JP3970000B2 - Method for cooling molten slag granulation equipment - Google Patents

Method for cooling molten slag granulation equipment Download PDF

Info

Publication number
JP3970000B2
JP3970000B2 JP2001343468A JP2001343468A JP3970000B2 JP 3970000 B2 JP3970000 B2 JP 3970000B2 JP 2001343468 A JP2001343468 A JP 2001343468A JP 2001343468 A JP2001343468 A JP 2001343468A JP 3970000 B2 JP3970000 B2 JP 3970000B2
Authority
JP
Japan
Prior art keywords
blades
cooling
molten slag
water
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001343468A
Other languages
Japanese (ja)
Other versions
JP2003146712A (en
Inventor
英二 池崎
敏隆 湯木
孝幸 兼安
幹雄 幸
森男 土谷
茂行 富原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001343468A priority Critical patent/JP3970000B2/en
Publication of JP2003146712A publication Critical patent/JP2003146712A/en
Application granted granted Critical
Publication of JP3970000B2 publication Critical patent/JP3970000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Description

【0001】
【発明の属する技術分野】
本発明は、精錬炉から排出される溶融スラグを高速回転体の外周に取付けた羽根を用いて剪断飛散させて粒状のスラグを製造する溶融スラグの粒化設備の冷却方法に関する。
【0002】
【従来の技術】
従来、転炉や電気炉等の精錬炉で溶鋼を溶製する際、溶鋼単位重量当たり80〜180kg/トン・溶鋼の溶融スラグが生成される。
この溶融スラグは、通常、一旦土間に放流されて自然冷却により徐冷された後、路盤材やケーソン中詰め材等の土木用材として利用されている。
しかし、土間に放流する方式の場合、広い敷地が必要となり、処理過程で粉塵が発生し、高熱作業となることから作業環境や周囲の環境を悪化する。
この環境の悪化を防止するため、特公昭58−17136号公報、特公平7−96458号公報に記載されているように、高速回転体の外周に設けた羽根によって、溶融スラグを飛散させ、回収ボックス内でスプレー散水を行って、粒状化したスラグを急冷処理する方法が行われている。
この方法は、コンパクトな設備内で、スラグ処理ができるため、敷地面積が少なく、高熱作業や粉塵等の環境改善が図れる利点を有している。
更に、スラグの急冷処理が可能なため、スラグ中に存在する体積膨張の大きい2CaO・SiO2 (ダイカルシウムシリケート)を体積変化の少ないβ相にすることができ、スラグの粉化を防止することができる優れた利点も備えている。
このスラグ処理設備で使用する高速回転体は、直胴の円筒状の回転ドラムからなり、駆動系により回転ドラムを回転させて、回転ドラムの外周に放射状に取付けた複数の羽根を回転させることにより、1400〜1550℃もの高温の溶融ースラグを回収ボックス内に飛散させている。
従って、この羽根には、過大な熱負荷がかかり、それに伴って羽根の強度低下による変形磨耗が生じたり、羽根や回転ドラムに付着したスラグが落下して回転ドラムの下部に堆積し、このスラグ除去のために作業負荷が増加する等の難点がある。
【0003】
【発明が解決しようとする課題】
特公昭58−17136号公報、特公平7−96458号公報に記載されているように、金属製の羽根の内部に冷却水路を設け、羽根を内部から冷却した場合、前記した羽根の強度低下による変形磨耗、回転ドラムの下方のスラグの堆積等の問題を軽減できる。しかし、羽根の厚み方向に大きな熱勾配が生じ、しかも、繰り返し熱負荷の変動を受けるため、羽根に亀裂が生じ、この亀裂から水洩れが多発し頻繁に肉盛溶接などの補修を繰り返したり、羽根の交換頻度が高くなり設備の修繕費用の増加、処理設備の稼働率が低下する等の問題がある。
【0004】
本発明はかかる事情に鑑みてなされたもので、高速回転体の羽根の冷却効率を高めて損耗を抑制し、羽根の取り替え頻度を減少させ、溶融スラグ処理設備の生産性を高めることができる溶融スラグの粒化設備の冷却方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的に沿う本発明の溶融スラグの粒化設備の冷却方法は、転炉又は電気炉からなる精錬炉から排出される溶融スラグを、高速回転体に取付けた羽根に流下させ該溶融スラグを粒状にする溶融スラグの粒化設備の冷却方法において、前記高速回転体及び羽根を指向して配置した複数のスプレーノズルから冷却水を噴霧して前記高速回転体及び羽根の表面を冷却する際に、該スプレーノズルから噴霧する冷却水量を、前記羽根の表面に水膜を形成させる、前記高速回転体の軸方向の単位長さ当たり100〜500リットル/分・mにする。
この方法により、直接、羽根の表面を冷却するため、羽根の表面の冷却効率を高め、温度の上昇を最小限にすることができ、羽根の表面に発生する微小クラックの発生とその成長を防止することができる。
更に、高速回転体の羽根の回転力で溶融スラグを剪断飛散させた直後の羽根をスプレー水によって冷却し、しかも、羽根の表面に水膜を形成することができ、溶融スラグと羽根が接触した際に、スプレーによる付着水が蒸気になり、溶融スラグを瞬時に羽根の表面から切離して飛散させることができるので、羽根の表面温度の低下と溶融スラグとの接触による損耗を防止することができる。
【0006】
ここで、前記スプレーノズルから噴霧する冷却水量を前記高速回転体の軸方向の単位長さ当たり100〜500リットル/分・mにしている。これにより、羽根の表面の冷却効率を安定して高めることができ、羽根の表面の温度の上昇を抑制して羽根の表面に発生する微小クラック等を確実に防止することができる。
なお、冷却水量は、高速回転体の軸方向の1m当たりの分単位の噴霧量であり、冷却水量が100リットル/分・m未満では、高速回転体の羽根の冷却が不足し、羽根の表面の温度が上昇して羽根の損耗とスラグの付着が顕著になる。一方、500リットル/分・mを超えると、冷却水をスプレーしても冷却効果が飽和し、用水や給水ポンプの動力費用等の用役コストが増加する。
【0007】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
本発明は、30トン/hrの処理能力を有する溶融スラグの粒化設備において、高速回転体に放射状に取付けた羽根の冷却効率を高める種々の試験を実施した結果、高速回転体の羽根に向けて、冷却水を噴射する複数のスプレーノズルを配置し、このスプレーノズルから羽根を指向して冷却水を噴霧することにより、高速回転体の羽根を効率良く冷却でき、しかも、羽根へのスラグの融着や付着を減少できることを知見し、この知見を基に溶融スラグの粒化設備の冷却方法を確立したものである。
【0008】
図1は本発明の一実施の形態に係る溶融スラグの粒化設備の冷却方法に適用される溶融スラグの粒化設備の説明図、図2は図1のA−A矢視断面図、図3は回転ドラムの羽根への冷却水の噴霧の状態を表す模式図である。
図1に示すように、本発明の一実施の形態に係る溶融スラグの粒化設備の冷却方法に用いる溶融スラグの粒化設備10は、筒状からなるロータリーフード11を有し、このロータリーフード11の基側には、ロータリーフード11内に溶融スラグ12を供給する樋14と、この樋14に溶融スラグ12を供給するための排滓鍋13を備え、ロータリーフード11の先側下部にはロータリーフード11の内部から粒状化したスラグを排出するスクリューコンベア15を、ロータリーフード11の先側中央にはロータリーフード11内の蒸気を排気する煙突16を設けている。
更に、樋14の下流側に位置するロータリーフード11の内部に、高速回転体の一例であって周囲に複数の羽根17、18をそれぞれ取付け、駆動源に連結した2台の回転ドラム19、20が軸を平行にしてロータリーフード11の長手方向とは直交して配置されている。
この回転ドラム19、20には、回転ドラム19、20の内部を冷却する冷却水を供給する冷却水管25に連通した冷却水給水管25aがそれぞれ設けられ、更に、回転ドラム19、20を挟んで両側には、給水管26に連通し、それぞれ複数の散水噴霧孔21、22を有する散水管23、24をロータリーフード11の軸方向に配置している。
また、図1、図2に示すように、回転ドラム19、20の下方位置には、回転ドラム19、20の軸19a、20aに平行にそれぞれ給水管26に連通したスプレー用の給水管27、28を備えている。
【0009】
更に、図2、図3に示すように、スプレー用の給水管27には、回転ドラム19に放射状に取付けた羽根17を指向した複数のスプレーノズル27aを、スプレー用の給水管28には、回転ドラム20に放射状に取付けた羽根18を指向した複数のスプレーノズル28aをそれぞれ設けている。
また、回転ドラム19、20の軸19a、20aは、それぞれ回転ドラム19、20の一方側の駆動源に連結した駆動伝達輪19b、20bを備え、軸19a、20aの両側には軸受け19c、20cを備えており、更に、軸19a、20aの一方側端部には、ロータリージョイント19d、20dを備えている。
【0010】
次に、本発明の一実施の形態に係る溶融スラグの粒化設備の冷却方法についてスラグの粒化設備10を用いて説明する。
転炉や電気炉等の精錬炉の脱炭精錬等で発生した溶融スラグ12は、排滓鍋13に排滓され、搬送台車やクレーン等によって搬送される。1400〜1550℃の高温の溶融スラグ12は、排滓鍋13を傾転してスラグの粒化設備10の樋14に流下される。
同時に、ロータリーフード11内に設けた回転ドラム19、20の周囲に取付けた羽根17、18を駆動源を作動してそれぞれ回転させ、回転ドラム19、20には、軸19a、20aの内部に、冷却水管25に連通した冷却水給水管25aから冷却水がロータリージョイント19d、20dを介して給水され、回転ドラム19、20の内部を冷却する。
そして、樋14を流下した溶融スラグ12は、羽根17、18の回転力によって、剪断飛散され、給水管26に連通した散水管23、24の散水噴霧孔21、22から水を、飛散するスラグに吹き付けて冷却を行ない粒状のスラグに加工する。
そして、粒状のスラグは、ロータリーフード11の後方に配置されたスクリューコンベア15によってロータリーフード11の外に排出される。
なお、回転ドラム19、20の回転数は、高速回転の場合、遠心力が強く作用すると共に、羽根17、18の回転力によってスプレー水が吹き散らされ、一方、低速回転の場合、回転ドラム19、20に流下してくる溶融スラグ12が全て剪断されず羽根17、18や回転ドラム19、20に溶着する現象を生じ、粒状化の能力が大幅に低下するため、300〜410rpmにするのが良い。
【0011】
また、溶融スラグ12を冷却する際、散水した水が気化した水蒸気が発生するが、この水蒸気は、ロータリーフード11の先側に設けた煙突16から系外に排出される。
特に、回転ドラム19、20の下方に、この回転ドラム19、20に放射状に取付けた羽根17、18を指向して配置したスプレー用の給水管27、28に取付けた複数のスプレーノズル27a、28aによって、羽根17、18の表面にスプレー水が噴射され、羽根17、18が十分に冷却される。
このスプレーノズル27a、28aによるスプレー水の噴射は、溶融スラグ12を羽根17、18の回転力によって剪断飛散させた直後に行われるため、羽根17、18を構成する金属の温度の上昇を最小限に止めることができる。
更に、羽根17、18の表面に溶融スラグ12が接触した際、スプレーノズル27a、28aからのスプレー水の噴射によって形成された水膜の蒸気化によって、瞬間に溶融スラグ12を羽根17、18の表面から剥離飛散させ、羽根17、18へのスラグの溶着現象を抑制し、回転ドラム19、20の下方にスラグが堆積するのを防止し、このスラグを除去する作業を簡素化することができる。
このスプレーノズル27a、28aに用いるスプレー水は、回転ドラム19、20の軸方向の単位長さ当たりで、20〜500リットル/分・mにするのが良く、スプレー水が20リットル/分・m未満では、羽根を冷却するに必要な水量が不足し、羽根の損耗と溶融スラグの溶着が顕著になる。一方、500リットル/分・mを超えると、冷却効果が飽和し、水やポンプの運転費用等の増加を招く。
【0012】
また、スプレー水の噴霧によって、羽根17、18の表面温度の上昇や溶融スラグ12との接触による磨耗を防止することができる。しかも、羽根17、18の極表層の範囲で、溶融スラグ12による加熱とスプレー水による冷却を繰り返すため、羽根17、18の表面に発生する微小クラック(亀裂)の内部への進行を防止できる。
その結果、羽根17、18の溶融スラグ12による溶損や磨耗を確実に防止でき、羽根17、18の寿命が向上し、取り替え頻度が低減し、羽根17、18からの洩水等に起因する水蒸気爆発等を回避することができる。
また、羽根17、18の回転力と羽根17、18の表面に形成した水膜の蒸気化による剥離作用の相乗の働きを利用して溶融スラグ12を飛散させるため、5mm以下に粒子が揃った粒状スラグにすることができ、しかも、水による急冷効果によって膨張性の小さい粒状スラグが得られる。
【0013】
更に、回転ドラム19、20及び羽根17、18について、従来の場合は、羽根の内部に冷却水を給水するいわゆる内部冷却を行っているが、本実施の形態では、羽根の内部冷却を必要としないため、羽根17、18を中実にすることができるので、羽根17、18の内部の構造を簡素化でき、しかも、羽根17、18の内部に冷却水を分配するホース等が不要になり、羽根17、18の構造の簡素化が可能となり、製作費用の節減や羽根17、18等からの水洩れ等の事故を回避することができる。
そして、スクリューコンベア15によってロータリーフード11の外に排出さたスラグは、エージング処理を施されてから路盤材や土木埋め立て用の資材として有効活用される。
【0014】
【実施例】
次に、本発明に係る溶融スラグの粒化設備の冷却方法の実施例について説明する。
ロータリーフード内に直径780mm、長さ930mmの2基の回転ドラムと、その外周にそれぞれ放射状に100mmの高さで、回転ドラムの長さと同じ長さの鋼製の羽根を12枚取付けて配置した。
そして、転炉や電気炉等の精錬炉の脱炭精錬等で発生した10〜20トンの溶融スラグを排滓鍋に入れ、この排滓鍋を搬送して樋を経由して1410〜1540℃の溶融スラグを最初の回転ドラムに流下させ、2基の回転ドラム及び周囲の羽根の回転によって、溶融スラグの剪断飛散を行ない、同時に散水管の散水噴霧孔から水を散水して溶融スラグの急冷却を行った。
更に、各回転ドラムの下方に、それぞれ羽根に指向して配置したスプレー用の給水管に設けた各10個のスプレーノズルからスプレー水を噴霧し、羽根の表面の冷却と羽根の表面への水膜の形成を行った。
また、各回転ドラムの回転数を300〜410rpmにして操業した。
実施例1〜5は、羽根の内部に冷却水の給水路を有しない中実構造の羽根を具備した2基の回転ドラムに、それぞれ20〜500リットル/分・mの冷却水量でスプレーノズルから噴霧して羽根の表面を冷却しながら溶融スラグを処理し、従来の羽根の内部冷却を指数1とした場合の羽根の寿命指数を調査した。その結果を表1に示す。
羽根の表面へのスプレー水量を20リットル/分・m以上にすることにより、羽根の寿命指数を1.05以上にすることができ、スプレー水量が50〜200リットル/分・mの範囲が最も顕著であり、羽根の取り替え頻度が極少となり、処理装置の稼働率の向上が達成できた。
【0015】
【表1】

Figure 0003970000
【0016】
これに対し、表2に示す比較例1〜5は、従来の羽根の内部冷却と、20〜500リットル/分・mのスプレー水の噴霧による羽根の表面と回転ドラムとの冷却を併用した場合であり、内部冷却と羽根の表面冷却を併用することにより、更に羽根の寿命を改善することができるが、羽根の表面冷却のみの場合に比べてその改善代が少なかった。
また、前記した条件以外に、回転ドラムの周囲に取付けた羽根の表面に噴霧するスプレー水のみによる冷却を行ない、その時のスプレー水量を20リットル/分・m未満にして羽根の表面を冷却しながら溶融スラグを処理を行ったが、スプレー水量が不足して羽根の溶損が生じ、羽根の寿命が低下した。
【0017】
【表2】
Figure 0003970000
【0018】
以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、回転ドラム19、20の羽根17、18にスプレーノズルを用いて散水する他に、気水ノズルを用いて気体と水を混合した気水を噴霧するか、あるいはこれ等スプレーノズルの散水と気水の噴霧を組み合わせて用いることができる。
【0019】
【発明の効果】
請求項1及び2記載の溶融スラグの粒化設備の冷却方法においては、高速回転体及び羽根を指向して配置した複数のスプレーノズルから冷却水を霧して高速回転体及び羽根を冷却するので、高速回転体に設けた羽根の冷却を高めて損耗を抑制し、羽根の取り替え頻度の減少やスラグの粒化設備の生産性を向上することができる。
【0020】
また、スプレーノズルから噴霧する冷却水量を高速回転体の軸方向の単位長さ当たり100〜500リットル/分・mにするので、羽根の冷却をより高めて損耗を確実に防止でき、羽根の取り替え頻度の減少やスラグの粒化設備の生産性をより安定して向上することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る溶融スラグの粒化設備の冷却方法に適用される溶融スラグの粒化設備の説明図である。
【図2】図1のA−A矢視断面図である。
【図3】回転ドラムの羽根への冷却水の噴霧の状態を表す模式図である。
【符号の説明】
10:溶融スラグ粒化設備、11:ロータリーフード、12:溶融スラグ、13:排滓鍋、14:樋、15:スクリューコンベア、16:煙突、17:羽根、18:羽根、19:回転ドラム、19a:軸、19b:駆動伝達輪、19c:軸受け、19d:ロータリージョイント、20:回転ドラム、20a:軸、20b:駆動伝達輪、20c:軸受け、20d:ロータリージョイント、21:散水噴霧孔、22:散水噴霧孔、23:散水管、24:散水管、25:冷却水管、25a:冷却水給水管、26:給水管、27:スプレー用の給水管、27a:スプレーノズル、28:スプレー用の給水管、28a:スプレーノズル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for cooling a granulated facility for molten slag in which molten slag discharged from a smelting furnace is sheared and scattered using blades attached to the outer periphery of a high-speed rotating body to produce granular slag.
[0002]
[Prior art]
Conventionally, when molten steel is melted in a refining furnace such as a converter or an electric furnace, a molten slag of 80 to 180 kg / ton · molten steel per unit weight of the molten steel is generated.
Usually, this molten slag is once discharged into the soil and gradually cooled by natural cooling, and then used as a civil engineering material such as a roadbed material or a caisson filling material.
However, in the case of the method of discharging into the soil, a large site is required, dust is generated during the treatment process, and the work environment and the surrounding environment are deteriorated due to high heat work.
In order to prevent the deterioration of the environment, as described in Japanese Patent Publication No. 58-17136 and Japanese Patent Publication No. 7-96458, the molten slag is scattered and collected by the blades provided on the outer periphery of the high-speed rotating body. A method of quenching granulated slag by spraying water in a box is performed.
Since this method can perform slag processing in a compact facility, the site area is small, and there is an advantage that environmental improvement such as high heat work and dust can be achieved.
Furthermore, since the slag can be rapidly cooled, 2CaO · SiO 2 (dicalcium silicate) having a large volume expansion present in the slag can be converted into a β phase with little volume change, and slag powdering can be prevented. It also has the excellent advantage of being able to
The high-speed rotating body used in this slag treatment facility is composed of a cylindrical rotating drum with a straight body, and by rotating a rotating drum by a drive system and rotating a plurality of blades radially attached to the outer periphery of the rotating drum. 1400 to 1550 ° C., high-temperature molten slug is scattered in the recovery box.
Therefore, an excessive heat load is applied to the blade, and deformation wear due to a decrease in the strength of the blade occurs, or slag adhering to the blade and the rotating drum falls and accumulates at the lower part of the rotating drum. There are problems such as an increase in workload for removal.
[0003]
[Problems to be solved by the invention]
As described in Japanese Patent Publication No. 58-17136 and Japanese Examined Patent Publication No. 7-96458, when a cooling water channel is provided inside the metal blade and the blade is cooled from the inside, due to a decrease in the strength of the blade described above. Problems such as deformation wear and accumulation of slag under the rotating drum can be reduced. However, a large thermal gradient occurs in the thickness direction of the blade, and because it repeatedly undergoes fluctuations in the thermal load, cracks occur in the blade, frequent leakage from this crack, and repeated repairs such as overlay welding, There are problems such as increased frequency of blade replacement, increased equipment repair costs, and reduced processing equipment availability.
[0004]
The present invention has been made in view of such circumstances, and is capable of increasing the cooling efficiency of the blades of the high-speed rotating body to suppress wear, reducing the replacement frequency of the blades, and improving the productivity of the molten slag treatment facility. It aims at providing the cooling method of the granulation equipment of slag.
[0005]
[Means for Solving the Problems]
The method for cooling a molten slag granulating facility according to the present invention that meets the above-described object is the method of flowing molten slag discharged from a refining furnace comprising a converter or an electric furnace onto a blade attached to a high-speed rotating body, and then granulating the molten slag into a granular form. In the cooling method for the granulated equipment of molten slag, when cooling the surfaces of the high-speed rotating body and the blades by spraying cooling water from a plurality of spray nozzles oriented toward the high-speed rotating body and the blades, The amount of cooling water sprayed from the spray nozzle is set to 100 to 500 liters / minute · m per unit length in the axial direction of the high-speed rotating body that forms a water film on the surface of the blade .
This method directly cools the blade surface, increasing the cooling efficiency of the blade surface, minimizing the temperature rise, and preventing the generation and growth of microcracks on the blade surface. can do.
Further, the blade immediately after the molten slag is sheared and scattered by the rotational force of the blade of the high-speed rotating body can be cooled by spray water, and a water film can be formed on the surface of the blade, and the molten slag and the blade are in contact with each other. At this time, the water adhering to the spray becomes steam, and the molten slag can be instantaneously separated from the surface of the blades and scattered, so that the surface temperature of the blades can be prevented from being lowered and the wear due to contact with the molten slag can be prevented. .
[0006]
Here, is the amount of cooling water sprayed from the spray nozzle to 100 to 500 l / min · m per unit length in the axial direction of the high speed rotation body. Thereby, the cooling efficiency of the surface of a blade | wing can be improved stably, the raise of the temperature of the surface of a blade | wing can be suppressed, and the micro crack etc. which generate | occur | produce on the surface of a blade | wing can be prevented reliably.
The amount of cooling water is the amount of spray per minute in the axial direction of the high-speed rotating body. When the amount of cooling water is less than 100 liters / minute · m, the cooling of the blades of the high-speed rotating body is insufficient, and the surface of the blades As the temperature rises, blade wear and slag adhesion become prominent. On the other hand, if it exceeds 500 liters / minute · m, the cooling effect will be saturated even if the cooling water is sprayed, and the utility costs such as power costs for the water supply and water supply pump will increase.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As a result of various tests for improving the cooling efficiency of blades radially attached to a high-speed rotating body in a molten slag granulation facility having a processing capacity of 30 tons / hr, the present invention is directed to the blades of a high-speed rotating body. By arranging a plurality of spray nozzles for injecting cooling water and spraying the cooling water from the spray nozzles toward the blades, the blades of the high-speed rotating body can be cooled efficiently, and the slag to the blades can be cooled. Based on this knowledge, we have established a cooling method for molten slag granulation equipment based on the knowledge that fusion and adhesion can be reduced.
[0008]
FIG. 1 is an explanatory diagram of a molten slag granulating facility applied to a cooling method for a molten slag granulating facility according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line AA in FIG. 3 is a schematic diagram showing the state of spraying of cooling water onto the blades of the rotating drum.
As shown in FIG. 1, a molten slag granulation facility 10 used in a method for cooling a molten slag granulation facility according to an embodiment of the present invention includes a cylindrical rotary hood 11, and this rotary hood. 11 is provided with a bowl 14 for supplying the molten slag 12 into the rotary hood 11, and a waste pan 13 for supplying the molten slag 12 to the bowl 14. A screw conveyor 15 that discharges granulated slag from the inside of the rotary hood 11 is provided, and a chimney 16 that exhausts the steam in the rotary hood 11 is provided at the front center of the rotary hood 11.
Further, two rotary drums 19 and 20 which are examples of a high-speed rotating body and are each provided with a plurality of blades 17 and 18 around the rotary hood 11 located on the downstream side of the flange 14 and connected to a driving source. Are arranged perpendicular to the longitudinal direction of the rotary hood 11 with their axes parallel.
The rotary drums 19 and 20 are respectively provided with cooling water supply pipes 25a communicating with cooling water pipes 25 for supplying cooling water for cooling the insides of the rotary drums 19 and 20, respectively. Sprinkling pipes 23 and 24 each having a plurality of sprinkling spray holes 21 and 22 are arranged in the axial direction of the rotary hood 11 on both sides.
Further, as shown in FIGS. 1 and 2, at the lower position of the rotary drums 19 and 20, a spray water supply pipe 27 communicated with the water supply pipe 26 in parallel with the shafts 19a and 20a of the rotary drums 19 and 20, respectively. 28.
[0009]
Further, as shown in FIGS. 2 and 3, the spray water supply pipe 27 has a plurality of spray nozzles 27a directed to the blades 17 radially attached to the rotary drum 19, and the spray water supply pipe 28 has a plurality of spray nozzles 27a. A plurality of spray nozzles 28a directed to the blades 18 attached radially to the rotary drum 20 are provided.
Further, the shafts 19a and 20a of the rotary drums 19 and 20 are provided with drive transmission wheels 19b and 20b respectively connected to a drive source on one side of the rotary drums 19 and 20, and bearings 19c and 20c are provided on both sides of the shafts 19a and 20a. Furthermore, rotary joints 19d and 20d are provided at one end of the shafts 19a and 20a.
[0010]
Next, a method for cooling the molten slag granulation facility according to an embodiment of the present invention will be described using the slag granulation facility 10.
Molten slag 12 generated by decarburization and refining in a refining furnace such as a converter or an electric furnace is discharged into a discharge pan 13 and transferred by a transfer carriage, a crane, or the like. The high-temperature molten slag 12 having a temperature of 1400 to 1550 ° C. is tilted through the slag pan 13 and flows down to the slag 14 of the slag granulating equipment 10.
At the same time, the blades 17 and 18 attached around the rotary drums 19 and 20 provided in the rotary hood 11 are rotated by operating the drive source, respectively, and the rotary drums 19 and 20 are provided inside the shafts 19a and 20a. Cooling water is supplied from the cooling water supply pipe 25 a communicating with the cooling water pipe 25 through the rotary joints 19 d and 20 d to cool the inside of the rotary drums 19 and 20.
The molten slag 12 flowing down the trough 14 is sheared and scattered by the rotational force of the blades 17 and 18, and slag that scatters water from the water spray holes 21 and 22 of the water spray pipes 23 and 24 that communicate with the water supply pipe 26. Cooled by spraying on to process into granular slag.
The granular slag is discharged out of the rotary hood 11 by a screw conveyor 15 disposed behind the rotary hood 11.
Note that the rotational speed of the rotary drums 19 and 20 is such that centrifugal force acts strongly in the case of high-speed rotation, and spray water is scattered by the rotational force of the blades 17 and 18, whereas in the case of low-speed rotation, the rotary drum 19 is rotated. , The molten slag 12 flowing down to 20 is not sheared at all, and a phenomenon occurs in which the molten slag 12 is welded to the blades 17 and 18 and the rotary drums 19 and 20, and the granulating ability is greatly reduced. good.
[0011]
In addition, when the molten slag 12 is cooled, water vapor is generated by vaporizing the sprinkled water. This water vapor is discharged from the chimney 16 provided on the front side of the rotary hood 11 to the outside of the system.
In particular, a plurality of spray nozzles 27 a, 28 a attached to spray water supply pipes 27, 28 arranged below the rotary drums 19, 20 with the blades 17, 18 attached radially to the rotary drums 19, 20 oriented. As a result, spray water is sprayed onto the surfaces of the blades 17 and 18, and the blades 17 and 18 are sufficiently cooled.
Since the spray water sprayed by the spray nozzles 27a and 28a is performed immediately after the molten slag 12 is sheared and scattered by the rotational force of the blades 17 and 18, the temperature rise of the metal constituting the blades 17 and 18 is minimized. Can be stopped.
Further, when the molten slag 12 comes into contact with the surfaces of the blades 17 and 18, the molten slag 12 is instantaneously removed from the blades 17 and 18 by vaporization of a water film formed by spraying spray water from the spray nozzles 27 a and 28 a. It is possible to peel and scatter from the surface, suppress the slag welding phenomenon to the blades 17 and 18, prevent the slag from accumulating below the rotating drums 19 and 20, and simplify the operation of removing this slag. .
The spray water used for the spray nozzles 27a and 28a is preferably 20 to 500 liter / min · m per unit length in the axial direction of the rotary drums 19 and 20, and the spray water is 20 liter / min · m. If it is less than this, the amount of water required for cooling the blades will be insufficient, and the blades will be worn and the molten slag will be deposited. On the other hand, if it exceeds 500 liters / minute · m, the cooling effect is saturated, and the operating costs of water and pumps are increased.
[0012]
Further, the spray water spray can prevent an increase in the surface temperature of the blades 17 and 18 and wear due to contact with the molten slag 12. In addition, since the heating by the molten slag 12 and the cooling by the spray water are repeated in the range of the extreme surface layer of the blades 17 and 18, it is possible to prevent the micro cracks (cracks) generated on the surfaces of the blades 17 and 18 from proceeding to the inside.
As a result, it is possible to reliably prevent the blades 17 and 18 from being melted and worn by the molten slag 12, improve the service life of the blades 17 and 18, reduce the frequency of replacement, and cause leakage from the blades 17 and 18. Steam explosion etc. can be avoided.
Further, since the molten slag 12 is scattered using the synergistic action of the rotational force of the blades 17 and 18 and the peeling action by vaporization of the water film formed on the surfaces of the blades 17 and 18, the particles are aligned to 5 mm or less. Granular slag can be obtained, and granular slag with low expansibility is obtained by the rapid cooling effect of water.
[0013]
Further, in the conventional case, the rotating drums 19 and 20 and the blades 17 and 18 perform so-called internal cooling in which cooling water is supplied to the inside of the blades. However, in this embodiment, internal cooling of the blades is required. Since the blades 17 and 18 can be made solid, the structure inside the blades 17 and 18 can be simplified, and a hose or the like for distributing cooling water to the inside of the blades 17 and 18 becomes unnecessary. The structure of the blades 17 and 18 can be simplified, and production costs can be reduced and accidents such as water leakage from the blades 17 and 18 can be avoided.
And the slag discharged | emitted out of the rotary hood 11 with the screw conveyor 15 is effectively utilized as a roadbed material or a material for earthworks reclamation after performing an aging process.
[0014]
【Example】
Next, the Example of the cooling method of the granulation equipment of the molten slag based on this invention is described.
Two rotary drums having a diameter of 780 mm and a length of 930 mm were disposed in the rotary hood, and 12 steel blades having the same length as the rotary drum were attached to the outer periphery thereof at a radial height of 100 mm. .
Then, 10 to 20 tons of molten slag generated by decarburization and refining of a refining furnace such as a converter or an electric furnace is placed in a waste pan, and the waste pan is transported to 1410 to 1540 ° C. via a firewood. The molten slag is allowed to flow down to the first rotating drum, and the two rotating drums and the surrounding blades rotate to cause shearing of the molten slag. At the same time, water is sprayed from the water spray holes of the water spray pipe to rapidly melt the molten slag. Cooling was performed.
Further, spray water is sprayed from each of 10 spray nozzles provided in spray water supply pipes arranged below the rotary drums so as to be directed to the blades, and the surface of the blades is cooled and water is supplied to the blade surfaces. A film was formed.
Moreover, the rotation speed of each rotating drum was 300-410 rpm, and it operated.
In Examples 1 to 5, two rotary drums each having a solid structure blade without a cooling water supply channel inside the blade are sprayed from a spray nozzle at a cooling water amount of 20 to 500 liters / minute · m, respectively. The molten slag was treated while spraying to cool the surface of the blade, and the life index of the blade when the internal cooling of the conventional blade was index 1 was investigated. The results are shown in Table 1.
By making the amount of spray water on the surface of the blade 20 liters / minute · m or more, the life index of the blade can be made 1.05 or more, and the range of spray water amount is 50 to 200 liters / minute · m most. This was remarkable, and the frequency of blade replacement was minimal, and an improvement in the operating rate of the processing apparatus was achieved.
[0015]
[Table 1]
Figure 0003970000
[0016]
On the other hand, Comparative Examples 1 to 5 shown in Table 2 use both the conventional cooling of the blades and the cooling of the blade surface and the rotating drum by spraying 20 to 500 liters / minute · m of spray water. The combined use of internal cooling and blade surface cooling can further improve the life of the blades, but the cost of improvement is less than in the case of blade surface cooling alone.
In addition to the above conditions, cooling is performed only with the spray water sprayed on the surface of the blade attached around the rotating drum, and the amount of spray water at that time is less than 20 liters / minute · m while cooling the surface of the blade. Although the molten slag was processed, the amount of spray water was insufficient and the vane melted, resulting in a short blade life.
[0017]
[Table 2]
Figure 0003970000
[0018]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention.
For example, in addition to spraying the blades 17 and 18 of the rotary drums 19 and 20 using a spray nozzle, spray water or a mixture of gas and water using a steam nozzle or spraying these spray nozzles. A combination of sprays of air can be used.
[0019]
【The invention's effect】
In the cooling method of granulation equipment of the molten slag according to claim 1 and 2 wherein the cooling water and mists to cool the high speed rotation body and blades from a plurality of spray nozzles arranged to direct the high speed rotation body and blades Therefore, it is possible to enhance the cooling of the blades provided on the high-speed rotating body to suppress the wear, reduce the frequency of blade replacement, and improve the productivity of the slag granulating equipment.
[0020]
In addition , since the amount of cooling water sprayed from the spray nozzle is set to 100 to 500 liters / minute / m per unit length in the axial direction of the high-speed rotating body, the cooling of the blades can be further increased to prevent wear and replace the blades. Reduction in frequency and productivity of slag granulation equipment can be improved more stably.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a molten slag granulation facility applied to a cooling method for a molten slag granulation facility according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along the line AA in FIG.
FIG. 3 is a schematic diagram showing a state of spraying cooling water onto the blades of the rotating drum.
[Explanation of symbols]
10: Molten slag granulating equipment, 11: Rotary hood, 12: Molten slag, 13: Waste pan, 14: Firewood, 15: Screw conveyor, 16: Chimney, 17: Blade, 18: Blade, 19: Rotating drum, 19a: Shaft, 19b: Drive transmission wheel, 19c: Bearing, 19d: Rotary joint, 20: Rotary drum, 20a: Shaft, 20b: Drive transmission wheel, 20c: Bearing, 20d: Rotary joint, 21: Sprinkling spray hole, 22 : Water spray hole, 23: water spray pipe, 24: water spray pipe, 25: cooling water pipe, 25a: cooling water feed pipe, 26: water feed pipe, 27: water feed pipe for spray, 27a: spray nozzle, 28: for spray Water supply pipe, 28a: Spray nozzle

Claims (2)

転炉又は電気炉からなる精錬炉から排出される溶融スラグを、高速回転体に取付けた羽根に流下させ該溶融スラグを粒状にする溶融スラグの粒化設備の冷却方法において、前記高速回転体及び羽根を指向して配置した複数のスプレーノズルから冷却水を噴霧して前記高速回転体及び羽根の表面を冷却する際に、該スプレーノズルから噴霧する冷却水量を、前記羽根の表面に水膜を形成させる、前記高速回転体の軸方向の単位長さ当たり100〜500リットル/分・mにすることを特徴とする溶融スラグの粒化設備の冷却方法。 In the method for cooling molten slag granulating equipment, molten slag discharged from a refining furnace comprising a converter or an electric furnace flows down to blades attached to a high-speed rotating body, and granulates the molten slag. When cooling the surface of the high-speed rotating body and the blades by spraying the cooling water from a plurality of spray nozzles arranged facing the blades, the amount of cooling water sprayed from the spray nozzles is changed to a water film on the surface of the blades. A method for cooling a molten slag granulation facility, characterized in that it is formed at a rate of 100 to 500 liters / minute / m per unit length in the axial direction of the high-speed rotating body. 請求項1記載の溶融スラグの粒化設備の冷却方法において、前記高速回転体の回転数は、300〜410rpmであることを特徴とする溶融スラグの粒化設備の冷却方法。  2. The method for cooling a molten slag granulating facility according to claim 1, wherein the rotational speed of the high-speed rotating body is 300 to 410 rpm.
JP2001343468A 2001-11-08 2001-11-08 Method for cooling molten slag granulation equipment Expired - Fee Related JP3970000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001343468A JP3970000B2 (en) 2001-11-08 2001-11-08 Method for cooling molten slag granulation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001343468A JP3970000B2 (en) 2001-11-08 2001-11-08 Method for cooling molten slag granulation equipment

Publications (2)

Publication Number Publication Date
JP2003146712A JP2003146712A (en) 2003-05-21
JP3970000B2 true JP3970000B2 (en) 2007-09-05

Family

ID=19157151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343468A Expired - Fee Related JP3970000B2 (en) 2001-11-08 2001-11-08 Method for cooling molten slag granulation equipment

Country Status (1)

Country Link
JP (1) JP3970000B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593294B2 (en) * 2004-11-19 2010-12-08 新日本製鐵株式会社 Slag processing method and processing apparatus
JP4932308B2 (en) * 2006-04-12 2012-05-16 新日本製鐵株式会社 Method and apparatus for processing molten blast furnace slag
JP5040257B2 (en) * 2006-10-22 2012-10-03 Jfeスチール株式会社 Steelmaking slag treatment method
JP2008120607A (en) * 2006-11-08 2008-05-29 Jfe Steel Kk Method for processing steel slag
KR101344349B1 (en) * 2011-06-24 2013-12-23 신동기계산업 (주) Stirring apparatus for melting funace
CN102888473B (en) * 2012-10-01 2014-02-19 许征鹏 Blast furnace slag granulation and waste heat recovery device

Also Published As

Publication number Publication date
JP2003146712A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JP5544684B2 (en) Molten slag cooling processing apparatus and cooling processing method
CN101760572B (en) High-temperature slag handling technology by tilting roller process and device
JP3970000B2 (en) Method for cooling molten slag granulation equipment
WO2006012781A1 (en) A process and system for treating ultra fine powder of steel slag
WO2018219269A1 (en) Overall structure of slag-iron separation and cooling device for molten iron desulfurization slag
CN102492793A (en) Granulation apparatus of molten state metallurgy slag
CN106591531A (en) Method for preventing converter oxygen lances from adhering to steel slag
CN109931058A (en) A kind of pick and its processing method of coalcutter
CN209877660U (en) Equipment suitable for cooling high-temperature molten material and recovering waste heat
CN108220510A (en) Hot casting residue processing method based on multimedium coupling
CN110195133B (en) Converter slag treatment system and treatment method
CN211814522U (en) Toothed chain type automatic compensation liquid-solid dual-purpose steel slag crushing treatment device
AU557818B2 (en) Ultrahigh velocity water cooling
JP2010105133A (en) Dust collecting blower device and blower blade repairing method
CN113877697B (en) Melt impact crushing and granulating system and method
CN110538974A (en) Sectional type continuous casting slab surface rapid cooling device and method
JP3226759B2 (en) Granular slag manufacturing equipment
CN213357626U (en) Molten steel slag crushing treatment system
CN218969273U (en) Slag cooling treatment device
CN214185221U (en) Slag remover nozzle
CN108004415A (en) A kind of electronic torch melting furnace wall easy to clean metal coating and its spraying method and device
CN219264917U (en) Rotary kiln for drying insoluble sulfur
KR880002436B1 (en) Making method of inorganic fiber
EP2747920B1 (en) Slag granulation device
CN117385113A (en) High-temperature slag waste heat recovery system and process thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070605

R151 Written notification of patent or utility model registration

Ref document number: 3970000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees