. The measurement value Pd is determined by selecting the pressure detection signal.

この場合、検出特性基準に相当する直線Fnに対して、低圧側の圧力領域では専ら第2センサ22の出力に対応する圧力検出信号vs2・k2が第1センサ21の出力に対応する圧力検出信号vs1・k1より大きな圧力値となり、高圧側の圧力領域では専ら第1センサ21の出力に対応する圧力検出信号vs1・k1が第2センサ22の出力に対応する圧力検出信号vs2・k2より大きな圧力値となる傾向になる。   In this case, with respect to the straight line Fn corresponding to the detection characteristic reference, the pressure detection signal vs 2 · k 2 corresponding to the output of the second sensor 22 exclusively in the pressure region on the low pressure side corresponds to the output of the first sensor 21. The pressure value is larger than vs1 · k1, and the pressure detection signal vs1 · k1 corresponding to the output of the first sensor 21 is larger than the pressure detection signal vs2 · k2 corresponding to the output of the second sensor 22 in the pressure region on the high pressure side. It tends to be a value.

一方、本実施形態の特性調整回路23では、第1の圧力検出手段12の圧力検出信号vs1・k1と第2センサからの圧力検出信号である圧力検出信号vs2・k2との差(信号レベルの差の絶対値)が、第1の圧力検出手段12および第2の圧力検出手段13のうちいずれかの異常を検出するための両圧力検出信号vs1・k1、vs2・k2の差の閾値Dpm(図中に符号なし;|(vs1・k1+Sf1)−(vs2・k2+Sf2)|<Dpmで正常となる)よりも常時小さくなるように、第1の圧力検出手段12および第2の圧力検出手段13におけるオフセット量Sf1、Sf2と圧力検出信号vs1・k1、vs2・k2の出力レンジRg1、Rg2とがそれぞれ設定されている。なお、異常検出用の閾値Dpmの設定方法については公知であり、詳述しないが、異常検出用の閾値Dpmの値は圧力検出信号vs1・k1、vs2・k2の正常変動時の最大の差よりも数倍以上大きくなっている。換言すれば、第1の圧力検出手段12および第2の圧力検出手段13の間のオフセット量および出力レンジの差はいずれか一方に異常が生じたときの検出圧力値の差に比べて十分に小さく、例えば検出誤差より大きいがその数倍以内の値となっている。   On the other hand, in the characteristic adjustment circuit 23 of the present embodiment, the difference (the signal level) between the pressure detection signal vs1 · k1 of the first pressure detection means 12 and the pressure detection signal vs2 · k2 that is the pressure detection signal from the second sensor. (The absolute value of the difference) is a threshold value Dpm (difference between the two pressure detection signals vs1 · k1, vs2 · k2 for detecting an abnormality in one of the first pressure detection means 12 and the second pressure detection means 13). No sign in the figure; in the first pressure detection means 12 and the second pressure detection means 13 so as to be always smaller than | (vs1 · k1 + Sf1) − (vs2 · k2 + Sf2) | <normal when Dpm) Offset amounts Sf1, Sf2 and output ranges Rg1, Rg2 of pressure detection signals vs1, k1, vs2, k2 are set, respectively. The method for setting the abnormality detection threshold value Dpm is well known and will not be described in detail. However, the value of the abnormality detection threshold value Dpm is determined from the maximum difference during normal fluctuation of the pressure detection signals vs1 · k1 and vs2 · k2. Is several times larger. In other words, the difference between the offset amount and the output range between the first pressure detection means 12 and the second pressure detection means 13 is sufficiently larger than the difference in the detected pressure value when an abnormality occurs in either one of them. It is small, for example, larger than the detection error, but within several times that value.

次に、作用について説明する。   Next, the operation will be described.

上述のように構成された本実施形態においては、車両用のディーゼルエンジンの運転時に、高圧燃料ポンプから吐出される高圧燃料が蓄圧手段であるコモンレールCに供給されると、そのコモンレールC内の燃料圧力が受圧部材11の感圧部11aに受圧される。   In the present embodiment configured as described above, when high-pressure fuel discharged from the high-pressure fuel pump is supplied to the common rail C that is the pressure accumulating means during operation of the diesel engine for the vehicle, the fuel in the common rail C The pressure is received by the pressure sensing part 11 a of the pressure receiving member 11.

このとき、圧力検出装置として要求される線形特性の傾きが相違する第1の圧力検出手段12および第2の圧力検出手段13から、低圧力側では出力レンジの狭い第2の圧力検出手段13からの圧力検出信号である圧力値vs2・k2が大きくなり、高圧力側では出力レンジの広い第1の圧力検出手段12からの圧力検出信号である圧力値vs1・k1が大きくなる傾向で、これらの圧力値vs1・k1および圧力値vs2・k2がそれぞれ出力される。そして、これらの圧力値vs1・k1、vs2・k2のうち、要求される直線性、すなわち検出基準特性に相当する直線Fnに近く、検出誤差の少ない高圧側の圧力値vs2・k2またはvs1・k1が選択されて、計測値Pdが決定される。したがって、類似する感度を有する複数のセンサ21、22を用いながらも、それら個々の検出誤差e1、e2(図3参照)に対して、図4に示すように、本実施形態の圧力検出装置としての検出誤差epiは十分に縮小されることになり、高い圧力検出精度が得られる。   At this time, from the first pressure detection means 12 and the second pressure detection means 13 having different linear characteristics required for the pressure detection device, from the second pressure detection means 13 having a narrow output range on the low pressure side. The pressure value vs2 · k2 which is the pressure detection signal of the pressure increases, and the pressure value vs1 · k1 which is the pressure detection signal from the first pressure detection means 12 having a wide output range tends to increase on the high pressure side. Pressure values vs1 · k1 and pressure values vs2 · k2 are output, respectively. Of these pressure values vs1 · k1 and vs2 · k2, the pressure value vs2 · k2 or vs1 · k1 on the high pressure side, which is close to the required linearity, that is, the straight line Fn corresponding to the detection reference characteristic and has a small detection error. Is selected, and the measured value Pd is determined. Therefore, while using a plurality of sensors 21 and 22 having similar sensitivities, as shown in FIG. 4, the pressure detection device of this embodiment is used for each of the detection errors e1 and e2 (see FIG. 3). The detection error epi is sufficiently reduced, and high pressure detection accuracy is obtained.

しかも、許容誤差に対して検出誤差epiの余裕度が高まるとともに、第1センサ21については計測レンジRpvのうち高圧側での検出誤差を許容誤差内に管理し、第2センサ22については計測レンジRpvのうち低圧側での検出誤差を許容誤差内に管理すればよいことになるから、受圧部材11から特性調整回路23までの検出装置ユニットを製造する際の歩留まりが大幅に向上することになる。この場合、第1センサ21および第2センサ22として、個々のセンサの製造直後の特性または粗調整段階で図3(a)または図3(b)に示す特性に近いものを選択すれば、少ない特性調整量でオフセット量と出力レンジを特定の比率で相違させることができる。   In addition, the margin of the detection error epi with respect to the allowable error increases, the detection error on the high voltage side of the measurement range Rpv is managed within the allowable error for the first sensor 21, and the measurement range for the second sensor 22 is measured. Since it is only necessary to manage the detection error on the low pressure side of Rpv within an allowable error, the yield when manufacturing the detection device unit from the pressure receiving member 11 to the characteristic adjustment circuit 23 is greatly improved. . In this case, if the first sensor 21 and the second sensor 22 are selected from the characteristics immediately after manufacture of each sensor or the characteristics close to those shown in FIG. 3A or FIG. With the characteristic adjustment amount, the offset amount and the output range can be made different at a specific ratio.

また、本実施形態においては、第1の圧力検出手段12および第2の圧力検出手段13が、それぞれ入力される圧力に応じた受圧部材11のひずみを検出して圧力検出信号vs1、vs2を出力する第1センサ21および第2センサ22と、計測レンジRpvに対する圧力検出信号vs1・k1のオフセット量Sf1および出力レンジRg1と圧力検出信号vs2・k2のオフセット量Sf2および出力レンジRg2とを異なる大きさに設定する特性調整回路23と、によって構成されていることから、2重のセンサ構成による圧力検査装置の信頼性向上を図りながらも、従来の2重のセンサ構成では達成できなかった圧力検出精度が得られるとともに、歩留まりが向上することになる。   In the present embodiment, the first pressure detection means 12 and the second pressure detection means 13 detect the strain of the pressure receiving member 11 corresponding to the input pressure, and output pressure detection signals vs1 and vs2. The first sensor 21 and the second sensor 22 that are different from each other, the offset amount Sf1 of the pressure detection signal vs1 · k1 relative to the measurement range Rpv, and the offset amount Sf2 of the pressure detection signal vs2 · k2 and the output range Rg2 are different in magnitude. Pressure adjustment accuracy that could not be achieved with the conventional dual sensor configuration, while improving the reliability of the pressure inspection device with the dual sensor configuration. Can be obtained, and the yield can be improved.

さらに、第1センサ21および第2センサ22が、同一仕様のセンサで、受圧部材11のうち互いに同等なひずみを生じる第1の検出部位および第2の検出部位に装着されていることから、既存の同一計測レンジの2重センサ構成にそれらのセンサの感度を左右するオフセット量および出力レンジを互いに相違させる新規な特性調整回路23を採用し、要求される線形特性(直線性)に近く、検出誤差の少ない側の圧力検出信号を選択して計測値Pdを決定する出力選定部26の処理を実行するだけで、センサ異常検出が可能であって、しかも、高精度の圧力検出が可能な低コストの圧力検出装置となる。   Furthermore, since the first sensor 21 and the second sensor 22 are sensors of the same specification and are mounted on the first detection site and the second detection site that cause the same strain in the pressure receiving member 11, the existing sensor Adopts a new characteristic adjustment circuit 23 that makes the offset amount and output range different from each other in the double sensor configuration of the same measurement range, and close to the required linear characteristic (linearity), detection A sensor abnormality can be detected only by executing the processing of the output selection unit 26 that selects the pressure detection signal on the side with less error and determines the measured value Pd, and yet can detect pressure with high accuracy. It becomes a cost pressure sensing device.

また、受圧部材11が入力される圧力の変化に応じてひずみを生じる特性が、入力される圧力の計測レンジPpvの中間領域内で検出特性基準に相当する直線Ls(図2参照)に近付き、計測レンジRpvの中間領域外となる低圧側および高圧側の圧力領域で、その直線Lsからひずみの小さい側に離れる特性を有し、出力選定部26が、第1の圧力検出手段12からの圧力検出信号である圧力値vs1・k1と第2の圧力検出手段13からの圧力検出信号である圧力値vs2・k2とのうち高い圧力を示す圧力値vs1・k1またはvs2・k2を選択して計測値Pdを決定するので、受圧部材11の感圧部11aの歪み特性に起因して中間領域外の圧力領域で理想直線Fnからひずみの小さい側に誤差が大きくなる検出特性を、線形特性の傾きの異なる2つの圧力検出手段12、13からの圧力検出信号vs1・k1、vs2・k2のうち高い圧力を示す圧力検出信号を選択することによって、計測値の連続性を損なうことなく直線性を高め、高圧力検出精度とすることができる。   In addition, the characteristic that the pressure receiving member 11 generates distortion according to the change in the input pressure approaches the straight line Ls (see FIG. 2) corresponding to the detection characteristic reference in the intermediate region of the input pressure measurement range Ppv. In the pressure region on the low pressure side and the high pressure side that are outside the intermediate region of the measurement range Rpv, the pressure selection unit 26 has a characteristic of moving away from the straight line Ls to the side where the strain is small. The pressure value vs1 · k1 or vs2 · k2 indicating a high pressure is selected and measured from the pressure value vs1 · k1 that is the detection signal and the pressure value vs2 · k2 that is the pressure detection signal from the second pressure detection means 13. Since the value Pd is determined, the detection characteristic in which the error increases from the ideal straight line Fn to the smaller distortion side in the pressure region outside the intermediate region due to the distortion characteristic of the pressure sensing portion 11a of the pressure receiving member 11 is expressed as a linear characteristic. By selecting a pressure detection signal indicating a high pressure from the pressure detection signals vs1 · k1 and vs2 · k2 from the two pressure detection means 12 and 13 having different inclinations, linearity can be obtained without impairing the continuity of the measurement values. High pressure detection accuracy can be achieved.

加えて、本実施形態においては、第1の圧力検出手段12の圧力検出信号vs1・k1と第2の圧力検出手段13の圧力検出信号vs2・k2との信号レベルの差(絶対値)が、第1の圧力検出手段12および第2の圧力検出手段13のうちいずれかの異常を検出するための閾値Dpmよりも常時小さくなるように、第1の圧力検出手段12および第2の圧力検出手段13におけるオフセット量Sf1、Sf2および出力レンジRg1、Rg2がそれぞれ設定されていることから、類似する感度を有する複数の圧力検出手段12、13を用いながら、それら単独では得られない圧力検出精度が得られるということのみならず、両圧力検出手段12、13の圧力検出信号vs1・k1、vs2・k2の信号レベルの差が異常検出用の閾値Dpmよりも大きくなると、いずれかの圧力検出手段12、13に異常が発生したことが検出でき、センサの2重化による圧力検出装置の信頼性の向上を図ることができる。   In addition, in this embodiment, the difference (absolute value) in signal level between the pressure detection signal vs1 · k1 of the first pressure detection means 12 and the pressure detection signal vs2 · k2 of the second pressure detection means 13 is The first pressure detection means 12 and the second pressure detection means are always smaller than the threshold value Dpm for detecting any abnormality of the first pressure detection means 12 and the second pressure detection means 13. Since the offset amounts Sf1 and Sf2 and the output ranges Rg1 and Rg2 at 13 are set, respectively, a plurality of pressure detecting means 12 and 13 having similar sensitivities are used, and pressure detection accuracy that cannot be obtained by themselves can be obtained. The difference between the signal levels of the pressure detection signals vs1 · k1 and vs2 · k2 of both the pressure detection means 12 and 13 is not only the threshold value Dpm for abnormality detection. When even larger Ri, can detect that the abnormality in one of the pressure detecting means 12 and 13 occurs, it is possible to improve the reliability of the pressure sensor according to duplexing sensor.

また、本実施形態では、受圧部材11が車両用のディーゼルエンジンの燃料蓄圧手段であるコモンレールCに蓄圧状態で貯留された燃料の圧力を受圧し、出力選定部26がそのエンジンの運転を制御するECU30によって構成されているので、圧力検出特性の直線性が良好で、コモンレールCの蓄圧レベルの高圧化や精密な燃料噴射量制御の要求に対して、十分な圧力検出精度の得られる低コストの圧力検出装置とすることができる。また、第1および第2の圧力検出手段12、13の間のオフセット量Sf1、Sf2および出力レンジのRg1、Rg2差を上述のようにセンサ異常の検出が可能な設定とすることで、異常検知と燃料圧力制御の信頼性が向上し、蓄圧される燃料圧力の上限値を規定するプレッシャリミッタ等も省略可能となり、圧力検出装置の製造コストを低減できる。   Moreover, in this embodiment, the pressure receiving member 11 receives the pressure of the fuel stored in the pressure accumulation state on the common rail C which is the fuel pressure accumulation means of the diesel engine for the vehicle, and the output selection unit 26 controls the operation of the engine. Since it is configured by the ECU 30, the pressure detection characteristic has good linearity, and low pressure that can provide sufficient pressure detection accuracy to meet the demand for higher pressure accumulation level of the common rail C and precise fuel injection amount control. It can be set as a pressure detection apparatus. Further, by setting the offset amounts Sf1 and Sf2 between the first and second pressure detection means 12 and 13 and the difference between the output ranges Rg1 and Rg2 as described above, the abnormality can be detected. Thus, the reliability of the fuel pressure control is improved, and a pressure limiter that defines the upper limit value of the accumulated fuel pressure can be omitted, and the manufacturing cost of the pressure detection device can be reduced.

このように、本実施形態の圧力検出装置によれば、圧力検出装置として要求される線形特性(直線性)の傾きが相違する第1の圧力検出手段12および第2の圧力検出手段13から、低圧力側では出力レンジの狭い第2の圧力検出手段13からの圧力検出信号である圧力値vs2・k2が大きくなり、高圧力側では出力レンジの広い第1の圧力検出手段12からの圧力検出信号である圧力値vs1・k1が大きくなる傾向で、それぞれ圧力検出信号を出力させるようにしているので、これらの圧力値vs1・k1、vs2・k2のうち要求される線形特性に近く、検出誤差の少ない側の圧力値vs1・k1またはvs2・k2を選択して計測値Pdを決定し、類似する感度を有する複数の圧力検出手段12、13を用いながらも、それら単独では得られない圧力検出精度が得られ、歩留まりが良好な低コストの圧力検出装置を提供することができる。   Thus, according to the pressure detection device of the present embodiment, from the first pressure detection means 12 and the second pressure detection means 13 having different slopes of the linear characteristics (linearity) required as the pressure detection device, On the low pressure side, the pressure value vs2 · k2, which is a pressure detection signal from the second pressure detection means 13 with a narrow output range, becomes large, and on the high pressure side, the pressure detection from the first pressure detection means 12 with a wide output range. Since the pressure values vs1 · k1, which are signals, tend to increase and pressure detection signals are output, the pressure values vs1 · k1 and vs2 · k2 are close to the required linear characteristics, and detection errors are detected. The pressure value vs1 · k1 or vs2 · k2 on the side having a smaller value is selected to determine the measurement value Pd, and while using a plurality of pressure detection means 12 and 13 having similar sensitivities, they alone Obtained is not obtained pressure detection accuracy, it can yield to provide a pressure detecting apparatus good low cost.

(第2の実施の形態)
図5は、本発明の第2実施形態に係る圧力検出装置の概略ブロック構成図である。なお、本実施形態は上述の第1実施形態と受圧部材の個数が相違するものの、他のほとんどの構成は第1実施形態と共通するので、以下の説明においては、共通する構成については上述の第1実施形態と同一の符号を用い、相違点について詳述する。
(Second Embodiment)
FIG. 5 is a schematic block diagram of a pressure detection device according to the second embodiment of the present invention. Although this embodiment is different from the first embodiment in the number of pressure receiving members, most of the other configurations are the same as those in the first embodiment. Therefore, in the following description, the common configurations are described above. Differences will be described in detail using the same reference numerals as those in the first embodiment.

図5に示すように、本実施形態の圧力検出装置は、入力される流体の圧力を受圧しその圧力に応じたひずみを生じる1つの受圧部材11と、この受圧部材11に入力される圧力に応じた受圧部材11の状態変化、例えばひずみ量の変化を同一の計測レンジで検出し、その状態変化に対応する圧力検出信号を出力する第1の圧力検出手段12および第2の圧力検出手段13と、を備えている。   As shown in FIG. 5, the pressure detection apparatus of the present embodiment receives one pressure receiving member 11 that receives the pressure of the input fluid and generates a strain corresponding to the pressure, and the pressure input to the pressure receiving member 11. The first pressure detecting means 12 and the second pressure detecting means 13 for detecting a change in the state of the pressure receiving member 11 corresponding thereto, for example, a change in the amount of strain in the same measurement range and outputting a pressure detection signal corresponding to the state change. And.

第1の圧力検出手段12および第2の圧力検出手段13は、それぞれ受圧部材11の受圧圧力に応じた受圧部材11の感圧部11aのひずみ量を検出し、検出されたひずみ量に対応する圧力検出信号を出力する第1センサ21および第2センサ22と、これらの特性を調整する上述の第1実施形態と同様な特性調整回路23とによって構成されており、共通する受圧部材11の感圧部11aのひずみ量の変化に対応する圧力検出信号を、互いに異なるオフセット量および出力レンジで出力させるようになっている。   The first pressure detection means 12 and the second pressure detection means 13 detect the strain amount of the pressure sensing part 11a of the pressure receiving member 11 according to the pressure received by the pressure receiving member 11, respectively, and correspond to the detected strain amount. The first sensor 21 and the second sensor 22 that output pressure detection signals, and the characteristic adjustment circuit 23 similar to that of the above-described first embodiment for adjusting these characteristics, are used to sense the common pressure receiving member 11. Pressure detection signals corresponding to changes in the strain amount of the pressure unit 11a are output with different offset amounts and output ranges.

具体的には、第1センサ21および第2センサ22は、上述の第1実施形態と同様な同一仕様のセンサで構成され、受圧部材11の感圧部11aのうち互いに同等なひずみを生じる検出部位、例えば感圧部11aの同一円周上の対向位置である第1の検出部位および第2の検出部位にそれぞれ装着されている。   Specifically, the first sensor 21 and the second sensor 22 are configured by sensors having the same specifications as those in the first embodiment described above, and detection that causes distortion equivalent to each other in the pressure-sensitive portion 11a of the pressure receiving member 11 is performed. The first detection part and the second detection part, which are opposite positions on the same circumference of the part, for example, the pressure sensing unit 11a, are respectively attached.

このように構成しても、車両用のディーゼルエンジンの運転時に、高圧燃料ポンプから吐出される高圧燃料がコモンレールCに供給されると、そのコモンレールC内の燃料圧力が受圧部材11の感圧部11aに受圧される。このとき、圧力検出装置として要求される線形特性の傾きが相違する第1の圧力検出手段12および第2の圧力検出手段13から、低圧力側では出力レンジの狭い第2の圧力検出手段13からの圧力検出信号である圧力値vs2・k2が大きくなり、高圧力側では出力レンジの広い第1の圧力検出手段12からの圧力検出信号である圧力値vs1・k1が大きくなる傾向で、これらの圧力値vs1・k1および圧力値vs2・k2がそれぞれ出力される。そして、これらの圧力値vs1・k1、vs2・k2のうち、要求される直線性、すなわち検出基準特性に相当する直線Fnに近く、検出誤差の少ない高圧側の圧力値vs2・k2またはvs1・k1が選択されて、計測値Pdが決定される。したがって、上述の第1実施形態と同様な効果が期待できる。   Even in this configuration, when high-pressure fuel discharged from the high-pressure fuel pump is supplied to the common rail C during operation of the vehicle diesel engine, the fuel pressure in the common rail C is changed to the pressure-sensitive portion of the pressure receiving member 11. The pressure is received by 11a. At this time, from the first pressure detection means 12 and the second pressure detection means 13 having different linear characteristics required for the pressure detection device, from the second pressure detection means 13 having a narrow output range on the low pressure side. The pressure value vs2 · k2 which is the pressure detection signal of the pressure increases, and the pressure value vs1 · k1 which is the pressure detection signal from the first pressure detection means 12 having a wide output range tends to increase on the high pressure side. Pressure values vs1 · k1 and pressure values vs2 · k2 are output, respectively. Of these pressure values vs1 · k1 and vs2 · k2, the pressure value vs2 · k2 or vs1 · k1 on the high pressure side, which is close to the required linearity, that is, the straight line Fn corresponding to the detection reference characteristic and has a small detection error. Is selected, and the measured value Pd is determined. Therefore, the same effect as that of the first embodiment can be expected.

なお、上述の各実施形態においては、第1センサ21と第2センサ22が同一仕様であるものとしたが、例えばそのセンサ内部のブリッジ回路の抵抗値を異ならせる等して第1センサ21と第2センサ22の検出特性自体をわずかに相違させたり、受圧部材11の感圧部11aにおける検出部位の形状や厚さ、センサ装着位置等を圧力感度がわずかに異なるように設定したりすることも考えられる。すなわち、本発明にいう第1の圧力検出手段および第2の圧力検出手段は、同一仕様のセンサを2重化し、信号処理部21b、22bによってオフセット量および出力レンジを相違させるものに限定されるものではない。   In each of the above-described embodiments, the first sensor 21 and the second sensor 22 have the same specification. However, for example, the resistance value of the bridge circuit inside the sensor is made different from that of the first sensor 21. The detection characteristic itself of the second sensor 22 is slightly different, or the shape and thickness of the detection part in the pressure sensing part 11a of the pressure receiving member 11 and the sensor mounting position are set so that the pressure sensitivity is slightly different. Is also possible. That is, the first pressure detection means and the second pressure detection means referred to in the present invention are limited to those in which the sensors having the same specification are duplicated and the offset amount and the output range are made different by the signal processing units 21b and 22b. It is not a thing.

また、上述の各実施形態では2重のセンサ構成としたが、3重以上に多重化されたセンサ構成を採用することも可能であり、その場合、3つ以上の圧力検出手段の圧力検出特性の基準特性を示す直線の傾きが互いに相違し、理想直線に近い領域で各圧力検出手段からの圧力検出信号を使用することになる。   Further, in each of the above-described embodiments, a double sensor configuration is used, but it is also possible to adopt a sensor configuration in which three or more layers are multiplexed. In this case, the pressure detection characteristics of three or more pressure detection means The slopes of the straight lines indicating the reference characteristics are different from each other, and the pressure detection signals from the respective pressure detection means are used in a region close to the ideal straight line.

さらに、第1の圧力検出手段および第2の圧力検出手段は、共通・単一の検出素子として、例えば受圧部材11の感圧部11aにガラス膜を介し薄膜形半導体歪抵抗21aのみを一体に装着して1つのホイートストンブリッジ回路を構成したものであってもよい。その場合、その単一の薄膜形半導体歪抵抗の検出信号を1つのASICおよびEEPROMを内蔵する信号処理部21bで処理し、その後のゲイン調整やオフセット調整等の特性調整を特性調整回路23に2重に取り込んで2種類の圧力検出信号vs1・k1、vs1・k2を生成することになる。そのようにしても圧力検出装置としての直線性を高めることができる。   Further, the first pressure detection means and the second pressure detection means are integrated with only the thin-film semiconductor strain resistance 21a as a common / single detection element, for example, via the glass film on the pressure sensing portion 11a of the pressure receiving member 11. One Wheatstone bridge circuit may be configured by mounting. In this case, the single thin-film semiconductor strain resistance detection signal is processed by the signal processing unit 21b including one ASIC and EEPROM, and subsequent characteristic adjustment such as gain adjustment and offset adjustment is performed by the characteristic adjustment circuit 23. Two types of pressure detection signals vs1 · k1 and vs1 · k2 are generated by taking in heavy. Even if it does so, the linearity as a pressure detection apparatus can be improved.

上述の各実施形態では、特性調整回路23は、ゲイン調整を先に実行した後にオフセット量設定を行うものとしたが、逆にオフセット量設定後にゲイン調整するものであってもよい。   In each of the above-described embodiments, the characteristic adjustment circuit 23 performs the offset amount setting after executing the gain adjustment first, but conversely, the characteristic adjustment circuit 23 may perform the gain adjustment after setting the offset amount.

また、圧力検出手段によって検出される受圧部材の状態変化は、ひずみに限定されず、特許文献1に記載のような共振周波数の相違から圧力値を算出したり、受圧部の変位や変形量を検出して圧力値を算出したりするものであってもよい。   Further, the change in the state of the pressure receiving member detected by the pressure detecting means is not limited to the strain, and the pressure value can be calculated from the difference in resonance frequency as described in Patent Document 1, or the displacement and deformation amount of the pressure receiving unit can be calculated. The pressure value may be calculated by detection.

さらに、受圧部材の形態によっては感度の特性が上に凸となる上述の各実施形態とは異なり、下に凸となることも考えられ、その場合は、第1および第2の圧力検出手段からの圧力検出信号のうち検出誤差の小さい側となる大小いずれか一方の圧力値は、小さい圧力値を示す圧力検出信号となることになる。さらに、特性曲線が蛇行する場合には上に凸となる場合と下に凸となる場合の組合せと考えることができる。   Furthermore, depending on the form of the pressure receiving member, unlike the above-described embodiments in which the sensitivity characteristic is convex upward, it may be convex downward. In that case, from the first and second pressure detecting means, Any one of the large and small pressure values on the side where the detection error is small becomes a pressure detection signal indicating a small pressure value. Further, when the characteristic curve meanders, it can be considered as a combination of a case where the characteristic curve is convex upward and a case where the characteristic curve is downward.

以上説明したように、本発明に係る圧力検出装置は、圧力検出装置として要求される線形特性の傾きが相違する第1の圧力検出手段および第2の圧力検出手段から、低圧力側では出力レンジの狭い圧力検出手段からの圧力検出信号が大きくなり、高圧力側では出力レンジの広い圧力検出手段からの圧力検出信号が大きくなる傾向で、それぞれ圧力検出信号を出力させるようにしているので、これらの圧力検出信号のうち要求される線形特性に近く、検出誤差の少ない側の圧力検出信号を選択して計測値を決定し、類似する感度を有する複数の圧力検出手段を用いながらも、それら単独では得られない圧力検出精度が得られ、歩留まりが良好な低コストの圧力検出装置を提供することができるという効果を奏するものであり、圧力検出装置、特に入力される圧力を受圧部材に受圧させその状態変化に応じた圧力検出信号を出力する圧力検出装置全般に有用である。   As described above, the pressure detection device according to the present invention has an output range on the low pressure side from the first pressure detection unit and the second pressure detection unit that have different linear characteristics required for the pressure detection device. The pressure detection signal from the narrow pressure detection means tends to increase, and the pressure detection signal from the pressure detection means with a wide output range tends to increase on the high pressure side. Select the pressure detection signal that is close to the required linear characteristic among the pressure detection signals of the above, and determine the measurement value by selecting the pressure detection signal on the side where the detection error is small, while using a plurality of pressure detection means having similar sensitivity, Therefore, it is possible to provide a low-cost pressure detection device that can provide pressure detection accuracy that is not obtained by the above-mentioned method and that has a good yield. The pressure input is useful for pressure detection device which outputs a pressure detection signal corresponding to the state change is receiving the pressure receiving member.

本発明の第1実施形態に係る圧力検出装置の概略ブロック構成図である。1 is a schematic block configuration diagram of a pressure detection device according to a first embodiment of the present invention. 本発明の第1実施形態に係る圧力検出装置の受圧部材の感圧部中心から特定の半径位置にある検出部位のひずみ特性を示すグラフであり、縦軸がその検出部位におけるひずみ量、横軸が受圧部材の感圧部が受ける圧力を示している。It is a graph which shows the distortion characteristic of the detection site | part in a specific radial position from the pressure-sensitive part center of the pressure receiving member of the pressure detection apparatus which concerns on 1st Embodiment of this invention, A vertical axis | shaft is the distortion amount in the detection site | part, a horizontal axis Indicates the pressure received by the pressure-sensitive portion of the pressure-receiving member. 本発明の第1実施形態に係る圧力検出装置の第1の圧力検出手段および第2の圧力検出手段の検出特性を示す特性図である。It is a characteristic view which shows the detection characteristic of the 1st pressure detection means of the pressure detection apparatus which concerns on 1st Embodiment of this invention, and a 2nd pressure detection means. 本発明の第1実施形態に係る圧力検出装置の第1の圧力検出手段および第2の圧力検出手段からの圧力検出信号を選択的に使用する最終的な検出特性を示す特性図である。It is a characteristic view which shows the final detection characteristic which selectively uses the pressure detection signal from the 1st pressure detection means of the pressure detection apparatus which concerns on 1st Embodiment of this invention, and a 2nd pressure detection means. 本発明の第2実施形態に係る圧力検出装置の概略ブロック構成図である。It is a schematic block block diagram of the pressure detection apparatus which concerns on 2nd Embodiment of this invention.

符号の説明Explanation of symbols

11、11A、11B 受圧部材
11a 感圧部
11b 筒状部
12 第1の圧力検出手段
13 第2の圧力検出手段
21 第1センサ
22 第2センサ
23 特性調整回路
24a、24b ゲイン設定部
25a、25b オフセット調整部
26 出力選定部(出力選定手段)
30 ECU(電子制御ユニット)
epi 検出誤差
k1、k2 ゲイン
Pd 計測値
Rg1、Rg2 圧力検出信号の出力レンジ
vs1・k1、vs2・k2 圧力検出信号(圧力値)
11, 11A, 11B Pressure receiving member 11a Pressure sensing portion 11b Tubular portion 12 First pressure detecting means 13 Second pressure detecting means 21 First sensor 22 Second sensor 23 Characteristic adjusting circuits 24a, 24b Gain setting portions 25a, 25b Offset adjustment unit 26 Output selection unit (output selection means)
30 ECU (Electronic Control Unit)
epi detection error k1, k2 gain Pd measured value Rg1, Rg2 pressure detection signal output range vs1, k1, vs2, k2 pressure detection signal (pressure value)

Claims (6)

入力される圧力を受圧する受圧部材と、
それぞれ前記入力される圧力に応じた前記受圧部材の状態変化を検出し、該状態変化に対応する圧力検出信号を同一の計測圧力レンジに対し互いに異なるオフセット量および出力レンジで出力する第1の圧力検出手段および第2の圧力検出手段と、
前記第1の圧力検出手段からの圧力検出信号と前記第2の圧力検出手段からの圧力検出信号とのうち予め設定された検出特性基準に対し検出誤差の小さい側となる大小いずれか一方の圧力値を示す圧力検出信号を選択して検出圧力を示す計測値を決定する出力選定手段と、を備え、
前記オフセット量は前記第1の圧力検出手段の方が前記第2の圧力検出手段より小さくなる一方、前記出力レンジは前記第1の圧力検出手段の方が前記第2の圧力検出手段より大きくなり、前記第1の圧力検出手段の圧力検出信号と前記第2の圧力検出手段の圧力検出信号との差が予め設定された閾値よりも常時小さくなるように、前記第1の圧力検出手段および前記第2の圧力検出手段における前記オフセット量および前記出力レンジがそれぞれ設定されており、
前記第1の圧力検出手段の圧力検出信号および前記第2の圧力検出手段の圧力検出信号のうちいずれかに異常が発生したとき、前記差が前記閾値より大きくなるようにしたことを特徴とする圧力検出装置。
A pressure receiving member that receives the input pressure;
A first pressure that detects a change in the state of the pressure receiving member in accordance with the input pressure and outputs a pressure detection signal corresponding to the change in the state with a different offset amount and output range for the same measurement pressure range. Detection means and second pressure detection means;
Of the pressure detection signal from the first pressure detection means and the pressure detection signal from the second pressure detection means, one of the large and small pressures on the side having a small detection error with respect to a preset detection characteristic reference An output selecting means for selecting a pressure detection signal indicating a value and determining a measurement value indicating the detected pressure; and
The offset amount is smaller in the first pressure detection means than in the second pressure detection means, while the output range is larger in the first pressure detection means than in the second pressure detection means. The first pressure detection means and the first pressure detection means and the pressure detection signal of the first pressure detection means and the pressure detection signal of the second pressure detection means are always smaller than a preset threshold value. The offset amount and the output range in the second pressure detecting means are set, respectively.
The difference is set to be larger than the threshold when an abnormality occurs in any one of the pressure detection signal of the first pressure detection means and the pressure detection signal of the second pressure detection means. Pressure detection device.
前記第1の圧力検出手段および前記第2の圧力検出手段が、
それぞれ前記入力される圧力に応じた前記受圧部材のひずみを検出し、該ひずみに対応する圧力検出信号を出力する第1センサおよび第2センサと、
前記受圧部材に入力される圧力の計測レンジに対する前記第1センサからの圧力検出信号のオフセット量および出力レンジと、前記計測レンジに対する前記第2センサからの圧力検出信号のオフセット量および出力レンジとを、それぞれ異なる大きさに設定する特性調整回路と、によって構成されていることを特徴とする請求項1に記載の圧力検出装置。
The first pressure detection means and the second pressure detection means are:
A first sensor and a second sensor, each detecting a strain of the pressure receiving member corresponding to the input pressure, and outputting a pressure detection signal corresponding to the strain;
The offset amount and output range of the pressure detection signal from the first sensor with respect to the measurement range of the pressure input to the pressure receiving member, and the offset amount and output range of the pressure detection signal from the second sensor with respect to the measurement range The pressure detection device according to claim 1, wherein the pressure detection device is configured by a characteristic adjustment circuit that sets different sizes.
前記第1センサおよび前記第2センサが、同一仕様のセンサで、前記受圧部材のうち互いに同等なひずみを生じる第1の検出部位および第2の検出部位に装着されていることを特徴とする請求項2に記載の圧力検出装置。   The first sensor and the second sensor are sensors of the same specification, and are attached to a first detection site and a second detection site that generate equivalent strains in the pressure receiving member. Item 3. The pressure detection device according to Item 2. 前記受圧部材が前記入力される圧力の変化に応じて前記ひずみを生じる特性が、前記入力される圧力の計測レンジの中間領域内で前記検出特性基準に相当する直線に近付き、前記計測レンジの中間領域外で前記直線から前記ひずみの小さい側に離れる特性を有し、
前記出力選定手段が、前記第1の圧力検出手段からの圧力検出信号と前記第2の圧力検出手段からの圧力検出信号とのうち高い圧力を示す圧力検出信号を選択して前記計測値を決定することを特徴とする請求項2または請求項3に記載の圧力検出装置。
The characteristic in which the pressure-receiving member generates the distortion in response to the change in the input pressure approaches a straight line corresponding to the detection characteristic reference in the intermediate region of the input pressure measurement range, and the middle of the measurement range Having a characteristic of moving away from the straight line to the smaller side of the strain outside the region;
The output selection means selects the pressure detection signal indicating a high pressure from the pressure detection signal from the first pressure detection means and the pressure detection signal from the second pressure detection means, and determines the measurement value. The pressure detection device according to claim 2 or claim 3 , wherein
前記第1センサは、前記検出特性基準に対する検出誤差が前記計測レンジのうち高圧側で小さく、かつ、前記第2センサは、前記検出特性基準に対する検出誤差が前記計測レンジのうち低圧側で小さくなっており、
前記出力選定手段は、前記大小いずれか一方の圧力値を示す圧力検出信号として、前記計測レンジのうち低圧側では前記第2センサからの圧力検出信号を選択し、前記計測レンジのうち高圧側では前記第1センサからの圧力検出信号を選択することを特徴とする請求項4に記載の圧力検出装置。
The first sensor has a small detection error with respect to the detection characteristic reference on the high pressure side of the measurement range, and the second sensor has a small detection error with respect to the detection characteristic reference on the low pressure side of the measurement range. And
The output selection means selects a pressure detection signal from the second sensor on the low pressure side of the measurement range as a pressure detection signal indicating one of the large and small pressure values, and on the high pressure side of the measurement range. The pressure detection device according to claim 4, wherein a pressure detection signal from the first sensor is selected.
前記受圧部材が車両用の内燃機関の燃料蓄圧手段に蓄圧状態で貯留された燃料の圧力を受圧し、前記出力選定手段が前記内燃機関の運転を制御する電子制御ユニットによって構成されることを特徴とする請求項1ないし請求項5のうちいずれか1の請求項に記載の圧力検出装置。   The pressure receiving member receives a pressure of fuel stored in a pressure accumulation state in a fuel pressure accumulation means of an internal combustion engine for a vehicle, and the output selection means is constituted by an electronic control unit that controls the operation of the internal combustion engine. The pressure detection device according to any one of claims 1 to 5.
JP2008007083A 2008-01-16 2008-01-16 Pressure detection device Expired - Fee Related JP5044423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008007083A JP5044423B2 (en) 2008-01-16 2008-01-16 Pressure detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008007083A JP5044423B2 (en) 2008-01-16 2008-01-16 Pressure detection device

Publications (2)

Publication Number Publication Date
JP2009168616A JP2009168616A (en) 2009-07-30
JP5044423B2 true JP5044423B2 (en) 2012-10-10

Family

ID=40969954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008007083A Expired - Fee Related JP5044423B2 (en) 2008-01-16 2008-01-16 Pressure detection device

Country Status (1)

Country Link
JP (1) JP5044423B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211321A (en) * 2016-05-26 2017-11-30 ボッシュ株式会社 Pressure sensor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5441845B2 (en) * 2010-07-09 2014-03-12 アズビル株式会社 Dual pressure sensor and flow control valve
JP2012088195A (en) * 2010-10-20 2012-05-10 Denso Corp Pressure sensor
KR101584682B1 (en) * 2014-09-03 2016-01-13 세종공업 주식회사 Pressure sensing apparatus having self diagnosis
JP2017207094A (en) * 2016-05-16 2017-11-24 大陽日酸株式会社 Hydrogen filling device and hydrogen filling method
KR101897362B1 (en) * 2016-11-14 2018-09-11 주식회사 현대케피코 Pressure Sensor Apparatus Of Vehicle And Method Of Driving The Same
JP7058945B2 (en) * 2017-04-24 2022-04-25 キヤノン株式会社 Image stabilization device and its control method, image pickup device
DE102019203016A1 (en) * 2019-03-06 2020-09-10 Robert Bosch Gmbh Sensor arrangement for determining at least one pressure of a fluid or gaseous medium
KR102234163B1 (en) * 2020-11-20 2021-04-02 주식회사 삼일피엔유 Smart dual pressure transmitter and its use method
KR102596701B1 (en) * 2023-09-07 2023-11-02 주식회사 삼일피엔유 Automatic three-channel pressure transmission device and its operation method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138981A (en) * 1976-05-17 1977-11-19 Hitachi Ltd Stress indicator
JPS6046049U (en) * 1983-09-07 1985-04-01 株式会社フジクラ semiconductor pressure sensor
JPS6049438U (en) * 1983-09-14 1985-04-06 株式会社フジクラ semiconductor pressure sensor
JP2590961B2 (en) * 1987-11-09 1997-03-19 日本電気株式会社 Semiconductor pressure sensor
JPH0619070Y2 (en) * 1988-04-18 1994-05-18 フィリップスセンサテクノロジー株式会社 Linearity compensation circuit for semiconductor pressure sensor
US5024100A (en) * 1990-06-04 1991-06-18 Dynamic Engineering, Inc. Automatic transducer selection system for pressure measurement
JP3956349B2 (en) * 2002-03-13 2007-08-08 本田技研工業株式会社 Gas pressure detector
JP4665725B2 (en) * 2005-11-14 2011-04-06 株式会社デンソー Physical quantity detection device
JP2007278725A (en) * 2006-04-03 2007-10-25 Denso Corp Physical quantity sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211321A (en) * 2016-05-26 2017-11-30 ボッシュ株式会社 Pressure sensor

Also Published As

Publication number Publication date
JP2009168616A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP5044423B2 (en) Pressure detection device
US6237394B1 (en) Apparatus and method for correcting drift in a sensor
JP6090742B2 (en) Pressure detection device
US9766146B2 (en) Internally switched multiple range transducers
EP1111344A1 (en) Sensor fault detection method and apparatus
US20100125425A1 (en) Method and system for detection and compensation of a rapid temperature change on a pressure measurement cell
US20100154552A1 (en) Capacitance diaphragm gauge and vaccum apparatus
JP4223915B2 (en) Thermal flow meter and control system
US10670482B2 (en) Sensor element for a pressure sensor
EP3002574B1 (en) Sensor with method to correct offset drift in cyclic signals.
CN110307930B (en) Method for detecting and compensating for rapid temperature changes in a pressure measuring device
JP5914388B2 (en) Thermal fluid measuring device
US11415473B2 (en) Pressure sensor having a failure detection unit
CN103052870A (en) Resistive pressure measuring cell having diagnostic capabilities
JP2007278725A (en) Physical quantity sensor
US7075448B2 (en) Method and circuit arrangement for offset correction of a measurement bridge
US20200102210A1 (en) Method for calibrating a sensor system
JP5253110B2 (en) Measuring equipment
CN108627299B (en) Calibration method and calibration circuit of pressure sensing device
CN102384762A (en) Method and device for correcting the actual limit value of a sensor
US8833135B2 (en) Sensor system and method for calibrating a sensor system
JP5120289B2 (en) Air flow measurement device
US20240102873A1 (en) Notification Sensor Arrangement for a Differential Pressure Sensor and a Method for Outputting a Sensed Warning Signal
US11402289B2 (en) Means for implementing a method for detecting and compensating for a rapid temperature change in a pressure measuring cell
JP4707052B2 (en) In-cylinder pressure detection device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120713

R151 Written notification of patent or utility model registration

Ref document number: 5044423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees