JP5040358B2 - Zoom lens and optical apparatus having the same - Google Patents

Zoom lens and optical apparatus having the same Download PDF

Info

Publication number
JP5040358B2
JP5040358B2 JP2007047404A JP2007047404A JP5040358B2 JP 5040358 B2 JP5040358 B2 JP 5040358B2 JP 2007047404 A JP2007047404 A JP 2007047404A JP 2007047404 A JP2007047404 A JP 2007047404A JP 5040358 B2 JP5040358 B2 JP 5040358B2
Authority
JP
Japan
Prior art keywords
lens
lens group
negative
object side
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007047404A
Other languages
Japanese (ja)
Other versions
JP2008209751A (en
Inventor
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007047404A priority Critical patent/JP5040358B2/en
Priority to US12/528,448 priority patent/US8040615B2/en
Priority to PCT/JP2008/052587 priority patent/WO2008105248A1/en
Publication of JP2008209751A publication Critical patent/JP2008209751A/en
Application granted granted Critical
Publication of JP5040358B2 publication Critical patent/JP5040358B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ズームレンズと、これを有する光学装置に関する。   The present invention relates to a zoom lens and an optical device having the same.

従来、電子スチルカメラなどに用いられるズームレンズが提案されている(例えば、特許文献1、2参照)。
特開平5−60971号公報 特開平11−295594号公報
Conventionally, zoom lenses used in electronic still cameras have been proposed (see, for example, Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 5-60971 JP-A-11-295594

従来のズームレンズは、望遠端状態における望遠比が大きく全長が長く、望遠撮影領域での色収差が大きいと言う問題があった。   The conventional zoom lens has a problem that the telephoto ratio in the telephoto end state is large and the total length is long, and the chromatic aberration in the telephoto imaging region is large.

上記課題を解決するため、本発明は、物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、第3レンズ群と、第4レンズ群を含む複数のレンズ群を有し、前記第2レンズ群は、物体側から順に、像側面が凹形状の第2レンズ群の第1負レンズと、像側面が凹形状の第2レンズ群の第2負レンズと、物体側面が凸形状の第2レンズ群の正メニスカスレンズとにより実質的に3個のレンズで構成され、広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群の間隙が増大し、前記第2レンズ群と前記第3レンズ群の間隙は減少し、前記複数のレンズ群のうち最も像面側のレンズ群が物体側に凸の軌跡にて光軸に沿って移動し、広角端状態の焦点距離をFw、前記第1レンズ群の焦点距離をF1、前記第2レンズ群の焦点距離をF2、前記第2レンズ群の第1負レンズと前記第2レンズ群の第2負レンズの焦点距離をそれぞれF21,F22としたとき、以下の条件を満足する事を特徴とするズームレンズを提供する。
3.000<F1/Fw<4.400
−0.900<F2/Fw<−0.500
0.05<F21/F22<0.65
In order to solve the above problems, the present invention includes, in order from the object side, a plurality of lenses including a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group, and a fourth lens group. The second lens group includes, in order from the object side, a first negative lens of a second lens group having a concave image side surface and a second negative lens of a second lens group having a concave image side surface. And a positive meniscus lens of the second lens group having a convex object side surface, and the first lens group and the first lens group during zooming from the wide-angle end state to the telephoto end state. The gap between the two lens groups is increased, the gap between the second lens group and the third lens group is decreased, and the lens group closest to the image plane among the plurality of lens groups is projected with a locus convex toward the object side. Along the axis, the focal length in the wide-angle end state is Fw, the focal length of the first lens group is F1, Serial focal length of the second lens group F2, when said focal length of each F21 of the second negative lens of the first negative lens and the second lens group in the second lens group, F22, satisfies the following conditions Provide a zoom lens characterized by things.
3.000 <F1 / Fw <4.400
-0.900 <F2 / Fw <-0.500
0.05 <F21 / F22 <0.65

また、本発明では、物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、第3レンズ群と、第4レンズ群を含む複数のレンズ群を有し、前記第2レンズ群は、物体側から順に、像側面が凹形状の第2レンズ群の第1負レンズと、像側面が凹形状の第2レンズ群の第2負レンズと、物体側面が凸形状の第2レンズ群の正メニスカスレンズとにより実質的に3個のレンズで構成され、広角端状態の焦点距離をFw、前記第1レンズ群の焦点距離をF1、前記第2レンズ群の焦点距離をF2、前記第2レンズ群の第1負レンズと前記第2レンズ群の第2負レンズの焦点距離をそれぞれF21,F22としたとき、以下の条件を満足するズームレンズの変倍方法であって、前記第1レンズ群と前記第2レンズ群の間隙を増大し、前記第2レンズ群と前記第3レンズ群の間隙を減少し、前記複数のレンズ群のうち最も像面側のレンズ群を物体側に凸の軌跡にて光軸に沿って移動させることで、広角端状態から望遠端状態への変倍を行うことを特徴とするズームレンズの変倍方法を提供する。
3.000<F1/Fw<4.4000
−0.900<F2/Fw<−0.500
0.05<F21/F22<0.65
In the present invention, in order from the object side, a plurality of lens groups including a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group, and a fourth lens group are provided. The second lens group includes, in order from the object side, a first negative lens of a second lens group having a concave image side surface, a second negative lens of a second lens group having a concave image side surface, and an object side surface. A positive meniscus lens in the second lens group having a convex shape substantially consists of three lenses, the focal length in the wide-angle end state is Fw, the focal length of the first lens group is F1, and the second lens group A zoom lens zooming method satisfying the following conditions, where F2 is the focal length and F21 and F22 are the focal lengths of the first negative lens of the second lens group and the second negative lens of the second lens group, respectively. And increasing the gap between the first lens group and the second lens group, By reducing the gap between the second lens group and the third lens group, and moving the lens group closest to the image plane among the plurality of lens groups along the optical axis along a locus convex toward the object side, A zoom lens zooming method characterized in that zooming from the wide-angle end state to the telephoto end state is performed.
3.000 <F1 / Fw <4.4000
-0.900 <F2 / Fw <-0.500
0.05 <F21 / F22 <0.65

また、本発明では、物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、第3レンズ群と、第4レンズ群を含む複数のレンズ群を有し、前記第2レンズ群は、物体側から順に、像側面が凹形状の第2レンズ群の第1負レンズと、像側面が凹形状の第2レンズ群の第2負レンズと、物体側面が凸形状の第2レンズ群の正メニスカスレンズとにより実質的に3個のレンズで構成され、広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群の間隙が増大し、前記第2レンズ群と前記第3レンズ群の間隙は減少し、前記複数のレンズ群のうち最も像面側のレンズ群が物体側に凸の軌跡にて光軸に沿って移動し、広角端状態の焦点距離をFw、前記第1レンズ群の焦点距離をF1、前記第2レンズ群の焦点距離をF2、前記第2レンズ群の第1負レンズと前記第2レンズ群の第2負レンズの焦点距離をそれぞれF21,F22としたとき、以下の条件を満足するズームレンズの像ブレ補正方法であって、前記第3レンズ群の少なくとも一部を光軸に対して垂直方向に移動する事により像ブレ補正を行う事を特徴とするズームレンズの像ブレ補正方法を提供する。
3.000<F1/Fw<4.4000
−0.900<F2/Fw<−0.500
0.05<F21/F22<0.65
In the present invention, in order from the object side, a plurality of lens groups including a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group, and a fourth lens group are provided. The second lens group includes, in order from the object side, a first negative lens of a second lens group having a concave image side surface, a second negative lens of a second lens group having a concave image side surface, and an object side surface. A positive meniscus lens in the second lens group having a convex shape is substantially composed of three lenses, and a gap between the first lens group and the second lens group upon zooming from the wide-angle end state to the telephoto end state. Increases, the gap between the second lens group and the third lens group decreases, and the lens group closest to the image plane among the plurality of lens groups moves along the optical axis along a locus convex toward the object side. The focal length in the wide-angle end state is Fw, the focal length of the first lens group is F1, and the second lens group is The focal length F2, the focal length of the second negative lens of the second lens group and the first negative lens of the second lens group and respectively F21, F22, image blur correction of the zoom lens satisfies the following conditions An image blur correction method for a zoom lens, characterized in that image blur correction is performed by moving at least a part of the third lens group in a direction perpendicular to the optical axis.
3.000 <F1 / Fw <4.4000
-0.900 <F2 / Fw <-0.500
0.05 <F21 / F22 <0.65

また、本発明では、前記ズームレンズを有することを特徴とする光学装置を提供する。   In addition, the present invention provides an optical device having the zoom lens.

本発明によれば、望遠撮影領域での色収差が良好に補正された、小型で優れた光学性能を有するズームレンズと、これを有する光学装置を提供することができる。   According to the present invention, it is possible to provide a small zoom lens having excellent optical performance, in which chromatic aberration in the telephoto imaging region is corrected, and an optical apparatus having the zoom lens.

本発明の実施の形態にかかるズームレンズについて説明する。   A zoom lens according to an embodiment of the present invention will be described.

実施の形態にかかるズームレンズは、物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、第3レンズ群と、第4レンズ群を含む複数のレンズ群を有する構成である。   The zoom lens according to the embodiment includes, in order from the object side, a plurality of lens groups including a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group, and a fourth lens group. It is the structure which has.

また、撮影物体が無限遠における広角焦点距離から望遠焦点距離への変倍に際して、広角端状態から望遠端状態への変倍に際して、第1レンズ群と第2レンズ群の間隙が増大し、第2レンズ群と第3レンズ群の間隙は減少し、複数のレンズ群のうち最も像面側のレンズ群が物体側に凸の軌跡にて光軸に沿って移動する構成である。   Further, when zooming from the wide-angle focal length to the telephoto focal length at infinity, the gap between the first lens group and the second lens group increases when zooming from the wide-angle end state to the telephoto end state. The gap between the second lens group and the third lens group decreases, and the lens group closest to the image plane among the plurality of lens groups moves along the optical axis along a locus convex toward the object side.

上記レンズ構成を光学的見地で説明すれば、第1レンズ群は第1集光レンズ群、第2レンズ群は変倍レンズ群、第3レンズ群は結像レンズ群、最も像面側のレンズ群はフィールドレンズ群である。   To explain the above lens configuration from an optical point of view, the first lens group is a first condenser lens group, the second lens group is a variable power lens group, the third lens group is an imaging lens group, and the lens on the most image plane side. The group is a field lens group.

また、全長を小さくしたまま収差を良好に補正する為に、広角端状態の焦点距離をFw、第1レンズ群の焦点距離をF1、第2レンズ群の焦点距離をF2としたとき、以下の条件式(1)及び(2)を満足するズームレンズである。
(1) 3.000<F1/Fw<4.4000
(2) −0.900<F2/Fw<−0.500
Further, in order to correct aberrations satisfactorily while keeping the entire length small, when the focal length in the wide-angle end state is Fw, the focal length of the first lens group is F1, and the focal length of the second lens group is F2, the following The zoom lens satisfies conditional expressions (1) and (2).
(1) 3.000 <F1 / Fw <4.4000
(2) -0.900 <F2 / Fw <-0.500

条件式(1)及び(2)は、諸収差を良好に補正し、小型化を達成するための規定である。条件式(1)及び(2)を満足することで、像面湾曲や球面収差等を良好に補正しつつズームレンズの小型化を達成することができる。   Conditional expressions (1) and (2) are regulations for satisfactorily correcting various aberrations and achieving miniaturization. By satisfying the conditional expressions (1) and (2), it is possible to reduce the size of the zoom lens while favorably correcting curvature of field, spherical aberration, and the like.

条件式(1)の下限値を下まわると、変倍による像面湾曲の変動が大きくなり好ましく無い。条件式(1)の上限値を上回ると、変倍による第2レンズ群の移動量が増大する。これにより、第2レンズ群と第3レンズ群の空気間隔を大きく確保しなくてはならなくなるので、レンズ全長が長くなる。この条件で小型化を達成する為には、第3レンズ群の屈折力を強くして、光学系全体のバックフォーカスを短くすれば良いのであるが、球面収差が大きくなり好ましく無い。   If the lower limit of conditional expression (1) is not reached, the variation in field curvature due to zooming becomes large, which is not preferable. If the upper limit of conditional expression (1) is exceeded, the amount of movement of the second lens group due to zooming increases. As a result, it is necessary to ensure a large air gap between the second lens group and the third lens group, so that the total lens length becomes long. In order to achieve miniaturization under these conditions, it is sufficient to increase the refractive power of the third lens group and shorten the back focus of the entire optical system, but this is not preferable because spherical aberration increases.

なお、実施の形態の効果を確実にするために、条件式(1)の下限値を3.500にすることが好ましい。また、実施の形態の効果を確実にするために、条件式(1)の上限値を4.360にすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (1) to 3.500. In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (1) to 4.360.

条件式(2)の下限値を下回った状態で、第1レンズ群と第2レンズ群の空気間隔を確保すると、第2レンズ群と第3レンズ群の空気間隔が減少し望遠端焦点距離が確保出来なくなる。従って、第2レンズ群と第3レンズ群の空気間隔を大きくしなくてはならなくなるので、レンズ全長が長くなる。この条件で小型化を達成する為には、第3レンズ群の屈折力を強くして、光学系全体のバックフォーカスを短くすれば良いのであるが、球面収差が大きくなり好ましく無い。条件式(2)の上限値を上回ると変倍による像面湾曲の変動が大きくなり好ましく無い。   If the air gap between the first lens group and the second lens group is secured in a state where the lower limit value of the conditional expression (2) is not reached, the air gap between the second lens group and the third lens group is reduced, and the telephoto end focal length is reduced. Can not be secured. Therefore, since the air space between the second lens group and the third lens group has to be increased, the total lens length becomes longer. In order to achieve miniaturization under these conditions, it is sufficient to increase the refractive power of the third lens group and shorten the back focus of the entire optical system, but this is not preferable because spherical aberration increases. If the upper limit value of conditional expression (2) is exceeded, the variation in field curvature due to zooming becomes large, which is not preferable.

なお、実施の形態の効果を確実にするために、条件式(2)の下限値を−0.836にすることが好ましい。また、実施の形態の効果を確実にするために、条件式(2)の上限値を−0.600にすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (2) to −0.836. In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (2) to −0.600.

また、実施の形態にかかるズームレンズは、第3レンズ群は正屈折力を有し、第4レンズ群は正屈折力を有することが望ましい。このような構成にすることにより、諸収差を良好に補正し、高い結像性能を達成することが可能になる。   In the zoom lens according to the embodiment, it is preferable that the third lens group has a positive refractive power and the fourth lens group has a positive refractive power. By adopting such a configuration, it becomes possible to correct various aberrations and achieve high imaging performance.

第1レンズ群と第2レンズ群は、変倍に際して光線入射高や光線入射角度が大きく変化するので、変倍時における球面収差や像面湾曲の変動に大きく寄与する。   The first lens group and the second lens group greatly change the incident light height and the incident angle at the time of zooming, and thus greatly contribute to variations in spherical aberration and curvature of field during zooming.

また第3レンズ群は、第3レンズ群中又は近傍に開口絞りを有する構成が好ましく、変倍に際して光線入射高や光線入射角度の変化は少ないので変倍に対する各種収差変動の寄与は少ない。しかしながら、第1レンズ群で集光した光束を更に集光する事で結像するので、強い屈折力にしなければならなく曲率半径が小さいレンズ構成となる。   The third lens group preferably has an aperture stop in or near the third lens group. Since the change of the light incident height and the light incident angle is small during zooming, the contribution of various aberration fluctuations to zooming is small. However, since the image is formed by further condensing the light beam condensed by the first lens group, it has to have a strong refractive power and has a lens configuration with a small radius of curvature.

また4レンズ群は、各像高に対する入射光束径が小さいので球面収差よりも像面湾曲の変動に大きく寄与する。また、シェーディングに代表される固体撮像素子と撮影光学系とのマッチングを取るために射出瞳を結像面よりも物体側に遠くする働きも有する。   In addition, the four lens group has a smaller incident light beam diameter for each image height, and therefore contributes more to fluctuations in field curvature than spherical aberration. In addition, in order to match a solid-state image pickup device represented by shading with a photographing optical system, the exit pupil is further moved away from the image plane on the object side.

また、実施の形態にかかるズームレンズでは、第1レンズ群を物体側から順に、物体側に凸面を向けた第1レンズ群の負メニスカスレンズと、物体側に凸面を向けた第1レンズ群の正メニスカスレンズと、物体側面の曲率半径が像側面曲率半径の絶対値の1/6より小さい第1レンズ群の正レンズより構成することが望ましい。   In the zoom lens according to the embodiment, the negative lens of the first lens group having a convex surface facing the object side and the first lens group having a convex surface facing the object side in order from the object side. A positive meniscus lens and a positive lens of the first lens group in which the curvature radius of the object side surface is smaller than 1/6 of the absolute value of the image side curvature radius are desirable.

小型化の為に第1レンズ群の屈折力を強くしているので、高次の球面収差や像面湾曲収差が発生が発生しやすい。この収差を減少する為に、第1レンズ群の各レンズ面における光線の偏角を小さくする事を目的として、第1レンズ群の各面を開口絞りに対してコンセントリックな構成としている。   Since the refractive power of the first lens group is strengthened for miniaturization, high-order spherical aberration and field curvature aberration are likely to occur. In order to reduce this aberration, each surface of the first lens group has a concentric configuration with respect to the aperture stop in order to reduce the deflection angle of the light beam on each lens surface of the first lens group.

また、実施の形態にかかるズームレンズでは、良好な結像性能を達成するために、第1レンズ群の負メニスカスレンズの屈折率をN11、第1レンズ群の正メニスカスレンズと第1レンズ群の正レンズの平均屈折率をN1213としたとき、以下の条件式(3)を満足する事が望ましい。
(3) 1.00<F1/{Fw×(N11−N1213)}<14.0
In the zoom lens according to the embodiment, in order to achieve good imaging performance, the refractive index of the negative meniscus lens of the first lens group is N11, and the positive meniscus lens of the first lens group and the first lens group are When the average refractive index of the positive lens is N1213, it is desirable that the following conditional expression (3) is satisfied.
(3) 1.00 <F1 / {Fw × (N11−N1213)} <14.0

条件式(3)は、収差を良好に補正するための規定である。条件式(3)を満足することで像面湾曲や色収差等を良好に補正することができ、高い結像性能を達成することができる。   Conditional expression (3) is a rule for correcting aberrations satisfactorily. Satisfying conditional expression (3) makes it possible to satisfactorily correct curvature of field, chromatic aberration, and the like, and achieve high imaging performance.

条件式(3)の下限値を下まわると、像面湾曲が負に大きくなり好ましく無い。条件式(3)の上限値を上回ると、望遠端状態で色収差が大きくなり好ましく無い。   If the lower limit of conditional expression (3) is not reached, the field curvature becomes negatively large, which is not preferable. Exceeding the upper limit of conditional expression (3) is not preferable because chromatic aberration increases in the telephoto end state.

なお、実施の形態の効果を確実にするために、条件式(3)の下限値を0.50にすることが好ましい。また、実施の形態の効果を確実にするために、条件式(3)の上限値を12.0にすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (3) to 0.50. In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (3) to 12.0.

また、実施の形態にかかるズームレンズでは、第1レンズ群の負メニスカスレンズと第1レンズ群の正メニスカスレンズとは接合され、第1レンズ群の正レンズの物体側面が非球面を有する事が望ましい。   In the zoom lens according to the embodiment, the negative meniscus lens of the first lens group and the positive meniscus lens of the first lens group are cemented, and the object side surface of the positive lens of the first lens group may have an aspherical surface. desirable.

第1レンズ群の負メニスカスレンズと第1レンズ群の正メニスカスレンズとを接合する事により望遠端状態での色収差を効果的に減少する事が可能である。また、第1レンズ群の正レンズをアッベ数が75以上の低分散ガラスとする事により更に効果的に望遠端状態での色収差を減少する事が可能である。但し、アッベ数が75以上のガラスは屈折率が非常に小さいのでガラス面の曲率半径が小さくなる傾向にあり、球面収差を大きく発生させてしまう。この球面収差を減少する為に第1レンズ群の正レンズの物体側面を非球面とする事が好ましい。   By joining the negative meniscus lens of the first lens group and the positive meniscus lens of the first lens group, it is possible to effectively reduce chromatic aberration in the telephoto end state. In addition, the chromatic aberration in the telephoto end state can be more effectively reduced by making the positive lens of the first lens group a low dispersion glass having an Abbe number of 75 or more. However, since the glass having an Abbe number of 75 or more has a very low refractive index, the curvature radius of the glass surface tends to be small, and a large amount of spherical aberration is generated. In order to reduce this spherical aberration, the object side surface of the positive lens in the first lens group is preferably an aspherical surface.

また、実施の形態にかかるズームレンズでは、第2レンズ群は、物体側から順に、像側面が凹形状の第2レンズ群の第1負レンズと、像側面が凹形状の第2レンズ群の第2負レンズと、物体側面が凸形状の第2レンズ群の正メニスカスレンズとを有し、前記第2レンズ群のレンズ面のいずれかが非球面を有することが望ましい。   In the zoom lens according to the embodiment, the second lens group includes, in order from the object side, a first negative lens of the second lens group having a concave image side surface and a second lens group having a concave image side surface. It is desirable to have a second negative lens and a positive meniscus lens of the second lens group having a convex object side surface, and any of the lens surfaces of the second lens group has an aspherical surface.

小型化の為に第2レンズ群の屈折力も強くしているので、高次の球面収差や像面湾曲収差が発生しやすい。この収差を減少する為に、第2レンズ群の各レンズ面における光線の偏角を小さくする事を目的として、第2レンズ群の各面を開口絞りに対してコンセントリックな構成としている。   Since the refractive power of the second lens group is increased for miniaturization, higher-order spherical aberration and field curvature aberration are likely to occur. In order to reduce this aberration, each surface of the second lens group has a concentric configuration with respect to the aperture stop in order to reduce the deflection angle of the light beam on each lens surface of the second lens group.

但し、強い屈折力であるにも関わらず3群3枚と少ない構成とする事により小型化を達成しているので、変倍による収差変動が大きくなる傾向にあるので、第2レンズ群を構成するレンズ面のいずれかを非球面として収差変動が大きくなることを補正している。   However, although the lens has a strong refractive power, it has been reduced in size by reducing the number of elements in three groups to three, so the aberration variation due to zooming tends to increase, so the second lens group is configured. Any of the lens surfaces to be aspheric is corrected to increase the aberration fluctuation.

また、実施の形態にかかるズームレンズでは、第2レンズ群の各レンズは、全て空気を介在して配置されていることが望ましい。第2レンズ群の各レンズを空気を介して配置することで諸収差を良好に補正し、高い結像性能を達成することができる。   In the zoom lens according to the embodiment, it is desirable that all the lenses of the second lens group are arranged with air interposed therebetween. By disposing each lens of the second lens group via air, various aberrations can be corrected well and high imaging performance can be achieved.

また、実施の形態にかかるズームレンズでは、第2レンズ群の第1負レンズと第2レンズ群の第2負レンズの焦点距離をそれぞれF21,F22とするとき、以下の条件式(4)を満足する事が望ましい。
(4) 0.05<F21/F22<0.65
In the zoom lens according to the embodiment, when the focal lengths of the first negative lens of the second lens group and the second negative lens of the second lens group are F21 and F22, respectively, the following conditional expression (4) is satisfied. It is desirable to be satisfied.
(4) 0.05 <F21 / F22 <0.65

条件式(4)は、諸収差を良好に補正し、ズームレンズを小型化するための規定である。条件式(4)を満足することで、球面収差や像面湾曲等の収差を良好に補正し、小型で高い結像性能を有するズームレンズを達成することができる。   Conditional expression (4) is a rule for satisfactorily correcting various aberrations and miniaturizing the zoom lens. By satisfying conditional expression (4), it is possible to satisfactorily correct aberrations such as spherical aberration and curvature of field, and achieve a compact zoom lens having high imaging performance.

条件式(4)の下限値を下まわると、第1レンズ群と第2レンズ群の主点間隔を大きくしなくてはならなくなるので、第2レンズ群と第3レンズ群の空気間隔が減少し望遠端焦点距離が確保出来なくなる。従って、第2レンズ群と第3レンズ群の空気間隔を大きくしなくてはならなくなるので、レンズ全長が長くなる。この条件で小型化を達成する為には、第3レンズ群の屈折力を強くして、光学系全体のバックフォーカスを短くすれば良いのであるが、球面収差が大きくなり好ましく無い。   If the lower limit value of conditional expression (4) is not reached, the distance between the principal points of the first lens group and the second lens group must be increased, so the air distance between the second lens group and the third lens group decreases. However, the focal length at the telephoto end cannot be secured. Therefore, since the air space between the second lens group and the third lens group has to be increased, the total lens length becomes longer. In order to achieve miniaturization under these conditions, it is sufficient to increase the refractive power of the third lens group and shorten the back focus of the entire optical system, but this is not preferable because spherical aberration increases.

条件式(4)の上限値を上回ると、変倍による像面湾曲の変動が大きくなり好ましく無い。   If the upper limit value of conditional expression (4) is exceeded, the variation in field curvature due to zooming becomes large, which is not preferable.

なお、実施の形態の効果を確実にするために、条件式(4)の下限値を0.10にすることが好ましい。また、実施の形態の効果を確実にするために、条件式(4)の上限値を0.63にすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (4) to 0.10. In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (4) to 0.63.

また、実施の形態にかかるズームレンズでは、第2レンズ群の第1負レンズの像側面に非球面を有し、第2レンズ群の第1負レンズと第2レンズ群の第2負レンズの平均屈折率をN2とするとき、以下の条件式(5)を満足する事が望ましい。
(5) 1.810<N2
The zoom lens according to the embodiment has an aspheric surface on the image side surface of the first negative lens in the second lens group, and includes a first negative lens in the second lens group and a second negative lens in the second lens group. When the average refractive index is N2, it is desirable that the following conditional expression (5) is satisfied.
(5) 1.810 <N2

条件式(5)は、収差を良好に補正するための規定である。条件式(5)を満足することで球面収差や像面湾曲収差等を良好に補正し、高い結像性能を達成することができる。   Conditional expression (5) is a rule for correcting aberrations satisfactorily. Satisfying conditional expression (5) makes it possible to satisfactorily correct spherical aberration, curvature of field aberration, and the like, and achieve high imaging performance.

条件式(5)の範囲を逸脱すると、変倍による像面湾曲の変動が大きくなり好ましくない。なお、実施の形態の効果を確実にするために、条件式(3)の下限値を1.825にすることが好ましい。   Deviating from the range of conditional expression (5) is not preferable because the variation in field curvature due to zooming becomes large. In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (3) to 1.825.

また、小型化の為に第2レンズ群の第1負レンズの屈折力を強くしているので、高次の球面収差や像面湾曲収差が発生しやすい。この収差を減少する為に、第2レンズ群の第1負レンズの像側面を非球面とする事が好ましい。   Further, since the refractive power of the first negative lens of the second lens group is increased for miniaturization, higher-order spherical aberration and curvature of field are likely to occur. In order to reduce this aberration, it is preferable that the image side surface of the first negative lens of the second lens group be an aspherical surface.

また、実施の形態にかかるズームレンズでは、複数のレンズ群のうち最も像面側のレンズ群は、像側面に非球面を有する1つの正レンズ成分を有し、正レンズ成分の屈折率をNe、アッベ数をνeとしたとき、以下の条件式(6)及び(7)を満足する事が望ましい。
(6) Ne<1.55
(7) 75<νe
In the zoom lens according to the embodiment, the lens group closest to the image plane among the plurality of lens groups has one positive lens component having an aspheric surface on the image side surface, and the refractive index of the positive lens component is set to Ne. When the Abbe number is νe, it is desirable that the following conditional expressions (6) and (7) are satisfied.
(6) Ne <1.55
(7) 75 <νe

条件式(6)及び(7)は、色収差等を良好に補正するための規定である。条件式(6)及び(7)を満足することで、倍率色収差等の収差を良好に補正し、高い結像性能を達成することができる。   Conditional expressions (6) and (7) are rules for satisfactorily correcting chromatic aberration and the like. By satisfying conditional expressions (6) and (7), it is possible to satisfactorily correct aberrations such as lateral chromatic aberration and achieve high imaging performance.

条件式(6)、(7)の範囲からはずれると、倍率色収差の変倍による変動が大きくなり、好ましくない。なお、実施の形態の効果を確実にするために、条件式(6)の上限値を1.500にすることが好ましい。また、実施の形態の効果を確実にするために、条件式(7)の上限値を80.00にすることが好ましい。   A deviation from the range of conditional expressions (6) and (7) is not preferable because the variation due to the magnification change of the chromatic aberration of magnification becomes large. In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (6) to 1.500. In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (7) to 80.00.

また、良好なる色収差を小型なレンズ系のままに実現するには、最も像面側のレンズ群を1つの正レンズ成分で構成し、球面収差補正を目的として正レンズ成分の像側面を非球面形状とする事が好ましい。   In order to achieve good chromatic aberration with a small lens system, the lens unit closest to the image plane is composed of one positive lens component, and the image side surface of the positive lens component is aspherical for the purpose of correcting spherical aberration. The shape is preferable.

また、実施の形態にかかるズームレンズでは、ブレ補正を行う場合は、第3レンズ群の少なくとも一部を光軸に対して垂直方向に移動することで像ぶれ補正を行うことが望ましい。   In the zoom lens according to the embodiment, when blur correction is performed, it is desirable to perform image blur correction by moving at least a part of the third lens group in a direction perpendicular to the optical axis.

第3レンズ群は、変倍に際して光線入射高や光線入射角度の変化が少ないので防振補正を行う為の収差補正が効率的に行うことができる。また、変倍時と合焦時に固定である第3レンズ群をブレ補正レンズ群とすれば、第3レンズ群は、合焦用駆動機構から独立した防振用駆動機構とすることができる。また、両駆動系をそれぞれ独立して配置するため光学系の外径寸法も小さくすることができる。   Since the third lens group has little change in light incident height and light incident angle during zooming, aberration correction for performing image stabilization correction can be performed efficiently. Further, if the third lens group that is fixed at the time of zooming and focusing is used as a blur correction lens group, the third lens group can be an anti-vibration driving mechanism that is independent from the focusing driving mechanism. Further, since both drive systems are arranged independently, the outer diameter of the optical system can be reduced.

(実施例)
以下、実施の形態にかかるズームレンズの各実施例について図面を参照しつつ説明する。
(Example)
Examples of the zoom lens according to the embodiment will be described below with reference to the drawings.

第1実施例から第7実施例にかかるズームレンズは、物体側から順に、正屈折力を有する第1レンズ群G1と、負屈折力を有する第2レンズ群G2と、開口絞りと、正屈折力を有する第3レンズ群G3と、視野絞りと、正屈折力を有する第4レンズ群G4と、光学的ローパス・フィルターOLPFと、像面Iに配置される固体撮像素子のカバーガラスCGとから構成されている。   The zoom lens according to the first to seventh examples includes, in order from the object side, a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop, and positive refraction. A third lens group G3 having power, a field stop, a fourth lens group G4 having positive refracting power, an optical low-pass filter OLPF, and a cover glass CG of a solid-state imaging device disposed on the image plane I It is configured.

第1レンズ群G1は、物体側より順に、物体側に凸形状の負メニスカスレンズL11と凸形状の正メニスカスレンズL12との接合レンズと、物体側面の曲率半径が像側面曲率半径の絶対値の1/6より小さい正レンズL13から構成されている。   The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex shape on the object side and a positive meniscus lens L12 having a convex shape, and the curvature radius of the object side surface is an absolute value of the curvature radius of the image side surface. The positive lens L13 is smaller than 1/6.

第2レンズ群G2は、物体側から順に、像側面が凹形状の負レンズL21と、像側面が凹形状の負レンズL22と、物体側面が凸形状の正メニスカスレンズL23から構成されている。   The second lens group G2 includes, in order from the object side, a negative lens L21 having a concave image side surface, a negative lens L22 having a concave image side surface, and a positive meniscus lens L23 having a convex object side surface.

第3レンズ群G3は、物体側から順に、物体側面が凸形状の正レンズL31と、像側面が凹形状の負レンズL32と、像側面が凸形状の正レンズL33から構成されている。   The third lens group G3 includes, in order from the object side, a positive lens L31 having a convex object side surface, a negative lens L32 having a concave image side surface, and a positive lens L33 having a convex image side surface.

第4レンズ群G4は、物体側から順に、物体側が凸形状の負メニスカスレンズL41と両凸形状の正レンズL42との接合レンズから構成されている。   The fourth lens group G4 includes, in order from the object side, a cemented lens of a negative meniscus lens L41 having a convex shape on the object side and a positive lens L42 having a biconvex shape.

正メニスカスレンズL13の物体側面と、像側面が凹形状の負レンズL21の像側面と、物体側面が凸形状の正レンズL31の物体側面と、両凸形状の正レンズL42の像側面が非球面形状に構成されている。   The object side surface of the positive meniscus lens L13, the image side surface of the negative lens L21 having a concave image side surface, the object side surface of the positive lens L31 having a convex object side surface, and the image side surface of the biconvex positive lens L42 are aspherical surfaces. It is configured in shape.

広角焦点距離Wから望遠焦点距離Tへの変倍の際、第1レンズ群G1は固定され、第2レンズ群G2は像面I側に移動し、第3レンズ群G3は固定され、第4レンズ群G4は物体側に凸形状の軌跡で光軸に沿って移動する。   When zooming from the wide-angle focal length W to the telephoto focal length T, the first lens group G1 is fixed, the second lens group G2 is moved to the image plane I side, the third lens group G3 is fixed, and the fourth lens group G3 is fixed. The lens group G4 moves along the optical axis along a locus convex toward the object side.

撮影物体が有限距離における合焦に際して、第4レンズ群G4は光軸に沿って移動する。また、実施の形態の固体撮像素子中心から対角への対角長IHは、3.75mmである。   When the photographic object is focused at a finite distance, the fourth lens group G4 moves along the optical axis. Further, the diagonal length IH from the center of the solid-state imaging device of the embodiment to the diagonal is 3.75 mm.

(第1実施例)
図1は、第1実施例にかかるズームレンズのレンズ構成を示す図であり、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態をそれぞれ示している。なお、以下の説明に使用するレンズを示す符号は広角端状態Tにのみ記載し、他の状態については記載を省略する。他の実施例についても同様とする。
(First embodiment)
FIG. 1 is a diagram illustrating a lens configuration of a zoom lens according to a first example, where W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. In addition, the code | symbol which shows the lens used for the following description is described only in the wide-angle end state T, and description is abbreviate | omitted about another state. The same applies to other embodiments.

また、第1実施例にかかるズームレンズでは、第3レンズ群G3は、光軸に対して垂直方向に移動する事によりブレ補正を行う構成である。   In the zoom lens according to the first example, the third lens group G3 is configured to perform blur correction by moving in the direction perpendicular to the optical axis.

次の表1に、第1実施例のズームレンズの諸元表の値を揚げる。表において、(全体諸元)中のfは焦点距離、Bfはバックフォーカス、FNOはFナンバーをそれぞれ表す。   Table 1 below lists the values in the specification table of the zoom lens of the first embodiment. In the table, “f” in (overall specifications) represents the focal length, “Bf” represents the back focus, and “FNO” represents the F number.

また(レンズ諸元)中の、第1カラムは物体側からのレンズ面番号、第2カラムrはレンズ面の曲率半径、第3カラムdはレンズ面間隔、第4カラムνdはd線(波長λ=587.6nm)に対する媒質のアッベ数、第5カラムNdはd線(波長λ=587.6nm)に対する媒質の屈折率をそれぞれ表す。なお、r=0.0000は平面を表す。   Also, in (lens specifications), the first column is the lens surface number from the object side, the second column r is the radius of curvature of the lens surface, the third column d is the lens surface interval, and the fourth column νd is the d line (wavelength). The Abbe number of the medium with respect to λ = 587.6 nm and the fifth column Nd represent the refractive index of the medium with respect to the d-line (wavelength λ = 587.6 nm). Note that r = 0.0000 represents a plane.

また、(非球面係数)には、以下の式で非球面を表現した場合の非球面係数を示す。非球面は、光軸に垂直な方向の高さをy、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をX(y)、基準球面の曲率半径(近軸曲率半径)をr、円錐定数をK、n次の非球面係数をCnとしたとき、以下の数式で表される。なお、非球面データ欄の「E-n」(nは整数)は「×10-n」を示す。
X(y)=y2/[r・{1+(1−K・y2/r21/2}]
+C4・y4+C6・y6+C8・y8+C10・y10
Further, (Aspheric coefficient) indicates an aspheric coefficient when the aspheric surface is expressed by the following expression. The aspherical surface has a height in the direction perpendicular to the optical axis as y, and a distance (sag amount) along the optical axis from the tangent plane of each aspherical surface at the height y to each aspherical surface as X (y), When the radius of curvature (paraxial radius of curvature) of the reference spherical surface is r, the conic constant is K, and the nth-order aspherical coefficient is Cn, the following equation is used. “En” (n is an integer) in the aspherical data column indicates “× 10 −n ”.
X (y) = y 2 / [r · {1+ (1−K · y 2 / r 2 ) 1/2 }]
+ C4 · y 4 + C6 · y 6 + C8 · y 8 + C10 · y 10

また、(合焦時における可変間隙)には、無限遠合焦時と至近距離合焦時の広角端状態、中間焦点距離状態、望遠端状態の各状態での焦点距離f、倍率βにおける可変間隔の値を示す。D0は、物体から最も物体側のレンズ面までの距離をBfはバックフォーカスを、TLはズームレンズの全長の値をそれぞれ示す。また、(防振補正時の防振レンズ群移動量と像面移動量)には、無限遠合焦時と至近距離合焦時のレンズ移動量に対する像面移動量をそれぞれ表す。また、(条件式対応値)には、それぞれの条件式に対応する値を示す。   Further, (variable gap at the time of focusing) is variable in the focal length f and magnification β in each of the wide-angle end state, the intermediate focal length state, and the telephoto end state at the time of focusing at infinity and focusing on the close range. Indicates the interval value. D0 represents the distance from the object to the lens surface closest to the object, Bf represents the back focus, and TL represents the total length of the zoom lens. Further, (vibration lens group movement amount and image plane movement amount at the time of image stabilization correction) represents the image plane movement amount with respect to the lens movement amount at the time of focusing on infinity and focusing on a close range. Further, (value corresponding to the conditional expression) indicates a value corresponding to each conditional expression.

なお、以下の全ての諸元値において、掲載されている焦点距離f、曲率半径r、面間隔dその他の長さ等は、特記の無い場合一般に「mm」が使われるが、光学系は比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されること無く他の適当な単位を用いることもできる。なお、以下の全実施例において、本実施例と同様の符号を用い説明を省略する。   In all the following specification values, “mm” is generally used as the focal length f, radius of curvature r, surface interval d and other lengths, etc. unless otherwise specified, but the optical system is proportional. Even if it is enlarged or proportionally reduced, the same optical performance can be obtained. Further, the unit is not limited to “mm”, and other appropriate units may be used. In all the following embodiments, the same reference numerals as those in this embodiment are used, and the description thereof is omitted.

(表1)
(全体諸元)
F=6.50〜30.00〜61.00
FNO=3.8 〜 4.1 〜 3.7

(レンズ諸元)
r d νd Nd
1) 25.9603 1.4000 17.98 1.945950
2) 21.0289 6.1000 82.56 1.497820
3) 327.6951 0.1000
4) 17.2279 4.7000 82.56 1.497820
5) 129.9432 (d5=可変)

6)-2681.7744 1.0000 40.19 1.850490
7) 4.9916 2.2000
8) -38.8019 1.0000 40.77 1.883000
9) 11.1696 0.9000
10) 11.6255 1.6000 17.98 1.945950
11) 92.2561 (d11=可変)

12> 開口絞り 0.5000
13) 5.3318 2.1000 64.06 1.516330
14) 41.8200 0.1000
15) 12.6924 1.0000 42.72 1.834810
16) 5.7137 0.8000
17) -114.0651 2.0000 91.20 1.456000
18) -12.1743 0.0000
19) 視野絞り (d19=可変)

20) 9.2880 1.0000 25.46 2.000690
21) 6.4169 3.5000 91.20 1.456000
22) -19.3341 (d22=可変)

23) 0.0000 1.6000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(非球面係数)
面 : K C 4 C 6 C 8
4 :0.4808 5.42353E-06 3.74245E-09 0.00000E+00
7 :0.2537 3.70121E-04 8.82513E-06 6.13778E-10
13 :0.1321 1.00826E-04 1.60307E-05 -9.89080E-07
12 :1.0000 -8.66901E-05 0.00000E+00 0.00000E+00

(合焦時における可変間隔)
無限遠合焦時 至近距離合焦時
F、β 6.50000 30.00000 61.00000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.9181 683.8795 473.4833
d 5 0.90000 10.93565 13.96348 0.90000 10.93565 13.96348
d 11 15.40831 5.37266 2.34483 15.40831 5.37266 2.34483
d 20 5.02154 1.42306 8.06457 4.74165 0.21801 1.66443
d 22 6.51775 10.11623 3.47472 6.79764 11.32128 9.87486
Bf 4.20934 4.20934 4.20934 4.20934 4.20934 4.20914
TL 64.65693 64.65693 64.65693 64.65693 64.65693 64.65693

(防振補正時の防振レンズ群移動量と像面移動量)
無限遠合焦時 至近距離合焦時
F、β 6.50000 30.00000 61.00000 -0.04000 -0.04000 -0.10000
レンズ ±0.124 ±0.248 ±0.383 ±0.123 ±0.239 ±0.355
像面 ±0.118 ±0.253 ±0.361 ±0.118 ±0.253 ±0.361

(条件式対応値)
(1) F1/Fw = 4.096
(2) F2/Fw =−0.790
(3) F1/{Fw×(N11−N1213)}= 9.140
(4) F21/F22 = 0.602
(5) N2 = 1.867
(6) Ne = 1.46
(7) νe =91.20
(Table 1)
(Overall specifications)
F = 6.50-30.00-61.00
FNO = 3.8 to 4.1 to 3.7

(Lens specifications)
rd νd Nd
1) 25.9603 1.4000 17.98 1.945950
2) 21.0289 6.1000 82.56 1.497820
3) 327.6951 0.1000
4) 17.2279 4.7000 82.56 1.497820
5) 129.9432 (d5 = variable)

6) -2681.7744 1.0000 40.19 1.850490
7) 4.9916 2.2000
8) -38.8019 1.0000 40.77 1.883000
9) 11.1696 0.9000
10) 11.6255 1.6000 17.98 1.945950
11) 92.2561 (d11 = variable)

12> Aperture stop 0.5000
13) 5.3318 2.1000 64.06 1.516330
14) 41.8200 0.1000
15) 12.6924 1.0000 42.72 1.834810
16) 5.7137 0.8000
17) -114.0651 2.0000 91.20 1.456000
18) -12.1743 0.0000
19) Field stop (d19 = variable)

20) 9.2880 1.0000 25.46 2.000690
21) 6.4169 3.5000 91.20 1.456000
22) -19.3341 (d22 = variable)

23) 0.0000 1.6000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(Aspheric coefficient)
Surface: KC 4 C 6 C 8
4: 0.4808 5.42353E-06 3.74245E-09 0.00000E + 00
7: 0.2537 3.70121E-04 8.82513E-06 6.13778E-10
13: 0.1321 1.00826E-04 1.60307E-05 -9.89080E-07
12: 1.000 -8.66901E-05 0.00000E + 00 0.00000E + 00

(Variable interval during focusing)
Focusing at infinity Focusing at close range
F, β 6.50000 30.00000 61.00000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.9181 683.8795 473.4833
d 5 0.90000 10.93565 13.96348 0.90000 10.93565 13.96348
d 11 15.40831 5.37266 2.34483 15.40831 5.37266 2.34483
d 20 5.02154 1.42306 8.06457 4.74165 0.21801 1.66443
d 22 6.51775 10.11623 3.47472 6.79764 11.32128 9.87486
Bf 4.20934 4.20934 4.20934 4.20934 4.20934 4.20914
TL 64.65693 64.65693 64.65693 64.65693 64.65693 64.65693

(Moving amount of image stabilization lens and amount of image plane movement during image stabilization)
Focusing at infinity Focusing at close range
F, β 6.50000 30.00000 61.00000 -0.04000 -0.04000 -0.10000
Lens ± 0.124 ± 0.248 ± 0.383 ± 0.123 ± 0.239 ± 0.355
Image plane ± 0.118 ± 0.253 ± 0.361 ± 0.118 ± 0.253 ± 0.361

(Values for conditional expressions)
(1) F1 / Fw = 4.096
(2) F2 / Fw = −0.790
(3) F1 / {Fw × (N11−N1213)} = 9.140
(4) F21 / F22 = 0.602
(5) N2 = 1.867
(6) Ne = 1.46
(7) νe = 91.20

図2は、第1実施例のズームレンズの無限遠状態における諸収差図および防振補正時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。図3は、第1実施例のズームレンズの至近撮影距離合焦状態における諸収差図および防振補正時の横収差図であり、(a)は、Rw=205mm、(b)はRm=749mm、(c)はRt=538mmの各収差図をそれぞれ示す。   2A and 2B are graphs showing various aberrations of the zoom lens according to the first example at infinity and lateral aberrations during image stabilization. FIG. 2A is a wide-angle end state, FIG. 2B is an intermediate focal length state, and FIG. ) Shows respective aberration diagrams in the telephoto end state. FIGS. 3A and 3B are graphs showing various aberrations of the zoom lens according to the first example when the close-up shooting distance is in focus, and lateral aberrations during image stabilization. FIG. 3A shows Rw = 205 mm, and FIG. 3B shows Rm = 749 mm. , (C) shows aberration diagrams of Rt = 538 mm.

各収差図において、Yは像高を、NAは開口数を、Dはd線(λ=587.6nm)を、Gはg線(λ=435.6nm)を、Cはc線(λ=656.3nm)を、Fはf線(λ=486.1nm)をそれぞれ示している。なお、非点収差を示す収差図において実線はサジタル像面を示し、破線はメリディオナル像面を示している。また、倍率色収差を示す収差図はd線を基準として示されている。なお、以下の全実施例の収差図において、本実施例と同様の符号を用い説明を省略する。   In each aberration diagram, Y is the image height, NA is the numerical aperture, D is the d-line (λ = 587.6 nm), G is the g-line (λ = 435.6 nm), and C is the c-line (λ = 656.3 nm) and F represents the f-line (λ = 486.1 nm). In the aberration diagram showing astigmatism, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. An aberration diagram showing lateral chromatic aberration is shown with reference to the d-line. In the aberration diagrams of all the following examples, the same reference numerals as those in this example are used, and description thereof is omitted.

各収差図から、第1実施例にかかるズームレンズは、広角端状態から望遠端状態及びそれぞれの状態における防振補正時に亘って諸収差が良好に補正され、優れた結像特性を有していることがわかる。   From each aberration diagram, the zoom lens according to the first example has excellent imaging characteristics with various aberrations corrected well from the wide-angle end state to the telephoto end state and during image stabilization correction in each state. I understand that.

(第2実施例)
図4は、第2実施例にかかるズームレンズのレンズ構成を示す図である。次の表2に第2実施例のズームレンズの諸元表の値を揚げる。
(Second embodiment)
FIG. 4 is a diagram illustrating a lens configuration of a zoom lens according to the second example. Table 2 below shows the values in the specification table of the zoom lens of the second embodiment.

(表2)
(全体諸元)
F=6.55〜30.00〜61.00
FNO=3.6 〜 3.8 〜 3.7

(レンズ諸元)
r d νd Nd
1) 25.7235 1.4000 20.88 1.922860
2) 20.6571 5.9000 90.22 1.456500
3) 212.5954 0.1000
4) 17.1979 5.3000 90.91 1.454570
5) 321.2332 (d5=可変)

6) -50.6548 1.0000 40.10 1.851350
7) 4.2633 2.2000
8) -92.4310 1.0000 40.77 1.883000
9) 23.5051 0.6000
10) 11.8678 1.5000 17.98 1.945950
11) 55.8154 (d11=可変)

12> 開口絞り 0.3000
13) 5.5193 2.1000 63.97 1.514280
14) -37.8518 0.9000
15) 49.7862 1.0000 42.72 1.834810
16) 6.0285 0.5000
17) 12.6257 1.8000 91.20 1.456000
18) -11.7685 0.0000
19) 視野絞り (d19=可変)

20) 9.8698 1.0000 25.46 2.000690
21) 6.7108 2.6000 91.30 1.455590
22) -51.2524 (d22=可変)

23) 0.0000 0.9000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(非球面係数)
面 : K C 4 C 6 C 8
4 : 0.5000 3.64840E-06 0.00000E+00 0.00000E+00
7 : -0.8591 1.93500E-03 -2.58040E-05 0.00000E+00
13 : 0.5519 -3.03330E-04 0.00000E+00 0.00000E+00
22 :-99.0000 -2.56430E-04 0.00000E+00 0.00000E+00

(合焦時における可変間隔)
無限遠合焦状態 至近距離合焦状態
F,β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 141.5092 674.0564 452.9397
d 5 1.02022 12.17260 15.26469 1.02022 12.17260 15.26469
d 11 15.97509 4.82271 1.73062 15.97509 4.82271 1.73062
d 19 8.08567 2.30237 9.98218 7.63484 0.80981 1.26412
d 22 3.99302 9.77632 2.09651 4.44385 11.26888 10.81457
Bf 2.37189 2.37189 2.37189 2.37189 2.37189 2.37189
TL 62.54589 62.54589 62.54589 62.54589 62.54589 62.54589

(条件式対応値)
(1) F1/Fw = 4.358
(2) F2/Fw =−0.835
(3) F1/{Fw×(N11−N1213)}= 9.325
(4) F21/F22 = 0.217
(5) N2 = 1.867
(6) Ne = 1.46
(7) νe =91.30
(Table 2)
(Overall specifications)
F = 6.55-30.00-61.00
FNO = 3.6 to 3.8 to 3.7

(Lens specifications)
rd νd Nd
1) 25.7235 1.4000 20.88 1.922860
2) 20.6571 5.9000 90.22 1.456500
3) 212.5954 0.1000
4) 17.1979 5.3000 90.91 1.454570
5) 321.2332 (d5 = variable)

6) -50.6548 1.0000 40.10 1.851350
7) 4.2633 2.2000
8) -92.4310 1.0000 40.77 1.883000
9) 23.5051 0.6000
10) 11.8678 1.5000 17.98 1.945950
11) 55.8154 (d11 = variable)

12> Aperture stop 0.3000
13) 5.5193 2.1000 63.97 1.514280
14) -37.8518 0.9000
15) 49.7862 1.0000 42.72 1.834810
16) 6.0285 0.5000
17) 12.6257 1.8000 91.20 1.456000
18) -11.7685 0.0000
19) Field stop (d19 = variable)

20) 9.8698 1.0000 25.46 2.000690
21) 6.7108 2.6000 91.30 1.455590
22) -51.2524 (d22 = variable)

23) 0.0000 0.9000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(Aspheric coefficient)
Surface: KC 4 C 6 C 8
4: 0.5000 3.64840E-06 0.00000E + 00 0.00000E + 00
7: -0.8591 1.93500E-03 -2.58040E-05 0.00000E + 00
13: 0.5519 -3.03330E-04 0.00000E + 00 0.00000E + 00
22: -99.0000 -2.56430E-04 0.00000E + 00 0.00000E + 00

(Variable interval during focusing)
Infinite focus state Close focus state
F, β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 141.5092 674.0564 452.9397
d 5 1.02022 12.17260 15.26469 1.02022 12.17260 15.26469
d 11 15.97509 4.82271 1.73062 15.97509 4.82271 1.73062
d 19 8.08567 2.30237 9.98218 7.63484 0.80981 1.26412
d 22 3.99302 9.77632 2.09651 4.44385 11.26888 10.81457
Bf 2.37189 2.37189 2.37189 2.37189 2.37189 2.37189
TL 62.54589 62.54589 62.54589 62.54589 62.54589 62.54589

(Values for conditional expressions)
(1) F1 / Fw = 4.358
(2) F2 / Fw = −0.835
(3) F1 / {Fw × (N11−N1213)} = 9.325
(4) F21 / F22 = 0.217
(5) N2 = 1.867
(6) Ne = 1.46
(7) νe = 91.30

図5は、第2実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。図6は、第2実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=204mm、(b)はRm=737mm、(c)はRt=515mmの各収差図をそれぞれ示す。   FIGS. 5A and 5B are graphs showing various aberrations of the zoom lens according to the second example in an infinite state. FIG. 5A is an aberration diagram in the wide-angle end state, FIG. 5B is an intermediate focal length state, and FIG. Respectively. FIGS. 6A and 6B are graphs showing various aberrations of the zoom lens according to the second embodiment in the close-up shooting distance focus state. FIG. 6A shows Rw = 204 mm, FIG. 6B shows Rm = 737 mm, and FIG. 6C shows Rt = 515 mm. Each aberration diagram is shown.

各収差図から、第2実施例にかかるズームレンズは、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像特性を有していることがわかる。   From each aberration diagram, it can be seen that the zoom lens according to the second example has excellent imaging characteristics with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第3実施例)
図7は、第3実施例にかかるズームレンズのレンズ構成を示す図である。次の表3に第3実施例のズームレンズの諸元表の値を揚げる。
(Third embodiment)
FIG. 7 is a diagram illustrating a lens configuration of a zoom lens according to the third example. Table 3 below lists the values in the specification table of the zoom lens of the third embodiment.

(表3)
(全体諸元)
F=6.50〜30.00〜61.00
FNO=3.7 〜 4.0 〜 3.8

(レンズ諸元)
r d νd Nd
1) 25.9116 1.4000 17.98 1.945950
2) 21.0025 6.1000 82.56 1.497820
3) 347.3024 0.1000
4) 17.1452 4.7000 82.56 1.497820
5) 120.0854 (d5=可変)

6) 1316.3968 1.0000 40.19 1.850490
7) 4.8440 2.2000
8) -38.8019 1.0000 40.77 1.883000
9) 11.8322 0.9000
10) 11.4204 1.6000 17.98 1.945950
11) 74.3334 (d11=可変)

12> 開口絞り 0.5000
13) 5.0459 2.1000 64.06 1.516330
14) -15.9483 0.1000
15) 25.7688 1.0000 42.72 1.834810
16) 5.4774 0.7000
17) 61.0443 2.0000 91.20 1.456000
18) -15.0266 0.0000
19) 視野絞り (d19=可変)

20) 10.2508 1.0000 25.46 2.000690
21) 6.8801 3.0000 91.20 1.456000
22) -26.6761 (d22=可変)

23) 0.0000 1.6000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(非球面係数)
面 : K C 4 C 6 C 8
4 : 0.4287 6.72320E-06 8.65870E-09 0.00000E+00
7 : 0.6444 1.19890E-05 4.36360E-06 -1.60260E-07
13 : 0.1247 -2.33820E-04 9.48600E-06 -9.89080E-07
22 : 1.0000 -1.49710E-04 0.00000E+00 0.00000E+00

(合焦時における可変間隔)
無限遠合焦時 至近距離合焦時
F,β 6.50000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.4928 676.3819 451.3168
d 5 0.90000 11.04804 13.87679 0.90000 11.04804 13.87679
d 11 15.23960 5.09156 2.26281 15.23960 5.09156 2.26281
d 19 5.79062 1.55117 9.48020 5.42736 0.18034 1.32246
d 22 6.49556 10.73501 2.80598 6.85882 12.10584 10.96372
Bf 1.30180 1.30180 1.30180 1.30180 1.30180 1.30180
TL 61.72758 61.72758 61.72758 61.72758 61.72758 61.72758

(条件式対応値)
(1) F1/Fw = 4.096
(2) F2/Fw =−0.790
(3) F1/{Fw×(N11−N1213)}= 9.140
(4) F21/F22 = 0.562
(5) N2 = 1.867
(6) Ne = 1.46
(7) νe =91.20
(Table 3)
(Overall specifications)
F = 6.50-30.00-61.00
FNO = 3.7 to 4.0 to 3.8

(Lens specifications)
rd νd Nd
1) 25.9116 1.4000 17.98 1.945950
2) 21.0025 6.1000 82.56 1.497820
3) 347.3024 0.1000
4) 17.1452 4.7000 82.56 1.497820
5) 120.0854 (d5 = variable)

6) 1316.3968 1.0000 40.19 1.850490
7) 4.8440 2.2000
8) -38.8019 1.0000 40.77 1.883000
9) 11.8322 0.9000
10) 11.4204 1.6000 17.98 1.945950
11) 74.3334 (d11 = variable)

12> Aperture stop 0.5000
13) 5.0459 2.1000 64.06 1.516330
14) -15.9483 0.1000
15) 25.7688 1.0000 42.72 1.834810
16) 5.4774 0.7000
17) 61.0443 2.0000 91.20 1.456000
18) -15.0266 0.0000
19) Field stop (d19 = variable)

20) 10.2508 1.0000 25.46 2.000690
21) 6.8801 3.0000 91.20 1.456000
22) -26.6761 (d22 = variable)

23) 0.0000 1.6000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(Aspheric coefficient)
Surface: KC 4 C 6 C 8
4: 0.4287 6.72320E-06 8.65870E-09 0.00000E + 00
7: 0.6444 1.19890E-05 4.36360E-06 -1.60260E-07
13: 0.1247 -2.33820E-04 9.48600E-06 -9.89080E-07
22: 1.0000 -1.49710E-04 0.00000E + 00 0.00000E + 00

(Variable interval during focusing)
Focusing at infinity Focusing at close range
F, β 6.50000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.4928 676.3819 451.3168
d 5 0.90000 11.04804 13.87679 0.90000 11.04804 13.87679
d 11 15.23960 5.09156 2.26281 15.23960 5.09156 2.26281
d 19 5.79062 1.55117 9.48020 5.42736 0.18034 1.32246
d 22 6.49556 10.73501 2.80598 6.85882 12.10584 10.96372
Bf 1.30180 1.30180 1.30180 1.30180 1.30180 1.30180
TL 61.72758 61.72758 61.72758 61.72758 61.72758 61.72758

(Values for conditional expressions)
(1) F1 / Fw = 4.096
(2) F2 / Fw = −0.790
(3) F1 / {Fw × (N11−N1213)} = 9.140
(4) F21 / F22 = 0.562
(5) N2 = 1.867
(6) Ne = 1.46
(7) νe = 91.20

図8は、第3実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。図9は、第3実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=202mm、(b)はRm=738mm、(c)はRt=513mmの各収差図をそれぞれ示す。   FIGS. 8A and 8B are graphs showing various aberrations of the zoom lens according to the third example in the infinite state. FIG. 8A illustrates aberrations in the wide-angle end state, FIG. 8B illustrates the intermediate focal length state, and FIG. Respectively. FIGS. 9A and 9B are graphs showing various aberrations of the zoom lens according to the third example when the close-up shooting distance is in focus. FIG. 9A shows Rw = 202 mm, FIG. 9B shows Rm = 738 mm, and FIG. 9C shows Rt = 513 mm. Each aberration diagram is shown.

各収差図から、第3実施例にかかるズームレンズは、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像特性を有していることがわかる。   From each aberration diagram, it can be seen that the zoom lens according to the third example has excellent imaging characteristics with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第4実施例)
図10は、第4実施例にかかるズームレンズのレンズ構成を示す図である。次の表4に第4実施例のズームレンズの諸元表の値を揚げる。
(Fourth embodiment)
FIG. 10 is a diagram illustrating a lens configuration of a zoom lens according to the fourth example. Table 4 below shows the values in the specification table of the zoom lens of the fourth embodiment.

(表4)
(全体諸元)
F=6.55〜30.00〜61.00
FNO=3.5 〜 3.5 〜 3.7

(レンズ諸元)
r d νd Nd
1) 24.5909 1.4000 20.88 1.922860
2) 19.4777 5.2000 82.56 1.497820
3) 115.1591 0.1000
4) 18.4332 5.0000 82.56 1.497820
5) 195.1358 (d5=可変)

6) -80.2684 1.0000 40.10 1.851350
7) 4.3262 2.2000
8) 89.2950 1.0000 40.77 1.883000
9) 15.1775 0.6000
10) 10.0334 1.5000 17.98 1.945950
11) 28.1713 (d11=可変)

12> 開口絞り 0.3000
13) 5.6537 2.1000 63.97 1.514280
14) -23.6916 0.9000
15) -327.0168 1.0000 42.72 1.834810
16) 6.2930 0.4000
17) 10.6945 1.8000 91.20 1.456000
18) -8.9087 0.0000
19) 視野絞り (d19=可変)

20) 13.0182 1.0000 25.46 2.000690
21) 8.7558 2.6000 91.30 1.455590
22) -37.1642 (d22=可変)

23) 0.0000 0.9000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(非球面係数)
面 : K C 4 C 6 C 8
4 : 0.5000 2.43110E-06 0.00000E+00 0.00000E+00
7 : -0.8038 1.87930E-03 -1.33170E-05 0.00000E+00
13 : 0.5707 -4.07580E-04 0.00000E+00 0.00000E+00
22 :-99.0000 -3.32860E-04 0.00000E+00 0.00000E+00

(合焦時における可変間隔)
無限遠合焦状態 至近距離合焦状態
F,β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.5720 667.7010 426.1274
d 5 1.02020 12.36308 15.22189 1.02020 12.36308 15.22189
d 11 15.63505 4.29217 1.43336 15.63505 4.29217 1.43336
d 19 10.13097 3.05373 12.83541 9.46632 1.30190 1.39860
d 22 3.47935 10.55659 0.77491 4.14400 12.30842 12.21172
Bf 0.15320 0.15320 0.15320 0.15320 0.15320 0.15320
TL 60.41878 60.41878 60.41878 60.41878 60.41878 60.41878

(条件式対応値)
(1) F1/Fw = 4.358
(2) F2/Fw =−0.835
(3) F1/{Fw×(N11−N1213)}=10.258
(4) F21/F22 = 0.230
(5) N2 = 1.867
(6) Ne = 1.46
(7) νe =91.30
(Table 4)
(Overall specifications)
F = 6.55-30.00-61.00
FNO = 3.5 to 3.5 to 3.7

(Lens specifications)
rd νd Nd
1) 24.5909 1.4000 20.88 1.922860
2) 19.4777 5.2000 82.56 1.497820
3) 115.1591 0.1000
4) 18.4332 5.0000 82.56 1.497820
5) 195.1358 (d5 = variable)

6) -80.2684 1.0000 40.10 1.851350
7) 4.3262 2.2000
8) 89.2950 1.0000 40.77 1.883000
9) 15.1775 0.6000
10) 10.0334 1.5000 17.98 1.945950
11) 28.1713 (d11 = variable)

12> Aperture stop 0.3000
13) 5.6537 2.1000 63.97 1.514280
14) -23.6916 0.9000
15) -327.0168 1.0000 42.72 1.834810
16) 6.2930 0.4000
17) 10.6945 1.8000 91.20 1.456000
18) -8.9087 0.0000
19) Field stop (d19 = variable)

20) 13.0182 1.0000 25.46 2.000690
21) 8.7558 2.6000 91.30 1.455590
22) -37.1642 (d22 = variable)

23) 0.0000 0.9000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(Aspheric coefficient)
Surface: KC 4 C 6 C 8
4: 0.5000 2.43110E-06 0.00000E + 00 0.00000E + 00
7: -0.8038 1.87930E-03 -1.33170E-05 0.00000E + 00
13: 0.5707 -4.07580E-04 0.00000E + 00 0.00000E + 00
22: -99.0000 -3.32860E-04 0.00000E + 00 0.00000E + 00

(Variable interval during focusing)
Infinite focus state Close focus state
F, β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.5720 667.7010 426.1274
d 5 1.02020 12.36308 15.22189 1.02020 12.36308 15.22189
d 11 15.63505 4.29217 1.43336 15.63505 4.29217 1.43336
d 19 10.13097 3.05373 12.83541 9.46632 1.30190 1.39860
d 22 3.47935 10.55659 0.77491 4.14400 12.30842 12.21172
Bf 0.15320 0.15320 0.15320 0.15320 0.15320 0.15320
TL 60.41878 60.41878 60.41878 60.41878 60.41878 60.41878

(Values for conditional expressions)
(1) F1 / Fw = 4.358
(2) F2 / Fw = −0.835
(3) F1 / {Fw × (N11−N1213)} = 10.258
(4) F21 / F22 = 0.230
(5) N2 = 1.867
(6) Ne = 1.46
(7) νe = 91.30

図11は、第4実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。図12は、第4実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=201mm、(b)はRm=728mm、(c)はRt=487mmの各収差図をそれぞれ示す。   FIGS. 11A and 11B are graphs showing various aberrations of the zoom lens according to the fourth example in the infinite state. FIG. 11A illustrates aberrations in the wide-angle end state, FIG. 11B illustrates the intermediate focal length state, and FIG. Respectively. FIGS. 12A and 12B are graphs showing various aberrations of the zoom lens according to the fourth example in the close-up shooting distance focus state. FIG. 12A shows Rw = 201 mm, FIG. 12B shows Rm = 728 mm, and FIG. 12C shows Rt = 487 mm. Each aberration diagram is shown.

各収差図から、第4実施例にかかるズームレンズは、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像特性を有していることがわかる。   From each aberration diagram, it can be seen that the zoom lens according to the fourth example has excellent imaging characteristics with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第5実施例)
図13は、第5実施例にかかるズームレンズのレンズ構成を示す図である。次の表5に第5実施例のズームレンズの諸元表の値を揚げる。
(5th Example)
FIG. 13 is a diagram illustrating a lens configuration of a zoom lens according to a fifth example. Table 5 below shows the values in the specification table of the zoom lens of the fifth embodiment.

(表5)
(全体諸元)
F=6.55〜30.00〜60.10
FNO=3.5 〜 3.6 〜 3.6

(レンズ諸元)
r d νd Nd
1) 26.2824 1.4000 20.88 1.922860
2) 21.0438 5.9000 90.22 1.456500
3) 228.8413 0.1000
4) 17.1969 5.3000 90.91 1.454570
5) 384.2679(d5=可変)

6) -48.0949 1.0000 40.10 1.851350
7) 4.3298 2.2000
8) 67.2370 1.0000 40.77 1.883000
9) 14.7215 0.6000
10) 10.4892 1.5000 17.98 1.945950
11) 35.3651(d11=可変)

12> 開口絞り 0.3000
13) 5.3545 2.1000 63.97 1.514280
14) 20.6091 0.9000
15) 22.0033 1.0000 42.72 1.834810
16) 6.1272 0.4000
17) 10.2439 1.8000 91.20 1.456000
18) -9.5325 0.0000
19) 視野絞り(d19=可変)

20) 9.9547 1.0000 25.46 2.000690
21) 6.7749 2.6000 91.30 1.455590
22) -50.2288(d22=可変)

23) 0.0000 0.9000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(非球面係数)
面 : K C 4 C 6 C 8
4 : 0.5000 3.76710E-06 0.00000E+00 0.00000E+00
7 : -0.7125 1.62070E-03 -2.29890E-05 0.00000E+00
13 : 0.6618 -3.30480E-04 0.00000E+00 0.00000E+00
22 :-99.0000 -2.73180E-04 0.00000E+00 0.00000E+00

(合焦時における可変間隔)
無限遠合焦状態 至近距離合焦状態
F,β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 141.5092 674.0564 452.9397
d 5 1.02020 12.17258 15.26467 1.02020 12.17258 15.26467
d 11 15.30818 4.15580 1.06371 15.30818 4.15580 1.06371
d 19 8.76585 2.98255 10.66236 8.31502 1.48999 1.94430
d 22 4.01583 9.79913 2.11932 4.46666 11.29169 10.83738
Bf 2.37189 2.37189 2.37189 2.37189 2.37189 2.37189
TL 62.48195 62.48195 62.48195 62.48195 62.48195 62.48195

(条件式対応値)
(1) F1/Fw = 4.358
(2) F2/Fw =−0.835
(3) F1/{Fw×(N11−N1213)}= 9.325
(4) F21/F22 = 0.215
(5) N2 = 1.867
(6) Ne = 1.46
(7) νe =91.30
(Table 5)
(Overall specifications)
F = 6.55-30.00-60.10
FNO = 3.5 to 3.6 to 3.6

(Lens specifications)
rd νd Nd
1) 26.2824 1.4000 20.88 1.922860
2) 21.0438 5.9000 90.22 1.456500
3) 228.8413 0.1000
4) 17.1969 5.3000 90.91 1.454570
5) 384.2679 (d5 = variable)

6) -48.0949 1.0000 40.10 1.851350
7) 4.3298 2.2000
8) 67.2370 1.0000 40.77 1.883000
9) 14.7215 0.6000
10) 10.4892 1.5000 17.98 1.945950
11) 35.3651 (d11 = variable)

12> Aperture stop 0.3000
13) 5.3545 2.1000 63.97 1.514280
14) 20.6091 0.9000
15) 22.0033 1.0000 42.72 1.834810
16) 6.1272 0.4000
17) 10.2439 1.8000 91.20 1.456000
18) -9.5325 0.0000
19) Field stop (d19 = variable)

20) 9.9547 1.0000 25.46 2.000690
21) 6.7749 2.6000 91.30 1.455590
22) -50.2288 (d22 = variable)

23) 0.0000 0.9000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(Aspheric coefficient)
Surface: KC 4 C 6 C 8
4: 0.5000 3.76710E-06 0.00000E + 00 0.00000E + 00
7: -0.7125 1.62070E-03 -2.29890E-05 0.00000E + 00
13: 0.6618 -3.30480E-04 0.00000E + 00 0.00000E + 00
22: -99.0000 -2.73180E-04 0.00000E + 00 0.00000E + 00

(Variable interval during focusing)
Infinite focus state Close focus state
F, β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 141.5092 674.0564 452.9397
d 5 1.02020 12.17258 15.26467 1.02020 12.17258 15.26467
d 11 15.30818 4.15580 1.06371 15.30818 4.15580 1.06371
d 19 8.76585 2.98255 10.66236 8.31502 1.48999 1.94430
d 22 4.01583 9.79913 2.11932 4.46666 11.29169 10.83738
Bf 2.37189 2.37189 2.37189 2.37189 2.37189 2.37189
TL 62.48195 62.48195 62.48195 62.48195 62.48195 62.48195

(Values for conditional expressions)
(1) F1 / Fw = 4.358
(2) F2 / Fw = −0.835
(3) F1 / {Fw × (N11−N1213)} = 9.325
(4) F21 / F22 = 0.215
(5) N2 = 1.867
(6) Ne = 1.46
(7) νe = 91.30

図14は、第5実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。図15は、第5実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=204mm、(b)はRm=737mm、(c)はRt=515mmの各収差図をそれぞれ示す。   FIGS. 14A and 14B are graphs showing various aberrations of the zoom lens according to the fifth example in the infinite state. FIG. 14A is an aberration diagram in the wide-angle end state, FIG. 14B is the intermediate focal length state, and FIG. Respectively. FIGS. 15A and 15B are graphs showing various aberrations of the zoom lens of the fifth example when the close-up shooting distance is in focus. FIG. 15A shows Rw = 204 mm, FIG. 15B shows Rm = 737 mm, and FIG. 15C shows Rt = 515 mm. Each aberration diagram is shown.

各収差図から、第5実施例にかかるズームレンズは、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像特性を有していることがわかる。   From each aberration diagram, it can be seen that the zoom lens according to Example 5 has excellent imaging characteristics with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第6実施例)
図16は、第6実施例にかかるズームレンズのレンズ構成を示す図である。次の表6に第6実施例のズームレンズの諸元表の値を揚げる。
(Sixth embodiment)
FIG. 16 is a diagram illustrating a lens configuration of a zoom lens according to the sixth example. Table 6 below shows the values in the specification table of the zoom lens of the sixth embodiment.

(表6)
(全体諸)
F=6.50〜30.00〜61.00
FNO=3.5 〜 3.8 〜 3.4

(レンズ諸元)
r d νd Nd
1) 25.9678 1.4000 17.98 1.945950
2) 21.0210 6.1000 82.56 1.497820
3) 339.3220 0.1000
4) 17.2833 4.7000 82.56 1.497820
5) 132.3282(d5=可変)

6)-1236.7392 1.0000 40.19 1.850490
7) 5.0328 2.2000
8) -38.8019 1.0000 40.77 1.883000
9) 11.0291 0.9000
10) 11.6547 1.6000 17.98 1.945950
11) 96.0997(d11=可変)

12> 開口絞り 0.5000
13) 4.8302 1.8000 70.45 1.487490
14) 11.7906 0.1000
15) 9.0250 1.0000 42.72 1.834810
16) 5.3685 0.8000
17) -83.9696 1.7000 82.56 1.497820
18) -10.6798 0.0000
19) 視野絞り(d19=可変)

20) 9.8440 1.0000 25.46 2.000690
21) 6.4780 3.5000 82.56 1.497820
22) -21.7650(d22=可変)

23) 0.0000 1.6000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(非球面係数)
面 : K C 4 C 6 C 8
4 : 0.4504 6.12900E-06 4.75680E-09 0.00000E+00
7 : 0.2496 3.63880E-04 7.00120E-06 -1.36530E-08
13 : 0.1671 1.54140E-04 2.28490E-05 -9.89080E-07
22 : 1.0000 -1.16660E-04 0.00000E+00 0.00000E+00

(合焦時における可変間隔)
無限遠合焦状態 至近距離合焦状態
F,β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.9181 683.8795 473.4833
d 5 0.90000 10.93565 13.96348 0.90000 10.93565 13.96348
d 11 15.13311 5.09746 2.06963 15.13311 5.09746 2.06963
d 19 5.66087 2.06239 8.70390 5.38098 0.85734 2.30376
d 22 6.59264 10.19112 3.54961 6.87253 11.39617 9.94975
Bf 4.20934 4.20934 4.20934 4.20934 4.20934 4.20934
TL 64.49596 64.49596 64.49596 64.49596 64.49596 64.49596

(条件式対応値)
(1) F1/Fw = 4.096
(2) F2/Fw =−0.790
(3) F1/{Fw×(N11−N1213)}= 9.140
(4) F21/F22 = 0.611
(5) N2 = 1.867
(6) Ne = 1.50
(7) νe =82.56
(Table 6)
(Overall)
F = 6.50-30.00-61.00
FNO = 3.5 to 3.8 to 3.4

(Lens specifications)
rd νd Nd
1) 25.9678 1.4000 17.98 1.945950
2) 21.0210 6.1000 82.56 1.497820
3) 339.3220 0.1000
4) 17.2833 4.7000 82.56 1.497820
5) 132.3282 (d5 = variable)

6) -1236.7392 1.0000 40.19 1.850490
7) 5.0328 2.2000
8) -38.8019 1.0000 40.77 1.883000
9) 11.0291 0.9000
10) 11.6547 1.6000 17.98 1.945950
11) 96.0997 (d11 = variable)

12> Aperture stop 0.5000
13) 4.8302 1.8000 70.45 1.487490
14) 11.7906 0.1000
15) 9.0250 1.0000 42.72 1.834810
16) 5.3685 0.8000
17) -83.9696 1.7000 82.56 1.497820
18) -10.6798 0.0000
19) Field stop (d19 = variable)

20) 9.8440 1.0000 25.46 2.000690
21) 6.4780 3.5000 82.56 1.497820
22) -21.7650 (d22 = variable)

23) 0.0000 1.6000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(Aspheric coefficient)
Surface: KC 4 C 6 C 8
4: 0.4504 6.12900E-06 4.75680E-09 0.00000E + 00
7: 0.2496 3.63880E-04 7.00120E-06 -1.36530E-08
13: 0.1671 1.54140E-04 2.28490E-05 -9.89080E-07
22: 1.0000 -1.16660E-04 0.00000E + 00 0.00000E + 00

(Variable interval during focusing)
Infinite focus state Close focus state
F, β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.9181 683.8795 473.4833
d 5 0.90000 10.93565 13.96348 0.90000 10.93565 13.96348
d 11 15.13311 5.09746 2.06963 15.13311 5.09746 2.06963
d 19 5.66087 2.06239 8.70390 5.38098 0.85734 2.30376
d 22 6.59264 10.19112 3.54961 6.87253 11.39617 9.94975
Bf 4.20934 4.20934 4.20934 4.20934 4.20934 4.20934
TL 64.49596 64.49596 64.49596 64.49596 64.49596 64.49596

(Values for conditional expressions)
(1) F1 / Fw = 4.096
(2) F2 / Fw = −0.790
(3) F1 / {Fw × (N11−N1213)} = 9.140
(4) F21 / F22 = 0.611
(5) N2 = 1.867
(6) Ne = 1.50
(7) νe = 82.56

図17は、第6実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。図18は、第6実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=205mm、(b)はRm=748mm、(c)はRt=538mmの各収差図をそれぞれ示す。   FIGS. 17A and 17B are graphs showing various aberrations of the zoom lens according to the sixth example in the infinity state. FIG. 17A illustrates aberrations in the wide-angle end state, FIG. 17B illustrates the intermediate focal length state, and FIG. Respectively. 18A and 18B are graphs showing various aberrations of the zoom lens according to the sixth example in the close-up shooting distance state. FIG. 18A shows Rw = 205 mm, FIG. 18B shows Rm = 748 mm, and FIG. 18C shows Rt = 538 mm. Each aberration diagram is shown.

各収差図から、第6実施例にかかるズームレンズは、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像特性を有していることがわかる。   From each aberration diagram, it can be seen that the zoom lens according to Example 6 has excellent imaging characteristics with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第7実施例)
図19は、第7実施例にかかるズームレンズのレンズ構成を示す図である。次の表7に第7実施例のズームレンズの諸元表の値を揚げる。
(Seventh embodiment)
FIG. 19 is a diagram illustrating a lens configuration of a zoom lens according to the seventh example. Table 7 below shows the values in the specification table of the zoom lens of the seventh embodiment.

(表7)
(全体諸)
F=6.55〜30.00〜60.10
FNO=3.5 〜 3.8 〜 3.5

(レンズ諸元)
r d νd Nd
1) 23.8479 1.4000 25.46 2.000690
2) 18.7624 5.9000 95.25 1.433852
3) 167.9070 0.1000
4) 16.8888 5.3000 90.91 1.454570
5)-5137.1460(d5=可変)

6) -46.5253 1.0000 40.10 1.851350
7) 4.2808 2.2000
8) 21.5453 1.0000 46.58 1.804000
9) 10.8456 0.6000
10) 9.0254 1.5000 17.98 1.945950
11) 20.1834(d11=可変)

12> 開口絞り 0.3000
13) 5.4471 2.1000 63.97 1.514280
14) 20.0657 0.9000
15) 21.6048 1.0000 42.72 1.834810
16) 6.2337 0.4000
17) 10.2439 1.8000 91.20 1.456000
18) -9.5325 0.0000
19) 視野絞り(d19=可変)

20) 9.4629 1.0000 25.46 2.000690
21) 6.5553 2.6000 95.25 1.433852
22) -46.2338(d22=可変)

23) 0.0000 0.9000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(非球面係数)
面 : K C 4 C 6 C 8
4 : 0.5000 3.36290E-06 0.00000E+00 0.00000E+00
7 : -0.4928 1.29050E-03 -1.76320E-05 0.00000E+00
13 : 0.6368 -2.96970E-04 0.00000E+00 0.00000E+00
22 :-99.0000 -3.01210E-04 0.00000E+00 0.00000E+00

(合焦時における可変間隔)
無限遠合焦状態 至近距離合焦状態
F,β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 141.5092 674.0564 452.9397
d 5 1.02020 12.17258 15.26467 1.02020 12.17258 15.26467
d 11 15.43955 4.28717 1.19508 15.43955 4.28717 1.19508
d 19 8.90776 3.12446 10.80427 8.45693 1.63190 2.08621
d 22 3.92934 9.71264 2.03283 4.38017 11.20520 10.75089
Bf 2.37189 2.37189 2.37189 2.37189 2.37189 2.37189
TL 62.66873 62.66873 62.66873 62.66873 62.66873 62.66873

(条件式対応値)
(1) F1/Fw = 4.358
(2) F2/Fw =−0.835
(3) F1/{Fw×(N11−N1213)}= 7.831
(4) F21/F22 = 0.161
(5) N2 = 1.828
(6) Ne = 1.43
(7) νe =95.25
(Table 7)
(Overall)
F = 6.55-30.00-60.10
FNO = 3.5 to 3.8 to 3.5

(Lens specifications)
rd νd Nd
1) 23.8479 1.4000 25.46 2.000690
2) 18.7624 5.9000 95.25 1.433852
3) 167.9070 0.1000
4) 16.8888 5.3000 90.91 1.454570
5) -5137.1460 (d5 = variable)

6) -46.5253 1.0000 40.10 1.851350
7) 4.2808 2.2000
8) 21.5453 1.0000 46.58 1.804000
9) 10.8456 0.6000
10) 9.0254 1.5000 17.98 1.945950
11) 20.1834 (d11 = variable)

12> Aperture stop 0.3000
13) 5.4471 2.1000 63.97 1.514280
14) 20.0657 0.9000
15) 21.6048 1.0000 42.72 1.834810
16) 6.2337 0.4000
17) 10.2439 1.8000 91.20 1.456000
18) -9.5325 0.0000
19) Field stop (d19 = variable)

20) 9.4629 1.0000 25.46 2.000690
21) 6.5553 2.6000 95.25 1.433852
22) -46.2338 (d22 = variable)

23) 0.0000 0.9000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(Aspheric coefficient)
Surface: KC 4 C 6 C 8
4: 0.5000 3.36290E-06 0.00000E + 00 0.00000E + 00
7: -0.4928 1.29050E-03 -1.76320E-05 0.00000E + 00
13: 0.6368 -2.96970E-04 0.00000E + 00 0.00000E + 00
22: -99.0000 -3.01210E-04 0.00000E + 00 0.00000E + 00

(Variable interval during focusing)
Infinite focus state Close focus state
F, β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 141.5092 674.0564 452.9397
d 5 1.02020 12.17258 15.26467 1.02020 12.17258 15.26467
d 11 15.43955 4.28717 1.19508 15.43955 4.28717 1.19508
d 19 8.90776 3.12446 10.80427 8.45693 1.63190 2.08621
d 22 3.92934 9.71264 2.03283 4.38017 11.20520 10.75089
Bf 2.37189 2.37189 2.37189 2.37189 2.37189 2.37189
TL 62.66873 62.66873 62.66873 62.66873 62.66873 62.66873

(Values for conditional expressions)
(1) F1 / Fw = 4.358
(2) F2 / Fw = −0.835
(3) F1 / {Fw × (N11−N1213)} = 7.831
(4) F21 / F22 = 0.161
(5) N2 = 1.828
(6) Ne = 1.43
(7) νe = 95.25

図20は、第7実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。図21は、第7実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=204mm、(b)はRm=737mm、(c)はRt=516mmの各収差図をそれぞれ示す。   20A and 20B are graphs showing various aberrations of the zoom lens according to the seventh example in the infinity state. FIG. 20A is an aberration diagram in the wide-angle end state, FIG. 20B is the intermediate focal length state, and FIG. Respectively. FIGS. 21A and 21B are graphs showing various aberrations of the zoom lens according to the seventh example when the close-up shooting distance is in focus. FIG. 21A shows Rw = 204 mm, FIG. 21B shows Rm = 737 mm, and FIG. 21C shows Rt = 516 mm. Each aberration diagram is shown.

各収差図から、第7実施例にかかるズームレンズは、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像特性を有していることがわかる。   From each aberration diagram, it can be seen that the zoom lens according to the seventh example has excellent imaging characteristics with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第8実施例)
図22は、第8実施例にかかるズームレンズのレンズ構成を示す図である。
(Eighth embodiment)
FIG. 22 is a diagram illustrating a lens configuration of a zoom lens according to the eighth example.

第8実施例にかかるズームレンズは、物体側から順に、正屈折力を有する第1レンズ群G1と、負屈折力を有する第2レンズ群G2と、開口絞りと、正屈折力を有する第3レンズ群G3と、視野絞りと、正屈折力を有する第4レンズ群G4と、正屈折力を有する第5レンズ群G5と、光学的ローパス・フィルターOLPFと、像面Iに配置される固体撮像素子のカバーガラスCGとから構成されている。   The zoom lens according to the eighth example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop, and a third lens having a positive refractive power. A lens group G3, a field stop, a fourth lens group G4 having positive refracting power, a fifth lens group G5 having positive refracting power, an optical low-pass filter OLPF, and a solid-state image pickup arranged on the image plane I It is comprised from the cover glass CG of an element.

第1レンズ群G1は、物体側より順に、物体側に凸形状の負メニスカスレンズL11と凸形状の正メニスカスレンズL12との接合レンズと、物体側面の曲率半径が像側面曲率半径の絶対値の1/6より小さい正レンズL13から構成されている。   The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex shape on the object side and a positive meniscus lens L12 having a convex shape, and the curvature radius of the object side surface is an absolute value of the curvature radius of the image side surface. The positive lens L13 is smaller than 1/6.

第2レンズ群G2は、物体側から順に、像側面が凹形状の負レンズL21と、像側面が凹形状の負レンズL22と、物体側面が凸形状の正メニスカスレンズL23から構成されている。   The second lens group G2 includes, in order from the object side, a negative lens L21 having a concave image side surface, a negative lens L22 having a concave image side surface, and a positive meniscus lens L23 having a convex object side surface.

第3レンズ群G3は、物体側から順に、物体側面が凸形状の正レンズL31と、像側面が凹形状の負レンズL32と、像側面が凸形状の正レンズL33から構成されている。   The third lens group G3 includes, in order from the object side, a positive lens L31 having a convex object side surface, a negative lens L32 having a concave image side surface, and a positive lens L33 having a convex image side surface.

第4レンズ群G4は、物体側面が凸形状の正レンズL41から構成されている。   The fourth lens group G4 includes a positive lens L41 having a convex object side surface.

第5レンズ群G5は、物体側から順に、物体側が凸形状の負メニスカスレンズL51と両凸形状の正レンズL52との接合レンズから構成されている。   The fifth lens group G5 includes, in order from the object side, a cemented lens of a negative meniscus lens L51 having a convex shape on the object side and a positive lens L52 having a biconvex shape.

正メニスカスレンズL13の物体側面と、像側面が凹形状の負レンズL21の像側面と、物体側面が凸形状の正レンズL31の物体側面と、物体側面が凸形状の正レンズL41の物体側面と、両凸形状の正レンズL52の像側面が非球面形状に構成されている。   The object side surface of the positive meniscus lens L13, the image side surface of the negative lens L21 having a concave image side surface, the object side surface of the positive lens L31 having a convex object side surface, and the object side surface of the positive lens L41 having a convex object side surface The image side surface of the biconvex positive lens L52 is formed in an aspherical shape.

広角焦点距離Wから望遠焦点距離Tへの変倍の際、第1レンズ群G1は固定され、第2レンズ群G2は像面I側に移動し、第3レンズ群G3は固定され、第4レンズ群G4は物体側に移動し、第5レンズ群G5は物体側に凸形状の軌跡で光軸に沿って移動する。   When zooming from the wide-angle focal length W to the telephoto focal length T, the first lens group G1 is fixed, the second lens group G2 is moved to the image plane I side, the third lens group G3 is fixed, and the fourth lens group G3 is fixed. The lens group G4 moves to the object side, and the fifth lens group G5 moves along the optical axis along a locus convex to the object side.

撮影物体が有限距離における合焦に際して、第5レンズ群G5は光軸にそって移動する。また、第8実施の形態の固体撮像素子中心から対角への対角長IHは、3.75mmである。   When the photographic object is focused at a finite distance, the fifth lens group G5 moves along the optical axis. In addition, the diagonal length IH from the center of the solid-state imaging device of the eighth embodiment to the diagonal is 3.75 mm.

次の表8に第8実施例のズームレンズの諸元表の値を揚げる。
(表8)
(全体諸元)
F=6.55〜30.00〜61.00
FNO=3.9 〜 4.0 〜 4.0

(レンズ諸元)
r d νd Nd
1) 25.9550 1.4000 20.88 1.922860
2) 20.8100 5.9000 90.22 1.456500
3) 222.0859 0.1000
4) 17.1799 5.3000 90.91 1.454570
5) 331.1581(d5=可変)

6) -55.2024 1.0000 40.10 1.851350
7) 4.0941 2.5000
8) -52.5834 1.0000 40.77 1.883000
9) 36.3122 0.1000
10) 10.8248 1.5000 17.98 1.945950
11) 42.0827(d11=可変)

12> 開口絞り 0.3000
13) 5.3590 2.1000 63.97 1.514280
14) -18.4083 0.9000
15) -105.1597 1.0000 42.72 1.834810
16) 6.1759 0.5000
17) 14.0411 1.8000 91.20 1.456000
18) -12.8987 0.0000
19) 視野絞り(d19=可変)

20) 7.6567 1.0000 82.56 1.497820
21) 7.8294(d21=可変)

22) 9.4449 1.0000 25.46 2.000690
23) 6.5133 2.6000 91.30 1.455590
24) -46.4002(d24=可変)

25) 0.0000 0.9000 70.51 1.544370
26) 0.0000 0.5000
27) 0.0000 0.5000 64.12 1.516800
28) 0.0000 Bf

(非球面係数)
面 : K C 4 C 6 C 8
4 : 0.5000 3.64110E-06 0.00000E+00 0.00000E+00
7 : -0.8224 2.14650E-03 -2.55770E-05 0.00000E+00
13 : 0.3073 -1.33760E-04 0.00000E+00 0.00000E+00
20 : 0.4401 0.00000E+00 0.00000E+00 0.00000E+00
24 :-99.0000 -3.15800E-04 0.00000E+00 0.00000E+00

(合焦時における可変間隔)
無限遠合焦状態 至近距離合焦状態
F,β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.7636 667.4376 435.3158
d 5 0.74690 12.21974 15.17127 0.65678 12.21974 15.17127
d 11 17.63827 6.16543 3.21390 17.72839 6.16543 3.21390
d 19 1.99764 0.85035 0.55520 2.00665 0.85035 0.55520
d 21 7.68233 2.90191 10.59213 7.26838 1.41864 1.84668
d 24 2.87011 8.79782 1.40275 3.27505 10.28109 10.14820
Bf 2.04158 2.04158 2.04158 2.04158 2.04158 2.04158
TL 64.87683 64.87683 64.87683 64.87683 64.87683 64.87683

(条件式対応値)
(1) F1/Fw = 4.358
(2) F2/Fw =−0.835
(3) F1/{Fw×(N11−N1213)}= 9.326
(4) F21/F22 = 0.184
(5) N2 = 1.867
(6) Ne = 1.46
(7) νe =91.30
Table 8 below shows the values in the specification table of the zoom lens of the eighth embodiment.
(Table 8)
(Overall specifications)
F = 6.55-30.00-61.00
FNO = 3.9 to 4.0 to 4.0

(Lens specifications)
rd νd Nd
1) 25.9550 1.4000 20.88 1.922860
2) 20.8100 5.9000 90.22 1.456500
3) 222.0859 0.1000
4) 17.1799 5.3000 90.91 1.454570
5) 331.1581 (d5 = variable)

6) -55.2024 1.0000 40.10 1.851350
7) 4.0941 2.5000
8) -52.5834 1.0000 40.77 1.883000
9) 36.3122 0.1000
10) 10.8248 1.5000 17.98 1.945950
11) 42.0827 (d11 = variable)

12> Aperture stop 0.3000
13) 5.3590 2.1000 63.97 1.514280
14) -18.4083 0.9000
15) -105.1597 1.0000 42.72 1.834810
16) 6.1759 0.5000
17) 14.0411 1.8000 91.20 1.456000
18) -12.8987 0.0000
19) Field stop (d19 = variable)

20) 7.6567 1.0000 82.56 1.497820
21) 7.8294 (d21 = variable)

22) 9.4449 1.0000 25.46 2.000690
23) 6.5133 2.6000 91.30 1.455590
24) -46.4002 (d24 = variable)

25) 0.0000 0.9000 70.51 1.544370
26) 0.0000 0.5000
27) 0.0000 0.5000 64.12 1.516800
28) 0.0000 Bf

(Aspheric coefficient)
Surface: KC 4 C 6 C 8
4: 0.5000 3.64110E-06 0.00000E + 00 0.00000E + 00
7: -0.8224 2.14650E-03 -2.55770E-05 0.00000E + 00
13: 0.3073 -1.33760E-04 0.00000E + 00 0.00000E + 00
20: 0.4401 0.00000E + 00 0.00000E + 00 0.00000E + 00
24: -99.0000 -3.15800E-04 0.00000E + 00 0.00000E + 00

(Variable interval during focusing)
Infinite focus state Close focus state
F, β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.7636 667.4376 435.3158
d 5 0.74690 12.21974 15.17127 0.65678 12.21974 15.17127
d 11 17.63827 6.16543 3.21390 17.72839 6.16543 3.21390
d 19 1.99764 0.85035 0.55520 2.00665 0.85035 0.55520
d 21 7.68233 2.90191 10.59213 7.26838 1.41864 1.84668
d 24 2.87011 8.79782 1.40275 3.27505 10.28109 10.14820
Bf 2.04158 2.04158 2.04158 2.04158 2.04158 2.04158
TL 64.87683 64.87683 64.87683 64.87683 64.87683 64.87683

(Values for conditional expressions)
(1) F1 / Fw = 4.358
(2) F2 / Fw = −0.835
(3) F1 / {Fw × (N11−N1213)} = 9.326
(4) F21 / F22 = 0.184
(5) N2 = 1.867
(6) Ne = 1.46
(7) νe = 91.30

図23は、第8実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。図24は、第8実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=206mm、(b)はRm=732mm、(c)はRt=500mmの各収差図をそれぞれ示す。   FIGS. 23A and 23B are graphs showing various aberrations of the zoom lens according to the eighth example in the infinity state. FIG. 23A is an aberration diagram in the wide-angle end state, FIG. 23B is the intermediate focal length state, and FIG. Respectively. FIGS. 24A and 24B are graphs showing various aberrations of the zoom lens according to the eighth example when the close-up shooting distance is in focus. FIG. 24A shows Rw = 206 mm, FIG. 24B shows Rm = 732 mm, and FIG. 24C shows Rt = 500 mm. Each aberration diagram is shown.

各収差図から、第8実施例にかかるズームレンズは、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像特性を有していることがわかる。   From each aberration diagram, it can be seen that the zoom lens according to Example 8 has excellent imaging characteristics with various aberrations corrected well from the wide-angle end state to the telephoto end state.

以下、実施の形態にかかるズームレンズを有するカメラについて説明する。   A camera having a zoom lens according to an embodiment will be described below.

図25は、実施の形態にかかるズームレンズを搭載する電子スチルカメラを示し、(a)は正面図を、(b)は背面図をそれぞれ示す。図26は、図25(a)のA−A’線に沿った断面図を示している。   FIG. 25 shows an electronic still camera equipped with the zoom lens according to the embodiment, where (a) shows a front view and (b) shows a rear view. FIG. 26 is a cross-sectional view taken along the line A-A ′ of FIG.

図25、図26において、電子スチルカメラ1(以後、単にカメラと記す)は、不図示の電源釦を押すと撮影レンズ2の不図示のシャッタが開放され撮影レンズ2で不図示の被写体からの光が集光され、像面Iに配置された撮像素子C(例えば、CCDやCMOS等)に結像される。撮像素子Cに結像された被写体像は、カメラ1の背後に配置された液晶モニター3に表示される。撮影者は、液晶モニター3を見ながら被写体像の構図を決めた後、レリーズ釦4を押し下げ被写体像を撮像素子Cで撮影し、不図示のメモリーに記録保存する。この際、カメラ1に内蔵された不図示の角速度センサーにより手ぶれ等によって発生するカメラ1のブレが検出され、撮影レンズ2に配設された防振レンズG3が不図示の防振機構により撮影レンズ2の光軸に対して垂直方向にシフトされ、カメラ1のぶれによって生じる像面I上の像ぶれを補正する。   In FIGS. 25 and 26, when the electronic still camera 1 (hereinafter simply referred to as a camera) presses a power button (not shown), a shutter (not shown) of the photographing lens 2 is opened, and the photographing lens 2 removes an object from a subject (not shown). The light is condensed and imaged on an image sensor C (for example, CCD or CMOS) disposed on the image plane I. The subject image formed on the image sensor C is displayed on the liquid crystal monitor 3 disposed behind the camera 1. The photographer determines the composition of the subject image while looking at the liquid crystal monitor 3, and then presses the release button 4 to photograph the subject image with the image sensor C, and records and saves it in a memory (not shown). At this time, blurring of the camera 1 caused by camera shake or the like is detected by an angular velocity sensor (not shown) built in the camera 1, and the image stabilization lens G3 disposed on the photographing lens 2 is taken by the image stabilization lens (not shown). 2 is shifted in the direction perpendicular to the optical axis 2 to correct image blur on the image plane I caused by camera shake.

撮影レンズ2は、後述する実施の形態にかかるズームレンズで構成されている。また、カメラ1には、被写体が暗い場合に補助光を発光する補助光発光部5、撮影レンズ2であるズームレンズを広角端状態(W)から望遠端状態(T)に変倍する際のワイド(W)ーテレ(T)釦6、およびカメラ1の種々の条件設定等に使用するファンクション釦7等が配置されている。   The taking lens 2 is composed of a zoom lens according to an embodiment described later. The camera 1 also includes an auxiliary light emitting unit 5 that emits auxiliary light when the subject is dark, and a zoom lens that is the photographing lens 2 when zooming from the wide-angle end state (W) to the telephoto end state (T). A wide (W) -tele (T) button 6 and a function button 7 used for setting various conditions of the camera 1 are arranged.

このようにして、実施の形態にかかるズームレンズを内蔵するカメラ1が構成されている。   Thus, the camera 1 including the zoom lens according to the embodiment is configured.

以上説明したように、本実施の形態によれば、望遠端半画角が3.0度以下、変倍比略10倍以上、望遠端Fnoが5以下で諸収差を良好に補正し、優れた結像性能を有する小型のズームレンズを達成することができる。   As described above, according to the present embodiment, the telephoto end half angle of view is 3.0 degrees or less, the zoom ratio is approximately 10 times or more, and the telephoto end Fno is 5 or less. A small zoom lens having excellent imaging performance can be achieved.

なお、上記実施例では、第1レンズ群と第3レンズ群を変倍の際に固定しているが、本願の意図する所は、この変倍方式のみに限らない。例えば、第1レンズ群と第2レンズ群の間隙が増加し、第2レンズ群と第3レンズ群の間隙が減少し、複数のレンズ群のうち最も像面側のレンズ群が物体側に凸の軌跡にて光軸に沿って移動するようにしても良い。   In the above embodiment, the first lens unit and the third lens unit are fixed at the time of zooming. However, the intention of the present application is not limited to this zooming method. For example, the gap between the first lens group and the second lens group increases, the gap between the second lens group and the third lens group decreases, and the lens group closest to the image plane among the plurality of lens groups is convex toward the object side. It is also possible to move along the optical axis along the trajectory.

また、第3レンズ群の防振補正機構と変倍機構が共存可能とするなら、第1レンズ群を固定し、第2レンズ群を像側へ移動し、第3レンズ群を物体側へ移動し、最も像面側のレンズ群を物体側に凸形状の移動としても良い。   Also, if the image stabilization correction mechanism and the zooming mechanism of the third lens group can coexist, the first lens group is fixed, the second lens group is moved to the image side, and the third lens group is moved to the object side. The lens group closest to the image plane may be moved convexly toward the object side.

また、第1レンズ群の変倍機構を偏芯が少ない構成とし、かつ、第3レンズ群を防振補正機構と変倍機構が共存可能とするなら、第1レンズ群を物体側へ移動し、第2レンズ群を像側へ移動し、第3レンズ群を物体側へ移動し、最も像面側のレンズ群を物体側に凸形状の移動としても良い。   Further, if the zooming mechanism of the first lens unit has a configuration with little decentering and the third lens unit can coexist with the image stabilization mechanism and the zooming mechanism, the first lens unit is moved to the object side. The second lens group may be moved toward the image side, the third lens group may be moved toward the object side, and the lens group closest to the image plane may be moved convexly toward the object side.

また、第1実施例において、第3レンズ群G3全体を光軸に対して垂直方向に偏芯する事により所謂手ブレによる像揺れを補正しているが、他実施例で行っても良い。また、第3レンズ群G3全体だけでは無く、上記設計例の任意のレンズもしくはレンズ群を光軸に対して垂直方向に駆動する事により補正しても良い。また、コスト低減の為に、第4レンズ群を凸レンズ1枚構成としても良い。   In the first embodiment, the entire third lens group G3 is decentered in the direction perpendicular to the optical axis to correct image shake caused by so-called camera shake, but may be performed in other embodiments. Further, the correction may be performed by driving not only the entire third lens group G3 but also any lens or lens group of the above-described design example in a direction perpendicular to the optical axis. Further, the fourth lens group may have a single convex lens configuration for cost reduction.

また、各実施例の近距離合焦は最も像面側のレンズ群である第4レンズ群又は第5レンズ群で行っていあるが、第1レンズ群の変倍機構と近距離合焦機構が共存可能であれば、第1レンズ群全体、もしくは一部で行ってもかまわない。   Further, the short distance focusing in each embodiment is performed by the fourth lens group or the fifth lens group which is the lens group closest to the image plane side, but the zooming mechanism and the short distance focusing mechanism of the first lens group are different. As long as the coexistence is possible, the entire first lens unit or a part thereof may be used.

また、実施例では、4群又は5群構成を示したが、3群或いは6群等の他の群構成にも適用可能である。   Further, in the embodiment, the 4-group or 5-group configuration is shown, but the present invention can also be applied to other group configurations such as a 3-group or 6-group configuration.

また、レンズ面を非球面としても構わない。また、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。   The lens surface may be an aspherical surface. The aspherical surface may be any of an aspherical surface by grinding, a glass mold aspherical surface in which a glass is formed into an aspherical shape, or a composite aspherical surface in which a resin is formed in an aspherical shape on the glass surface.

また、開口絞りは第3レンズ群近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。   The aperture stop is preferably disposed in the vicinity of the third lens group, but the role of the aperture stop may be substituted by a lens frame without providing a member as an aperture stop.

また、各レンズ面には、広い波長城で高い透過率を有する反射防止膜が施されれば、フレアやゴーストを軽減し高いコントラストの高い光学性能を達成できる。   Further, if each lens surface is provided with an antireflection film having a high transmittance at a wide wavelength range, flare and ghost can be reduced and high optical performance with high contrast can be achieved.

尚、本発明を分かり易く説明するために実施形態の構成要件を付して説明したが、本発明がこれに限定されるものでないことは言うまでもない。   In addition, in order to explain the present invention in an easy-to-understand manner, the configuration requirements of the embodiment have been described, but it goes without saying that the present invention is not limited to this.

第1実施例にかかるズームレンズのレンズ構成を示す図であり、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態をそれぞれ示している。1 is a diagram illustrating a lens configuration of a zoom lens according to a first example, where W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. 第1実施例のズームレンズの無限遠状態における諸収差図および防振補正時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。FIG. 4 is a diagram illustrating various aberrations in the infinity state of the zoom lens according to the first embodiment and a lateral aberration diagram during image stabilization, where (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c) is a telephoto end. Each aberration diagram in the state is shown. 第1実施例のズームレンズの至近撮影距離合焦状態における諸収差図および防振補正時の横収差図であり、(a)は、Rw=205mm、(b)はRm=749mm、(c)はRt=538mmの各収差図をそれぞれ示す。FIG. 5A is a diagram illustrating various aberrations of the zoom lens according to the first example when the close-up shooting distance is in focus, and a lateral aberration diagram during image stabilization. FIG. 7A illustrates Rw = 205 mm, FIG. 7B illustrates Rm = 749 mm, and FIG. Shows aberration diagrams of Rt = 538 mm. 第2実施例にかかるズームレンズのレンズ構成を示す図であり、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態をそれぞれ示している。FIG. 4 is a diagram illustrating a lens configuration of a zoom lens according to a second example, where W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. 第2実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。FIG. 4A is a diagram illustrating various aberrations of the zoom lens according to the second example in an infinite state. FIG. 4A illustrates each aberration diagram in a wide-angle end state, FIG. 5B illustrates an intermediate focal length state, and FIG. 第2実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=204mm、(b)はRm=737mm、(c)はRt=515mmの各収差図をそれぞれ示す。FIG. 7A is a diagram illustrating various aberrations of the zoom lens according to the second example when the close-up shooting distance is in focus. FIG. 7A illustrates each aberration diagram of Rw = 204 mm, FIG. 7B illustrates Rm = 737 mm, and FIG. Each is shown. 第3実施例にかかるズームレンズのレンズ構成を示す図であり、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態をそれぞれ示している。FIG. 10 is a diagram illustrating a lens configuration of a zoom lens according to Example 3, where W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. 第3実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the third example in an infinite state. FIG. 10A illustrates aberration diagrams in a wide-angle end state, FIG. 10B illustrates an intermediate focal length state, and FIG. 第3実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=202mm、(b)はRm=738mm、(c)はRt=513mmの各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the third example when the close-up shooting distance is in focus, where FIG. 10A illustrates each aberration diagram of Rw = 202 mm, FIG. 7B illustrates Rm = 738 mm, and FIG. Each is shown. 第4実施例にかかるズームレンズのレンズ構成を示す図であり、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態をそれぞれ示している。FIG. 10 is a diagram illustrating a lens configuration of a zoom lens according to a fourth example, where W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. 第4実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the fourth example in an infinite state. FIG. 10A illustrates aberration diagrams in a wide-angle end state, FIG. 10B illustrates an intermediate focal length state, and FIG. 第4実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=201mm、(b)はRm=728mm、(c)はRt=487mmの各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the fourth example when the close-up shooting distance is in focus. FIG. 9A illustrates each aberration diagram of Rw = 201 mm, FIG. 7B illustrates Rm = 728 mm, and FIG. Each is shown. 第5実施例にかかるズームレンズのレンズ構成を示す図であり、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態をそれぞれ示している。FIG. 10 is a diagram illustrating a lens configuration of a zoom lens according to Example 5, where W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. 第5実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the fifth example in an infinite state. FIG. 10A illustrates aberration diagrams in a wide-angle end state, FIG. 10B illustrates an intermediate focal length state, and FIG. 第5実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=204mm、(b)はRm=737mm、(c)はRt=515mmの各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the fifth example when the close-up shooting distance is in focus, in which FIG. 9A illustrates each aberration diagram of Rw = 204 mm, FIG. 7B illustrates Rm = 737 mm, and FIG. Each is shown. 第6実施例にかかるズームレンズのレンズ構成を示す図であり、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態をそれぞれ示している。FIG. 10 is a diagram illustrating a lens configuration of a zoom lens according to Example 6, where W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. 第6実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the sixth example in an infinite state, where FIG. 10A illustrates each aberration diagram in a wide-angle end state, FIG. 10B illustrates an intermediate focal length state, and FIG. 第6実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=205mm、(b)はRm=748mm、(c)はRt=538mmの各収差図をそれぞれ示す。FIG. 10A is a diagram illustrating various aberrations of the zoom lens according to the sixth example when the close-up shooting distance is in focus, where FIG. 10A illustrates each aberration diagram of Rw = 205 mm, FIG. 7B illustrates Rm = 748 mm, and FIG. 7C illustrates Rt = 538 mm. Each is shown. 第7実施例にかかるズームレンズのレンズ構成を示す図であり、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態をそれぞれ示している。FIG. 10 is a diagram illustrating a lens configuration of a zoom lens according to Example 7, where W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. 第7実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the seventh example in an infinite state, where FIG. 9A illustrates aberration diagrams in a wide-angle end state, FIG. 9B illustrates an intermediate focal length state, and FIG. 第7実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=204mm、(b)はRm=737mm、(c)はRt=516mmの各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the seventh example when the close-up shooting distance is in focus. FIG. 9A illustrates aberration diagrams of Rw = 204 mm, FIG. 7B illustrates Rm = 737 mm, and FIG. Each is shown. 第8実施例にかかるズームレンズのレンズ構成を示す図であり、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態をそれぞれ示している。FIG. 10 is a diagram illustrating a lens configuration of a zoom lens according to Example 8, where W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. 第8実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the eighth example in the infinite state, where FIG. 10A illustrates each aberration diagram in the wide-angle end state, FIG. 10B illustrates the intermediate focal length state, and FIG. 第8実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=206mm、(b)はRm=732mm、(c)はRt=500mmの各収差図をそれぞれ示す。FIG. 10A is a diagram illustrating various aberrations of the zoom lens according to the eighth example when the close-up shooting distance is in focus. FIG. 10A illustrates each aberration diagram of Rw = 206 mm, FIG. 9B illustrates Rm = 732 mm, and FIG. Each is shown. 実施の形態にかかるズームレンズを搭載する電子スチルカメラを示し、(a)は正面図を、(b)は背面図をそれぞれ示す。1 shows an electronic still camera equipped with a zoom lens according to an embodiment, where (a) shows a front view and (b) shows a rear view. 図25(a)のA−A’線に沿った断面図を示している。FIG. 26 is a cross-sectional view taken along the line A-A ′ of FIG.

符号の説明Explanation of symbols

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
I 像面
1 電子スチルカメラ
2 撮像レンズ(ズームレンズ)
L11 第1レンズ群の負メニスカスレンズ
L12 第1レンズ群の正メニスカスレンズ
L13 第1レンズ群の正レンズ
L21 第2レンズ群の第1負レンズ
L22 第2レンズ群の第2負レンズ
L23 第2レンズ群の正メニスカスレンズ
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group I Image surface 1 Electronic still camera 2 Imaging lens (zoom lens)
L11 Negative meniscus lens of the first lens group L12 Positive meniscus lens of the first lens group L13 Positive lens of the first lens group L21 First negative lens of the second lens group L22 Second negative lens of the second lens group L23 Second lens Group of positive meniscus lenses

Claims (13)

物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、第3レンズ群と、第4レンズ群を含む複数のレンズ群を有し、
前記第2レンズ群は、物体側から順に、像側面が凹形状の第2レンズ群の第1負レンズと、像側面が凹形状の第2レンズ群の第2負レンズと、物体側面が凸形状の第2レンズ群の正メニスカスレンズとにより実質的に3個のレンズで構成され、
広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群の間隙が増大し、前記第2レンズ群と前記第3レンズ群の間隙は減少し、前記複数のレンズ群のうち最も像面側のレンズ群が物体側に凸の軌跡にて光軸に沿って移動し、
広角端状態の焦点距離をFw、前記第1レンズ群の焦点距離をF1、前記第2レンズ群の焦点距離をF2、前記第2レンズ群の第1負レンズと前記第2レンズ群の第2負レンズの焦点距離をそれぞれF21,F22としたとき、以下の条件を満足する事を特徴とするズームレンズ。
3.000<F1/Fw<4.4000
−0.900<F2/Fw<−0.500
0.05<F21/F22<0.65
In order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, a third lens group, and a plurality of lens groups including a fourth lens group,
In order from the object side, the second lens group includes a first negative lens of a second lens group having a concave image side surface, a second negative lens of a second lens group having a concave image side surface, and a convex object side surface. The lens is substantially composed of three lenses by the positive meniscus lens of the second lens group having a shape,
During zooming from the wide-angle end state to the telephoto end state, the gap between the first lens group and the second lens group increases, the gap between the second lens group and the third lens group decreases, The lens group closest to the image plane in the lens group moves along the optical axis along a locus convex toward the object side,
The focal length in the wide-angle end state is Fw, the focal length of the first lens group is F1, the focal length of the second lens group is F2 , and the second negative of the second lens group and the second of the second lens group. A zoom lens that satisfies the following conditions when the focal length of the negative lens is F21 and F22, respectively .
3.000 <F1 / Fw <4.4000
-0.900 <F2 / Fw <-0.500
0.05 <F21 / F22 <0.65
前記第3レンズ群は正屈折力を有し、
前記第4レンズ群は正屈折力を有することを特徴とする請求項1に記載のズームレンズ。
The third lens group has positive refractive power;
The zoom lens according to claim 1, wherein the fourth lens group has a positive refractive power.
前記第1レンズ群は、物体側から順に、物体側に凸面を向けた第1レンズ群の負メニスカスレンズと、物体側に凸面を向けた第1レンズ群の正メニスカスレンズと、物体側面の曲率半径が像側面曲率半径の絶対値の1/6より小さい第1レンズ群の正レンズとにより実質的に3個のレンズで構成されることを特徴とする請求項1又は2に記載のズームレンズ。 The first lens group includes, in order from the object side, a negative meniscus lens of the first lens group having a convex surface facing the object side, a positive meniscus lens of the first lens group having a convex surface facing the object side, and a curvature of the object side surface. 3. The zoom lens according to claim 1, wherein the zoom lens includes substantially three lenses including a positive lens of the first lens unit whose radius is smaller than 1/6 of an absolute value of an image side curvature radius. . 前記第1レンズ群の負メニスカスレンズの屈折率をN11、前記第1レンズ群の正メニスカスレンズと前記第1レンズ群の正レンズの平均屈折率をN1213としたとき、以下の条件を満足する事を特徴とする請求項1から3のいずれか一項に記載のズームレンズ。
1.00<F1/{Fw×(N11−N1213)}<14.0
When the refractive index of the negative meniscus lens of the first lens group is N11 and the average refractive index of the positive meniscus lens of the first lens group and the positive lens of the first lens group is N1213, the following conditions are satisfied. The zoom lens according to claim 1, wherein:
1.00 <F1 / {Fw × (N11−N1213)} <14.0
前記第1レンズ群の負メニスカスレンズと前記第1レンズ群の正メニスカスレンズとは接合され、
前記第1レンズ群の正レンズの物体側面が非球面を有する事を特徴とする請求項1から4のいずれか一項に記載のズームレンズ。
The negative meniscus lens of the first lens group and the positive meniscus lens of the first lens group are cemented,
5. The zoom lens according to claim 1, wherein the object side surface of the positive lens of the first lens group has an aspherical surface.
記第2レンズ群のレンズ面のいずれかが非球面を有することを特徴とする請求項1から5のいずれか一項に記載のズームレンズ。 Before SL zoom lens according to any one of claims 1 to 5, one of the lens surfaces of the second lens group and having an aspherical surface. 前記第2レンズ群の各レンズは、全て空気を介在して配置されていることを特徴とする請求項1からのいずれか一項に記載のズームレンズ。 Wherein the lenses of the second lens group, the zoom lens according to any one of claims 1 6, characterized in that all are disposed by interposing the air. 前記第2レンズ群の第1負レンズの像側面に非球面を有し、
前記第2レンズ群の第1負レンズと前記第2レンズ群の第2負レンズの平均屈折率をN2とするとき、以下の条件を満足する事を特徴とする請求項1からのいずれか一項に記載のズームレンズ。
1.810<N2
An aspherical surface on the image side surface of the first negative lens of the second lens group;
When the average refractive index of the second negative lens of the first negative lens and the second lens group of the second lens group and N2, any one of claims 1 to 7, characterized in that the following condition is satisfied The zoom lens according to one item.
1.810 <N2
前記複数のレンズ群のうち最も像面側のレンズ群は、像側面に非球面を有する1つの正レンズ成分を有し、
前記正レンズ成分の屈折率をNe、アッベ数をνeとしたとき、以下の条件を満足する事を特徴とする、請求項1からのいずれか一項に記載のズームレンズ。
Ne<1.55
75<νe
The lens group closest to the image plane among the plurality of lens groups has one positive lens component having an aspheric surface on the image side surface,
The positive lens refractive index Ne of components, when the Abbe number and ve, characterized in that it satisfies the following conditions, the zoom lens according to any one of claims 1 to 8.
Ne <1.55
75 <νe
前記第3レンズ群の少なくとも一部を光軸に対して垂直方向に移動する事により像ブレ補正を行う事を特徴とする、請求項1からのいずれか一項に記載のズームレンズ。 Wherein characterized in that performing the image blur correction by moving vertically at least a portion of the third lens group with respect to the optical axis, the zoom lens according to any one of claims 1 to 9. 物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、第3レンズ群と、第4レンズ群を含む複数のレンズ群を有し、
前記第2レンズ群は、物体側から順に、像側面が凹形状の第2レンズ群の第1負レンズと、像側面が凹形状の第2レンズ群の第2負レンズと、物体側面が凸形状の第2レンズ群の正メニスカスレンズとにより実質的に3個のレンズで構成され、
広角端状態の焦点距離をFw、前記第1レンズ群の焦点距離をF1、前記第2レンズ群の焦点距離をF2、前記第2レンズ群の第1負レンズと前記第2レンズ群の第2負レンズの焦点距離をそれぞれF21,F22としたとき、以下の条件を満足するズームレンズの変倍方法であって、
前記第1レンズ群と前記第2レンズ群の間隙を増大し、前記第2レンズ群と前記第3レンズ群の間隙を減少し、前記複数のレンズ群のうち最も像面側のレンズ群を物体側に凸の軌跡にて光軸に沿って移動させることで、広角端状態から望遠端状態への変倍を行うことを特徴とするズームレンズの変倍方法。
3.000<F1/Fw<4.4000
−0.900<F2/Fw<−0.500
0.05<F21/F22<0.65
In order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, a third lens group, and a plurality of lens groups including a fourth lens group,
In order from the object side, the second lens group includes a first negative lens of a second lens group having a concave image side surface, a second negative lens of a second lens group having a concave image side surface, and a convex object side surface. The lens is substantially composed of three lenses by the positive meniscus lens of the second lens group having a shape,
The focal length in the wide-angle end state is Fw, the focal length of the first lens group is F1, the focal length of the second lens group is F2 , and the second negative of the second lens group and the second of the second lens group. When the focal length of the negative lens is F21 and F22, respectively, a zoom lens zooming method that satisfies the following conditions,
The gap between the first lens group and the second lens group is increased, the gap between the second lens group and the third lens group is decreased, and the lens group closest to the image plane among the plurality of lens groups is defined as an object. A zoom lens zooming method characterized in that zooming from the wide-angle end state to the telephoto end state is performed by moving the lens along the optical axis along a locus convex toward the side.
3.000 <F1 / Fw <4.4000
-0.900 <F2 / Fw <-0.500
0.05 <F21 / F22 <0.65
物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、第3レンズ群と、第4レンズ群を含む複数のレンズ群を有し、
前記第2レンズ群は、物体側から順に、像側面が凹形状の第2レンズ群の第1負レンズと、像側面が凹形状の第2レンズ群の第2負レンズと、物体側面が凸形状の第2レンズ群の正メニスカスレンズとにより実質的に3個のレンズで構成され、
広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群の間隙が増大し、前記第2レンズ群と前記第3レンズ群の間隙は減少し、前記複数のレンズ群のうち最も像面側のレンズ群が物体側に凸の軌跡にて光軸に沿って移動し、
広角端状態の焦点距離をFw、前記第1レンズ群の焦点距離をF1、前記第2レンズ群の焦点距離をF2、前記第2レンズ群の第1負レンズと前記第2レンズ群の第2負レンズの焦点距離をそれぞれF21,F22としたとき、以下の条件を満足するズームレンズの像ブレ補正方法であって、
前記第3レンズ群の少なくとも一部を光軸に対して垂直方向に移動する事により像ブレ補正を行う事を特徴とするズームレンズの像ブレ補正方法。
3.000<F1/Fw<4.4000
−0.900<F2/Fw<−0.500
0.05<F21/F22<0.65
In order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, a third lens group, and a plurality of lens groups including a fourth lens group,
In order from the object side, the second lens group includes a first negative lens of a second lens group having a concave image side surface, a second negative lens of a second lens group having a concave image side surface, and a convex object side surface. The lens is substantially composed of three lenses by the positive meniscus lens of the second lens group having a shape,
During zooming from the wide-angle end state to the telephoto end state, the gap between the first lens group and the second lens group increases, the gap between the second lens group and the third lens group decreases, The lens group closest to the image plane in the lens group moves along the optical axis along a locus convex toward the object side,
The focal length in the wide-angle end state is Fw, the focal length of the first lens group is F1, the focal length of the second lens group is F2 , and the second negative of the second lens group and the second of the second lens group. When the focal length of the negative lens is F21 and F22, respectively, a zoom lens image blur correction method that satisfies the following conditions,
An image blur correction method for a zoom lens, wherein image blur correction is performed by moving at least a part of the third lens group in a direction perpendicular to the optical axis.
3.000 <F1 / Fw <4.4000
-0.900 <F2 / Fw <-0.500
0.05 <F21 / F22 <0.65
請求項1から請求項10のいずれか一項に記載のズームレンズを有することを特徴とする光学装置。 An optical apparatus comprising the zoom lens according to any one of claims 1 to 10 .
JP2007047404A 2007-02-27 2007-02-27 Zoom lens and optical apparatus having the same Expired - Fee Related JP5040358B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007047404A JP5040358B2 (en) 2007-02-27 2007-02-27 Zoom lens and optical apparatus having the same
US12/528,448 US8040615B2 (en) 2007-02-27 2008-02-08 Zoom lens and optical apparatus equipped therewith
PCT/JP2008/052587 WO2008105248A1 (en) 2007-02-27 2008-02-08 Zoom lens and optical device having same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007047404A JP5040358B2 (en) 2007-02-27 2007-02-27 Zoom lens and optical apparatus having the same

Publications (2)

Publication Number Publication Date
JP2008209751A JP2008209751A (en) 2008-09-11
JP5040358B2 true JP5040358B2 (en) 2012-10-03

Family

ID=39786095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047404A Expired - Fee Related JP5040358B2 (en) 2007-02-27 2007-02-27 Zoom lens and optical apparatus having the same

Country Status (1)

Country Link
JP (1) JP5040358B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5065150B2 (en) * 2008-05-16 2012-10-31 富士フイルム株式会社 Zoom lens and imaging device
KR101739375B1 (en) 2010-03-12 2017-05-24 삼성전자주식회사 Compact zoom lens

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288991A (en) * 1992-04-10 1993-11-05 Canon Inc Rear focus type zoom lens
JP2000338398A (en) * 1999-05-27 2000-12-08 Sony Corp Zoom lens
JP2004012641A (en) * 2002-06-04 2004-01-15 Matsushita Electric Ind Co Ltd Zoom lens, and video camera and digital still camera using the zoom lens
JP2005173345A (en) * 2003-12-12 2005-06-30 Fujinon Corp Zoom lens having vibration-proof function

Also Published As

Publication number Publication date
JP2008209751A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP5082499B2 (en) Zoom lens and optical apparatus having the same
JP5407119B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP5126496B2 (en) Zoom lens and optical apparatus provided with the zoom lens
JP5458477B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP5071380B2 (en) Imaging device, imaging method, and high zoom lens
JP5245320B2 (en) Zoom lens, optical instrument using the same, and imaging method
JP4876755B2 (en) High magnification zoom lens and optical apparatus having the same
JP2006284764A (en) Zoom lens
JP2008203344A (en) Zoom lens and optical apparatus having the same
JP2010044191A (en) Zoom lens, optical equipment having the same, and method of manufacturing the same
WO2014192750A1 (en) Variable magnification optical system, imaging device, and method for manufacturing variable magnification optical system
JP5648900B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP2007219318A (en) Zoom lens and optical equipment equipped with the same
JP5839062B2 (en) Zoom lens, optical device
JP5040360B2 (en) Zoom lens and optical apparatus having the same
JP7218813B2 (en) Variable magnification optical system and optical equipment
JP5040358B2 (en) Zoom lens and optical apparatus having the same
JP6205858B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP5386868B2 (en) Zoom lens, optical equipment
JP5092449B2 (en) Zoom lens and optical apparatus having the same
JP5540513B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP5040359B2 (en) Zoom lens and optical apparatus having the same
JP5115871B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP6205855B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP6205856B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Ref document number: 5040358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees