JP5044307B2 - Thin film formation method - Google Patents

Thin film formation method Download PDF

Info

Publication number
JP5044307B2
JP5044307B2 JP2007176953A JP2007176953A JP5044307B2 JP 5044307 B2 JP5044307 B2 JP 5044307B2 JP 2007176953 A JP2007176953 A JP 2007176953A JP 2007176953 A JP2007176953 A JP 2007176953A JP 5044307 B2 JP5044307 B2 JP 5044307B2
Authority
JP
Japan
Prior art keywords
thin film
heating tank
pressure
mass spectrometer
quadrupole mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007176953A
Other languages
Japanese (ja)
Other versions
JP2009013470A (en
Inventor
進 崎尾
日出夫 竹井
正明 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007176953A priority Critical patent/JP5044307B2/en
Publication of JP2009013470A publication Critical patent/JP2009013470A/en
Application granted granted Critical
Publication of JP5044307B2 publication Critical patent/JP5044307B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は薄膜形成方法にかかり、特に、金属微粒子を焼成して金属薄膜を形成する薄膜形成方法に関する。   The present invention relates to a method for forming a thin film, and more particularly to a method for forming a thin film by firing fine metal particles to form a metal thin film.

最近の半導体産業におけるLSIの高集積化および高速化により、半導体基板の配線の微細化と多層化が進み、配線ピッチが狭まることによって配線間容量や配線抵抗による信号遅延の問題が生じている。   With the recent high integration and high speed of LSI in the semiconductor industry, the miniaturization and multi-layering of the wiring of the semiconductor substrate has progressed, and the problem of signal delay due to inter-wiring capacitance and wiring resistance has arisen due to the narrowing of the wiring pitch.

これを避けるために、抵抗率の低い配線材料と誘電率の低い層間絶縁膜を用いる必要に迫られており、配線材として、従来のAl合金等の代わり、抵抗率が低く、且つエレクトロマイグレーション(EM)耐性のある金属薄膜が実用化され始めている。   In order to avoid this, it is necessary to use a wiring material having a low resistivity and an interlayer insulating film having a low dielectric constant. As a wiring material, instead of a conventional Al alloy or the like, the resistivity is low and electromigration ( EM) resistant metal thin films are starting to be put into practical use.

一般的な金属薄膜の形成方法は多数存在しており、例えば、スパッタ法、CVD法、メッキ法等が広く用いられている。また、金属薄膜によって配線を形成する技術には、配線溝、ビアホール、コンタクトホール等の微細孔が形成された基板表面に金属薄膜を堆積させ、次いでCMP(Chemical-mechanical polishing)処理するいわゆるダマシン法が開発されている。
しかしながら、上記の従来技術の金属薄膜の形成方法では、次のような問題がある。
There are many general methods for forming a metal thin film. For example, sputtering, CVD, plating, etc. are widely used. In addition, as a technique for forming a wiring with a metal thin film, a so-called damascene method in which a metal thin film is deposited on a substrate surface on which fine holes such as wiring grooves, via holes, and contact holes are formed, and then subjected to CMP (Chemical-mechanical polishing) treatment. Has been developed.
However, the above-described conventional method for forming a metal thin film has the following problems.

スパッタ法の場合は、一般にステップカバレッジに限界があり、リフロー法と併用するとしても、低誘電率膜との整合性のためにリフロー温度の低温化という制約があり、リフローによって微小溝部への埋め込みを促進することは困難である。また、プロセスコストも高いという問題がある。
CVD法の場合は、原料コストが高く、成膜速度が遅く、プロセスコストが高いという問題がある。
メッキ法の場合、特に、メッキ法によって銅薄膜を成長させる場合は、バリヤ層の上にいわゆるシード層としての銅薄膜を設けることが必要であり、ボイド中へのメッキ液の残留等の問題がある。
In the case of the sputtering method, the step coverage is generally limited. Even if it is used together with the reflow method, there is a restriction that the reflow temperature is lowered due to the compatibility with the low dielectric constant film. It is difficult to promote. There is also a problem that the process cost is high.
In the case of the CVD method, there are problems that the raw material cost is high, the film forming speed is low, and the process cost is high.
In the case of the plating method, in particular, when a copper thin film is grown by the plating method, it is necessary to provide a copper thin film as a so-called seed layer on the barrier layer, and there is a problem such as residual plating solution in the void. is there.

以上説明したように、上記いずれの成膜法も金属薄膜の形成法としては満足すべきものではなく、これらいずれの成膜法でも、高アスペクト比の孔又は溝内を充填する場合に、配線溝等への満足すべき埋め込み性能が得られていない。
金属超微粒子分散液を用い、上記諸問題を解決しようとする先行技術もあるが、金属微粒子を用いる場合、加熱処理が不十分であると抵抗値が大きくなり、逆に加熱処理が過剰であるとグレイン成長が進みすぎて断線したり、金属光沢を失って白化するという問題がある。
特開2001−254185号公報
As described above, none of the above film forming methods is satisfactory as a method for forming a metal thin film, and in any of these film forming methods, when filling a hole or groove having a high aspect ratio, a wiring trench is formed. Satisfactory embedding performance to the above has not been obtained.
There are prior arts that attempt to solve the above problems by using a metal ultrafine particle dispersion. However, when metal fine particles are used, if the heat treatment is insufficient, the resistance value increases, and conversely, the heat treatment is excessive. However, there is a problem that the grain growth is too advanced and the wire breaks or loses the metallic luster and whitens.
JP 2001-254185 A

本発明の課題は、上記従来技術の問題点を解決し、金属超微粒子分散液を用いて高品質の金属薄膜を形成する技術を提供することにある。   An object of the present invention is to solve the above-described problems of the prior art and provide a technique for forming a high-quality metal thin film using a metal ultrafine particle dispersion.

上記課題を解決するため、本発明は、有機物で被覆された金属微粒子が分散溶媒に分散された分散液を成膜対象物表面に塗布し、前記成膜対象物を加熱槽中で焼成して金属薄膜を形成する薄膜形成方法であって、前記焼成の際、前記加熱槽内に大気を導入しながら、測定器で前記加熱槽内のCOガス圧力に対応する信号前記加熱槽内の圧力が大気圧の状態で測定し、前記信号の強度の変化率の絶対値が基準より小さくなった時を前記焼成の終了時点判断する薄膜形成方法である。
また、本発明は、前記測定器は、四重極型質量分析装置と、直列接続された複数の差動排気室とを有し、前記直列接続の一端の前記差動排気室は前記加熱槽に接続され、他端の前記差動排気室は前記四重極型質量分析装置に接続され、
前記四重極型質量分析装置から前記信号を出力させる薄膜形成方法である。
In order to solve the above problems, the present invention applies a dispersion liquid in which fine metal particles coated with an organic substance are dispersed in a dispersion solvent to the surface of a film formation target, and bakes the film formation target in a heating tank. a thin film forming method for forming a metal thin film, the time of firing, the introduction article al air into the heating tank, instrument in the heating signal to the heating chamber corresponding to the CO gas pressure in the tank Is a method of forming a thin film in which the time when the absolute value of the rate of change in the intensity of the signal becomes smaller than a reference is determined as the end point of the firing.
Further, according to the present invention, the measuring instrument includes a quadrupole mass spectrometer and a plurality of differential exhaust chambers connected in series, and the differential exhaust chamber at one end of the series connection is the heating tank. The differential exhaust chamber at the other end is connected to the quadrupole mass spectrometer,
A thin film forming method for outputting the signal from the quadrupole mass spectrometer .

有機分散剤が除去された時点を正確に検出することができるので、有機分散剤が残留していたり、逆に、有機分散剤の除去後も加熱を継続し、金属薄膜の粒径を成長させてしまうようなことがない。
従って、低プロセスコストで導電性及び反射率に優れた金属薄膜を得ることができる。
Since it is possible to accurately detect when the organic dispersant is removed, the organic dispersant remains, or conversely, heating is continued after removal of the organic dispersant to grow the particle size of the metal thin film. There is no such thing as
Therefore, it is possible to obtain a metal thin film excellent in conductivity and reflectance at a low process cost.

先ず、蒸着装置の真空槽内にヘリウムを導入し、圧力0.5Torrのヘリウム雰囲気中に、α−テルピネオールの蒸気を導入しながらCu蒸気を発生させ、生成されたCu蒸気をα−テルピネオールに接触させ、α−テルピネオールが付着した0.1μm以下のCUの超微粒子を冷却回収する。   First, helium is introduced into the vacuum chamber of the vapor deposition apparatus, Cu vapor is generated while introducing α-terpineol vapor in a helium atmosphere at a pressure of 0.5 Torr, and the generated Cu vapor is brought into contact with α-terpineol. Then, CU ultrafine particles of 0.1 μm or less with α-terpineol attached are cooled and recovered.

α−テルピネオールを、オクタン酸と2−エチルヘキシルアミンとから成る有機分散剤に置換し、有機分散剤で表面が覆われた金属微粒子を得た後、トルエン中に分散させ、金属微粒子の分散液を得る。   α-Terpineol was replaced with an organic dispersant composed of octanoic acid and 2-ethylhexylamine to obtain fine metal particles whose surface was covered with an organic dispersant, and then dispersed in toluene. obtain.

0.1μm以下の粒径の金属微粒子が分散された分散液を成膜対象物(基板)13上に滴下し、スピンコート法等によって成膜対象物(基板)13上に分散液の層を形成した後、乾燥炉中で乾燥させ、金属微粒子の堆積層を形成し、図1の焼成装置10の加熱槽11内に搬入する。   A dispersion liquid in which metal fine particles having a particle diameter of 0.1 μm or less are dispersed is dropped on the film formation target (substrate) 13, and a layer of the dispersion is formed on the film formation target (substrate) 13 by spin coating or the like. After forming, it is dried in a drying furnace to form a deposited layer of metal fine particles, and is carried into the heating tank 11 of the baking apparatus 10 of FIG.

加熱槽11には加熱装置12と給気装置15が設けられており、給気装置15によって加熱槽11内部に大気を導入しながら加熱装置12によって成膜対象物(基板)13を加熱して金属微粒子の堆積層を昇温させると、金属微粒子の堆積層に含有されている溶剤が揮発、蒸発し、次いで、有機分散剤が燃焼し、有機分散剤が除去されると金属微粒子同士が加熱下で接触し、金属薄膜が形成される。   A heating device 12 and an air supply device 15 are provided in the heating tank 11, and the film formation target (substrate) 13 is heated by the heating device 12 while introducing air into the heating tank 11 by the air supply device 15. When the temperature of the metal fine particle deposition layer is raised, the solvent contained in the metal fine particle deposition layer volatilizes and evaporates, then the organic dispersant burns, and when the organic dispersant is removed, the metal fine particles are heated. Underneath, a metal thin film is formed.

加熱槽11には分圧測定器20が接続されており、成膜対象物13を加熱槽11内で加熱する際、分圧測定器20によって加熱槽11の内部のCOガス圧力を測定し、有機分散剤が除去された時点を検出する。   A partial pressure measuring device 20 is connected to the heating tank 11, and when the film formation target 13 is heated in the heating tank 11, the CO gas pressure inside the heating tank 11 is measured by the partial pressure measuring device 20, The point in time when the organic dispersant is removed is detected.

COガス圧力の測定方法を説明すると、この分圧測定器20は四重極型質量分析装置22を有しており、四重極型質量分析装置22では、測定対象雰囲気内のガス圧力を、ガスの種類毎に測定できるが、四重極型質量分析装置22の作動圧力は、大気圧の一憶分の一(10-8)であり、加熱槽11の内部は大気圧であるため、直接加熱槽11の内部雰囲気を直接測定することができない。 The method for measuring the CO gas pressure will be described. The partial pressure measuring instrument 20 has a quadrupole mass spectrometer 22. In the quadrupole mass spectrometer 22, the gas pressure in the atmosphere to be measured is Although it can be measured for each type of gas, the operating pressure of the quadrupole mass spectrometer 22 is one-tenth (10 -8 ) of atmospheric pressure, and the inside of the heating tank 11 is atmospheric pressure. The internal atmosphere of the direct heating tank 11 cannot be measured directly.

分圧測定器20には、直列接続された複数(ここでは3個)の差動排気室211〜213を有する減圧装置17と、各差動排気室211〜213に接続された真空排気装置18が設けられており、直列接続された差動排気室211〜213のうち、一端の差動排気室211は加熱槽11に接続され、他端の差動排気室213は四重極型質量分析装置22に接続されている。 The partial pressure measuring instrument 20 is connected to a decompression device 17 having a plurality (three in this case) of differential exhaust chambers 21 1 to 21 3 connected in series, and to each of the differential exhaust chambers 21 1 to 21 3 . and evacuation device 18 is provided, of the differential pumping chamber 21 1 to 21 3 which are connected in series, a differential exhaust chamber 21 1 of the one end of which is connected to the heating tank 11, the other end of the differential pumping chamber 21 3 is connected to a quadrupole mass spectrometer 22.

真空排気装置18を動作させ、各差動排気室211〜213を真空排気すると、加熱槽11に近い差動排気室211の圧力が高く、四重極型質量分析装置22に近い方の差動排気室213の圧力が低くなる。 When the evacuation device 18 is operated and the differential evacuation chambers 21 1 to 21 3 are evacuated, the pressure in the differential evacuation chamber 21 1 close to the heating tank 11 is high, and the one closer to the quadrupole mass spectrometer 22 The pressure in the differential exhaust chamber 21 3 becomes lower.

このように、複数段の差動排気室211〜213を設け、各差動排気室211〜213の真空排気を行なうと、四重極型質量分析装置22が接続された差動排気室213の圧力は、四重極型質量分析装置22が動作可能な圧力になり、各差動排気室211〜213を介して、加熱槽11内を測定可能になる。 As described above, when the differential exhaust chambers 21 1 to 21 3 are provided and the differential exhaust chambers 21 1 to 21 3 are evacuated, the differential to which the quadrupole mass spectrometer 22 is connected is provided. The pressure in the exhaust chamber 21 3 becomes a pressure at which the quadrupole mass spectrometer 22 can operate, and the inside of the heating tank 11 can be measured via the differential exhaust chambers 21 1 to 21 3 .

金属微粒子の堆積層が加熱され、加熱槽11の内部雰囲気中の酸素によって有機分散剤の燃焼が開始すると、分散剤から一酸化炭素、二酸化炭素、水が生成され、気体となって加熱槽11の内部に放出される。   When the deposition layer of the metal fine particles is heated and the combustion of the organic dispersant is started by oxygen in the internal atmosphere of the heating tank 11, carbon monoxide, carbon dioxide, and water are generated from the dispersant, and are converted into gas and heated. Is released inside.

四重極型質量分析装置22により、加熱を開始した時点から差動排気室213内の気体中の一酸化炭素(CO:分子量28)を継続して測定し、COガスの圧力の値を得ておくと、差動排気室213内のCOガス圧力は、加熱槽11内のCOガス圧力に比例するので、分圧測定器20によって、加熱槽11の内部のCOガス圧力の値を知ることができる。
COガスは分散剤の燃焼によって生じているので、燃焼が進行すると加熱槽11内のCOガス圧力は低下し、その結果、測定されるCOガス圧力の値も低下する。
With the quadrupole mass spectrometer 22, carbon monoxide (CO: molecular weight 28) in the gas in the differential exhaust chamber 21 3 is continuously measured from the start of heating, and the pressure value of the CO gas is determined. Since the CO gas pressure in the differential exhaust chamber 21 3 is proportional to the CO gas pressure in the heating tank 11, the partial pressure measuring device 20 determines the value of the CO gas pressure in the heating tank 11. I can know.
Since CO gas is generated by the combustion of the dispersant, the CO gas pressure in the heating tank 11 decreases as the combustion proceeds, and as a result, the value of the measured CO gas pressure also decreases.

金属微粒子を被覆している有機分散剤が燃焼によって除去されると、COガス発生は停止し、加熱槽11内へはCOガスが供給されなくなる。加熱槽11には、真空排気装置18による排気と共に、大気が供給されており、COガス発生が停止すると、加熱槽11内のCO圧力は、大気に含まれているCO圧力と等しくなる。   When the organic dispersant covering the metal fine particles is removed by combustion, the CO gas generation stops and the CO gas is not supplied into the heating tank 11. The atmosphere is supplied to the heating tank 11 together with the exhaust by the vacuum exhaust device 18, and when CO gas generation is stopped, the CO pressure in the heating tank 11 becomes equal to the CO pressure contained in the atmosphere.

加熱槽11内のCO圧力が一定値になると、分圧測定器20が検出するCO分圧の値も、一定値になる。従って、CO圧力の低下が終了したことを検出すると、金属微粒子を被覆している有機分散剤の除去が完了したと判断し、成膜対象物13を加熱槽11から搬出し、焼成工程を終了する。
CO圧力の低下やCO圧力が一定値になったことは 測定器が出力するCO信号の強度変化によって検出することができる。
When the CO pressure in the heating tank 11 becomes a constant value, the value of the CO partial pressure detected by the partial pressure measuring device 20 also becomes a constant value. Accordingly, when it is detected that the decrease in the CO pressure has been completed, it is determined that the removal of the organic dispersant covering the metal fine particles has been completed, and the film formation target 13 is taken out of the heating tank 11 and the baking process is completed. To do.
A decrease in CO pressure or a constant CO pressure can be detected by a change in the intensity of the CO signal output from the measuring instrument.

例えば、分圧測定器20が測定時刻tにおいて測定したCO圧力を示すCO信号の強度をIとすると、符号Aを比例定数とし、CO圧力の変化率Dは、D=A×dI/dtで求めることができ、この変化率Dの絶対値が所定値以下になった時を、CO圧力変化が停止し、有機分散剤が除去されたと判断することができる。   For example, if the intensity of the CO signal indicating the CO pressure measured by the partial pressure measuring instrument 20 at the measurement time t is I, the sign A is a proportionality constant, and the CO pressure change rate D is D = A × dI / dt. When the absolute value of the rate of change D falls below a predetermined value, it can be determined that the CO pressure change has stopped and the organic dispersant has been removed.

また、近接する異なる測定時刻t1、t2でのCO信号の強度をI1、I2とすると、D=A×{(I1−I2)/(t1−t2)}で変化率を求めることができる。
このように、有機分散剤が除去された時点を正確に検出することができるから、有機分散剤が除去された状態で金属微粒子が過度に加熱されないようにすることができる。
Further, assuming that the intensity of the CO signal at different adjacent measurement times t 1 and t 2 is I 1 and I 2 , it changes as D = A × {(I 1 −I 2 ) / (t 1 −t 2 )}. The rate can be determined.
As described above, since the time when the organic dispersant is removed can be accurately detected, it is possible to prevent the metal fine particles from being excessively heated in the state where the organic dispersant is removed.

なお、有機分散剤が除去され、金属薄膜が形成された成膜対象物(基板)13は、加熱槽11から取り出して後工程の処理を行なうことができる。   The film formation target (substrate) 13 from which the organic dispersant has been removed and the metal thin film has been formed can be taken out of the heating bath 11 and processed in the subsequent process.

金属微粒子としてAgの微粒子を用い、分散剤として炭素数8のオクタン酸と炭素数8の2−エチルヘキシルアミンとを付着させた。
この金属微粒子をトルエン中に金属濃度40wt%で分散させ、分散液を作成した。ここで使用したAgナノ粒子はガス中蒸発法にて作製したものを用いた。
Ag fine particles were used as the metal fine particles, and octanoic acid having 8 carbon atoms and 2-ethylhexylamine having 8 carbon atoms were adhered as dispersing agents.
The metal fine particles were dispersed in toluene at a metal concentration of 40 wt% to prepare a dispersion. The Ag nanoparticles used here were those produced by a gas evaporation method.

次いでガラス基板をスピンコータにセットし、回転させながら、上方から上記分散液を滴下し、ガラス基板の表面を分散液で覆った。
ガラス基板の回転速度と滴下後の観点時間は、燥後の膜厚が0.2μmになるように調節した。

Next, the glass substrate was set on a spin coater, and while being rotated, the dispersion was dropped from above, and the surface of the glass substrate was covered with the dispersion.
Viewpoint time after dropping the rotation speed of the glass substrate, the film thickness of the dry燥後was adjusted to 0.2 [mu] m.

この状態のガラス基板を焼成装置10の加熱槽11内に搬入し、給気装置15によって加熱槽11内に大気を導入し、かつ真空排気装置18で排気しながら加熱装置によってガラス基板を220℃に昇温させ、四重極型質量分析装置22((株)アルバック社製SEPION2)によって、加熱槽11内の一酸化炭素の圧力を測定しながら焼成し、Ag薄膜から成る金属薄膜を形成した。   The glass substrate in this state is carried into the heating tank 11 of the baking apparatus 10, the atmosphere is introduced into the heating tank 11 by the air supply apparatus 15, and the glass substrate is 220 ° C. by the heating apparatus while being evacuated by the vacuum exhaust apparatus 18. The metal film was baked while measuring the pressure of carbon monoxide in the heating tank 11 with a quadrupole mass spectrometer 22 (Sepion 2 manufactured by ULVAC, Inc.) to form a metal thin film made of an Ag thin film. .

四重極型質量分析装置22の出力信号の強度と、加熱時間との関係を図2に示す。横軸は加熱時間、縦軸はCOガス圧力を示すCO信号の強度である。
Agの微粒子を被覆している有機分散剤が酸素と反応して一酸化炭素になって除去されることによりAg粒子同士の焼結が進行するため、加熱時間の経過に従ってCO信号の強度は低下しており、上述したように、CO信号の強度の低下が終了し、COガス圧力の強度が一定値になった状態は、Agの微粒子を被覆している有機分散剤が燃焼し、除去されたことを意味している。
The relationship between the intensity of the output signal of the quadrupole mass spectrometer 22 and the heating time is shown in FIG. The horizontal axis represents the heating time, and the vertical axis represents the intensity of the CO signal indicating the CO gas pressure.
Since the organic dispersant that coats the Ag fine particles reacts with oxygen to become carbon monoxide and is removed, the sintering of the Ag particles proceeds, so the intensity of the CO signal decreases as the heating time elapses. As described above, when the decrease in the intensity of the CO signal is completed and the intensity of the CO gas pressure becomes a constant value, the organic dispersant covering the Ag fine particles is burned and removed. It means that.

図2のグラフでは、約70分でCO信号の強度低下が終了しており、70分付近で有機分散剤の除去が完了したと考えられる。
次に、複数のガラス基板に対し、一酸化炭素の圧力を測定しながら加熱時間を異ならせて焼成し、比抵抗及び鏡面反射率を測定した。加熱時間と得られた金属薄膜の比抵抗及び鏡面反射率の測定結果を下記表1に示す。
In the graph of FIG. 2, it is considered that the reduction in the intensity of the CO signal was completed in about 70 minutes, and the removal of the organic dispersant was completed in the vicinity of 70 minutes.
Next, the glass substrates were baked at different heating times while measuring the pressure of carbon monoxide, and the specific resistance and specular reflectance were measured. The measurement results of the heating time and the specific resistance and specular reflectance of the obtained metal thin film are shown in Table 1 below.

Figure 0005044307
Figure 0005044307

表1の結果から、120分間加熱すると比抵抗が上昇し、反射率が低下しており、これは加熱時間が過度に長時間であったためにグレインが成長してしまい、金属薄膜の特性が劣化したと考えられる。   From the results shown in Table 1, when heating for 120 minutes, the specific resistance increases and the reflectivity decreases. This is because the heating time is excessively long, so that grains grow and the characteristics of the metal thin film deteriorate. It is thought that.

なお、上記実施例では、オクタン酸と2−エチルヘキシルアミンを有機分散剤として用い、両方を付着させたが、いずれか一方を付着させてもよい。また、オクタン酸と2−エチルヘキシルアミンに限定される物ではなく、本発明の有機分散剤は、有機物質から成り、酸素で燃焼させられば、他の分散剤であってもよい。
上記実施例では220℃で焼成したが、Ag微粒子からAgの金属薄膜を形成する場合、加熱温度は150℃以上300℃以下の範囲にすることができる。
In addition, in the said Example, although octanoic acid and 2-ethylhexylamine were used as an organic dispersing agent and both were made to adhere, any one may be made to adhere. The organic dispersant of the present invention is not limited to octanoic acid and 2-ethylhexylamine, and may be other dispersants as long as they are made of an organic substance and burned with oxygen.
In the above-described embodiment, firing was performed at 220 ° C., but when an Ag metal thin film is formed from Ag fine particles, the heating temperature can be in the range of 150 ° C. to 300 ° C.

本発明方法に用いることができる焼成装置の一例An example of a baking apparatus that can be used in the method of the present invention 加熱時間とCO信号強度の関係を示すグラフGraph showing the relationship between heating time and CO signal intensity

符号の説明Explanation of symbols

11……加熱槽
13……成膜対象物
11 ... Heating tank 13 ... Target for film formation

Claims (2)

有機物で被覆された金属微粒子が分散溶媒に分散された分散液を成膜対象物表面に塗布し、前記成膜対象物を加熱槽中で焼成して金属薄膜を形成する薄膜形成方法であって、
前記焼成の際、前記加熱槽内に大気を導入しながら測定器で前記加熱槽内のCOガス圧力に対応する信号前記加熱槽内の圧力が大気圧の状態で測定し、前記信号の強度の変化率の絶対値が基準より小さくなった時を前記焼成の終了時点判断する薄膜形成方法。
A thin film forming method of applying a dispersion liquid in which metal fine particles coated with an organic substance are dispersed in a dispersion solvent to the surface of a film formation target, and firing the film formation target in a heating tank to form a metal thin film. ,
During the firing, while the atmosphere is introduced into the heating tank, a signal corresponding to the CO gas pressure in the heating tank is measured with a measuring instrument in a state where the pressure in the heating tank is atmospheric pressure , A thin film forming method in which the time when the absolute value of the rate of change in strength becomes smaller than a reference is determined as the end point of the firing.
前記測定器は、四重極型質量分析装置と、直列接続された複数の差動排気室とを有し、
前記直列接続の一端の前記差動排気室は前記加熱槽に接続され、他端の前記差動排気室は前記四重極型質量分析装置に接続され、
前記四重極型質量分析装置から前記信号を出力させる請求項1記載の薄膜形成方法。
The measuring instrument has a quadrupole mass spectrometer and a plurality of differential exhaust chambers connected in series,
The differential exhaust chamber at one end of the series connection is connected to the heating tank, and the differential exhaust chamber at the other end is connected to the quadrupole mass spectrometer.
The thin film forming method according to claim 1, wherein the signal is output from the quadrupole mass spectrometer .
JP2007176953A 2007-07-05 2007-07-05 Thin film formation method Expired - Fee Related JP5044307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007176953A JP5044307B2 (en) 2007-07-05 2007-07-05 Thin film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007176953A JP5044307B2 (en) 2007-07-05 2007-07-05 Thin film formation method

Publications (2)

Publication Number Publication Date
JP2009013470A JP2009013470A (en) 2009-01-22
JP5044307B2 true JP5044307B2 (en) 2012-10-10

Family

ID=40354735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007176953A Expired - Fee Related JP5044307B2 (en) 2007-07-05 2007-07-05 Thin film formation method

Country Status (1)

Country Link
JP (1) JP5044307B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165327A (en) * 1980-05-26 1981-12-18 Hitachi Ltd Method and apparatus for monitoring plasma etching
JPH0547717A (en) * 1991-01-22 1993-02-26 Tokyo Electron Ltd Method for detecting and point of plasma surface treatment and method for monitoring status of apparatus therefor
JP3690552B2 (en) * 1997-05-02 2005-08-31 株式会社アルバック Metal paste firing method

Also Published As

Publication number Publication date
JP2009013470A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP4362170B2 (en) Silver ultrafine particle independent dispersion
CN101897016A (en) The manufacture method of semiconductor device, semiconductor device, e-machine, semiconductor-fabricating device and storage medium
US8679978B2 (en) Method for forming a film including Zr, Hf or the like, and method for manufacturing a semiconductor device using the same
US9406557B2 (en) Copper wiring forming method with Ru liner and Cu alloy fill
KR20140020203A (en) Method for forming cu wiring and storage medium
CN103003939A (en) Method and structure to improve the conductivity of narrow copper filled vias
US20160276218A1 (en) METHOD OF MANUFACTURING Cu WIRING
JP4362173B2 (en) Cu ultrafine particle independent dispersion
KR102103072B1 (en) METHOD OF MANUFACTURING Cu WIRING
JP5044307B2 (en) Thin film formation method
JP2001254185A (en) Method of depositing electrically conductive metallic thin film and electrically conductive metallic hyperfine particle-dispersed material used for the method
US6194316B1 (en) Method for forming CU-thin film
JP3953237B2 (en) Method for forming metal thin film and method for producing metal fine particle dispersion
JP2001035814A (en) Method of forming silver wiring pattern
JP2001053028A (en) Formation method of cu thin film
JP2000124157A (en) FORMATION OF Cu THIN FILM
US8981563B2 (en) Semiconductor device and method of manufacturing the same
Perng et al. Self-forming AlOx layer as Cu diffusion barrier on porous low-k film
JP2008098522A (en) Method and apparatus for manufacturing semiconductor device
JP2022006690A (en) Method for forming metal wiring, and film deposition apparatus
US7344979B2 (en) High pressure treatment for improved grain growth and void reduction
KR20030009593A (en) The Method of Cu Electroplating Using Dual Pretreatment of Hydrogen Plasma/Rapid Thermal Annealing
US20090261477A1 (en) Semiconductor device and method of manufacturing the same
Maung Latt et al. Comparative study of copper films prepared by ionized metal plasma sputtering and chemical vapor deposition in the Cu/TaN/SiO2/Si multilayer structure
Truzzi et al. Wet-process deposition of TSV liner and metal films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120713

R150 Certificate of patent or registration of utility model

Ref document number: 5044307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees