JP5041877B2 - Dry friction material - Google Patents

Dry friction material Download PDF

Info

Publication number
JP5041877B2
JP5041877B2 JP2007135641A JP2007135641A JP5041877B2 JP 5041877 B2 JP5041877 B2 JP 5041877B2 JP 2007135641 A JP2007135641 A JP 2007135641A JP 2007135641 A JP2007135641 A JP 2007135641A JP 5041877 B2 JP5041877 B2 JP 5041877B2
Authority
JP
Japan
Prior art keywords
friction material
dry friction
glass fiber
rubber
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007135641A
Other languages
Japanese (ja)
Other versions
JP2008291064A (en
Inventor
章二 樋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP2007135641A priority Critical patent/JP5041877B2/en
Publication of JP2008291064A publication Critical patent/JP2008291064A/en
Application granted granted Critical
Publication of JP5041877B2 publication Critical patent/JP5041877B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、乾式の摩擦材、例えば、自動車等に用いられるトルクリミッターを構成する乾式摩擦材に関し、特に、金属製の摩擦相手材との間に錆付きを発生させることがない乾式摩擦材に関するものである。   The present invention relates to a dry friction material, for example, a dry friction material constituting a torque limiter used in an automobile or the like, and more particularly, to a dry friction material that does not generate rust with a metal friction counterpart material. Is.

近年、クラッチフェーシング、ダンパー、トルクリミッター等を始めとする乾式摩擦材を含むシステムは小型化・軽量化される傾向にあり、乾式摩擦材を含むシステムにおいて乾式摩擦材の耐摩耗性を向上させることは、乾式摩擦材の小型化につながり、システムの小型化・軽量化に有効な手段の1つである。また、同じサイズとすれば、より高負荷なシステムへの搭載も可能となる。   In recent years, systems that include dry friction materials such as clutch facings, dampers, torque limiters, etc. have tended to be smaller and lighter, and in systems that include dry friction materials, improve the wear resistance of dry friction materials. Is one of the effective means for reducing the size and weight of the system. In addition, if the size is the same, it can be mounted on a higher load system.

クラッチフェーシングの製造方法としては、特許文献1に示されるように、基材となる長繊維を束ねた繊維束(ガラスロービング)に熱硬化性樹脂を含む含浸液を含浸させて樹脂含浸紐を形成する樹脂含浸工程と、樹脂含浸紐に配合ゴムを付着させるゴム付着工程とを有し、前記含浸液の媒体は水であり、熱硬化性樹脂はメラミン配合率が30%以上80%以下の水性メラミン変性フェノール樹脂であることを特徴とする方法が知られている。この特許文献1の技術によれば、樹脂含浸工程でもゴム付着工程でも有機溶媒を使用することなしに、最終製品の乾式摩擦材(クラッチフェーシング等)の性能が低下しない摩擦材用素材を製造することができる。   As a manufacturing method of the clutch facing, as shown in Patent Document 1, a fiber bundle (glass roving) in which long fibers as a base material are bundled is impregnated with an impregnating liquid containing a thermosetting resin to form a resin-impregnated string. A resin impregnation step and a rubber adhering step for adhering the compounded rubber to the resin impregnated string, the medium of the impregnating liquid is water, and the thermosetting resin is an aqueous solution having a melamine compounding ratio of 30% to 80%. A method characterized by being a melamine-modified phenol resin is known. According to the technique of Patent Document 1, a material for a friction material that does not deteriorate the performance of a dry friction material (clutch facing, etc.) of a final product without using an organic solvent in a resin impregnation process or a rubber adhesion process is manufactured. be able to.

また、特許文献2に示されるように、クラッチフェーシングを始めとする乾式摩擦材の製造方法として、基材、樹脂、及びゴム材を主成分とする乾式摩擦材において、多孔性炭素材料を含有することを特徴とする発明について、開示されている。このように、多孔性炭素材料を乾式摩擦材に配合することによって、高回転・高温の条件下においても耐摩耗性が良く、高摩擦係数を維持できるとしている。
特開2000−037797号公報 特開2000−256652号公報
Moreover, as shown in Patent Document 2, as a dry friction material manufacturing method including clutch facing, a dry friction material mainly composed of a base material, a resin, and a rubber material contains a porous carbon material. The invention characterized by this is disclosed. Thus, by blending the porous carbon material with the dry friction material, it is said that the wear resistance is good even under conditions of high rotation and high temperature, and a high friction coefficient can be maintained.
JP 2000-037797 A Japanese Patent Application Laid-Open No. 2000-256652

しかしながら、上記特許文献1に記載の技術においても特許文献2に記載の技術においても、乾式摩擦材の摩擦相手材として鋼板を用いているため、高湿度等の過酷な使用条件下においては鋼板と摩擦材との間に錆付きが発生し、クラッチ固着等の不具合が起こるという問題点があった。   However, in both the technique described in Patent Document 1 and the technique described in Patent Document 2, since a steel plate is used as the friction counterpart material of the dry friction material, the steel plate is used under severe usage conditions such as high humidity. There is a problem that rusting occurs between the friction material and problems such as clutch fixation.

そこで、本発明は、乾式摩擦材の摩擦面に占めるガラス繊維の面積の割合を所定値以下に低減しつつ乾式摩擦材の強度を維持することによって、従来の工程で製造できて、かつ、金属製の摩擦相手材との間の錆付きを防止しつつ強度及び摩擦特性を維持することができる乾式摩擦材の提供を課題とするものである。   Therefore, the present invention can be manufactured in the conventional process by maintaining the strength of the dry friction material while reducing the ratio of the area of the glass fiber to the friction surface of the dry friction material to a predetermined value or less, and the metal An object of the present invention is to provide a dry friction material capable of maintaining strength and friction characteristics while preventing rusting with a manufactured friction counterpart material.

請求項1の発明に係る乾式摩擦材は、ガラス繊維とガラス繊維含浸用合成樹脂と配合ゴムとを含有し、摩擦相手材が金属製である乾式摩擦材であって、前記ガラス繊維と前記ガラス繊維含浸用合成樹脂と前記配合ゴムを略均一に配合した下層と、摩擦面に占める前記ガラス繊維の面積が0%とした配合ゴムのみからなる上層とを一体にしたものである。 The dry friction material according to the invention of claim 1 is a dry friction material containing glass fiber, a synthetic resin for impregnating glass fiber, and a compounded rubber, wherein the friction counterpart material is made of metal, and the glass fiber and the glass A lower layer in which the synthetic resin for fiber impregnation and the blended rubber are blended substantially uniformly and an upper layer made of only the blended rubber in which the area of the glass fiber occupying the friction surface is 0% are integrated.

ここで、「配合ゴム」とは、乾式摩擦材を構成する材料であって、合成ゴム・天然ゴム等のゴム、カーボンブラック等の顔料、硫黄、加硫促進剤、レジンダスト・炭酸カルシウム等の充填材を含有する、ゴムを主体とする混合物である。また、「合成ゴム」としては、アクリロニトリル−ブタジエンゴム(NBR,二トリルゴムとも言う)、スチレン−ブタジエンゴム(SBR)等を単独で、または混合して用いることができる。   Here, “compound rubber” is a material constituting a dry friction material, such as rubber such as synthetic rubber and natural rubber, pigment such as carbon black, sulfur, vulcanization accelerator, resin dust, calcium carbonate, etc. A rubber-based mixture containing a filler. As the “synthetic rubber”, acrylonitrile-butadiene rubber (also referred to as NBR, nitrile rubber), styrene-butadiene rubber (SBR), or the like can be used alone or in combination.

また、前記乾式摩擦材は前記ガラス繊維と前記ガラス繊維含浸用合成樹脂と前記配合ゴムとを略均一に配合した下層と前記配合ゴムのみの上層とを一体に成形してなる二層型の摩擦材であって、前記下層の厚さに対する前記上層の厚さの比率が20%〜85%の範囲内であるものである。 Further , the dry friction material is a two-layer friction material formed by integrally molding a lower layer in which the glass fiber, the synthetic resin for impregnating glass fiber, and the compounded rubber are compounded substantially uniformly and an upper layer of only the compounded rubber. It is a material, The ratio of the thickness of the said upper layer with respect to the thickness of the said lower layer exists in the range of 20%-85%.

請求項2の発明に係る乾式摩擦材は、請求項1の構成において、前記乾式摩擦材によって構成されるシステムがトルクリミッターであるものである。 A dry friction material according to a second aspect of the present invention is the structure of the first aspect, wherein the system constituted by the dry friction material is a torque limiter.

請求項1の発明に係る乾式摩擦材は、ガラス繊維とガラス繊維含浸用合成樹脂と配合ゴムとを含有し、摩擦相手材が金属製である乾式摩擦材であって、前記ガラス繊維と前記ガラス繊維含浸用合成樹脂と前記配合ゴムを略均一に配合した下層と、摩擦面に占める前記ガラス繊維の面積が0%とした配合ゴムのみからなる上層とを一体にした。 The dry friction material according to the invention of claim 1 is a dry friction material containing glass fiber, a synthetic resin for impregnating glass fiber, and a compounded rubber, wherein the friction counterpart material is made of metal, and the glass fiber and the glass A lower layer in which the synthetic resin for fiber impregnation and the blended rubber were blended substantially uniformly, and an upper layer made of only the blended rubber in which the area of the glass fiber in the friction surface was 0% were integrated.

ここで、「配合ゴム」とは、乾式摩擦材を構成する材料であって、合成ゴム・天然ゴム等のゴム、カーボンブラック等の顔料、硫黄、加硫促進剤、レジンダスト・炭酸カルシウム等の充填材を含有する、ゴムを主体とする混合物である。また、「合成ゴム」としては、アクリロニトリル−ブタジエンゴム(NBR,二トリルゴムとも言う)、スチレン−ブタジエンゴム(SBR)等を単独で、または混合して用いることができる。   Here, “compound rubber” is a material constituting a dry friction material, such as rubber such as synthetic rubber and natural rubber, pigment such as carbon black, sulfur, vulcanization accelerator, resin dust, calcium carbonate, etc. A rubber-based mixture containing a filler. As the “synthetic rubber”, acrylonitrile-butadiene rubber (also referred to as NBR, nitrile rubber), styrene-butadiene rubber (SBR), or the like can be used alone or in combination.

本発明者は、鉄鋼を始めとする金属製の摩擦相手材を有する乾式摩擦材において、高湿度の条件下における錆付きの発生について鋭意実験研究を重ねた結果、摩擦相手材との摩擦面におけるガラス繊維の占める面積の割合が40%以下である場合に、錆付きが発生しないことを見出し、この知見に基づいて本発明を完成したものである。すなわち、摩擦面におけるガラス繊維の占める面積の割合が40%以下であれば、高湿度の条件下においても錆付きが発生しないことが分かった。   The inventor has conducted extensive experimental research on the occurrence of rust under high humidity conditions in a dry friction material having a metal friction partner material such as steel, and as a result, on the friction surface with the friction partner material. It has been found that rusting does not occur when the proportion of the area occupied by the glass fiber is 40% or less, and the present invention has been completed based on this finding. That is, when the ratio of the area occupied by the glass fiber on the friction surface is 40% or less, it was found that rust does not occur even under high humidity conditions.

ここで、乾式摩擦材としてガラス繊維とガラス繊維含浸用合成樹脂と配合ゴムとを略均一に成形してなる通常の一層型の摩擦材の場合には、強度を保持するためにある程度以上の体積含有率でガラス繊維を含有させる必要があるため、摩擦面におけるガラス繊維の占める面積の割合を0%にすることはできない。   Here, in the case of a normal one-layer type friction material formed by substantially uniformly molding glass fiber, a synthetic resin for impregnating glass fiber and compounded rubber as a dry friction material, a volume of a certain amount or more is required to maintain strength. Since it is necessary to contain glass fiber at a content rate, the ratio of the area occupied by glass fiber on the friction surface cannot be 0%.

しかし、ガラス繊維とガラス繊維含浸用合成樹脂と配合ゴムとを略均一に配合した下層と配合ゴムのみの上層とを一体に成形してなる二層型の摩擦材の場合には、下層に一定値以上のガラス繊維を含有させることによって、乾式摩擦材としての強度を維持しつつ、摩擦面におけるガラス繊維の占める面積の割合を0%にすることができる。   However, in the case of a two-layer type friction material formed by integrally molding a lower layer in which glass fiber, a synthetic resin for impregnating glass fiber and compounded rubber are blended substantially uniformly and an upper layer of only the compounded rubber, the lower layer is constant. By containing glass fibers having a value equal to or greater than the value, the ratio of the area occupied by the glass fibers on the friction surface can be reduced to 0% while maintaining the strength as a dry friction material.

このようにして、乾式摩擦材の摩擦面に占めるガラス繊維の面積の割合を所定値以下に低減しつつ乾式摩擦材の強度を維持することによって、従来の工程で製造できて、かつ、金属製の摩擦相手材との間の錆付きを防止しつつ強度及び摩擦特性を維持することができる乾式摩擦材となる。   Thus, by maintaining the strength of the dry friction material while reducing the ratio of the area of the glass fiber to the friction surface of the dry friction material to a predetermined value or less, it can be manufactured in a conventional process and made of metal It becomes a dry-type friction material which can maintain intensity | strength and a friction characteristic, preventing rusting between these friction counterpart materials.

更に、乾式摩擦材はガラス繊維とガラス繊維含浸用合成樹脂と配合ゴムとを略均一に配合した下層と配合ゴムのみの上層とを一体に成形してなる二層型の摩擦材であって、下層の厚さに対する上層の厚さの比率が20%〜85%の範囲内、より好ましくは25%〜60%の範囲内である。 Furthermore, the dry friction material is a two-layer friction material formed by integrally molding a lower layer in which glass fiber, a synthetic resin for impregnating glass fiber, and a compounded rubber are compounded substantially uniformly and an upper layer of only the compounded rubber. The ratio of the upper layer thickness to the lower layer thickness is in the range of 20% to 85%, more preferably in the range of 25% to 60%.

本発明者は、鋭意実験研究の結果、ガラス繊維とガラス繊維含浸用合成樹脂と配合ゴムとを略均一に配合した下層と配合ゴムのみの上層とを一体に成形してなる二層型の乾式摩擦材において、下層の厚さに対する上層の厚さの比率が20%〜85%の範囲内である場合に、乾式摩擦材の強度が維持されて高速回転にも耐えられることを見出し、この知見に基づいて本発明を完成したものである。   As a result of diligent experimental research, the inventor of the present invention has a two-layer dry type formed by integrally molding a lower layer in which glass fiber, a synthetic resin for impregnating glass fiber and a compounded rubber are blended substantially uniformly, and an upper layer of only the compounded rubber. In the friction material, when the ratio of the thickness of the upper layer to the thickness of the lower layer is in the range of 20% to 85%, it was found that the strength of the dry friction material is maintained and can withstand high-speed rotation. The present invention has been completed based on the above.

すなわち、かかる二層型の乾式摩擦材全体においては、摩擦面が配合ゴムのみからなり摩擦面に占めるガラス繊維の面積の割合が0%であるため、高湿度等の過酷な使用条件においても摩擦相手材との錆付きが起こる心配はないが、配合ゴムのみからなる上層の割合が余り大きいと、乾式摩擦材としての強度が低下して高速回転に耐えられずに破壊を起こしてしまう。   That is, in the entire two-layer dry friction material, the friction surface is composed only of compounded rubber and the ratio of the area of the glass fiber to the friction surface is 0%. Therefore, even under severe usage conditions such as high humidity, the friction surface There is no concern about rusting with the mating material, but if the proportion of the upper layer consisting only of the compounded rubber is too large, the strength as a dry friction material will be reduced and it will not be able to withstand high-speed rotation and will be destroyed.

ここで、二層型の乾式摩擦材においては、下層の厚さに対する上層の厚さの比率が85%以下であれば乾式摩擦材としての強度が維持されて高速回転にも耐えられ、かつ、下層の厚さに対する上層の厚さの比率が20%以上であれば長期間の使用においても上層が摩滅してしまうことがなく、ガラス繊維が摩擦面に露出することがないため錆付きが発生する恐れもない。したがって、下層の厚さに対する上層の厚さの比率は20%〜85%の範囲内であることが好ましい。   Here, in the two-layer dry friction material, if the ratio of the upper layer thickness to the lower layer thickness is 85% or less, the strength as the dry friction material is maintained and can withstand high-speed rotation, and If the ratio of the thickness of the upper layer to the thickness of the lower layer is 20% or more, the upper layer will not be worn even after long-term use, and the glass fiber will not be exposed to the friction surface, so rust will occur. There is no fear of doing. Therefore, the ratio of the upper layer thickness to the lower layer thickness is preferably in the range of 20% to 85%.

更に、下層の厚さに対する上層の厚さの比率が25%〜60%の範囲内であれば、より乾式摩擦材としての強度が向上し、ガラス繊維を含まない摩擦面(上層)の厚さもより厚くなるため、より好ましい。   Furthermore, if the ratio of the thickness of the upper layer to the thickness of the lower layer is in the range of 25% to 60%, the strength as a dry friction material is improved, and the thickness of the friction surface (upper layer) that does not contain glass fiber is also increased. Since it becomes thicker, it is more preferable.

このようにして、乾式摩擦材の摩擦面に占めるガラス繊維の面積の割合を所定値以下に低減しつつ乾式摩擦材の強度を維持することによって、従来の工程で製造できて、かつ、金属製の摩擦相手材との間の錆付きを防止しつつ強度及び摩擦特性を維持することができる乾式摩擦材となる。   Thus, by maintaining the strength of the dry friction material while reducing the ratio of the area of the glass fiber to the friction surface of the dry friction material to a predetermined value or less, it can be manufactured in a conventional process and made of metal It becomes a dry-type friction material which can maintain intensity | strength and a friction characteristic, preventing rusting between these friction counterpart materials.

請求項2の発明に係る乾式摩擦材においては、乾式摩擦材によって構成されるシステムがトルクリミッターである。請求項1の発明に係る乾式摩擦材においては、高湿度等の過酷な使用条件かにおいても、金属製の摩擦相手材との間の錆付きを確実に防止することができる。したがって、特にトルクリミッターに使用する乾式摩擦材として適している。 In the dry friction material according to the invention of claim 2, the system constituted by the dry friction material is a torque limiter. In the dry friction material according to the first aspect of the present invention , it is possible to reliably prevent rusting with a metal friction partner material even under severe usage conditions such as high humidity. Therefore, it is particularly suitable as a dry friction material used for a torque limiter.

このようにして、乾式摩擦材の摩擦面に占めるガラス繊維の面積の割合を所定値以下に低減しつつ乾式摩擦材の強度を維持することによって、従来の工程で製造できて、かつ、金属製の摩擦相手材との間の錆付きを防止しつつ強度及び摩擦特性を維持することができる乾式摩擦材となる。   Thus, by maintaining the strength of the dry friction material while reducing the ratio of the area of the glass fiber to the friction surface of the dry friction material to a predetermined value or less, it can be manufactured in a conventional process and made of metal It becomes a dry-type friction material which can maintain intensity | strength and a friction characteristic, preventing rusting between these friction counterpart materials.

次に、本発明の実施の形態に係る乾式摩擦材について説明する。なお、実施の形態2以降において、実施の形態1の部分と同一の記号及び同一の符号は、実施の形態1と同一または相当する機能部分を意味し、実施の形態相互の同一の記号及び同一の符号は、それら実施の形態に共通する機能部分であるから、ここでは重複する詳細な説明を省略する。   Next, the dry friction material according to the embodiment of the present invention will be described. In the second and subsequent embodiments, the same symbols and the same reference numerals as those in the first embodiment mean the same or corresponding functional parts as those in the first embodiment, and the same symbols and the same in the embodiments. The reference numeral is a functional part common to those embodiments, and therefore detailed description thereof is omitted here.

実施の形態1
まず、本発明の実施の形態1に係る乾式摩擦材について、図1乃至図3を参照して説明する。図1は本発明の実施の形態1に係る乾式摩擦材を用いたトルクリミッターの概略構成を示す断面図である。図2は本発明の実施の形態1に係る乾式摩擦材の製造工程を示すフローチャートである。図3は本発明の実施の形態1に係る乾式摩擦材の性能評価に用いた供試体の寸法を示す説明図である。
Embodiment 1
First, a dry friction material according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view showing a schematic configuration of a torque limiter using a dry friction material according to Embodiment 1 of the present invention. FIG. 2 is a flowchart showing a manufacturing process of the dry friction material according to Embodiment 1 of the present invention. FIG. 3 is an explanatory diagram showing the dimensions of the specimen used for the performance evaluation of the dry friction material according to Embodiment 1 of the present invention.

図1に示されるように、本実施の形態1に係る乾式摩擦材3は、外径φ220mm×内径φ190mm×厚さ2.4mmのリング状の成形体で、同じ外径とやや小さい内径を有するリング状の芯金4の両面に貼り付けて用いられる。本実施の形態1に係るトルクリミッター1は、この乾式摩擦材3を芯金4の両面に貼り付けた摩擦板と、この摩擦板に押圧されてエンジンからの駆動力トルクを伝達する摩擦相手材としての鋼板製のプレッシャープレート2と、摩擦板の回転をATに伝達する回転軸5によって構成されている。   As shown in FIG. 1, the dry friction material 3 according to the first embodiment is a ring-shaped molded body having an outer diameter of φ220 mm × an inner diameter of φ190 mm × a thickness of 2.4 mm, and has the same outer diameter and a slightly smaller inner diameter. Attached to both sides of the ring-shaped cored bar 4 is used. The torque limiter 1 according to the first embodiment includes a friction plate in which the dry friction material 3 is attached to both surfaces of a cored bar 4, and a friction counterpart material that is pressed by the friction plate and transmits a driving force torque from the engine. The steel plate pressure plate 2 and the rotation shaft 5 for transmitting the rotation of the friction plate to the AT are constituted.

次に、本実施の形態1に係る乾式摩擦材3の製造方法について、図2を参照して説明する。まず、樹脂含浸工程において、ガラス繊維にガラス繊維含浸用合成樹脂としてのフェノール樹脂(より詳しくはメラミン変性フェノール樹脂)を含む含浸液を含浸させて樹脂含浸紐が形成される(ステップS10)。続いて、ゴム付着工程において、この樹脂含浸紐に配合ゴムを付着させ(ステップS11)、巻取り工程において、配合ゴムが付着した樹脂含浸紐が所定の大きさに巻取られる(ステップS12)。   Next, a method for manufacturing the dry friction material 3 according to the first embodiment will be described with reference to FIG. First, in the resin impregnation step, a glass-impregnated string is formed by impregnating a glass fiber with an impregnation liquid containing a phenol resin (more specifically, a melamine-modified phenol resin) as a synthetic resin for glass fiber impregnation (step S10). Subsequently, in the rubber attaching process, the compounded rubber is attached to the resin-impregnated string (step S11), and in the winding process, the resin-impregnated string to which the compounded rubber is attached is wound up to a predetermined size (step S12).

ここで、「配合ゴム」としては、合成ゴム、カーボンブラック等の顔料、硫黄、加硫促進剤、レジンダスト・炭酸カルシウム等の充填材を含有するゴムを主体とする混合物を用いており、合成ゴムとしては、アクリロニトリル−ブタジエンゴム(NBR)とスチレン−ブタジエンゴム(SBR)を混合して用いている。   Here, as the “compound rubber”, a synthetic rubber, a mixture mainly composed of rubber containing pigments such as carbon black, sulfur, a vulcanization accelerator, and resin dust / calcium carbonate is used. As the rubber, acrylonitrile-butadiene rubber (NBR) and styrene-butadiene rubber (SBR) are mixed and used.

そして、成形工程において、巻取り品が金型に押し込まれて加熱加圧成形されるが(ステップS13)、成形工程においては、面圧15MPa、温度165℃で、数回のガス抜きを行って、2分間加熱加圧成形する。この成形体を金型から取り出して、240℃で10時間熱処理を行い(ステップS14)、その後常温まで放冷してから、表裏両面を研磨して(ステップS15)、本実施の形態1に係る乾式摩擦材3が完成する。   In the molding process, the wound product is pressed into the mold and heated and pressed (step S13). In the molding process, several times of degassing are performed at a surface pressure of 15 MPa and a temperature of 165 ° C. Heat and pressure mold for 2 minutes. The molded body is taken out from the mold, heat-treated at 240 ° C. for 10 hours (step S14), then allowed to cool to room temperature, and then both front and back surfaces are polished (step S15), and the first embodiment is applied. The dry friction material 3 is completed.

本実施の形態1においては、ガラス繊維の体積含有率を5vol%〜18vol%の範囲内で変化させて、実施例1乃至実施例5の5種類の乾式摩擦材を作製した。また、比較のため、ガラス繊維を全く含まない配合ゴムのみからなる比較例1、及びガラス繊維の体積含有率を22vol%とした比較例2の乾式摩擦材をも作製した。これらの実施例1乃至実施例5、比較例1及び比較例2の配合割合を表1の上段に示す。   In the first embodiment, the five types of dry friction materials of Examples 1 to 5 were manufactured by changing the volume content of the glass fiber within the range of 5 vol% to 18 vol%. For comparison, dry friction materials of Comparative Example 1 consisting only of compounded rubber containing no glass fiber and Comparative Example 2 having a glass fiber volume content of 22 vol% were also produced. The blending ratios of Examples 1 to 5, Comparative Example 1 and Comparative Example 2 are shown in the upper part of Table 1.

Figure 0005041877
Figure 0005041877


これらの配合で図2のフローチャートにしたがって作製された実施例1乃至実施例5、比較例1及び比較例2の乾式摩擦材の特性を評価した。ガラス繊維の摩擦材表面への出現割合、すなわち乾式摩擦材の摩擦面におけるガラス繊維の占める面積の割合については、ガラス繊維部分の大きさを測定して、面積比を算出した。錆付き性については、所定時間水に浸漬させた供試体を相手材(鋼板)に所定圧力で密着させて、所定の環境下で保持させた後、供試体と相手材(鋼板)の錆付き荷重をプッシュプルゲージで測定した。   The characteristics of the dry friction materials of Examples 1 to 5, Comparative Example 1 and Comparative Example 2 prepared according to the flow chart of FIG. Regarding the appearance ratio of the glass fiber to the friction material surface, that is, the ratio of the area occupied by the glass fiber on the friction surface of the dry friction material, the area ratio was calculated by measuring the size of the glass fiber portion. For rusting properties, a specimen immersed in water for a specified time is brought into close contact with the mating material (steel plate) at a prescribed pressure and held in a prescribed environment, and then the specimen and the mating material (steel plate) are rusted. The load was measured with a push-pull gauge.

なお、錆付き性の評価用の供試体としては、図3に示されるように、外径φ220mm×内径φ190mm×厚さ2.4mmのリング状の乾式摩擦材3から、リングの中心線に平行に、幅25mmの供試体TPを切り出して使用した。   As shown in FIG. 3, the specimen for evaluation of rustability was parallel to the center line of the ring from a ring-shaped dry friction material 3 having an outer diameter of 220 mm, an inner diameter of 190 mm, and a thickness of 2.4 mm. In addition, a specimen TP having a width of 25 mm was cut out and used.

また、回転破壊強度については、乾式摩擦材3を芯金4の両面に貼り付けた供試体を用いて、所定の保持温度、所定の保持回転数、所定の保持時間高速回転させて、破壊・クラックの発生の有無を評価した。これらの評価結果を表1の下段に、また詳細な評価条件について、表1の欄外に示す。   In addition, with respect to the rotational fracture strength, using a specimen in which the dry friction material 3 is adhered to both surfaces of the cored bar 4, the rotational fracture strength is rotated at a predetermined holding temperature, a predetermined holding rotation speed, and a predetermined holding time at a high speed. The presence or absence of cracks was evaluated. These evaluation results are shown in the lower part of Table 1, and detailed evaluation conditions are shown in the margins of Table 1.

表1の下段に示されるように、ガラス繊維の摩擦材表面への出現割合は、ガラス繊維の体積含有率を5vol%〜18vol%の範囲内とした実施例1乃至実施例5の供試体においては、10%〜40%の範囲内に収まっている。これに対して、配合ゴムのみからなる比較例1においては、ガラス繊維の摩擦材表面への出現割合は当然0%であり、ガラス繊維の体積含有率を22vol%とした比較例2の供試体においては、49%となり、40%を上回っている。   As shown in the lower part of Table 1, the appearance ratio of the glass fiber to the friction material surface is that in the specimens of Examples 1 to 5 in which the volume content of the glass fiber is in the range of 5 vol% to 18 vol%. Is within the range of 10% to 40%. On the other hand, in the comparative example 1 which consists only of compounded rubber, the appearance ratio of the glass fiber on the friction material surface is naturally 0%, and the specimen of the comparative example 2 in which the volume content of the glass fiber is 22 vol%. Is 49%, exceeding 40%.

その結果、錆付き荷重は、供試体10枚の平均値で、実施例1乃至実施例5及び比較例1においては0(ゼロ)N〜49Nと小さい値に収まっているのに対して、比較例2においては194Nと大きな値となり、温度50℃、湿度90%RH以上で1.3MPaの面圧で72時間保持という条件下では、顕著に錆付きが発生することが分かった。   As a result, the load with rust is an average value of 10 specimens, and in Examples 1 to 5 and Comparative Example 1, it is within a small value of 0 (zero) N to 49 N, whereas In Example 2, it was a large value of 194 N, and it was found that rusting was noticeably generated under the conditions of a temperature of 50 ° C., a humidity of 90% RH or more and a surface pressure of 1.3 MPa for 72 hours.

また、回転破壊強度については、雰囲気温度130℃、回転数10000rpmで5分間保持という試験条件で、実施例1乃至実施例5及び比較例2においては、供試体10枚について破壊・クラックが全く発生しなかったのに対して、ガラス繊維を全く含まない配合ゴムのみからなる比較例1においては、供試体10枚の全てについて破壊が発生した。このように、ガラス繊維を全く含まない配合では、回転破壊強度が不足することが判明した。   In addition, with respect to the rotational fracture strength, in the test conditions of holding for 5 minutes at an atmospheric temperature of 130 ° C. and a rotational speed of 10000 rpm, in Examples 1 to 5 and Comparative Example 2, no fractures or cracks occurred on 10 specimens. On the other hand, in Comparative Example 1 consisting only of compounded rubber containing no glass fiber, all 10 specimens were broken. Thus, it was found that the rotational fracture strength was insufficient with the formulation containing no glass fiber.

したがって、表1の下段に示される結果から、乾式摩擦材3におけるガラス繊維の体積含有率を5vol%以上とすることによって充分な回転破壊強度が得られ、乾式摩擦材3におけるガラス繊維の体積含有率を18vol%以下とすることによってガラス繊維の摩擦材表面への出現割合を40%以下に抑えることができ、過酷な条件下における錆付きも防止できることが判明した。   Therefore, from the results shown in the lower part of Table 1, sufficient rotational fracture strength can be obtained by setting the glass fiber volume content in the dry friction material 3 to 5 vol% or more, and the glass fiber volume content in the dry friction material 3 is obtained. It has been found that by controlling the rate to 18 vol% or less, the appearance ratio of glass fibers to the friction material surface can be suppressed to 40% or less, and rusting under severe conditions can be prevented.

このようにして、本実施の形態1に係る乾式摩擦材3においては、ガラス繊維の体積含有率を5vol%〜18vol%の範囲内とすることによって、乾式摩擦材の摩擦面に占めるガラス繊維の面積の割合を所定値以下に低減しつつ乾式摩擦材の強度を維持することができ、従来の工程で製造できて、かつ、金属製の摩擦相手材との間の錆付きを防止しつつ強度及び摩擦特性を維持することができる。   Thus, in the dry friction material 3 which concerns on this Embodiment 1, by making the volume content rate of glass fiber into the range of 5 vol%-18 vol%, the glass fiber which occupies for the friction surface of a dry friction material The strength of the dry friction material can be maintained while reducing the area ratio to a predetermined value or less, and it can be manufactured in the conventional process, and it is strong while preventing rusting with the metal friction counterpart. And frictional properties can be maintained.

実施の形態2
次に、本発明の実施の形態2に係る乾式摩擦材について、図4を参照して説明する。図4は本発明の実施の形態2に係る乾式摩擦材の構造を示す断面模式図である。
Embodiment 2
Next, a dry friction material according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 4 is a schematic cross-sectional view showing the structure of the dry friction material according to Embodiment 2 of the present invention.

図4に示されるように、本実施の形態2に係る乾式摩擦材10は、ガラス繊維とガラス繊維含浸用合成樹脂としてのメラミン変性フェノール樹脂と配合ゴムとを略均一に配合した下層10Bと、配合ゴムのみの上層10Aとを一体に成形してなる二層型の摩擦材である。   As shown in FIG. 4, the dry friction material 10 according to the second embodiment includes a lower layer 10B in which glass fiber, a melamine-modified phenol resin as a synthetic resin for impregnating glass fiber, and a compounded rubber are blended substantially uniformly. This is a two-layer type friction material formed by integrally molding the upper layer 10A only of compounded rubber.

本実施の形態2に係る乾式摩擦材10は、上記実施の形態1に係る乾式摩擦材3と同様の製造工程によって製造することができる。すなわち、図2のフローチャートにおいて、ステップS13の成形工程で、巻取り品を金型に押し込んだ上から配合ゴムのみを更に押し込んで、加熱加圧成形を行えば良い。その他の工程については、図2のフローチャートにしたがって実施することができる。   The dry friction material 10 according to the second embodiment can be manufactured by the same manufacturing process as the dry friction material 3 according to the first embodiment. That is, in the flowchart of FIG. 2, in the molding step of Step S <b> 13, only the compounded rubber is further pressed after the wound product is pressed into the mold, and the heat and pressure molding is performed. Other steps can be performed according to the flowchart of FIG.

こうして製造される乾式摩擦材10において、下層10Bの厚さβ(mm)に対する上層10Aの厚さα(mm)の比率、すなわち(α/β)×100(%)を様々に変化させて、上記実施の形態1に係る乾式摩擦材3と同様に回転破壊試験を実施したところ、(α/β)×100=20%〜85%の範囲内の場合には、殆ど破壊・クラックが発生せず、(α/β)×100の値が85を超えると、破壊・クラックが発生することが分かった。
したがって、乾式摩擦材10における下層10Bの厚さβに対する上層10Aの厚さαの比率は、20%〜85%の範囲内であることが好ましい。
In the dry friction material 10 manufactured in this way, the ratio of the thickness α (mm) of the upper layer 10A to the thickness β (mm) of the lower layer 10B, that is, (α / β) × 100 (%) is variously changed, When the rotational fracture test was conducted in the same manner as the dry friction material 3 according to the first embodiment, almost no fracture or crack occurred when it was in the range of (α / β) × 100 = 20% to 85%. However, it was found that when the value of (α / β) × 100 exceeds 85, destruction / cracking occurs.
Therefore, the ratio of the thickness α of the upper layer 10A to the thickness β of the lower layer 10B in the dry friction material 10 is preferably in the range of 20% to 85%.

また、(α/β)×100=25%〜60%の範囲内の場合には、全く破壊・クラックが発生しなかった。したがって、乾式摩擦材10における下層10Bの厚さβに対する上層10Aの厚さαの比率は、25%〜60%の範囲内であることが、より好ましい。   In the case of (α / β) × 100 = 25% to 60%, no destruction or cracking occurred. Therefore, the ratio of the thickness α of the upper layer 10A to the thickness β of the lower layer 10B in the dry friction material 10 is more preferably in the range of 25% to 60%.

更に、上記実施の形態1に係る乾式摩擦材3と同様に錆付き性評価を実施したところ、本実施の形態2に係る乾式摩擦材10においては、上層10Aが配合ゴムのみからなり、摩擦面に占めるガラス繊維の面積がゼロであることから、錆付き荷重はゼロであった。   Furthermore, when the rusting property evaluation was performed in the same manner as the dry friction material 3 according to the first embodiment, in the dry friction material 10 according to the second embodiment, the upper layer 10A is composed only of compounded rubber, and the friction surface. Since the area of the glass fiber occupying was zero, the load with rust was zero.

このようにして、本実施の形態2に係る乾式摩擦材10においては、下層10Bの厚さβに対する上層10Aの厚さαの比率を20%〜85%の範囲内とすることによって、乾式摩擦材の摩擦面に占めるガラス繊維の面積をゼロにしつつ乾式摩擦材の強度を維持することができ、従来の工程で製造できて、かつ、金属製の摩擦相手材との間の錆付きを防止しつつ強度及び摩擦特性を維持することができる。   Thus, in the dry friction material 10 according to the second embodiment, the ratio of the thickness α of the upper layer 10A to the thickness β of the lower layer 10B is set in the range of 20% to 85%, thereby providing dry friction. The strength of the dry friction material can be maintained while reducing the area of the glass fiber on the friction surface of the material to zero, and it can be manufactured in the conventional process and prevents rusting with the metal friction material. However, strength and friction characteristics can be maintained.

上記各実施の形態においては、ガラス繊維含浸用合成樹脂としてメラミン変性フェノール樹脂を用いた場合について説明したが、その他の変性フェノール樹脂、エポキシ樹脂を始めとするその他の熱硬化性樹脂等を用いることもできる。特に、メラミン変性フェノール樹脂は容易に入手できるとともに耐熱性に優れているため、乾式摩擦材の材料としてのガラス繊維含浸用合成樹脂として好ましい。   In each of the above embodiments, the case where a melamine-modified phenol resin is used as a synthetic resin for impregnating glass fibers has been described, but other modified phenol resins, other thermosetting resins such as epoxy resins, and the like are used. You can also. In particular, melamine-modified phenolic resin is easily available and is excellent in heat resistance, and is therefore preferable as a synthetic resin for impregnating glass fibers as a material for dry friction materials.

本発明を実施するに際しては、乾式摩擦材のその他の部分の組成、成分、配合量、材質、大きさ、製造方法等についても、上記各実施の形態に限定されるものではない。   In carrying out the present invention, the composition, components, blending amount, material, size, manufacturing method, and the like of other parts of the dry friction material are not limited to the above embodiments.

なお、上記各実施の形態で挙げている数値は、臨界値を示すものではなく、実施に好適な好適値を示すものであるから、上記数値を若干変更してもその実施を否定するものではない。   In addition, since the numerical value quoted in each said embodiment does not show a critical value but shows a suitable value suitable for implementation, even if the numerical value is slightly changed, its implementation is not denied. Absent.

図1は本発明の実施の形態1に係る乾式摩擦材を用いたトルクリミッターの概略構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration of a torque limiter using a dry friction material according to Embodiment 1 of the present invention. 図2は本発明の実施の形態1に係る乾式摩擦材の製造工程を示すフローチャートである。FIG. 2 is a flowchart showing a manufacturing process of the dry friction material according to Embodiment 1 of the present invention. 図3は本発明の実施の形態1に係る乾式摩擦材の性能評価に用いた供試体の寸法を示す説明図である。FIG. 3 is an explanatory diagram showing the dimensions of the specimen used for the performance evaluation of the dry friction material according to Embodiment 1 of the present invention. 図4は本発明の実施の形態2に係る乾式摩擦材の構造を示す断面模式図である。FIG. 4 is a schematic cross-sectional view showing the structure of the dry friction material according to Embodiment 2 of the present invention.

1 トルクリミッター
2 摩擦相手材
3,10 乾式摩擦材
4 芯金
10A 上層
10B 下層
1 Torque limiter 2 Friction material 3,10 Dry friction material 4 Core metal 10A Upper layer 10B Lower layer

Claims (2)

ガラス繊維とガラス繊維含浸用合成樹脂と配合ゴムとを含有し、摩擦相手材が金属製である乾式摩擦材であって、
前記ガラス繊維と前記ガラス繊維含浸用合成樹脂と前記配合ゴムを略均一に配合した下層と、摩擦面に占める前記ガラス繊維の面積が0%とした配合ゴムのみからなる上層とを一体とし、しかも、前記下層の厚さに対する前記上層の厚さの比率が20%〜85%の範囲内としたことを特徴とする乾式摩擦材。
A dry friction material containing glass fiber, a synthetic resin for impregnating glass fiber, and a compounded rubber, wherein the friction partner is made of metal,
The glass fiber, the glass fiber-impregnated synthetic resin and the compounded rubber are mixed in a substantially lower layer, and the upper layer made of only the compounded rubber in which the area of the glass fiber in the friction surface is 0%, and The dry friction material, wherein the ratio of the thickness of the upper layer to the thickness of the lower layer is in the range of 20% to 85%.
前記乾式摩擦材によって構成されるシステムがトルクリミッターであることを特徴とする請求項1に記載の乾式摩擦材。 The dry friction material according to claim 1, wherein the system constituted by the dry friction material is a torque limiter.
JP2007135641A 2007-05-22 2007-05-22 Dry friction material Expired - Fee Related JP5041877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007135641A JP5041877B2 (en) 2007-05-22 2007-05-22 Dry friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007135641A JP5041877B2 (en) 2007-05-22 2007-05-22 Dry friction material

Publications (2)

Publication Number Publication Date
JP2008291064A JP2008291064A (en) 2008-12-04
JP5041877B2 true JP5041877B2 (en) 2012-10-03

Family

ID=40166147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007135641A Expired - Fee Related JP5041877B2 (en) 2007-05-22 2007-05-22 Dry friction material

Country Status (1)

Country Link
JP (1) JP5041877B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180321A (en) * 2009-02-05 2010-08-19 Aisin Chem Co Ltd Friction material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192639A (en) * 1981-05-21 1982-11-26 Sumitomo Electric Ind Ltd Friction member
JPS63180734A (en) * 1987-01-19 1988-07-25 Nippon Valqua Ind Ltd Clutch facing
JP2528971B2 (en) * 1989-09-04 1996-08-28 日本バルカー工業 株式会社 Clutch facing and manufacturing method thereof
JPH05247233A (en) * 1992-01-09 1993-09-24 Toyota Motor Corp Friction material
JPH0616831A (en) * 1992-06-29 1994-01-25 Aisin Chem Co Ltd Production of clutch facing
JP3554754B2 (en) * 1994-11-29 2004-08-18 バンドー化学株式会社 Friction material and friction device
JPH09111006A (en) * 1995-10-16 1997-04-28 Toyota Motor Corp Dry friction material and its production
JPH09126257A (en) * 1995-10-27 1997-05-13 Shinko Electric Co Ltd Friction plate for friction type coupling
JP2000291705A (en) * 1999-01-25 2000-10-20 Shinko Electric Co Ltd Friction electromagnetic coupler

Also Published As

Publication number Publication date
JP2008291064A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
CN108884378B (en) Friction material composition
US20180216686A1 (en) Friction material composition, and friction material and friction member using said friction material composition
WO2017061373A1 (en) Friction material
JP5041877B2 (en) Dry friction material
JP6346424B2 (en) Friction material composition, friction material using friction material composition, and friction member
US4400434A (en) Fluoroelastomer composite friction material
JP5517917B2 (en) Friction material manufacturing method
JP4593539B2 (en) Brake friction material
JP5334466B2 (en) Wet friction material
JP4877758B2 (en) Clutch facing
KR101724896B1 (en) Brake friction material for stainless steel brake disc
JPH06287322A (en) Asbestos-free friction material
JP2012219928A (en) Clutch facing
JP5517414B2 (en) Friction material manufacturing method
JP4525639B2 (en) Melamine resin composition for commutator and commutator parts
JP3448860B2 (en) Wet friction material and method of manufacturing the same
JP4806098B2 (en) Friction material manufacturing method
JP2005232204A (en) Frictional material
JP2007225206A (en) Radiator
JP2021188003A (en) Sealing member
JP2007291345A (en) Clutch facing
JP3538191B2 (en) Dry friction material
EP2023001A2 (en) Wet friction material
JP6095443B2 (en) Friction material for torque limiter
JP2000256652A (en) Dry friction material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

R150 Certificate of patent or registration of utility model

Ref document number: 5041877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees