JP5040257B2 - Steelmaking slag treatment method - Google Patents

Steelmaking slag treatment method Download PDF

Info

Publication number
JP5040257B2
JP5040257B2 JP2006287042A JP2006287042A JP5040257B2 JP 5040257 B2 JP5040257 B2 JP 5040257B2 JP 2006287042 A JP2006287042 A JP 2006287042A JP 2006287042 A JP2006287042 A JP 2006287042A JP 5040257 B2 JP5040257 B2 JP 5040257B2
Authority
JP
Japan
Prior art keywords
slag
gas
pulverized product
water
steelmaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006287042A
Other languages
Japanese (ja)
Other versions
JP2008100893A (en
Inventor
和哉 薮田
達人 高橋
明夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006287042A priority Critical patent/JP5040257B2/en
Publication of JP2008100893A publication Critical patent/JP2008100893A/en
Application granted granted Critical
Publication of JP5040257B2 publication Critical patent/JP5040257B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、製鋼工程で発生した溶融状態、半溶融状態又は高温固相状態のスラグを利材化可能な状態まで処理するためのスラグ処理方法に関するものである。   The present invention relates to a slag treatment method for treating a slag in a molten state, a semi-molten state, or a high-temperature solid-phase state generated in a steelmaking process to a state where it can be turned into a material.

鉄鋼製造プロセスの製鋼工程では、大量のスラグが副産物として生成する。この製鋼スラグの一部は土木材料やセメント原料などとして利材化されている。
製鋼スラグは、製鋼工程において溶融状態、半溶融状態又は高温固相状態で排出され、これを冷却した後、所定の処理(後述するような粉砕処理やエージング処理など)を施して製品化されるが、スラグを処理し或いは利材化する上で、以下のような種々の問題がある。
A large amount of slag is produced as a by-product in the steel making process of the steel manufacturing process. Part of this steelmaking slag is used as a civil engineering material or cement material.
Steelmaking slag is discharged in a molten state, a semi-molten state, or a high-temperature solid phase state in a steelmaking process, and after cooling it, it is subjected to a predetermined treatment (such as a pulverization treatment or an aging treatment as described later) to be commercialized. However, there are various problems as follows when processing slag or using it as a material.

(1)作業環境面での問題
上記のようなスラグ処理のための一連の工程において、まず、精錬容器から溶融状態、半溶融状態又は高温固相状態で排出されたスラグは、ドライピットや冷却ヤードまで搬送されて自然放冷で冷却されるが、この際のスラグの搬送やハンドリングでは高熱作業が避けられない。また、後述するような破砕処理やエージング処理を経たスラグは飛散しやすく、ハンドリングする際に粉塵が生じて厳しい作業環境となる。
(2)処理コストや処理スペースの問題
製鋼スラグは大量に発生するものであるため、上述したような製品化するまでの一連の処理や搬送・ハンドリングには多大なコストがかかり、また、冷却作業ヤード、粉砕処理などのための仮置き場、エージングヤードなどのために広大なスペースが必要となる。
(1) Problems in the work environment In the series of processes for slag treatment as described above, first, slag discharged from the smelting vessel in the molten state, semi-molten state or high-temperature solid state is dried pit or cooled. Although it is transported to the yard and cooled by natural cooling, high-temperature work is unavoidable for slag transport and handling. Moreover, the slag which passed through the crushing process and the aging process which are mentioned later tends to scatter, and dust is produced when handling and it becomes a severe working environment.
(2) Problems with processing costs and processing space Steelmaking slag is generated in large quantities, so a series of processing, transportation, and handling up to commercialization as described above is very costly and cooling work is required. A vast space is required for a yard, a temporary storage for pulverization, an aging yard, and the like.

(3)難処理性スラグの問題
製鋼スラグのなかには、冷却中に析出したCaOや未滓化CaOが水和時に膨張して粉化し、或いは冷却中に2CaO・SiOが生成して相変態により粉化することによって、微粉状になるスラグが存在する。このように微粉状になった製鋼スラグは取扱や処理が難しく、また特にスラグを土木用途として用いる場合には、アルカリ性が強いことから適用分野が限定されるという問題がある。
(4)地金回収に伴う問題
製鋼スラグには地金(鉄分)が多く含まれており、資源の有効利用と原料コストの面から、これを極力回収する必要がある。しかし、地金を高効率に回収するにはスラグを粉砕機などで粉砕する必要があり、手間とコスト(設備コスト、処理コスト)がかかる。
(5)熱エネルギー回収の問題
さきに述べたように、精錬容器から排出された溶融状態、半溶融状態又は高温固相状態の製鋼スラグは、そのままドライピットや冷却ヤードまで搬送されて自然放冷で冷却される。したがって、スラグからの顕熱回収は殆ど行われておらず、膨大な熱エネルギーが回収されることなく放出されている。
(3) Problems of difficult-to-process slag In steelmaking slag, CaO precipitated during cooling or un-dehydrated CaO expands and pulverizes during hydration, or 2CaO · SiO 2 forms during cooling, resulting in phase transformation. There is slag that becomes fine powder by pulverization. The steelmaking slag thus finely powdered is difficult to handle and process, and particularly when slag is used for civil engineering, there is a problem that the field of application is limited due to its strong alkalinity.
(4) Problems associated with bullion collection Steelmaking slag contains a large amount of bullion (iron), and it is necessary to collect it as much as possible in terms of effective use of resources and raw material costs. However, slag must be pulverized with a pulverizer or the like in order to recover the metal in a highly efficient manner, which takes time and cost (equipment cost, processing cost).
(5) Thermal energy recovery problem As mentioned earlier, molten, semi-molten or high-temperature solid-state steelmaking slag discharged from a refining vessel is transported directly to a dry pit or cooling yard for natural cooling. Cooled by. Therefore, almost no sensible heat is recovered from the slag, and enormous heat energy is released without being recovered.

(6)エージングに伴う問題
製鋼スラグには遊離CaOが含まれており、そのまま利材化すると遊離CaOが水と反応してスラグが膨張(さらに粉化)する問題があり、これを防止するために大気中でのエージングや蒸気エージングを行う必要がある。しかし、これらのエージングには専用の広大なスペースが必要であること、大気中でのエージングには長い期間(6ヶ月以上)が必要であること、蒸気エージングには処理コストがかかること、などの問題がある。
(7)利材化した場合の環境問題
製鋼スラグはCaOなどのアルカリ成分を多く含むため、土木材料などに用いた場合に、そのアルカリ分によって高pHの溶出水が生じやすく、環境保全の面で問題がある。また、スラグがアルカリ分により膨張粉化した場合、粉塵が発生するという問題もある。
(6) Problems associated with aging Steelmaking slag contains free CaO, and when used as it is, there is a problem that free CaO reacts with water and the slag expands (further pulverizes) to prevent this. In addition, it is necessary to perform aging in the atmosphere and steam aging. However, such aging requires a very large space, aging in the atmosphere requires a long period (6 months or more), steam aging requires processing costs, etc. There's a problem.
(7) Environmental problems when used as steel materials Steelmaking slag contains a large amount of alkaline components such as CaO, so when used in civil engineering materials, high pH elution water is likely to be generated due to the alkali content. There is a problem. Moreover, when slag expands and pulverizes with an alkali, there also exists a problem that dust generate | occur | produces.

従来、製鋼スラグの処理方法として、溶融状態の製鋼スラグを直に粒状化するための方法や設備が、例えば、特許文献1〜3などに示されている。
特開昭57−136086号公報 特開2003−146712号公報 特開2003−328015号公報
Conventionally, as a method for processing steelmaking slag, methods and equipment for directly granulating molten steelmaking slag are disclosed in Patent Documents 1 to 3, for example.
JP-A-57-136086 JP 2003-146712 A JP 2003-328015 A

しかし、これらの従来技術は、処理設備に高温スラグによる負荷に耐え得るような耐久性をもたせることが難しく、また、単に溶融状態の製鋼スラグを粒状化するだけの技術であるため、上述したような製鋼スラグに関する種々の問題を部分的にしか解決できない。
したがって本発明の目的は、上述したような製鋼スラグの処理や利材化に関する種々の問題を解決し、製鋼工程で発生した直後のスラグを利材化可能な状態まで速やかに処理することができ、且つ環境対策の面でも好ましい形態・条件で処理を行うことができる製鋼スラグの処理方法を提供することにある。
However, these conventional techniques are difficult to make the processing equipment durable enough to withstand the load caused by high-temperature slag, and are simply techniques for granulating molten steelmaking slag. The various problems associated with steelmaking slag can only be partially solved.
Therefore, the object of the present invention is to solve the various problems related to the processing and utilization of steelmaking slag as described above, and to quickly process the slag immediately after the steelmaking process to a state where it can be utilized. Another object of the present invention is to provide a steelmaking slag treatment method capable of performing treatment in a form and condition that is preferable in terms of environmental measures.

上記課題を解決するための本発明の特徴は以下のとおりである。
[1]製鋼工程で発生し、未だ溶融状態、半溶融状態又は高温固相状態にあるスラグを、金属ボール群が収容された回転ドラム内に注入し、該スラグを回転ドラム内で転動する金属ボール群と接触させることで冷却するとともに、転動する金属ボール群による物理的作用により粉砕してスラグ粉砕物とする工程(A)と、
該工程(A)で得られたスラグ粉砕物を炭酸ガス又は炭酸ガス含有ガスと接触させ、スラグ粉砕物中に含まれる未炭酸化Caを炭酸ガスと反応させる工程(B)を有し、
前記工程(A)の途中のスラグが固化した段階で、回転ドラム内に水を注入し、スラグとの接触により高温になった金属ボール群を水で冷却するとともに、スラグ粉砕物に水をかけて冷却し且つカルシウム分を水和させ、注入した水により回転ドラム内で発生した蒸気を取り出して顕熱回収を行うことを特徴とする製鋼スラグの処理方法。
The features of the present invention for solving the above-described problems are as follows.
[1] Slag generated in a steelmaking process and still in a molten state, a semi-molten state, or a high-temperature solid phase is injected into a rotating drum in which a metal ball group is accommodated, and the slag rolls in the rotating drum. (A) a step of cooling by bringing into contact with the metal ball group, and crushing by a physical action by the rolling metal ball group into a slag pulverized product;
Contacting the slag pulverized product obtained in the step (A) with carbon dioxide gas or a carbon dioxide-containing gas, and reacting the uncarbonated Ca contained in the slag pulverized product with carbon dioxide gas (B),
In the middle stage of the slag is solidified in the step (A), water is injected into the rotary drum, with a metal ball group became hot by contact with the slag cooling water, spray water over the slag pulverized product A method of treating steelmaking slag, wherein the slag is cooled and hydrated with calcium, and steam generated in the rotating drum is taken out by the injected water and sensible heat recovery is performed.

[2]上記[1]の処理方法において、工程(B)を経たスラグ粉砕物をスラグ製品として出荷し又は使用することを特徴とする製鋼スラグの処理方法。
[3]上記[1]又は[2]の処理方法において、さらに、工程(A)と工程(B)の間に、スラグ粉砕物から地金を回収する工程(C)を有することを特徴とする製鋼スラグの処理方法。
[4]上記[1]〜[3]のいずれかの処理方法において、さらに、工程(A)と工程(B)の間に、水を添加してスラグ粉砕物中のカルシウム分を水和させる工程(D)を有することを特徴とする製鋼スラグの処理方法。
[2] A method for treating steelmaking slag, characterized in that, in the treatment method of [1], the slag pulverized product after step (B) is shipped or used as a slag product.
[3] In the processing method of [1] or [2], the method further includes a step (C) of recovering the metal from the slag pulverized material between the step (A) and the step (B). Steelmaking slag treatment method.
[4] In the processing method according to any one of [1] to [3], water is further added between steps (A) and (B) to hydrate the calcium content in the slag pulverized product. A method for treating steelmaking slag, comprising the step (D).

[5]上記[1]〜[4]のいずれかの処理方法において、工程(A)で得られるスラグ粉砕物が、粒径10mm以下の割合が80mass%以上の粒度を有することを特徴とする製鋼スラグの処理方法。
[6]上記[1]〜[5]のいずれかの処理方法において、スラグ粉砕物が500℃以下の温度で回転ドラムから排出されることを特徴とする製鋼スラグの処理方法。
[5] In the processing method according to any one of [1] to [4 ] above, the slag pulverized product obtained in the step (A) has a particle size of a particle size of 10 mm or less having a particle size of 80 mass% or more. Steel slag treatment method.
[6] In the processing method according to any one of [1] to [5] , the slag pulverized product is discharged from the rotating drum at a temperature of 500 ° C. or lower.

[7]上記[1]〜[6]のいずれかの処理方法において、工程(B)でスラグ粉砕物に接触させる炭酸ガス含有ガスが鉄鋼製造プロセスで発生する副生ガスであり、該工程(B)でCO濃度が低減した前記副生ガスを、燃料ガス又は還元ガスとして系外に供給することを特徴とする製鋼スラグの処理方法。
[8]上記[7]の処理方法において、副生ガスが高炉ガスであり、CO濃度が低減した高炉ガスを燃料ガス又は還元ガスとして高炉又は/及び他のガス使用設備に供給することを特徴とする製鋼スラグの処理方法。
[9]上記[1]〜[8]のいずれかの処理方法において、工程(B)では、ロータリーキルン式回転ドラム内を移動するスラグ粉砕物に炭酸ガス又は炭酸ガス含有ガスを接触させることを特徴とする製鋼スラグの処理方法。
[10]上記[1]〜[8]のいずれかの処理方法において、工程(B)では、処理容器内のスラグ粉砕物に炭酸ガス又は炭酸ガス含有ガスを吹き込むことにより流動層を形成することを特徴とする製鋼スラグの処理方法。
[11]上記[2]〜[10]のいずれかの処理方法において、スラグ粉砕物を、路盤材、土工材、覆砂材、海域深掘部敷設材、海域深掘部穴埋め材、浚渫土砂改良材、土壌改良材、地盤改良材、舗装用原料、セメント原料、水和固化体用骨材の中から選ばれる1種以上のスラグ製品として出荷し又は使用することを特徴とする製鋼スラグの処理方法。
[7] In the processing method according to any one of [1] to [6 ] above, the carbon dioxide-containing gas brought into contact with the slag pulverized product in step (B) is a by-product gas generated in a steel production process. A method for treating steelmaking slag, characterized in that the by-product gas having a reduced CO 2 concentration in B) is supplied outside as a fuel gas or a reducing gas.
[8] In the processing method of [7] , the by-product gas is a blast furnace gas, and the blast furnace gas having a reduced CO 2 concentration is supplied as a fuel gas or a reducing gas to the blast furnace or / and other gas-using equipment. A method for treating steelmaking slag as a feature.
[9] In the processing method according to any one of [1] to [8] above, in step (B), carbon dioxide gas or a carbon dioxide-containing gas is brought into contact with the slag pulverized material moving in the rotary kiln type rotary drum. A method for processing steelmaking slag.
[10] In the processing method according to any one of [1] to [8] above, in step (B), a fluidized bed is formed by blowing carbon dioxide or carbon dioxide-containing gas into the slag pulverized material in the treatment container. A method for treating steelmaking slag characterized by the above.
[11] In the processing method according to any one of [2] to [10 ] above, the slag pulverized material is treated with a roadbed material, earthwork material, sand-capping material, deep sea area laying material, deep sea area burial material, dredged sand. A steelmaking slag that is shipped or used as one or more types of slag products selected from an improvement material, a soil improvement material, a ground improvement material, a paving raw material, a cement raw material, and an aggregate for a hydrated solidified body. Processing method.

[12]製鋼工程で発生し、未だ溶融状態、半溶融状態又は高温固相状態にあるスラグを、金属ボール群が収容された回転ドラム内に注入し、該スラグを回転ドラム内で転動する金属ボール群と接触させることで冷却するとともに、転動する金属ボール群による物理的作用により粉砕してスラグ粉砕物とする工程(A)を有し、
前記工程(A)の途中のスラグが固化した段階で、回転ドラム内に水を注入し、スラグとの接触により高温になった金属ボール群を水で冷却するとともに、スラグ粉砕物に水をかけて冷却し且つカルシウム分を水和させ、注入した水により回転ドラム内で発生した蒸気を取り出して顕熱回収を行い、
前記工程(A)で得られたスラグ粉砕物を、排煙脱硫剤、炭酸固化体用原料、水和固化体用骨材、水底改質材、水中土木材料の中から選ばれる1種以上のスラグ製品として出荷し又は使用することを特徴とする製鋼スラグの処理方法。
[12] Slag generated in the steelmaking process and still in a molten state, a semi-molten state, or a high-temperature solid phase is injected into a rotating drum in which a metal ball group is accommodated, and the slag is rolled in the rotating drum. It has a step (A) of cooling by bringing it into contact with a metal ball group and crushing it into a slag pulverized product by physical action by the rolling metal ball group,
In the middle stage of the slag is solidified in the step (A), water is injected into the rotary drum, with a metal ball group became hot by contact with the slag cooling water, spray water over the slag pulverized product Cooling and hydrating the calcium content, taking out the steam generated in the rotating drum with the injected water and performing sensible heat recovery,
The slag pulverized product obtained in the step (A) is one or more kinds selected from a flue gas desulfurization agent, a carbonic acid solidified raw material, a hydrated solidified aggregate, a water bottom modifier, and an underwater civil engineering material. A method for treating steelmaking slag, which is shipped or used as a slag product.

[13]上記[12]の処理方法において、製鋼工程で発生したスラグが脱硫スラグであり、工程(A)で得られたスラグ粉砕物を排煙脱硫剤として出荷し又は使用することを特徴とする製鋼スラグの処理方法。
[14]上記[12]又は[13]のいずれかの処理方法において、さらに、工程(A)に続き、スラグ粉砕物から地金を回収する工程(C)を有することを特徴とする製鋼スラグの処理方法。
[15]上記[12][14]のいずれかの処理方法において、さらに、工程(A)に続き、水を添加してスラグ粉砕物中のカルシウム分を水和させる工程(D)を有することを特徴とする製鋼スラグの処理方法。
[13] In the processing method of [12 ] above, the slag generated in the steelmaking process is desulfurization slag, and the slag pulverized product obtained in step (A) is shipped or used as a flue gas desulfurization agent. Steelmaking slag treatment method.
[14] The steelmaking slag according to any one of the above [12] and [13] , further comprising a step (C) of recovering the metal from the slag pulverized product, following the step (A). Processing method.
[15] The processing method according to any one of [12] to [14] , further comprising a step (D) of adding water to hydrate the calcium content in the slag pulverized product, following the step (A). A method for treating steelmaking slag characterized by the above.

[16]上記[12]〜[15]のいずれかの処理方法において、工程(A)で得られるスラグ粉砕物が、粒径10mm以下の割合が80mass%以上の粒度を有することを特徴とする製鋼スラグの処理方法。
[17]上記[12]〜[16]のいずれかの処理方法において、スラグ粉砕物が500℃以下の温度で回転ドラムから排出されることを特徴とする製鋼スラグの処理方法。
[16] In the processing method according to any one of [12] to [15 ] above, the slag pulverized product obtained in the step (A) has a particle size of a particle size of 10 mass% or less having a particle size of 80 mass% or more. Steel slag treatment method.
[17] In the processing method according to any one of [12] to [16] , the slag pulverized product is discharged from the rotating drum at a temperature of 500 ° C. or lower.

本発明に係る製鋼スラグの処理方法によれば、製鋼工程で発生した直後のスラグを、耐久性を有する簡易な設備を用いて速やかに粒状スラグにまで処理することができ、地金回収のための新たな破砕処理やエージング処理も全く不要であり、しかも土木材料として用いても高pH溶出水を生じないなど、環境に優しいスラグ製品を得ることができる。   According to the steel slag treatment method according to the present invention, the slag immediately after being generated in the steel making process can be promptly processed into granular slag using a simple equipment having durability, for the recovery of the metal. No new crushing treatment or aging treatment is required at all, and even when used as a civil engineering material, high pH elution water is not produced, and an environmentally friendly slag product can be obtained.

本発明の第一の処理方法では、製鋼工程で発生し、未だ溶融状態、半溶融状態又は高温固相状態にあるスラグを、金属ボール群が収容された回転ドラム内に注入し、スラグを回転ドラム内で転動する金属ボール群と接触させることで冷却するとともに、転動する金属ボール群による物理的作用により粉砕してスラグ粉砕物とする冷却・粉砕処理工程(A)と、この冷却・粉砕処理工程(A)で得られたスラグ粉砕物を炭酸ガス又は炭酸ガス含有ガスと接触させ、スラグ粉砕物中に含まれる未炭酸化Caを炭酸ガスと反応させる炭酸化処理工程(B)とを有し、さらに好ましくは、前記冷却・粉砕処理工程(A)と炭酸化処理工程(B)の間で、水を添加してスラグ粉砕物中のカルシウム分を水和させる水和工程(D)と、スラグ粉砕物から地金を回収する工程(C)のいずれか又は両方を有し、また、前記冷却・粉砕処理工程(A)の途中又は/及び冷却・粉砕処理工程(A)が完了した段階で回転ドラム内に水を注入し、回転ドラム内で発生した蒸気を取り出して顕熱回収を行う。そして、前記炭酸化処理工程(B)を経たスラグ粉砕物をスラグ製品として出荷し又は使用するものである。   In the first treatment method of the present invention, the slag generated in the steelmaking process and still in the molten state, semi-molten state or high-temperature solid state is injected into the rotating drum in which the metal balls are accommodated, and the slag is rotated. Cooling by bringing it into contact with the rolling metal ball group in the drum, and cooling and pulverizing treatment step (A) to make a slag pulverized product by physical action by the rolling metal ball group, A carbonation treatment step (B) in which the slag pulverized product obtained in the pulverization treatment step (A) is brought into contact with carbon dioxide gas or a carbon dioxide-containing gas, and uncarbonated Ca contained in the slag pulverized product is reacted with carbon dioxide gas; More preferably, between the cooling / pulverization treatment step (A) and the carbonation treatment step (B), water is added to hydrate the calcium content in the slag pulverized product (D ) And ground from slag crushed material Either or both of the step (C) for recovering water, and in the middle of the cooling / pulverizing step (A) and / or at the stage where the cooling / pulverizing step (A) is completed, The steam generated in the rotating drum is taken out and sensible heat recovery is performed. And the slag ground material which passed through the said carbonation treatment process (B) is shipped or used as a slag product.

本発明が処理対象とする製鋼スラグには、例えば、溶銑予備処理で発生するスラグ(脱珪スラグ、脱硫スラグ、脱燐スラグなど)、転炉吹錬(脱炭処理)で発生する脱炭スラグ、鉱石還元スラグ、電気炉スラグなどがあるが、これらに限定されない。これらスラグの大部分は、精錬容器から排滓する際に溶融状態であるが、半溶融状態や高温固相状態のものもある。   Steelmaking slag to be treated by the present invention includes, for example, slag generated by hot metal pretreatment (desiliconization slag, desulfurization slag, dephosphorization slag, etc.), and decarburization slag generated by converter blowing (decarburization treatment). , Ore reduction slag, electric furnace slag, etc., but are not limited thereto. Most of these slags are in a molten state when discharged from the smelting vessel, but some are in a semi-molten state or a high-temperature solid phase state.

図1は、本発明の第一の処理方法の一実施形態(処理フロー)を示している。
製鋼工程で発生した溶融状態、半溶融状態又は高温固相状態のスラグ(以下、便宜上「溶融スラグx」という)は、スラグ鍋などのスラグ保持容器に排滓され、冷却・粉砕処理工程(A)を行うスラグ処理設備まで搬送される。
図2は、このスラグ処理設備の一実施形態を示す縦断面図である。このスラグ処理設備は、金属ボール群2が収容された回転ドラム1を備えている。
FIG. 1 shows an embodiment (processing flow) of the first processing method of the present invention.
The molten, semi-molten, or high-temperature solid-phase slag generated in the steelmaking process (hereinafter referred to as “molten slag x” for convenience) is discharged into a slag holding container such as a slag pan, and is cooled and crushed (A ) Is transported to the slag treatment facility.
FIG. 2 is a longitudinal sectional view showing an embodiment of this slag treatment facility. This slag treatment facility includes a rotating drum 1 in which a metal ball group 2 is accommodated.

前記回転ドラム1は、回転可能に支持された横型ドラム(通常、直径が数m〜十数m程度のドラム)であって、ドラム軸が処理済みスラグの排出方向に対して下向きの傾きθを有している。回転ドラム1は、外周に櫛歯状に隙間5が形成されたカゴ状の内筒部3と、その外側の外筒部4からなる2重筒構造を有し、内筒部3と外筒部4が一体として回転可能に支持され、駆動装置(図示せず)により低速回転する。前記金属ボール群2は内筒部3内に収容され、回転ドラム1の回転に伴い内筒部3内でランダムに転動する。   The rotary drum 1 is a horizontal drum that is rotatably supported (usually a drum having a diameter of about several meters to several tens of meters), and the drum shaft has a downward inclination θ with respect to the discharge direction of the treated slag. Have. The rotating drum 1 has a double cylinder structure comprising a cage-like inner cylinder portion 3 having a comb-like gap 5 formed on the outer periphery and an outer cylinder portion 4 outside thereof, and the inner cylinder portion 3 and the outer cylinder. The unit 4 is integrally supported so as to be rotatable, and is rotated at a low speed by a driving device (not shown). The metal ball group 2 is accommodated in the inner cylinder portion 3 and randomly rolls in the inner cylinder portion 3 as the rotary drum 1 rotates.

回転ドラム1の一端部は、固定側に支持された端蓋6で閉じられ、この端蓋6にスラグ注入口7が設けられている。回転ドラム1の他端側の端蓋8であって、内筒部3と外筒部4間の空間Sに面した部分には、処理済みスラグ(スラグ粉砕物)を回転ドラム外に排出するためのスラグ排出口9が、端蓋8の周方向で適当な間隔で形成されている。
また、外筒部4の内周面には、空間Sに入ったスラグ粉砕物を前記スラグ排出口9方向に案内するためのガイド板(図示せず)が設けられている。
One end of the rotating drum 1 is closed by an end lid 6 supported on the fixed side, and a slag inlet 7 is provided in the end lid 6. The processed slag (slag pulverized material) is discharged out of the rotating drum to the end cover 8 on the other end side of the rotating drum 1 and facing the space S between the inner cylinder portion 3 and the outer cylinder portion 4. For this purpose, slag discharge ports 9 are formed at appropriate intervals in the circumferential direction of the end lid 8.
Further, a guide plate (not shown) for guiding the slag crushed material that has entered the space S in the direction of the slag discharge port 9 is provided on the inner peripheral surface of the outer cylinder portion 4.

さらに、前記端蓋6には、回転ドラム1内に水を供給し、金属ボール群2を水で冷却し或いはスラグ破砕物に水をかけて冷却・水和(カルシウム分の水和)させたりするための水供給部10が設けられ、この水供給部10には水供給管11から水が供給されるようになっている。
また、回転ドラム1の他端側(スラグ排出口9側)には、供給された水により生じる蒸気を回収するための蒸気回収部12(例えば、蒸気回収フード、蒸気導管、吸引ブロワ等)が設けられ、回転ドラム1内の蒸気を吸引ブロワなどにより取り出し、回収できるようにしている。
Further, the end lid 6 is supplied with water into the rotary drum 1 to cool the metal ball group 2 with water, or to slag crushed material with water to cool and hydrate (hydrate calcium). For this purpose, a water supply unit 10 is provided, and water is supplied to the water supply unit 10 from a water supply pipe 11.
In addition, a steam recovery unit 12 (for example, a steam recovery hood, a steam conduit, a suction blower, etc.) for recovering steam generated by the supplied water is provided at the other end side (slag discharge port 9 side) of the rotating drum 1. It is provided so that the steam in the rotary drum 1 can be taken out and collected by a suction blower or the like.

前記金属ボール群2は、スラグを冷却・粉砕するためのもので、各金属ボール20は、一般に中実の鋼ボールで構成されるが、他の金属で構成されたものでもよい。金属ボール20の大きさや個数に特に制限はなく、冷却能力、粉砕能力、ボールの寿命などの観点から適切な大きさや個数が選択される。例えば、金属ボール群2は、各金属ボール20の直径が10〜15cm程度であって、数百個〜数千個程度の金属ボール20からなるものとすることができる。
以上のようなスラグ処理設備は構造が非常に単純であり、回転ドラムの耐熱性や耐摩耗性などに十分配慮するだけで、高い耐久性を維持することができる。
The metal ball group 2 is for cooling and pulverizing the slag, and each metal ball 20 is generally composed of solid steel balls, but may be composed of other metals. The size and number of the metal balls 20 are not particularly limited, and an appropriate size and number are selected from the viewpoints of cooling capacity, crushing capacity, ball life, and the like. For example, the metal ball group 2 can be made up of several hundred to several thousand metal balls 20 with each metal ball 20 having a diameter of about 10 to 15 cm.
The slag treatment equipment as described above has a very simple structure, and high durability can be maintained only by sufficiently considering the heat resistance and wear resistance of the rotating drum.

前記冷却・粉砕処理工程(A)では、回転ドラム1を低速で回転(通常、1〜5回転/min)させた状態で、スラグ保持容器に保持された溶融スラグxをスラグ注入口7から回転ドラム1(内筒部3)内に投入する。溶融スラグxは金属ボール群2の上面に落下した後、金属ボール群2の内部にしみ込んでいき、その過程で各金属ボール20との接触で冷却・固化されるとともに、転動する金属ボール群2による圧潰・衝撃作用により粉砕されてスラグ粉砕物yとなる。このような回転ドラム1によるスラグ処理は、半溶融状態や溶融していない固相状態のスラグを対象とする場合でも、問題なく行うことができ、細粒のスラグ粉砕物yが得られる。
このスラグ粉砕物yは、内筒部3外周の櫛歯状の隙間5から外筒部4内に排出(隙間5から落下)された後、外筒部4の内周面に形成されたガイドにより軸線方向に移動させられ、スラグ排出口9から外筒部4(回転ドラム1)外に排出される。
In the cooling / pulverization treatment step (A), the molten slag x held in the slag holding container is rotated from the slag inlet 7 while rotating the rotating drum 1 at a low speed (usually 1 to 5 rotations / min). It is put into the drum 1 (inner cylinder part 3). The molten slag x falls on the upper surface of the metal ball group 2 and then penetrates into the metal ball group 2. In the process, the molten slag x is cooled and solidified by contact with each metal ball 20, and the rolling metal ball group 2 is crushed by the crushing / impact action by 2 to become a slag crushed material y. Such a slag treatment by the rotating drum 1 can be performed without any problem even when a semi-molten or non-molten solid phase slag is targeted, and a fine slag pulverized product y is obtained.
This slag pulverized material y is discharged into the outer cylinder part 4 from the comb-like gap 5 on the outer periphery of the inner cylinder part 3 (dropped from the gap 5), and then formed on the inner peripheral surface of the outer cylinder part 4. Is moved in the axial direction, and discharged from the slag discharge port 9 to the outside of the outer cylinder portion 4 (the rotating drum 1).

スラグ粉砕物yの粒度は、回転ドラム内での処理時間などによっても異なるが、粒径10mm以下の割合が80mass%以上の粒度にすることが容易に可能である。従来行われているスラグの粉砕処理はエネルギー効率が非常に低く、多大なエネルギーを費やして処理を行っていたものであるが、本発明によれば、そのような粉砕処理を全く行うことなく、回転ドラム1を駆動させるエネルギーだけで、従来の粉砕処理スラグ相当のスラグ粉砕物yを得ることができる。
また、スラグ粉砕物yは、一般に500℃以下の温度で回転ドラム1から排出され、このためその後のハンドリングも容易であり、また、磁選による地金回収も問題なく行うことができる。
Although the particle size of the slag pulverized product y varies depending on the processing time in the rotary drum, the particle size of 10 mm or less can be easily set to a particle size of 80 mass% or more. Conventionally performed slag pulverization processing is very low energy efficiency and has been processed with a great deal of energy, but according to the present invention, without performing such pulverization processing at all, The slag pulverized material y corresponding to the conventional pulverized slag can be obtained only by the energy for driving the rotary drum 1.
Further, the slag pulverized product y is generally discharged from the rotary drum 1 at a temperature of 500 ° C. or lower, and hence the subsequent handling is easy, and the metal collection by magnetic separation can be performed without any problem.

前記冷却・粉砕処理工程(A)の途中又は/及び冷却・粉砕処理工程(A)が完了した段階で、(1)溶融スラグxとの接触により高温(通常、数百℃)になった金属ボール群2を水で冷却する、(2)スラグ粉砕物yに水をかけて冷却し且つカルシウム分を水和させる、のうちの少なくとも1つを目的として、水供給部10から回転ドラム1内に水を供給(注水)することができる。ここで、スラグ粉砕物yに水が添加されれば、カルシウム分の水和が生じて実質的なエージングがなされることになる。   (1) Metal that has become high temperature (usually several hundred degrees Celsius) due to contact with the molten slag x in the course of the cooling / grinding treatment step (A) and / or at the stage of completion of the cooling / grinding treatment step (A) For the purpose of at least one of cooling the ball group 2 with water and (2) cooling the slag pulverized product y with water and hydrating the calcium content, the water supply unit 10 supplies the inside of the rotating drum 1. Water can be supplied (water injection). Here, if water is added to the slag pulverized product y, hydration of the calcium content occurs and substantial aging is performed.

ここで、冷却・粉砕処理工程(A)の途中の段階とは、冷却・粉砕処理工程(A)でスラグが固化し又は降温した段階であり、スラグが未だ溶融若しくは半溶融又は高温状態にあるときは、水蒸気爆発のおそれがあるので、水の供給は避けた方がよい。また、冷却・粉砕処理工程(A)が実質的に完了した段階としては、例えば、スラグ粉砕物yを回転ドラム1から排出した後の段階、スラグ粉砕物yが未だ回転ドラム1内にある段階、のいずれでもよい。   Here, the stage in the middle of the cooling / grinding process step (A) is a stage in which the slag is solidified or cooled in the cooling / grinding process step (A), and the slag is still in a molten, semi-molten or high temperature state. In some cases, it is better to avoid supplying water because there is a risk of steam explosion. Further, as the stage at which the cooling / pulverization treatment step (A) is substantially completed, for example, a stage after discharging the slag pulverized material y from the rotating drum 1, a stage where the slag pulverized material y is still in the rotating drum 1. Either of these may be used.

水の注水によって回転ドラム1内で蒸気が発生するが、この発生した低圧蒸気は回転ドラム1外に取り出され、蒸気回収部12から熱回収を行う適宜な手段に送られ、顕熱回収が行われる。これにより、回転ドラム1に供給された高温スラグの顕熱の相当量を熱回収することができる。
冷却・粉砕処理工程(A)で得られたスラグ粉砕物yは、含有する地金(Fe)分が少ない場合にはそのまま炭酸化処理工程(B)に送られてもよいが、通常は地金回収工程(C)に送られる。回転ドラム1から排出されたスラグ粉砕物yは粒度が十分に小さいため、そのままで磁選機などを用いて高効率の地金回収を行うことができる。
Steam is generated in the rotary drum 1 by the water injection, and the generated low-pressure steam is taken out of the rotary drum 1 and sent from the steam recovery section 12 to an appropriate means for recovering heat to perform sensible heat recovery. Is called. Thereby, a considerable amount of sensible heat of the high-temperature slag supplied to the rotary drum 1 can be recovered.
The slag pulverized product y obtained in the cooling / pulverization treatment step (A) may be sent to the carbonation treatment step (B) as it is when the contained metal (Fe) content is small. It is sent to the gold recovery process (C). Since the particle size of the slag pulverized product y discharged from the rotating drum 1 is sufficiently small, highly efficient metal collection can be performed using a magnetic separator or the like as it is.

このような地金回収工程(C)を経たスラグ粉砕物y(若しくは地金回収工程(C)を経ないスラグ粉砕物y)は炭酸化処理工程(B)に送られ、ここで、炭酸ガス又は炭酸ガス含有ガスと接触させ、スラグ粉砕物y中に含まれる未炭酸化Ca(CaO、Ca(OH))を炭酸ガスと反応させる。これにより未炭酸化Caは炭酸カルシウムとなり、土木材料などとして利用した場合でも高pH溶出水を生じないスラグ製品を得ることができる。また、遊離CaOも炭酸化されるので、エージング処理も全く不要となる。
なお、炭酸化処理工程(B)を経たスラグ粉砕物yの形態は、処理前と変わりなくスラグ粒子が分離した状態にある形態のほかに、(1)複数のスラグ粒子が凝集して結合(炭酸カルシウムをバインダーとして結合)した形態、(2)複数(比較的多数)のスラグ粒子が造粒物状に結合(炭酸カルシウムをバインダーとして結合)した形態、のいずれであってもよい。
The slag pulverized material y (or the slag pulverized material y not subjected to the bullion recovery step (C)) that has undergone such a bullion recovery step (C) is sent to the carbonation treatment step (B), where carbon dioxide gas Or it is made to contact with carbon dioxide containing gas, and the uncarbonated Ca (CaO, Ca (OH) 2 ) contained in the slag pulverized product y is reacted with carbon dioxide. Thereby, uncarbonated Ca becomes calcium carbonate, and even when used as a civil engineering material, a slag product that does not produce high pH elution water can be obtained. Moreover, since free CaO is also carbonated, no aging treatment is required.
In addition, the form of the slag pulverized product y that has undergone the carbonation treatment step (B) is not different from the form in which the slag particles are separated as before the treatment, and (1) a plurality of slag particles are aggregated and combined ( Either (a form in which calcium carbonate is bound as a binder) or (2) a form in which a plurality (relatively many) of slag particles are bound in a granulated form (bound with calcium carbonate as a binder).

スラグ粉砕物yを炭酸化処理する方法は任意であるが、例えば、(1)炭酸化処理用の回転ドラム(例えば、ロータリーキルン式ドラム)内でスラグ粉砕物yに炭酸ガス又は炭酸ガス含有ガスを接触させる方式、(2)処理容器内のスラグ粉砕物yに炭酸ガス又は炭酸ガス含有ガスを吹き込むことにより流動層を形成する方式、(3)スラグ粉砕物yが置かれた固定床(例えば、スラグ粉砕物yが充填された充填層)に炭酸ガス又は炭酸ガス含有ガスを供給する(吹き込む)方式、などが挙げられる。   A method of carbonating the slag pulverized product y is arbitrary. For example, (1) Carbon dioxide or carbon dioxide-containing gas is added to the slag pulverized product y in a rotating drum for carbonation (for example, a rotary kiln drum). (2) A system in which a fluidized bed is formed by blowing carbon dioxide or carbon dioxide-containing gas into the slag crushed material y in the processing vessel, (3) a fixed bed on which the slag pulverized material y is placed (for example, Examples include a method of supplying (blowing) carbon dioxide gas or carbon dioxide-containing gas into a packed bed filled with the slag pulverized product y.

これらのうち、(2)の方式はスラグ粉砕物yの粒度が比較的小さい場合(例えば、粒径2mm以下)に適しており、一方、(3)の方式はスラグ粉砕物yの粒度が比較的大きい場合(例えば、粒径2mm超)に適している。また、(1)の方式は、いずれの粒度でも好適に適用できる。
図3は、上記(1)の方式の一実施形態を示すもので、軸方向で傾きを有するロータリーキルン式の回転ドラム13内に、一端側(高所側のドラム端部)からスラグ粉砕物yを供給し、他端側(低所側のドラム端部)から炭酸ガス又は炭酸ガス含有ガス(以下、便宜上「CO含有ガス」という)を供給する。回転ドラム13内では、スラグ粉砕物yがドラム他端方向に移動しつつ、向流式にCO含有ガスと接触して炭酸化処理がなされ、ドラム他端側から排出される。この方式では、処理後のスラグ粉砕物yは、スラグ粒子が凝集・結合したもの或いは造粒されたものが得られやすい。
Among these, the method (2) is suitable when the particle size of the slag pulverized product y is relatively small (for example, a particle size of 2 mm or less), while the method (3) compares the particle size of the slag pulverized product y. It is suitable when the target is large (for example, the particle size is more than 2 mm). Further, the method (1) can be suitably applied to any particle size.
FIG. 3 shows an embodiment of the above-described method (1). In the rotary kiln-type rotary drum 13 having an inclination in the axial direction, the slag crushed material y from one end side (drum end on the high side) is shown. And carbon dioxide gas or carbon dioxide-containing gas (hereinafter referred to as “CO 2 -containing gas” for convenience) from the other end side (the drum end portion on the lower side). In the rotating drum 13, the slag pulverized material y moves toward the other end of the drum, and is contacted with the CO 2 -containing gas in a countercurrent manner to perform carbonation, and is discharged from the other end of the drum. In this method, the slag pulverized product y after the treatment can be easily obtained by agglomeration and bonding of slag particles or by granulation.

また、図4は上記(2)の方式の一実施形態を示すもので、14は下部にガス分散板140を備え、その上部に流動層形成用の空間141を構成した処理容器、15はこの処理容器14内にスラグ粉砕物yを供給するための供給装置、16は処理容器14(分散板140の下方の風箱142)内にCO含有ガスを供給するためのガス供給導管、17は処理容器14からCO含有ガスを排出するためのガス排出導管、18は処理容器14内から処理済みのスラグ粉砕物yを取り出すためのスラグ排出管である。この方式によれば、処理容器14の空間141内に供給装置15からスラグ粉砕物yが供給され、一方、ガス供給導管16から風箱142内に供給されたCO含有ガスは分散板140から空間141に吹き出され、スラグ粉砕物yの流動層が形成される。そして、この流動層においてスラグ粉砕物yの炭酸化処理がなされる。処理を終えたスラグ粉砕物yは、スラグ排出管18から順次排出される。
また、流動層を用いる他の方式としては、例えば、流動層を形成するスラグ粉砕物yをCO含有ガスに随伴させて処理容器外に排出し、サイクロンなどでスラグ粉砕物yを回収する方式などでもよい。
FIG. 4 shows an embodiment of the method (2). Reference numeral 14 denotes a processing vessel having a gas dispersion plate 140 in the lower part and a fluidized bed forming space 141 in the upper part. A supply device 16 for supplying the slag crushed material y into the processing container 14, 16 is a gas supply conduit for supplying the CO 2 -containing gas into the processing container 14 (the wind box 142 below the dispersion plate 140), 17 A gas discharge conduit 18 for discharging the CO 2 -containing gas from the processing container 14 is a slag discharge pipe for taking out the processed slag crushed material y from the processing container 14. According to this method, the slag pulverized material y is supplied from the supply device 15 into the space 141 of the processing container 14, while the CO 2 -containing gas supplied from the gas supply conduit 16 into the wind box 142 is supplied from the dispersion plate 140. Blowing into the space 141, a fluidized bed of slag pulverized material y is formed. In the fluidized bed, the slag pulverized product y is carbonized. The slag pulverized material y after the processing is sequentially discharged from the slag discharge pipe 18.
Further, as another method using a fluidized bed, for example, a method of discharging a slag pulverized product y forming a fluidized bed with a CO 2 containing gas to the outside of the processing vessel and recovering the slag pulverized product y with a cyclone or the like. Etc.

スラグ粉砕物yをCOと接触させて未炭酸化Caを効率的に炭酸化させるには、スラグ粉砕物yが適度な水分を含んでいること(好ましくは、スラグ粒子が表面付着水を有すること)が必要である。スラグ粒子の回りに存在する水に対してスラグ側から溶け出したCaイオンと、CO含有ガス側から溶解したCOとが反応することで、炭酸化反応が効率的に進行するからである。したがって、炭酸化処理が施されるスラグ粉砕物yには、必要に応じて水が添加される。炭酸化処理が施されるスラグ粉砕物yの水分量(含水率)は、3〜30mass%、好ましくは6〜12mass%程度が適当である。なお、回転ドラム1内で水が添加されることでカルシウム分が水和したスラグ粉砕物yは、水酸化カルシウムがCOと反応(炭酸化反応)することで相当量の水が生じるので、この水を必要な水分の少なくとも一部として利用することができる。
なお、炭酸化処理は、水分の蒸発を避けるために、100℃以下のスラグ粉砕物yに対して行われることが好ましい。
In order to efficiently carbonate the uncarbonated Ca by bringing the slag pulverized product y into contact with CO 2 , the slag pulverized product y contains appropriate moisture (preferably, the slag particles have surface-attached water. It is necessary. By the Ca ions eluted from the slag side against water present around the slag particles, and CO 2 dissolved from CO 2 containing gas side reacts, because carbonation reaction proceeds efficiently . Accordingly, water is added to the slag pulverized product y subjected to the carbonation treatment as necessary. The water content (moisture content) of the slag crushed material y subjected to the carbonation treatment is 3 to 30 mass%, preferably about 6 to 12 mass%. In addition, since the slag pulverized product y in which the calcium content is hydrated by adding water in the rotating drum 1, a considerable amount of water is generated by the reaction (carbonation reaction) of calcium hydroxide with CO 2 . This water can be used as at least part of the necessary moisture.
The carbonation treatment is preferably performed on the slag pulverized material y at 100 ° C. or lower in order to avoid evaporation of moisture.

炭酸化処理でスラグ粉砕物yに接触させる炭酸ガスや炭酸ガス含有ガスは、その種類を問わないが、炭酸ガス含有ガスについては、処理効率の面からCO濃度が5vol%以上のものが好ましい。
また、炭酸化処理によりガス中の炭酸ガス濃度が低減するので、COやHなどを含むガスの場合には結果的にガスのカロリーが高まることになる。したがって、例えば、鉄鋼製造プロセスで発生する副生ガスを用い、この炭酸化処理工程(B)でCO濃度が低減した前記副生ガスを、燃料ガス又は還元ガスとして系外に供給することもできる。ここで、系外とは炭酸化処理のためのガス系統外という意味である。また、副生ガス(炭酸ガス含有ガス)として高炉ガスを用い、炭酸化処理によりCO濃度が低減した高炉ガスを燃料ガス又は還元ガスとして高炉又は/及び他のガス使用設備に供給することもでき、これにより製鉄所内での省資源・省エネルギー化を促進できる。
Carbon dioxide and carbon dioxide-containing gas contacting the slag pulverized product y by carbonation treatment is not of any type, for carbon dioxide-containing gas, is preferable from the viewpoint of treatment efficiency CO 2 concentration of more than 5 vol% .
Further, since the carbon dioxide concentration in the gas is reduced by the carbonation treatment, in the case of a gas containing CO, H 2 or the like, the calorie of the gas increases as a result. Therefore, for example, by-product gas generated in the steel manufacturing process is used, and the by-product gas having a reduced CO 2 concentration in the carbonation treatment step (B) may be supplied out of the system as a fuel gas or a reducing gas. it can. Here, “outside system” means outside the gas system for carbonation treatment. Also, blast furnace gas may be used as a by-product gas (carbon dioxide-containing gas), and blast furnace gas having a reduced CO 2 concentration by carbonation treatment may be supplied as fuel gas or reducing gas to the blast furnace or / and other gas-using equipment. It is possible to promote resource saving and energy saving in steelworks.

本発明では、さらに、冷却・粉砕処理工程(A)と炭酸化処理工程(B)の間に、水を添加してスラグ粉砕物y中のカルシウム分を水和させる水和工程(D)を有していてもよい。さきに述べたように、回転ドラム1での水の添加によりスラグ粉砕物yのカルシウム分が水和する場合もあるが、独立した水和工程(D)を設けることにより、スラグ粉砕物y中のカルシウム分の水和がより確実に行われるようにし、実質的なエージング効果を高めるものである。   In the present invention, a hydration step (D) for adding water between the cooling / pulverization treatment step (A) and the carbonation treatment step (B) to hydrate the calcium content in the slag pulverized product y is further provided. You may have. As described above, the calcium content of the slag pulverized product y may be hydrated by the addition of water in the rotary drum 1, but by providing an independent hydration step (D), Hydration of the calcium content is ensured and the substantial aging effect is enhanced.

図5は、その一実施形態(処理フロー)を示すもので、冷却・粉砕処理工程(A)で生成したスラグ粉砕物yを水和工程(D)で水和処理し、その後、図1と同様に、必要に応じて地金回収工程(C)で地金の回収を行った後、炭酸化処理工程(B)で炭酸化処理するものである。さきに述べたように、カルシウム分が水和したスラグ粉砕物yは、炭酸化処理工程(B)において水酸化カルシウムがCOと反応(炭酸化反応)することで相当量の水が生じるので、この水を炭酸化処理に必要な水分の少なくとも一部として利用することができる。 FIG. 5 shows an embodiment (processing flow) thereof. The slag pulverized product y produced in the cooling and pulverizing treatment step (A) is hydrated in the hydration step (D). Similarly, after collecting the bullion in the bullion collection step (C) as necessary, the carbonation is performed in the carbonation treatment step (B). As described above, the slag pulverized product y in which the calcium content is hydrated has a considerable amount of water due to the reaction (carbonation reaction) of calcium hydroxide with CO 2 in the carbonation treatment step (B). This water can be used as at least part of the water necessary for the carbonation treatment.

前記水和工程(D)は、スラグ粉砕物yが凝集固結しないような方法で行うことが好ましく、例えば、水和処理用の回転ドラム内にスラグ粉砕物yと水を入れ、混練するなどの方法を採ることができる。
なお、スラグ粉砕物yの水和処理は、処理の安定性の面から400℃以下の温度(スラグ粉砕物yの温度)で行うことが好ましい。本発明では、スラグ粉砕物yは冷却・粉砕処理工程(A)において500℃以下の温度で排出されるので、工程間での搬送等による温度低下を考慮すれば、ほぼ上記温度条件を満足することができる。
なお、その他の構成については、図1の実施形態と同様であるので、詳細な説明は省略する。
The hydration step (D) is preferably performed by a method in which the slag pulverized product y does not coagulate and solidify. For example, the slag pulverized product y and water are placed in a rotating drum for hydration and kneaded. Can be used.
In addition, it is preferable to perform the hydration process of the slag ground material y at the temperature of 400 degrees C or less (temperature of the slag ground material y) from the surface of the stability of a process. In the present invention, the slag pulverized product y is discharged at a temperature of 500 ° C. or lower in the cooling and pulverizing treatment step (A). Therefore, considering the temperature drop due to conveyance between the steps, the above temperature condition is substantially satisfied. be able to.
Other configurations are the same as those in the embodiment of FIG. 1, and thus detailed description thereof is omitted.

炭酸化処理工程(B)を経たスラグ粉砕物yは、スラグ製品として出荷し又は使用される。スラグ製品としての用途は、例えば、
路盤材、土工材、覆砂材(人工砂)、海域深掘部敷設材、海域深掘部穴埋め材、浚渫土砂改良材、土壌改良材、地盤改良材、舗装用原料、セメント原料、水和固化体用骨材(水和固化体には所謂水和硬化体も含まれる)などである。
本発明によれば、以下に示すように従来のスラグ処理・利材化に関連する課題を全て解決することができる。
The slag pulverized product y that has undergone the carbonation treatment step (B) is shipped or used as a slag product. Applications for slag products include, for example,
Roadbed materials, earthwork materials, sand-capping materials (artificial sand), deep sea digging materials, deep sea burial filling materials, dredged sand improvement materials, soil improvement materials, ground improvement materials, paving raw materials, cement raw materials, hydration Aggregates for solidified bodies (so-called hydrated cured bodies are included in hydrated solidified bodies).
According to the present invention, it is possible to solve all the problems associated with conventional slag processing / utilization as shown below.

(1)作業環境面での問題の解決
精錬容器から排出された溶融状態、半溶融状態又は高温固相状態で排出されたスラグをそのままスラグ処理設備に搬送し、回転ドラム1による処理だけで500℃以下のスラグ粉砕物yが得られ、かつエージング処理も不要となるので、従来のような「(排滓)→冷却作業→粉砕処理→エージング」という一連の工程に伴う高熱作業や粉塵作業が殆どなくなり、作業環境が大きく改善できる。
(2)処理コストや処理スペースの問題の解決
溶融状態、半溶融状態又は高温固相状態のスラグを直接スラグ粉砕物yとし、且つ安定な炭酸化処理スラグとするため、従来のような「(排滓)→冷却作業→粉砕処理→エージング」が全く不要になり、大量に発生する製鋼スラグを低コストに製品化することができ、また、冷却作業ヤード、粉砕処理などのための仮置き場、エージングヤードなどのためのスペースも全く不要となる。
(1) Solving problems in the work environment The slag discharged from the smelting vessel is transported to the slag processing equipment as it is, and is processed by the rotary drum 1 alone. Since a slag pulverized product y of ℃ or less is obtained and aging treatment is not required, high-temperature work and dust work associated with a series of processes of “(exhaust) → cooling work → crushing process → aging” as in the past are performed. There is almost no loss and the working environment can be greatly improved.
(2) Solution of processing cost and processing space problems In order to make a molten, semi-molten or high-temperature solid phase slag directly into a slag pulverized product y and a stable carbonation-treated slag, Exclusion) → Cooling work → Grinding process → Aging ”is completely unnecessary, and a large amount of steelmaking slag can be commercialized at a low cost. There is no need for space for aging yards.

(3)難処理性スラグの問題の解決
固相状態の微粉として生成する製鋼スラグでも問題なく処理し、製品化することができ、また、アルカリ分による問題も解消できる。
(4)地金回収に伴う問題の解決
回転ドラム1で得られたスラグ粉砕物yは、粉砕処理することなく地金回収することができ、地金の回収のための手間とコスト(設備コスト、処理コスト)を低減できる。
(5)熱エネルギー回収の問題の解決
回転ドラム1から蒸気を取り出し、その顕熱を回収できるので、実質的に溶融状態、半溶融状態又は高温固相状態の製鋼スラグから相当量の顕熱回収を行うことができる。
(3) Solving difficult-to-process slag problems Steelmaking slag produced as solid-state fine powder can be processed and commercialized without problems, and problems due to alkali content can be solved.
(4) Solution of problems associated with bullion collection The slag crushed material y obtained with the rotating drum 1 can be collected without pulverization, and labor and costs for collecting bullion (equipment costs) , Processing cost) can be reduced.
(5) Solving the problem of thermal energy recovery Steam can be extracted from the rotating drum 1 and its sensible heat can be recovered, so that a considerable amount of sensible heat can be recovered from steelmaking slag in a substantially molten, semi-molten or high-temperature solid state. It can be performed.

(6)エージングに伴う問題の解決
製鋼スラグのエージングが全く不要になり、そのためのコストや専用スペースも不要になる。
(7)利材化した場合の環境問題の解決
炭酸化処理によりスラグ中のCaOが安定なCaCOとして固定されるため、土木材料などに用いた場合でも、スラグ中のアルカリ分によって高pHの溶出水が発生するのを防止できる。また、スラグがアルカリ分により膨張粉化することも防止できる。
(6) Solving problems associated with aging Steel slag aging is completely unnecessary, and the cost and dedicated space for that purpose are also eliminated.
(7) Solving environmental problems when used as a timber Since the CaO in the slag is fixed as stable CaCO 3 by the carbonation treatment, even when it is used for civil engineering materials, it has a high pH due to the alkali content in the slag. Elution water can be prevented from being generated. In addition, the slag can be prevented from being expanded and powdered by an alkali component.

次に、本発明の第二の処理方法について説明する。
本発明の第二の処理方法は、製鋼工程で発生し、未だ溶融状態、半溶融状態又は高温固相状態にあるスラグを、金属ボール群が収容された回転ドラム内に注入し、スラグを回転ドラム内で転動する金属ボール群と接触させることで冷却するとともに、転動する金属ボール群による物理的作用により粉砕してスラグ粉砕物とする冷却・粉砕処理工程(A)を有し、この工程(A)で得られたスラグ粉砕物を、排煙脱硫剤、炭酸固化体用原料、水和固化体用骨材、水底改質材、水中土木材料の中から選ばれる1種以上のスラグ製品として出荷し又は使用するものである。また、好ましくは、前記冷却・粉砕処理工程(A)に続き、水を添加してスラグ粉砕物中のカルシウム分を水和させる水和工程(D)と、スラグ粉砕物から地金を回収する工程(C)のいずれか又は両方を有し、また、前記冷却・粉砕処理工程(A)の途中又は/及び冷却・粉砕処理工程(A)が完了した段階で回転ドラム内に水を注入し、回転ドラム内で発生した蒸気を取り出して顕熱回収を行う。
Next, the second processing method of the present invention will be described.
In the second treatment method of the present invention, slag generated in a steelmaking process and still in a molten state, a semi-molten state, or a high-temperature solid phase is injected into a rotating drum in which a metal ball group is accommodated, and the slag is rotated. It has cooling and pulverizing treatment step (A) that is cooled by being brought into contact with the rolling metal ball group in the drum, and pulverized by physical action by the rolling metal ball group to obtain a slag pulverized product. One or more types of slag selected from the flue gas desulfurization agent, carbonic acid solidified raw material, hydrated solidified aggregate, water bottom modifier, and underwater civil engineering material is obtained by pulverizing the slag obtained in step (A). It is shipped or used as a product. Preferably, following the cooling / pulverization treatment step (A), water is added to hydrate the calcium content in the slag pulverized product (D), and the metal is recovered from the slag pulverized product. Either or both of the steps (C) are included, and water is injected into the rotary drum in the course of the cooling / pulverizing treatment step (A) and / or at the stage where the cooling / pulverizing treatment step (A) is completed. The steam generated in the rotating drum is taken out and sensible heat recovery is performed.

図6および図7は、それぞれ本発明の第二の処理方法の実施形態(処理フロー)を示しており、これらの処理フローと各工程の詳細は、炭酸化処理工程(B)が無い点を除き図1、図5の実施形態と同様であるので、詳細な説明は省略する。
このような本発明の第二の処理方法で得られるスラグ製品は、アルカリ分を適度に含んでいるが、このアルカリ分を利用できる用途又はアルカリ分が含まれていても問題がない用途向けのスラグ製品とする。
本発明者らは、特に、脱硫スラグを冷却・粉砕工程(A)で処理して得られたスラグ粉砕物yが、排煙脱硫剤として高い脱硫性能を有していることを見出した。したがって、脱硫スラグのスラグ粉砕物yは、例えば、脱硫処理が必要な発生ガス(例えば、製鉄所内の焼結工場の発生ガスなど)の排煙脱硫剤として出荷し又は使用することが好ましい。
FIG. 6 and FIG. 7 each show an embodiment (processing flow) of the second processing method of the present invention, and the details of these processing flow and each step are that there is no carbonation processing step (B). Except for the embodiment of FIG. 1 and FIG. 5, the detailed description is omitted.
The slag product obtained by such a second treatment method of the present invention contains an alkali content moderately, but for applications where this alkali content can be used or applications where there is no problem even if an alkali content is included. A slag product.
In particular, the present inventors have found that the slag pulverized product y obtained by treating desulfurized slag in the cooling and pulverizing step (A) has high desulfurization performance as a flue gas desulfurization agent. Therefore, the slag pulverized product y of desulfurized slag is preferably shipped or used as a flue gas desulfurization agent for a generated gas that requires a desulfurization treatment (for example, a generated gas in a sintering plant in a steel mill).

また、スラグ粉砕物yは、上記排煙脱硫剤以外に、炭酸固化体用原料、水和固化体用骨材(水和固化体には所謂水和硬化体も含まれる)、水底改質材、水中土木材料等として出荷し又は使用することができる。
ここで、スラグ粉砕物yを原料とする炭酸固化体とは、水分を添加したスラグ粉砕物yを型枠などに充填し、その充填層に炭酸ガス又は炭酸ガス含有ガスを吹き込んで炭酸化処理することにより、生成した炭酸カルシウムをバインダーとして充填層全体を固結させたものである。
In addition to the above flue gas desulfurization agent, the slag pulverized product y is a raw material for carbonized solidified body, an aggregate for hydrated solidified body (so-called hydrated cured body is also included in the hydrated solidified body), a water bottom modifier. It can be shipped or used as an underwater civil engineering material.
Here, the solidified carbonaceous material using the slag pulverized product y as a raw material means that the slag pulverized product y added with moisture is filled into a mold and the like, and carbonation treatment is performed by blowing carbon dioxide gas or carbon dioxide-containing gas into the packed layer. By doing so, the entire packed bed is consolidated using the generated calcium carbonate as a binder.

また、水底改質材(底質改良材)とは、水底に敷設してアルカリ分を適度に溶出させることにより、底質の改善を行うための資材である。このような水底改質材の使用形態としては、例えば、(1)海域、淡水域又は汽水域の底質を構成する有機性堆積物の上に敷設する(覆砂)、(2)海域、淡水域又は汽水域の底質を構成する有機性堆積物中に混ぜ込む、(3)通常の有機性堆積物のほかに残餌や排泄物が堆積した魚介類の養殖場下の底質を改善するために、上記(1)又は(2)の形態で底質に敷設し又は混ぜ込む、(4)航路浚渫などで生じた浚渫土砂を再使用する際に、改質材として浚渫土砂に混ぜ込む、などが挙げられる。
水中土木材料とは、水中の構造物(潜堤など)、基礎、基盤などを構成するための材料であり、スラグ粉砕物yを用いることにより波浪安定性にすぐれた構造物(潜堤など)、基礎、基盤を構成することができる。
また、スラグ粉砕物yを水和固化体用の骨材として用いる場合には、比較的塩基度が低いスラグを冷却・粉砕工程(A)で処理して得られたスラグ粉砕物yを水和工程(D)で処理したものが好ましい。
Further, the water bottom modifier (bottom quality improving material) is a material for improving the bottom quality by laying on the water bottom and eluting the alkali content appropriately. Examples of usage forms of such water bottom modifiers include (1) laying on organic sediments that constitute the bottom sediment of sea areas, fresh water areas or brackish water areas (covering sand), (2) sea areas, (3) In addition to normal organic sediments, the bottom sediments under fish farms where residual food and excreta are deposited are mixed in the organic sediments that constitute freshwater or brackish water sediments. In order to improve, lay or mix in the bottom sediment in the form of (1) or (2) above. (4) When reclaiming dredged sand generated from channel dredging, etc. Such as mixing.
Underwater civil engineering materials are materials for constructing underwater structures (such as submersibles), foundations, and foundations. Structures with excellent wave stability (such as submersibles) using slag crushed material y Can constitute the foundation, foundation.
When the slag pulverized product y is used as an aggregate for a hydrated solidified body, the slag pulverized product y obtained by treating the slag having a relatively low basicity in the cooling and pulverizing step (A) is hydrated. What was processed at the process (D) is preferable.

本発明の第一の処理方法の一実施形態(処理フロー)を示す説明図Explanatory drawing which shows one Embodiment (processing flow) of the 1st processing method of this invention. 本発明の工程(A)の実施に供されるスラグ処理設備の一実施形態を示す縦断面図The longitudinal cross-sectional view which shows one Embodiment of the slag processing equipment with which implementation of the process (A) of this invention is provided 本発明の工程(B)の実施に供される炭酸化処理設備の一実施形態を示す説明図Explanatory drawing which shows one Embodiment of the carbonation processing equipment provided for implementation of the process (B) of this invention. 本発明の工程(B)の実施に供される炭酸化処理設備の他の実施形態を示す説明図Explanatory drawing which shows other embodiment of the carbonation processing equipment provided for implementation of the process (B) of this invention. 本発明の第一の処理方法の他の実施形態(処理フロー)を示す説明図Explanatory drawing which shows other embodiment (processing flow) of the 1st processing method of this invention. 本発明の第二の処理方法の一実施形態(処理フロー)を示す説明図Explanatory drawing which shows one Embodiment (processing flow) of the 2nd processing method of this invention. 本発明の第二の処理方法の他の実施形態(処理フロー)を示す説明図Explanatory drawing which shows other embodiment (processing flow) of the 2nd processing method of this invention.

符号の説明Explanation of symbols

1 回転ドラム
2 金属ボール群
3 内筒部
4 外筒部
5 隙間
6 端蓋
7 スラグ注入口
8 端蓋
9 スラグ排出口
10 水供給部
11 水供給管
12 蒸気回収部
13 回転ドラム
14 処理容器
15 供給装置
16 ガス供給導管
17 ガス排出導管
18 スラグ排出管
20 金属ボール
140 ガス分散板
141 空間
142 風箱
A 冷却・粉砕処理工程
B 炭酸化処理工程
C 地金回収工程
D 水和工程
x 溶融スラグ
y スラグ粉砕物
DESCRIPTION OF SYMBOLS 1 Rotating drum 2 Metal ball group 3 Inner cylinder part 4 Outer cylinder part 5 Crevice 6 End cover 7 Slag injection port 8 End cover 9 Slag discharge port 10 Water supply part 11 Water supply pipe 12 Steam recovery part 13 Rotation drum 14 Processing container 15 Supply device 16 Gas supply pipe 17 Gas discharge pipe 18 Slag discharge pipe 20 Metal balls 140 Gas dispersion plate 141 Space 142 Air box A Cooling and grinding process B Carbonation process C Metal recovery process D Hydration process x Molten slag y Slag crushed material

Claims (17)

製鋼工程で発生し、未だ溶融状態、半溶融状態又は高温固相状態にあるスラグを、金属ボール群が収容された回転ドラム内に注入し、該スラグを回転ドラム内で転動する金属ボール群と接触させることで冷却するとともに、転動する金属ボール群による物理的作用により粉砕してスラグ粉砕物とする工程(A)と、
該工程(A)で得られたスラグ粉砕物を炭酸ガス又は炭酸ガス含有ガスと接触させ、スラグ粉砕物中に含まれる未炭酸化Caを炭酸ガスと反応させる工程(B)を有し、
前記工程(A)の途中のスラグが固化した段階で、回転ドラム内に水を注入し、スラグとの接触により高温になった金属ボール群を水で冷却するとともに、スラグ粉砕物に水をかけて冷却し且つカルシウム分を水和させ、注入した水により回転ドラム内で発生した蒸気を取り出して顕熱回収を行うことを特徴とする製鋼スラグの処理方法。
A metal ball group in which slag generated in a steel making process and still in a molten state, a semi-molten state, or a high-temperature solid phase is injected into a rotating drum in which the metal ball group is accommodated, and the slag rolls in the rotating drum (A), which is cooled by being brought into contact with and pulverized into a slag pulverized product by physical action by a rolling metal ball group,
Contacting the slag pulverized product obtained in the step (A) with carbon dioxide gas or a carbon dioxide-containing gas, and reacting the uncarbonated Ca contained in the slag pulverized product with carbon dioxide gas (B),
In the middle stage of the slag is solidified in the step (A), water is injected into the rotary drum, with a metal ball group became hot by contact with the slag cooling water, spray water over the slag pulverized product A method of treating steelmaking slag, wherein the slag is cooled and hydrated with calcium, and steam generated in the rotating drum is taken out by the injected water and sensible heat recovery is performed.
工程(B)を経たスラグ粉砕物をスラグ製品として出荷し又は使用することを特徴とする請求項1に記載の製鋼スラグの処理方法。   The method for treating steelmaking slag according to claim 1, wherein the slag pulverized product that has undergone step (B) is shipped or used as a slag product. さらに、工程(A)と工程(B)の間に、スラグ粉砕物から地金を回収する工程(C)を有することを特徴とする請求項1又は2に記載の製鋼スラグの処理方法。   Furthermore, between the process (A) and the process (B), it has the process (C) which collect | recovers ingots from a slag ground material, The processing method of the steelmaking slag of Claim 1 or 2 characterized by the above-mentioned. さらに、工程(A)と工程(B)の間に、水を添加してスラグ粉砕物中のカルシウム分を水和させる工程(D)を有することを特徴とする請求項1〜3のいずれかに記載の製鋼スラグの処理方法。   Furthermore, between process (A) and process (B), it has the process (D) which adds water and hydrates the calcium content in a slag ground material, The any one of Claims 1-3 characterized by the above-mentioned. The method for processing steelmaking slag as described in 1. 工程(A)で得られるスラグ粉砕物が、粒径10mm以下の割合が80mass%以上の粒度を有することを特徴とする請求項1〜4のいずれかに記載の製鋼スラグの処理方法。   The method for treating steelmaking slag according to any one of claims 1 to 4, wherein the slag pulverized product obtained in the step (A) has a particle size of a particle size of 10 mm or less and 80 mass% or more. スラグ粉砕物が500℃以下の温度で回転ドラムから排出されることを特徴とする請求項1〜5のいずれかに記載の製鋼スラグの処理方法。   The steel slag treatment method according to any one of claims 1 to 5, wherein the slag pulverized product is discharged from the rotating drum at a temperature of 500 ° C or lower. 工程(B)でスラグ粉砕物に接触させる炭酸ガス含有ガスが鉄鋼製造プロセスで発生する副生ガスであり、該工程(B)でCO濃度が低減した前記副生ガスを、燃料ガス又は還元ガスとして系外に供給することを特徴とする請求項1〜6のいずれかに記載の製鋼スラグの処理方法。 The carbon dioxide-containing gas brought into contact with the slag pulverized product in the step (B) is a by-product gas generated in the steel manufacturing process, and the by-product gas having a reduced CO 2 concentration in the step (B) is converted into a fuel gas or a reduced gas. The method for treating steelmaking slag according to any one of claims 1 to 6, wherein the steelmaking slag is supplied out of the system as a gas. 副生ガスが高炉ガスであり、CO濃度が低減した高炉ガスを燃料ガス又は還元ガスとして高炉又は/及び他のガス使用設備に供給することを特徴とする請求項7に記載の製鋼スラグの処理方法。 The steelmaking slag according to claim 7, wherein the by-product gas is a blast furnace gas, and the blast furnace gas having a reduced CO 2 concentration is supplied as a fuel gas or a reducing gas to the blast furnace or / and other gas-using equipment. Processing method. 工程(B)では、ロータリーキルン式回転ドラム内を移動するスラグ粉砕物に炭酸ガス又は炭酸ガス含有ガスを接触させることを特徴とする請求項1〜8のいずれかに記載の製鋼スラグの処理方法。   In the step (B), carbon dioxide gas or carbon dioxide-containing gas is brought into contact with the slag pulverized product moving in the rotary kiln type rotary drum, and the steelmaking slag treatment method according to any one of claims 1 to 8. 工程(B)では、処理容器内のスラグ粉砕物に炭酸ガス又は炭酸ガス含有ガスを吹き込むことにより流動層を形成することを特徴とする請求項1〜8のいずれかに記載の製鋼スラグの処理方法。   In a process (B), a fluidized bed is formed by blowing a carbon dioxide gas or a carbon dioxide containing gas into the slag ground material in a processing container, The processing of the steel-making slag in any one of Claims 1-8 characterized by the above-mentioned. Method. スラグ粉砕物を、路盤材、土工材、覆砂材、海域深掘部敷設材、海域深掘部穴埋め材、浚渫土砂改良材、土壌改良材、地盤改良材、舗装用原料、セメント原料、水和固化体用骨材の中から選ばれる1種以上のスラグ製品として出荷し又は使用することを特徴とする請求項2〜10のいずれかに記載の製鋼スラグの処理方法。   Slag pulverized materials, roadbed materials, earthwork materials, sand-capping materials, deep sea digging materials, deep sea burial filling materials, dredged sand improvement materials, soil improvement materials, ground improvement materials, paving raw materials, cement raw materials, water The method of processing steelmaking slag according to any one of claims 2 to 10, wherein the steelmaking slag is shipped or used as one or more slag products selected from aggregates for a solidified body. 製鋼工程で発生し、未だ溶融状態、半溶融状態又は高温固相状態にあるスラグを、金属ボール群が収容された回転ドラム内に注入し、該スラグを回転ドラム内で転動する金属ボール群と接触させることで冷却するとともに、転動する金属ボール群による物理的作用により粉砕してスラグ粉砕物とする工程(A)を有し、
前記工程(A)の途中のスラグが固化した段階で、回転ドラム内に水を注入し、スラグとの接触により高温になった金属ボール群を水で冷却するとともに、スラグ粉砕物に水をかけて冷却し且つカルシウム分を水和させ、注入した水により回転ドラム内で発生した蒸気を取り出して顕熱回収を行い、
前記工程(A)で得られたスラグ粉砕物を、排煙脱硫剤、炭酸固化体用原料、水和固化体用骨材、水底改質材、水中土木材料の中から選ばれる1種以上のスラグ製品として出荷し又は使用することを特徴とする製鋼スラグの処理方法。
A metal ball group in which slag generated in a steel making process and still in a molten state, a semi-molten state, or a high-temperature solid phase is injected into a rotating drum in which the metal ball group is accommodated, and the slag rolls in the rotating drum And a step (A) of cooling to a slag pulverized product by pulverizing by a physical action by a group of rolling metal balls.
In the middle stage of the slag is solidified in the step (A), water is injected into the rotary drum, with a metal ball group became hot by contact with the slag cooling water, spray water over the slag pulverized product Cooling and hydrating the calcium content, taking out the steam generated in the rotating drum with the injected water and performing sensible heat recovery,
The slag pulverized product obtained in the step (A) is one or more kinds selected from a flue gas desulfurization agent, a carbonic acid solidified raw material, a hydrated solidified aggregate, a water bottom modifier, and an underwater civil engineering material. A method for treating steelmaking slag, which is shipped or used as a slag product.
製鋼工程で発生したスラグが脱硫スラグであり、工程(A)で得られたスラグ粉砕物を排煙脱硫剤として出荷し又は使用することを特徴とする請求項12に記載の製鋼スラグの処理方法。   The slag generated in the steel making process is desulfurization slag, and the slag pulverized product obtained in the step (A) is shipped or used as a flue gas desulfurization agent. . さらに、工程(A)に続き、スラグ粉砕物から地金を回収する工程(C)を有することを特徴とする請求項12又は13に記載の製鋼スラグの処理方法。   Furthermore, following the process (A), it has the process (C) which collect | recovers ingots from a slag ground material, The processing method of the steelmaking slag of Claim 12 or 13 characterized by the above-mentioned. さらに、工程(A)に続き、水を添加してスラグ粉砕物中のカルシウム分を水和させる工程(D)を有することを特徴とする請求項12〜14のいずれかに記載の製鋼スラグの処理方法。   Furthermore, following process (A), it has the process (D) which adds water and hydrates the calcium content in a slag ground material, The steelmaking slag in any one of Claims 12-14 characterized by the above-mentioned. Processing method. 工程(A)で得られるスラグ粉砕物が、粒径10mm以下の割合が80mass%以上の粒度を有することを特徴とする請求項12〜15のいずれかに記載の製鋼スラグの処理方法。   The method for treating steel slag according to any one of claims 12 to 15, wherein the slag pulverized product obtained in the step (A) has a particle size of 80 mass% or more in a ratio of a particle size of 10 mm or less. スラグ粉砕物が500℃以下の温度で回転ドラムから排出されることを特徴とする請求項12〜16のいずれかに記載の製鋼スラグの処理方法。   The steel slag treatment method according to any one of claims 12 to 16, wherein the slag pulverized product is discharged from the rotary drum at a temperature of 500 ° C or lower.
JP2006287042A 2006-10-22 2006-10-22 Steelmaking slag treatment method Expired - Fee Related JP5040257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006287042A JP5040257B2 (en) 2006-10-22 2006-10-22 Steelmaking slag treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006287042A JP5040257B2 (en) 2006-10-22 2006-10-22 Steelmaking slag treatment method

Publications (2)

Publication Number Publication Date
JP2008100893A JP2008100893A (en) 2008-05-01
JP5040257B2 true JP5040257B2 (en) 2012-10-03

Family

ID=39435519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006287042A Expired - Fee Related JP5040257B2 (en) 2006-10-22 2006-10-22 Steelmaking slag treatment method

Country Status (1)

Country Link
JP (1) JP5040257B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064052A1 (en) 2017-09-28 2019-04-04 Arcelormittal Method of continuous manufacturing of solidified steelmaking slag and associated device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932590B1 (en) * 2008-05-21 2009-12-21 신희동 Inorganic cement clinker using slag of high temperature molten state and its manufacturing method and inorganic cement containing the clinker
KR20170093267A (en) 2009-12-23 2017-08-14 메르크 파텐트 게엠베하 Compositions comprising organic semiconducting compounds
JP5640415B2 (en) * 2010-03-19 2014-12-17 Jfeスチール株式会社 Method for producing hydrogen gas
BR112013004319B1 (en) 2010-08-26 2019-03-19 Baoshan Iron & Steel Co. Ltd. SYSTEM AND METHOD FOR PROCESSING HIGH TEMPERATURE SOLID STEEL SLAG
LU91730B1 (en) * 2010-09-13 2012-03-14 Wurth Paul Sa Dry granulation of metallurgical slag
LU91766B1 (en) * 2010-12-15 2012-06-18 Wurth Paul Sa Granulation of metallurgical slag
DE102011052635A1 (en) * 2011-06-20 2012-12-20 Thyssenkrupp Polysius Ag Method and a plant for producing a hydraulic or latent hydraulic substance for use as a binder and / or binder additive
JP2016042076A (en) * 2015-07-24 2016-03-31 株式会社神鋼環境ソリューション Method and system for removing radioactive substances
CN111996389B (en) * 2020-08-28 2022-12-23 中核第七研究设计院有限公司 Side-blown reduction furnace
CN113979653A (en) * 2021-12-01 2022-01-28 沈阳建筑大学 Steel slag cementing material, preparation method and application
CN116332566B (en) * 2023-02-15 2024-06-04 河北通华公路材料有限公司 Production method of steel slag raw material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144491A (en) * 1977-05-23 1978-12-15 Sumitomo Heavy Ind Ltd Slag treatment apparatus
JPS6141884A (en) * 1984-08-03 1986-02-28 住友金属工業株式会社 Method of recovering sensible heat of metallurgical sludge
JPH06329449A (en) * 1993-05-20 1994-11-29 Nippon Steel Corp Method for recovering metal in slag
CN1141401C (en) * 2001-03-29 2004-03-10 宝山钢铁股份有限公司 Double-cavity steel slag treating drum mechanism
JP3970000B2 (en) * 2001-11-08 2007-09-05 新日本製鐵株式会社 Method for cooling molten slag granulation equipment
JP3828897B2 (en) * 2003-06-09 2006-10-04 新日本製鐵株式会社 Method for stabilizing steelmaking slag and stabilized steelmaking slag
JP4328215B2 (en) * 2004-01-13 2009-09-09 新日本製鐵株式会社 Steelmaking slag treatment method
EP1795616B1 (en) * 2004-08-31 2012-02-22 Baoshan Iron & Steel Co., Ltd. A steel slag treatment equipment by barrel method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064052A1 (en) 2017-09-28 2019-04-04 Arcelormittal Method of continuous manufacturing of solidified steelmaking slag and associated device
US11708302B2 (en) 2017-09-28 2023-07-25 Arcelormittal Method of continuous manufacturing of solidified steelmaking slag and associated device

Also Published As

Publication number Publication date
JP2008100893A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP5040257B2 (en) Steelmaking slag treatment method
JP2008120607A (en) Method for processing steel slag
WO2021115029A1 (en) Iron-containing metallurgical slag granule graded waste heat recovery and direct reduction system and method
KR101464010B1 (en) Integrated chemical process
CN103114201B (en) Agglomeration method for iron containing dust slime of iron and steel plants
CN111850194A (en) High-temperature steel slag bottom blowing air cooling crushing waste heat recovery device and method
CN106367600A (en) Method for treating high-zinc iron-containing slime through utilizing rotary kiln
KR100241617B1 (en) Method of utilizing dusts incurring in the reduction of iron ore and process for performing this method
CN112442589A (en) Method and system for co-processing waste incineration fly ash and zinc-containing dust and mud of iron and steel plant
WO2011029269A1 (en) Method for innocuously treating chromium residue using metallurgical roasting and blast furnace
Zhao et al. Co-treatment of waste from steelmaking processes: steel slag-based carbon capture and storage by mineralization
JP4608382B2 (en) Slag granulation method and granulated slag
CN102766718A (en) Method for producing sponge iron and zinc-rich materials by blast furnace zinc-containing ash
CN102634622A (en) Method for reducing and separating metallic irons by using refractory ores, complex ores and iron-containing wastes
CN111926127A (en) Device and method for cooperative quenching and tempering of steel slag and nonferrous metal smelting slag
RU2743393C1 (en) Method for continuous production of cured steel slude and related device
KR101998139B1 (en) Treatment method for inorganic waste by exchanging materials
US6921427B2 (en) Process for cold briquetting and pelletization of ferrous or non-ferrous ores or mineral fines by iron bearing hydraulic mineral binder
JP3175694B2 (en) Submerged stone and method of manufacturing the same
CN105838839B (en) It prepares the method for granulated iron and prepares the system of granulated iron
JP4507298B2 (en) Slag component elution control method
CN102277463A (en) Reduction furnace and device for producing direct reduced iron
Moon et al. Carbon mineralization of steel and iron-making slag: Paving the way for a sustainable and carbon-neutral future
CN115716738B (en) Production process of high-strength steel slag brick
JP4719091B2 (en) High temperature slag treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees