JP5040578B2 - Railway vehicle body tilt control method - Google Patents

Railway vehicle body tilt control method Download PDF

Info

Publication number
JP5040578B2
JP5040578B2 JP2007270297A JP2007270297A JP5040578B2 JP 5040578 B2 JP5040578 B2 JP 5040578B2 JP 2007270297 A JP2007270297 A JP 2007270297A JP 2007270297 A JP2007270297 A JP 2007270297A JP 5040578 B2 JP5040578 B2 JP 5040578B2
Authority
JP
Japan
Prior art keywords
vehicle body
curve
time
tilt control
passing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007270297A
Other languages
Japanese (ja)
Other versions
JP2009096351A (en
Inventor
大輔 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007270297A priority Critical patent/JP5040578B2/en
Publication of JP2009096351A publication Critical patent/JP2009096351A/en
Application granted granted Critical
Publication of JP5040578B2 publication Critical patent/JP5040578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

本発明は、特に曲線通過時の、空気ばねを利用した車体の傾斜制御方法に関するものである。 The present invention particularly when curving the relates to tilt control how the vehicle body by using an air spring.

鉄道車両では、曲線通過時、超過遠心力によって乗心地が悪くなる場合がある。特に曲線を高速で通過する場合は、超過遠心力が増大してさらなる乗心地の悪化を招く。そこで、曲線通過時、曲線の内側に向けて車体を傾斜させることで超過遠心力を抑制し、乗心地の悪化を防ごうとした車体の傾斜制御が実施されている。   In a railway vehicle, riding comfort may deteriorate due to excessive centrifugal force when passing a curve. In particular, when passing through a curve at a high speed, the excess centrifugal force increases, resulting in further deterioration in riding comfort. Therefore, when the vehicle passes the curve, the vehicle body is tilted toward the inside of the curve to suppress excess centrifugal force and to prevent the deterioration of riding comfort.

この車体傾斜制御の一つに、車体を支持する左右の空気ばねに給排気することで、車体を傾斜させるものがある(例えば特許文献1)。
特開平7−81558号公報
As one of the vehicle body tilt controls, there is one that tilts the vehicle body by supplying and exhausting air to the left and right air springs that support the vehicle body (for example, Patent Document 1).
JP 7-81558 A

しかしながら、左右の空気ばねへの給排気によって車体の傾斜制御を行う場合、給排気に対して空気ばねの動きが若干遅れることになる。従って、この遅れ分だけ目標値を先行させる先行時間制御が採用されている(非特許文献1)。
日本機械学会第2回交通・物流部門大会講演論文集「鉄道車両用空気ばね車体傾斜制御の開発」p98〜102
However, when the vehicle body tilt control is performed by supply / exhaust to the left and right air springs, the movement of the air spring is slightly delayed with respect to the supply / exhaust. Accordingly, a preceding time control is adopted in which the target value is advanced by this delay (Non-Patent Document 1).
Proceedings of the 2nd Annual Meeting of the Japan Society of Mechanical Engineers, Transportation and Logistics "Development of Air Spring Body Tilt Control for Railway Vehicles" p98-102

しかしながら、非特許文献1で開示された方法で傾斜制御した場合も、曲線通過時、乗心地の悪化を効果的に防ぐことができない場合がある。 However, even if the inclined control method disclosed in Non-Patent Document 1, when the curve passes, it may not be possible to prevent deterioration of Nokokoro land effectively.

本発明が解決しようとする問題点は、目標値に対する先行時間を常に一定とする、従来の車体傾斜制御では、乗心地の悪化を効果的に防ぐことができない場合があると言う点である。 Problems which the invention is to solve is always a constant lead time with respect to the target value, in the conventional vehicle body tilt control is that say it may not be possible to prevent deterioration of Nokokoro locations effectively .

本発明は、特に曲線通過時の、空気ばねを利用した車体傾斜制御に際し、曲線半径や走行速度などの走行条件に応じ、最適の車体傾斜制御を行えるようにするために、以下の構成を採用している。   The present invention adopts the following configuration in order to perform optimum vehicle body tilt control according to traveling conditions such as a curve radius and a traveling speed, particularly in the case of vehicle body tilt control using an air spring when passing a curve. is doing.

すなわち、本発明の鉄道車両の車体傾斜制御方法は、
曲線通過時、空気ばねに給排気して鉄道車両の車体を傾斜制御する方法であって、
過しようとする曲線進入予定時間よりも前記車体の傾斜制御開始を先行させる先行時間を以下のように決定することを最も主要な特徴としている。
That is, the vehicle body tilt control method for a railway vehicle according to the present invention includes:
A method of controlling the inclination of a railway vehicle body by supplying and exhausting air springs when passing a curve,
It is the most important feature to determine passing over trying to ingress expected time the body of Ru preceding time is prior to the start of the tilt control than for curve as follows.

上記の本発明方法において、当該曲線の前記先行時間は、例えば、
(1) 曲線条件と通過する走行速度をもとに予め求めた最適先行時間テーブルを用い、遠心力を変数として補間計算することにより、
或いは、
(2) 曲線条件と通過する走行速度をもとに予め求めたひとつの最適先行時間と、その条件における遠心力と現在の遠心力との比例計算から決定することにより、
求める。
In the method of the present invention described above, the preceding time of the curve is, for example,
(1) By using the optimum leading time table obtained in advance based on the curve condition and the traveling speed that passes through, and performing the interpolation calculation with the centrifugal force as a variable,
Or
(2) By determining from the optimal calculation of one optimal lead time determined in advance based on the curve condition and the traveling speed passing through, and the proportional calculation of the centrifugal force and the current centrifugal force under that condition,
Ask.

但し、曲線走行時における車体に作用する遠心力が小さい車両の場合は、前記遠心力に代えて速度を変数とした補間又は比例計算を実施しても良い。   However, in the case of a vehicle having a small centrifugal force acting on the vehicle body when traveling along a curve, interpolation or proportional calculation using the speed as a variable instead of the centrifugal force may be performed.

上記の本発明方法は、
前記鉄道車両の車体を傾斜させるための車体傾斜手段と、
前記鉄道車両の走行位置を検出する位置検出手段と、
曲線情報と、曲線条件と通過速度をもとに予め求められた最適先行時間とを記憶した記憶手段と、
前記鉄道車両の走行速度を検出する速度検出手段と、
前記位置検出手段により特定された走行位置を基に、前記記憶手段より読み出した曲線情報及び最適先行時間とから、遠心力又は走行速度を用いて先行時間を算出する演算手段と、
通過しようとする曲線への進入予定時間より前記算出した先行時間だけ前に、前記車体傾斜手段の制御を開始する制御手段と、
を備えることを主要な特徴とする本発明の車体傾斜制御装置を用いて実施できる。
The method of the present invention described above
Vehicle body tilting means for tilting the vehicle body of the railway vehicle;
Position detecting means for detecting a traveling position of the railway vehicle;
Storage means for storing the curve information, the optimum leading time determined in advance based on the curve condition and the passing speed;
Speed detecting means for detecting the traveling speed of the railway vehicle;
Based on the travel position specified by the position detection means, the calculation means for calculating the preceding time using the centrifugal force or the traveling speed from the curve information and the optimum preceding time read from the storage means;
Control means for starting the control of the vehicle body tilting means only by the calculated preceding time before the estimated approach time to the curve to be passed;
It can implement using the vehicle body tilt control apparatus of this invention characterized by providing this.

本発明は、曲線半径や走行速度に応じて、通過しようとする曲線での傾斜制御開始の先行時間を最適に設定することで、どのような走行条件でも、車体傾斜時の動作遅れを可能な限り抑制することができる。従って、曲線通過時の乗心地の悪化を効果的に防ぐことができる。 According to the present invention, it is possible to delay the operation when the vehicle body is tilted under any driving conditions by optimally setting the leading time of the start of the tilt control in the curve to be passed according to the curve radius and the driving speed. As long as it can be suppressed. Therefore, it is possible to prevent the deterioration of Nokokoro locations during curving effectively.

以下、本発明の完成に至る新しい着想及びこの着想から課題解決に至るまでの経緯と共に、本発明を実施するための最良の形態例について、添付図面を用いて説明する。
図1は本発明の車体傾斜制御に用いる先行時間の補間計算方法の概略説明図、図2は曲線通過時における遠心力と空気ばねの荷重差を説明する図、図3は遠心力の影響が無いと考えられる場合の鉄道車両について説明する図、図4は演算実行時のフローチャートの一例を示した図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The best mode for carrying out the present invention will be described below with reference to the accompanying drawings, along with a new idea for completing the present invention and a background from the idea to solving a problem.
FIG. 1 is a schematic explanatory view of the interpolation calculation method of the preceding time used in the vehicle body tilt control of the present invention, FIG. 2 is a diagram explaining the load difference between the centrifugal force and the air spring when passing the curve, and FIG. 3 is the influence of the centrifugal force. FIG. 4 is a diagram illustrating an example of a flowchart at the time of calculation execution.

発明者が調査したところ、車体傾斜時の動作遅れ時間は、曲線半径や走行速度などの走行条件によって変化し、一定では無いことが明らかとなった。   As a result of an investigation by the inventor, it has been found that the operation delay time when the vehicle body is tilted varies depending on traveling conditions such as a curve radius and a traveling speed and is not constant.

本発明の鉄道車両の車体傾斜制御方法は、以上の知見に基づいてなされたもので、
曲線通過時、空気ばねに給排気して鉄道車両の車体を傾斜制御するに際し、
走行条件に応じて、通過しようとする曲線の傾斜制御開始時刻に対する先行時間を決定することを特徴とするものである。
The vehicle body tilt control method of the railway vehicle of the present invention is based on the above knowledge,
When passing the curve and controlling the tilt of the railcar body by supplying and exhausting air springs,
The preceding time with respect to the inclination control start time of the curve to be passed is determined according to the traveling condition.

この走行条件に応じた傾斜制御を開始する際の先行時間について、発明者は、更なる調査によって、遠心力の影響が大きく、遠心力が大きくなると車体傾斜時の動作遅れが増加する傾向にあることを知見した。   Regarding the preceding time when starting the tilt control according to the traveling condition, the inventor has a greater influence of the centrifugal force due to further investigation, and when the centrifugal force increases, the operation delay when the vehicle body tilts tends to increase. I found out.

そこで、発明者は、遠心力αの大きさは、下記数式1のように、曲線半径R(mm)と走行速度v(m/s)から計算することが可能であるので、ある条件での遠心力αを基準とし、この基準より遠心力αが大きくなる場合は前記先行時間を長く、遠心力αが小さくなる場合は前記先行時間を短くすればよいと考えた。   Therefore, the inventor can calculate the magnitude of the centrifugal force α from the curve radius R (mm) and the traveling speed v (m / s) as shown in the following formula 1. Based on the centrifugal force α, it was considered that the preceding time should be longer when the centrifugal force α becomes larger than this criterion, and that the preceding time should be shortened when the centrifugal force α becomes smaller.

[数1]
α=(v2/R)−(C/G)・g
但し、C:カント量(mm)
G:軌間(mm)
g:重力加速度(m/s2
[Equation 1]
α = (v 2 / R) − (C / G) · g
Where C: cant amount (mm)
G: Gauge (mm)
g: Gravitational acceleration (m / s 2 )

すなわち、通常の車体傾斜制御において、ある曲線をある速度で通過する場合に最適となる先行時間を、シミュレーションや現車試験などによって特定する作業を繰り返し行い、走行条件ごとに最適な先行時間を、例えば下記表1のようにテーブル化する。   In other words, in normal vehicle body tilt control, an operation is performed repeatedly to specify the optimum preceding time when passing a certain curve at a certain speed by simulation or a current vehicle test, and the optimum preceding time for each driving condition is determined. For example, the table is formed as shown in Table 1 below.

Figure 0005040578
Figure 0005040578

次に、実際の走行で、前記表1のテーブルを参考に、先行時間を補間計算により決定する。
例えば曲線Aについて、図1のように、速度v1の場合は先行時間T1が最適、速度v2の場合は先行時間T2が最適であると分かっている場合、v1<v<v2の速度では、速度v1の場合に発生する遠心力の大きさをF1、速度v2の場合に発生する遠心力の大きさをF2、速度vで発生する遠心力の大きさをFとして、下記数式2のように遠心力の補間で先行時間Tを決定する。
Next, in actual travel, the preceding time is determined by interpolation calculation with reference to the table in Table 1 above.
For example, for the curve A, as shown in FIG. 1, when it is known that the preceding time T1 is optimal when the speed is v1, and the leading time T2 is optimal when the speed is v2, the speed is v1 <v <v2. The centrifugal force generated in the case of v1 is F1, the centrifugal force generated in the case of speed v2 is F2, and the centrifugal force generated in the speed v is F. The leading time T is determined by force interpolation.

[数2]
T=T1+{(T2−T1)/(F2−F1)}×(F−F1)
[Equation 2]
T = T1 + {(T2-T1) / (F2-F1)} * (F-F1)

この方法の根拠は、先行時間は遠心力に比例して大きくなるという予測である。
曲線通過中、遠心力は車体を曲線の外側に倒す力として作用し、左右の空気ばねが負担する荷重に差が生じることでこの力との釣り合いが保たれている。
The basis for this method is a prediction that the preceding time increases in proportion to the centrifugal force.
While passing through the curve, the centrifugal force acts as a force to tilt the vehicle body to the outside of the curve, and the balance between this force is maintained by causing a difference in the load borne by the left and right air springs.

車体傾斜を実施しない場合は、図2(a)に示すように、車体1が曲線の外側に倒れることで、外側の空気ばね2に作用する荷重が大きくなって縮む一方、内側の空気ばね2に作用する荷重が小さくなって伸びて前記荷重差を発生する。   When the vehicle body is not tilted, as shown in FIG. 2A, when the vehicle body 1 falls to the outside of the curve, the load acting on the outer air spring 2 is increased and contracted, while the inner air spring 2 is contracted. The load acting on the surface is reduced and stretched to generate the load difference.

これに対して、車体傾斜を実施する場合は、例えば図2(b)に示すように、曲線の外側の空気ばね2に給気して作用する荷重を大きくする一方、内側の空気ばね2から排気して作用する荷重を小さくすることで前記荷重差を発生させる。なお、図2中の3は台車を示す。   On the other hand, when the vehicle body is tilted, for example, as shown in FIG. 2B, the load acting on the air spring 2 on the outside of the curve is increased while acting on the air spring 2 on the inside. The load difference is generated by reducing the load acting by exhaust. 2 in FIG. 2 indicates a carriage.

従って、遠心力が大きくなるほど必要な荷重差が大きくなり、その分だけ必要な給排気量が大きくなる。一方で空気ばねへの給排気速度(流量)は、使用する電磁弁の口径に依存するので、車両によって給排気速度は一定である。   Therefore, as the centrifugal force increases, the necessary load difference increases, and the required air supply / exhaust amount increases accordingly. On the other hand, the air supply / exhaust speed (flow rate) to the air spring depends on the aperture of the solenoid valve to be used, so the air supply / exhaust speed is constant depending on the vehicle.

よって、空気ばねに必要とする空気を給排気するためにかかる時間、つまり先行時間は遠心力に比例して長くなると考えられる。   Therefore, it is considered that the time required for supplying and exhausting air required for the air spring, that is, the preceding time becomes longer in proportion to the centrifugal force.

但し、図3(a)に示すように車体1の重心Gが低い場合や、連接台車(車両の連結部に配置される台車3)などで、図3(b)に示すように空気ばね2の支持位置を高くできる場合は、遠心力が車体1を傾ける力は非常に小さくなる。   However, in the case where the center of gravity G of the vehicle body 1 is low as shown in FIG. 3A, or in the case of an articulated carriage (cart 3 arranged at the connecting portion of the vehicle), the air spring 2 as shown in FIG. When the support position of the vehicle 1 can be increased, the force by which the centrifugal force tilts the vehicle body 1 becomes very small.

このような場合は、先行時間は先に説明した遠心力ではなく、曲線を通過する際の速度に比例すると考えられる。よって、このような場合は、速度を変数とした補間を実施してもよい。   In such a case, it is considered that the preceding time is not proportional to the centrifugal force described above, but is proportional to the speed when passing through the curve. Therefore, in such a case, interpolation using the speed as a variable may be performed.

また、簡易的に、ある曲線をある速度vで通過する場合に最適となる先行時間T1を、シミュレーションや現車試験などによって特定し、その条件の遠心力F1と現在の遠心力Fの比例計算(下記数式3)で先行時間Tを決定してもよい。   In addition, the preceding time T1 that is optimal when passing through a certain curve at a certain speed v is simply determined by simulation or the current vehicle test, and the proportional calculation of the centrifugal force F1 and the current centrifugal force F under that condition. The preceding time T may be determined by (Equation 3 below).

[数3]
T=(T1/F1)×F
[Equation 3]
T = (T1 / F1) × F

この簡易的に比例計算で先行時間を決定する方法においても、前記の曲線走行中に車体に作用する遠心力が小さい車両の場合は、遠心力に代えて速度を変数とした比例計算を実施してもよい。   Even in this simple method of determining the preceding time by proportional calculation, in the case of a vehicle with a small centrifugal force acting on the vehicle body while traveling on a curve, proportional calculation using speed as a variable instead of centrifugal force is performed. May be.

ところで、先行時間をあまり長くとると、曲線に進入する前の直線で、車体を傾けた状態で走行することになるので、先行時間には上限を設けることが望ましい。例えば車両が停止した(遠心力が存在しない)場合に車体を最大の角度まで傾斜させるために必要な時間を調べておき、これを先行時間の最大値Tmaxとして採用する。こうすれば最も車体を傾けた状態で曲線に進入する前の直線を走行することがなくなる。   By the way, if the preceding time is set too long, the vehicle travels with the vehicle body tilted on a straight line before entering the curve, so it is desirable to set an upper limit for the preceding time. For example, when the vehicle is stopped (there is no centrifugal force), the time required for tilting the vehicle body to the maximum angle is checked, and this is used as the maximum value Tmax of the preceding time. In this way, the vehicle will not travel on the straight line before entering the curve with the vehicle body tilted the most.

以上が本発明の車体傾斜制御方法であるが、実際には、以下に説明するように、図4に示すフローチャートに従って、車体傾斜を実施する。   The above is the vehicle body tilt control method of the present invention. Actually, as described below, the vehicle body tilt is performed according to the flowchart shown in FIG.

(1) 通常の車体傾斜制御の処理で曲線検知などを実施した後、傾斜制御する曲線の曲線開始地点と自車両の走行位置を比較する。
そして、「自車両から次の曲線開始地点までの距離が規定値以下」で、かつ「次の曲線における先行時間が未設定」の場合は、先行時間の設定を行う。
(1) After performing curve detection or the like in the normal vehicle body tilt control process, the curve start point of the curve to be tilt controlled is compared with the traveling position of the host vehicle.
If “the distance from the host vehicle to the next curve start point is equal to or less than the prescribed value” and “the preceding time in the next curve is not set”, the preceding time is set.

この際、前記規定値には、最大先行時間Tmax×最高速度Vmaxで求めた距離を使用する。こうすることで、先行時間判断の地点が制御開始地点よりも手前となることが保証される。   At this time, the distance obtained by the maximum preceding time Tmax × the maximum speed Vmax is used as the specified value. By doing so, it is ensured that the point of determination of the preceding time is in front of the control start point.

(2) その後、自車の走行速度v(m/s)と曲線条件(曲線半径R(m)、カント量C(mm))を取得し、前記の数式1により遠心力αを計算する。 (2) Thereafter, the traveling speed v (m / s) of the host vehicle and the curve conditions (curve radius R (m), cant amount C (mm)) are obtained, and the centrifugal force α is calculated by the above-described equation 1.

(3) 遠心力αを計算した後は、走行条件ごとに最適な先行時間を予めテーブル化した最適条件テーブルを読み込み、この最適条件テーブルを参考に、前記数式2を用いて補間計算を行い、先行時間を決定する。 (3) After calculating the centrifugal force α, the optimum condition table in which the optimum preceding time is tabulated in advance for each traveling condition is read, and the interpolation calculation is performed using Equation 2 with reference to the optimum condition table. Determine the lead time.

なお、重心が低い場合や空気ばねの支持位置が高い場合などで、遠心力の影響が少ない場合は、前記の第(2)ステップを省略し、走行速度vのみから前記数式を用いて先行時間を決定する。 In such case the supporting position on a pneumatic spring center of gravity is low is high, when the influence of centrifugal force is small, omitting the said first (2) step, only the traveling speed v with the equation 2 prior Determine the time.

(4) 最適な先行時間を決定した後は、この決定した先行時間に従って傾斜制御を実施する。その後は、対象曲線を通過した後、先行時間をリセットして次の曲線に備える。 (4) After determining the optimum leading time, the slope control is performed according to the determined leading time. After that, after passing through the target curve, the preceding time is reset to prepare for the next curve.

以上の空気ばねを利用した車体傾斜制御方法は、一般的な車体傾斜制御装置である、車体の傾斜手段と、走行位置の検出手段(例えば地上子と車上子)と、走行速度の検出手段(例えばスピードメータ)に加えて、例えば以下の構成をさらに有するものである。   The vehicle body tilt control method using the air spring described above is a general vehicle body tilt control device, which is a vehicle body tilt means, a travel position detection means (for example, a ground element and a vehicle upper element), and a travel speed detection means. In addition to (for example, a speedometer), for example, it further includes the following configuration.

すなわち、本発明の車体傾斜制御装置は、前記の車体傾斜手段、走行位置検出手段、走行速度検出手段に加えて、さらに記憶手段と演算手段と制御手段を有するものである。   That is, the vehicle body tilt control device of the present invention further includes a storage device, a calculation device, and a control device in addition to the vehicle body tilting device, the travel position detection device, and the travel speed detection device.

このうち記憶手段は、曲線情報と、曲線半径やカント量などの曲線条件と通過速度をもとに、前記表1に示したように予め求められた最適先行時間とを記憶したものである。また、演算手段は、前記走行位置検出手段によって特定された走行位置を基に、前記記憶手段より読み出した曲線情報及び最適先行時間とから、例えば遠心力を用いて、前記数式2の補間計算によって先行時間を算出するものである。そして、制御手段は、この演算手段で算出した先行時間だけ、通過しようとする曲線への進入予定時間より前に前記車体傾斜手段の制御を開始させる。   Among them, the storage means stores the curve information, the optimum leading time obtained in advance as shown in Table 1 based on the curve conditions such as the curve radius and the cant amount, and the passing speed. Further, the computing means is based on the running position specified by the running position detecting means, from the curve information read from the storage means and the optimum preceding time, for example, by the interpolation calculation of the formula 2 using centrifugal force. The preceding time is calculated. Then, the control means starts control of the vehicle body tilting means for the preceding time calculated by the calculation means before the scheduled entry time to the curve to be passed.

なお、前記の車体傾斜手段11は、例えば図5に示したような構成を有する。
図5において、12は車体1と台車3の間に配置された左右の空気ばね13a,13bに供給する空気を溜める空気源であり、この空気源12と前記空気ばね13a,13bの間を2系列の配管14a,14bで接続している。
The vehicle body tilting means 11 has a configuration as shown in FIG.
In FIG. 5, reference numeral 12 denotes an air source for accumulating air to be supplied to the left and right air springs 13a and 13b arranged between the vehicle body 1 and the carriage 3, and a distance between the air source 12 and the air springs 13a and 13b is 2. The pipes 14a and 14b of the series are connected.

そして、このうちの一方の配管14aの途中には、高さセンサ15の検出値に基づき空気ばね13a,13bへの空気の給排気を行う給気弁16と排気弁17を介設している。また他方の配管14bの途中には、空気ばね13a,13bの高さを調整する高さ調整弁18を介設すると共に、この高さ調整弁18と空気ばね13a,13bの間に締め切り弁19を介設し、両空気ばね13a,13bを、差圧弁20を介して連通している。   An air supply valve 16 and an exhaust valve 17 for supplying and exhausting air to and from the air springs 13a and 13b based on the detection value of the height sensor 15 are provided in the middle of one of the pipes 14a. . Further, a height adjusting valve 18 for adjusting the height of the air springs 13a and 13b is interposed in the middle of the other pipe 14b, and a shutoff valve 19 is provided between the height adjusting valve 18 and the air springs 13a and 13b. The two air springs 13 a and 13 b are communicated with each other via the differential pressure valve 20.

本発明は上記の各例に限るものではなく、各請求項に記載の技術的思想の範疇であれば自由に変更が可能である。   The present invention is not limited to the above examples, and can be freely changed within the scope of the technical idea described in each claim.

例えば車体傾斜手段11は、空気ばねに給排気することで車体を傾斜するものであれば、図5に示した構成に限らない。
また、走行位置の検出手段も、車両の走行位置を検出できるものであれば、ジャイロスコープを用いたものなどでもよく、地上子と車上子によるものに限らない。
For example, the vehicle body tilting means 11 is not limited to the configuration shown in FIG. 5 as long as the vehicle body is tilted by supplying and exhausting air springs.
The traveling position detection means may be a gyroscope or the like as long as it can detect the traveling position of the vehicle, and is not limited to a ground element and a vehicle upper element.

本発明の車体傾斜制御に用いる先行時間を補間計算により求めることの概略説明図である。It is a schematic explanatory drawing of calculating | requiring the preceding time used for the vehicle body tilt control of this invention by interpolation calculation. 曲線通過時における遠心力と空気ばねの荷重差を説明する図で、(a)は車体傾斜を実施しない場合、(b)は車体傾斜を実施する場合である。It is a figure explaining the load difference of the centrifugal force at the time of a curve and an air spring, (a) is a case where vehicle body inclination is not implemented, (b) is a case where vehicle body inclination is implemented. 遠心力の影響が小さいと考えられる場合の鉄道車両について説明する図で、(a)は車体の重心が低い場合、(b)は空気ばねの支持位置が高い場合である。It is a figure explaining the railway vehicle when it is thought that the influence of centrifugal force is small, (a) is a case where the gravity center of a vehicle body is low, (b) is a case where the support position of an air spring is high. 演算実行時のフローチャートの一例を示した図である。It is the figure which showed an example of the flowchart at the time of calculation execution. 本発明の車体傾斜制御方法を実施する本発明の車体傾斜制御装置の車体傾斜手段の一例を説明する図である。It is a figure explaining an example of the vehicle body inclination means of the vehicle body inclination control apparatus of this invention which implements the vehicle body inclination control method of this invention.

符号の説明Explanation of symbols

1 車体
2,13a,13b 空気ばね
11 車体傾斜手段
1 Car body 2, 13a, 13b Air spring 11 Car body tilting means

Claims (5)

曲線通過時、空気ばねに給排気して鉄道車両の車体を傾斜制御する方法であって、
過しようとする曲線進入予定時間よりも前記車体の傾斜制御開始を先行させる先行時間を、曲線条件と通過する走行速度をもとに予め求めた最適先行時間テーブルを用い、遠心力を変数として補間計算することで決定することを特徴とする鉄道車両の車体傾斜制御方法。
A method of controlling the inclination of a railway vehicle body by supplying and exhausting air springs when passing a curve,
The passing ingress schedule Ru preceding time is prior to the start of the tilt control of the vehicle body than the time to curve to overuse, using pre-determined optimal advance time table based on the running speed to pass the curve condition, centrifugal A vehicle body tilt control method for a railway vehicle , wherein the determination is made by performing interpolation calculation using force as a variable .
曲線通過時、空気ばねに給排気して鉄道車両の車体を傾斜制御する方法であって、
通過しようとする曲線への進入予定時間よりも前記の車体の傾斜制御の開始を先行させる先行時間を、曲線条件と通過する走行速度をもとに予め求めたひとつの最適先行時間と、その条件における遠心力と現在の遠心力との比例計算から決定することを特徴とする鉄道車両の車体傾斜制御方法。
A method of controlling the inclination of a railway vehicle body by supplying and exhausting air springs when passing a curve,
One optimum leading time obtained in advance based on the curve condition and the traveling speed passing through the preceding time for starting the vehicle body tilt control before the scheduled approach time to the curve to be passed , and the condition centrifugal force and the vehicle body tilt control method of the railway vehicle shall be the determining means determines from the proportional calculation of the current of the centrifugal force in the.
曲線通過時、空気ばねに給排気して鉄道車両の車体を傾斜制御する方法であって、
曲線走行時における車体に作用する遠心力が小さい車両の場合、
通過しようとする曲線への進入予定時間よりも前記の車体の傾斜制御の開始を先行させる先行時間を、曲線条件と通過する走行速度をもとに予め求めた最適先行時間テーブルを用い、走行速度を変数として補間計算することで決定することを特徴とする鉄道車両の車体傾斜制御方法。
A method of controlling the inclination of a railway vehicle body by supplying and exhausting air springs when passing a curve,
In the case of a vehicle with a small centrifugal force acting on the vehicle body when traveling on a curve,
The lead time than entering scheduled time to curve to be passed to the preceding the start of the tilt control of the vehicle body above, using the optimal advance time table obtained in advance based on the running speed to pass the curve condition, running body tilt control method of the railway vehicle you and determining by interpolation calculation speed as a variable.
曲線通過時、空気ばねに給排気して鉄道車両の車体を傾斜制御する方法であって、
曲線走行時における車体に作用する遠心力が小さい車両の場合、
通過しようとする曲線への進入予定時間よりも前記の車体の傾斜制御の開始を先行させる先行時間を、曲線条件と通過する走行速度をもとに予め求めたひとつの最適先行時間と、その条件における走行速度と現在の走行速度との比例計算から決定することを特徴とする鉄道車両の車体傾斜制御方法。
A method of controlling the inclination of a railway vehicle body by supplying and exhausting air springs when passing a curve,
In the case of a vehicle with a small centrifugal force acting on the vehicle body when traveling on a curve,
One optimum leading time obtained in advance based on the curve condition and the traveling speed passing through the preceding time for starting the vehicle body tilt control before the scheduled approach time to the curve to be passed , and the condition running speed and the vehicle body tilt control method of the railway vehicle shall be the determining means determines from the proportional calculation of the current speed in.
前記先行時間は、停止状態の鉄道車両において車体を設計上の最大角度まで傾斜させるために必要な空気ばねへの給排気時間を上限とすることを特徴とする請求項1〜4の何れかに記載の鉄道車両の車体傾斜制御方法。 Said previous time, with one of the claims 1-4, characterized in that an upper limit of supply and exhaust time to the air springs required to tilt to a maximum angle of the design of the vehicle body in a railway vehicle in a stopped state The vehicle body tilt control method according to the description.
JP2007270297A 2007-10-17 2007-10-17 Railway vehicle body tilt control method Active JP5040578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007270297A JP5040578B2 (en) 2007-10-17 2007-10-17 Railway vehicle body tilt control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007270297A JP5040578B2 (en) 2007-10-17 2007-10-17 Railway vehicle body tilt control method

Publications (2)

Publication Number Publication Date
JP2009096351A JP2009096351A (en) 2009-05-07
JP5040578B2 true JP5040578B2 (en) 2012-10-03

Family

ID=40699761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007270297A Active JP5040578B2 (en) 2007-10-17 2007-10-17 Railway vehicle body tilt control method

Country Status (1)

Country Link
JP (1) JP5040578B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2635603B2 (en) * 1987-08-19 1997-07-30 財団法人鉄道総合技術研究所 Body lean prevention device for air spring bogie for high-speed vehicles
JP4514520B2 (en) * 2004-06-02 2010-07-28 株式会社日立製作所 Adaptive vehicle travel control system and adaptive vehicle travel control method
JP4751745B2 (en) * 2006-03-24 2011-08-17 北海道旅客鉄道株式会社 Car body tilting device, car body tilting method, and railway vehicle

Also Published As

Publication number Publication date
JP2009096351A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP2007131204A (en) Damping device for railway vehicle
TWI449643B (en) Braking component acceleration estimator of railway vehicle and method for estimating acceleration of vibration component
JP2008254577A (en) Method and apparatus for vehicle body tilt control
JPWO2012132240A1 (en) Railway vehicle body tilt control method
KR20160044362A (en) Method for controlling suspension system
JP4979360B2 (en) Railway vehicle
JP2013126874A (en) Rolling behavior control device for vehicle
JP2018083556A (en) Height adjustment device of railway vehicle
JP5040578B2 (en) Railway vehicle body tilt control method
JP5414464B2 (en) Vehicle and center of gravity position estimation method
JP2008239043A (en) Method and device for controlling inclination of vehicle body
JP6864490B2 (en) Vibration control device for railway vehicles
JP2020029155A (en) Travel section discrimination method and railway vehicle travel control method
JP2013049394A (en) Suspension control device
JP2005096724A (en) Method and device for controlling inclination of car body
JP5616856B2 (en) Railway vehicle body tilt control device
JP6779121B2 (en) Rail car
JP6696369B2 (en) Railway vehicle body tilt control method
JP4186105B2 (en) Railway vehicle vibration control apparatus and control method
JP5981829B2 (en) Railway vehicle body height adjusting device and body height adjusting method
JP4779832B2 (en) Railway vehicle body tilt control device and control method
JP6873851B2 (en) Railroad vehicle body tilt control device
JP5917343B2 (en) Railway vehicle body tilt control device and body tilt control method
JP7078756B2 (en) Train control system and train control method
JP2008247357A (en) Suspension control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Ref document number: 5040578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350