JP5037956B2 - Magnetic resonance imaging system - Google Patents

Magnetic resonance imaging system Download PDF

Info

Publication number
JP5037956B2
JP5037956B2 JP2007012108A JP2007012108A JP5037956B2 JP 5037956 B2 JP5037956 B2 JP 5037956B2 JP 2007012108 A JP2007012108 A JP 2007012108A JP 2007012108 A JP2007012108 A JP 2007012108A JP 5037956 B2 JP5037956 B2 JP 5037956B2
Authority
JP
Japan
Prior art keywords
signal
magnetic field
subject
received signal
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007012108A
Other languages
Japanese (ja)
Other versions
JP2008178433A (en
Inventor
良昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2007012108A priority Critical patent/JP5037956B2/en
Publication of JP2008178433A publication Critical patent/JP2008178433A/en
Application granted granted Critical
Publication of JP5037956B2 publication Critical patent/JP5037956B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、被検体中の水素や燐等からの核磁気共鳴(以下、「NMR」という)信号を測定し、核の密度分布や緩和時間分布等を画像化する核磁気共鳴イメージング(以下、「MRI」という)装置に関し、特に、受信信号のフィルタリングに関する。   The present invention measures nuclear magnetic resonance (hereinafter referred to as `` NMR '') signals from hydrogen, phosphorus, etc. in a subject and images nuclear density distribution, relaxation time distribution, etc. In particular, the present invention relates to filtering of a received signal.

MRI装置は、被検体、特に人体の組織を構成する原子核スピンが発生するNMR(エコー)信号を計測し、その頭部、腹部、四肢等の形態や機能を2次元的に或いは3次元的に画像化する装置である。撮影においては、エコー信号には、傾斜磁場によって異なる位相エンコードが付与されるとともに周波数エンコードされて、時系列データとして計測される。計測されたエコー信号は、2次元又は3次元フーリエ変換されることにより画像に再構成される。   MRI equipment measures the NMR (echo) signal generated by the nuclear spins that make up the body of the subject, especially the human body, and the shape and function of the head, abdomen, limbs, etc. in two or three dimensions. A device for imaging. In imaging, the echo signal is given different phase encoding depending on the gradient magnetic field and is frequency-encoded and measured as time-series data. The measured echo signal is reconstructed into an image by two-dimensional or three-dimensional Fourier transform.

受信コイルからエコー信号を受信した後、受信系を経て信号処理系で再構成される。従来、受信系には外部から混入したノイズを多く含み、アナログ帯域通過フィルタ或いはディジタル帯域通過フィルタ或いはその両方によりノイズ低減を行っている(特許文献1)。   After receiving the echo signal from the receiving coil, it is reconfigured in the signal processing system via the receiving system. Conventionally, a receiving system contains a lot of noise mixed from the outside, and noise reduction is performed by an analog bandpass filter or a digital bandpass filter or both (Patent Document 1).

特開平5-154128号公報Japanese Unexamined Patent Publication No. 5-154128

アナログ帯域通過フィルタ或いはディジタル帯域通過フィルタ或いはその両方によりノイズ低減を行う場合、所望する周波数成分以外の信号も通過するため、再構成後の画像にノイズとして現れ誤診の原因となる。また所望する周波数のみを通過させる場合は、信号通過帯域を狭くQ値の高いバンドパスフィルタを設計すればよい。しかし、永久磁石の温度変化等による特性が変化し、中心周波数がずれた場合はこの方法は有用ではない。   When noise reduction is performed by an analog bandpass filter and / or a digital bandpass filter, signals other than the desired frequency component also pass, and thus appear as noise in the reconstructed image and cause misdiagnosis. When only a desired frequency is passed, a band pass filter having a narrow signal pass band and a high Q value may be designed. However, this method is not useful when the characteristics of the permanent magnet change due to temperature changes and the center frequency shifts.

そこで本発明の目的は、所望する周波数を持つ信号のみ通過させることにより、SNの良い受信信号を得ることが可能なMRI装置とすることである。   Therefore, an object of the present invention is to provide an MRI apparatus capable of obtaining a received signal having a good SN by passing only a signal having a desired frequency.

上記目的を達成するために、本発明のMRI装置は以下のように構成される。即ち、被検体に静磁場および傾斜磁場を与える磁場発生系と、前記被検体の生体組織を構成する原子核に核磁気共鳴を起こさせるための高周波磁場を照射する送信系と、この核磁気共鳴により放出される核磁気共鳴信号を受信する受信系と、前記受信系で受信された受信信号を用いて画像再構成演算をおこなう信号処理系と、装置全体の動作を制御する中央処理装置とを備え、前記受信系は、前記受信信号から所望の周波数成分のみを通過させる適応線スペクトル強調器を有することを特徴とする。   In order to achieve the above object, the MRI apparatus of the present invention is configured as follows. That is, a magnetic field generation system that applies a static magnetic field and a gradient magnetic field to the subject, a transmission system that irradiates a high-frequency magnetic field for causing nuclear magnetic resonance to cause nuclear nuclei constituting the biological tissue of the subject, and the nuclear magnetic resonance. A receiving system for receiving the emitted nuclear magnetic resonance signal; a signal processing system for performing image reconstruction calculation using the received signal received by the receiving system; and a central processing unit for controlling the operation of the entire apparatus. The reception system includes an adaptive line spectrum enhancer that passes only a desired frequency component from the received signal.

本発明のMRI装置によれば、所望する周波数成分の信号のみ通過させることができ、ノイズの少ない高いSNの信号を得ることができる。   According to the MRI apparatus of the present invention, only a signal having a desired frequency component can be passed, and a high SN signal with little noise can be obtained.

以下、添付図面に従って本発明のMRI装置の好ましい実施形態について詳説する。なお、発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。   Hereinafter, preferred embodiments of the MRI apparatus of the present invention will be described in detail with reference to the accompanying drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments of the invention, and the repetitive description thereof is omitted.

最初に、本発明に係るMRI装置の一例の全体概要を図1に基づいて説明する。図1は、本発明に係るMRI装置の一実施例の全体構成を示すブロック図である。このMRI装置は、NMR現象を利用して被検体の断層画像を得るもので、図2に示すように、MRI装置は静磁場発生系2と、傾斜磁場発生系3と、送信系5と、受信系6と、信号処理系7と、シーケンサ4と、中央処理装置(CPU)8とを備えて構成される。   First, an overall outline of an example of an MRI apparatus according to the present invention will be described with reference to FIG. FIG. 1 is a block diagram showing the overall configuration of an embodiment of an MRI apparatus according to the present invention. This MRI apparatus uses a NMR phenomenon to obtain a tomographic image of a subject.As shown in FIG. 2, the MRI apparatus includes a static magnetic field generation system 2, a gradient magnetic field generation system 3, a transmission system 5, A reception system 6, a signal processing system 7, a sequencer 4, and a central processing unit (CPU) 8 are provided.

静磁場発生系2は、垂直磁場方式であれば、被検体1の周りの空間にその体軸と直交する方向に、水平磁場方式であれば、体軸方向に均一な静磁場を発生させるもので、被検体1の周りに永久磁石方式、常電導方式あるいは超電導方式の静磁場発生源が配置されている。   The static magnetic field generation system 2 generates a uniform static magnetic field in the direction perpendicular to the body axis in the space around the subject 1 if the vertical magnetic field method is used, and in the direction of the body axis if the horizontal magnetic field method is used. Thus, a permanent magnet type, normal conducting type or superconducting type static magnetic field generating source is arranged around the subject 1.

傾斜磁場発生系3は、MRI装置の座標系(静止座標系)であるX,Y,Zの3軸方向に巻かれた傾斜磁場コイル9と、それぞれの傾斜磁場コイルを駆動する傾斜磁場電源10とから成り、後述のシ−ケンサ4からの命令に従ってそれぞれのコイルの傾斜磁場電源10を駆動することにより、X,Y,Zの3軸方向に傾斜磁場Gx,Gy,Gzを印加する。撮影時には、スライス面(撮影断面)に直交する方向にスライス方向傾斜磁場パルス(Gs)を印加して被検体1に対するスライス面を設定し、そのスライス面に直交して且つ互いに直交する残りの2つの方向に位相エンコード方向傾斜磁場パルス(Gp)と周波数エンコード方向傾斜磁場パルス(Gf)を印加して、エコー信号にそれぞれの方向の位置情報をエンコードする。   The gradient magnetic field generating system 3 includes a gradient magnetic field coil 9 wound in the three-axis directions of X, Y, and Z, which is a coordinate system (stationary coordinate system) of the MRI apparatus, and a gradient magnetic field power source 10 that drives each gradient magnetic field coil. The gradient magnetic fields Gx, Gy, Gz are applied in the three axis directions of X, Y, and Z by driving the gradient magnetic field power supply 10 of each coil in accordance with a command from the sequencer 4 described later. At the time of imaging, a slice direction gradient magnetic field pulse (Gs) is applied in a direction orthogonal to the slice plane (imaging cross section) to set a slice plane for the subject 1, and the remaining two orthogonal to the slice plane and orthogonal to each other A phase encoding direction gradient magnetic field pulse (Gp) and a frequency encoding direction gradient magnetic field pulse (Gf) are applied in one direction, and position information in each direction is encoded into an echo signal.

シーケンサ4は、高周波磁場パルス(以下、「RFパルス」という)と傾斜磁場パルスをある所定のパルスシーケンスで繰り返し印加する制御手段で、CPU8の制御で動作し、被検体1の断層画像のデータ収集に必要な種々の命令を送信系5、傾斜磁場発生系3、および受信系6に送る。   The sequencer 4 is a control means that repeatedly applies a high-frequency magnetic field pulse (hereinafter referred to as “RF pulse”) and a gradient magnetic field pulse in a predetermined pulse sequence, and operates under the control of the CPU 8 to collect tomographic image data of the subject 1. Various commands necessary for the transmission are sent to the transmission system 5, the gradient magnetic field generation system 3, and the reception system 6.

送信系5は、被検体1の生体組織を構成する原子の原子核スピンに核磁気共鳴を起こさせるために、被検体1にRFパルスを照射するもので、高周波発振器11と変調器12と高周波増幅器13と送信側の高周波コイル(送信コイル)14aとから成る。高周波発振器11から出力された高周波パルスをシーケンサ4からの指令によるタイミングで変調器12により振幅変調し、この振幅変調された高周波パルスを高周波増幅器13で増幅した後に被検体1に近接して配置された高周波コイル14aに供給することにより、RFパルスが被検体1に照射される。   The transmission system 5 irradiates the subject 1 with RF pulses in order to cause nuclear magnetic resonance to occur in the nuclear spins of the atoms constituting the living tissue of the subject 1, and includes a high frequency oscillator 11, a modulator 12, and a high frequency amplifier. 13 and a high frequency coil (transmission coil) 14a on the transmission side. The high-frequency pulse output from the high-frequency oscillator 11 is amplitude-modulated by the modulator 12 at a timing according to a command from the sequencer 4, and the amplitude-modulated high-frequency pulse is amplified by the high-frequency amplifier 13 and then placed close to the subject 1. By supplying to the high frequency coil 14a, the subject 1 is irradiated with the RF pulse.

受信系6は、被検体1の生体組織を構成する原子核スピンの核磁気共鳴により放出されるエコー信号(NMR信号)を検出するもので、受信側の高周波コイル(受信コイル)14bと信号増幅器15と直交位相検波器16と、A/D変換器(A/DC)17とから成る。送信側の高周波コイル14aから照射された電磁波によって誘起された被検体1の応答のNMR信号が被検体1に近接して配置された高周波コイル14bで検出され、信号増幅器15で増幅された後、シーケンサ4からの指令によるタイミングで直交位相検波器16により直交する二系統の信号に分割され、それぞれがA/D変換器17でディジタル量に変換されて、信号処理系7に送られる。   The receiving system 6 detects an echo signal (NMR signal) emitted by nuclear magnetic resonance of nuclear spins constituting the biological tissue of the subject 1, and receives a high-frequency coil (receiving coil) 14b on the receiving side and a signal amplifier 15 And a quadrature detector 16 and an A / D converter (A / DC) 17. After the NMR signal of the response of the subject 1 induced by the electromagnetic wave irradiated from the high frequency coil 14a on the transmission side is detected by the high frequency coil 14b arranged close to the subject 1 and amplified by the signal amplifier 15, The signal is divided into two orthogonal signals by the quadrature phase detector 16 at the timing according to the command from the sequencer 4, and each signal is converted into a digital quantity by the A / D converter 17 and sent to the signal processing system 7.

信号処理系7は、各種データ処理と処理結果の表示及び保存等を行うもので、光ディスク19、磁気ディスク18等の外部記憶装置と、CRT等からなるディスプレイ20とを有し、受信系6からのデータがCPU8に入力されると、CPU8が信号処理、画像再構成等の処理を実行し、その結果である被検体1の断層画像をディスプレイ20に表示すると共に、外部記憶装置の磁気ディスク18等に記録する。
操作部25は、MRI装置の各種制御情報や上記信号処理系7で行う処理の制御情報を入力するもので、トラックボール又はマウス23、及び、キーボード24から成る。この操作部25はディスプレイ20に近接して配置され、操作者がディスプレイ20を見ながら操作部25を通してインタラクティブにMRI装置の各種処理を制御する。
The signal processing system 7 performs various data processing and display and storage of processing results, and has an external storage device such as an optical disk 19 and a magnetic disk 18 and a display 20 composed of a CRT, etc. Is input to the CPU 8, the CPU 8 executes processing such as signal processing and image reconstruction, and displays the tomographic image of the subject 1 as a result on the display 20, and the magnetic disk 18 of the external storage device. Record in etc.
The operation unit 25 inputs various control information of the MRI apparatus and control information of processing performed in the signal processing system 7, and includes a trackball or mouse 23 and a keyboard 24. The operation unit 25 is disposed close to the display 20, and the operator controls various processes of the MRI apparatus interactively through the operation unit 25 while looking at the display 20.

なお、図1において、送信側の高周波コイル14aと傾斜磁場コイル9は、被検体1が挿入される静磁場発生系2の静磁場空間内に、垂直磁場方式であれば被検体1に対向して、水平磁場方式であれば被検体1を取り囲むようにして設置されている。また、受信側の高周波コイル14bは、被検体1に対向して、或いは取り囲むように設置されている。   In FIG. 1, the high-frequency coil 14a and the gradient magnetic field coil 9 on the transmission side face the subject 1 in the static magnetic field space of the static magnetic field generation system 2 into which the subject 1 is inserted, in the case of the vertical magnetic field method. If the horizontal magnetic field method is used, the subject 1 is installed so as to surround it. The high-frequency coil 14b on the receiving side is installed so as to face or surround the subject 1.

現在MRI装置の撮像対象核種は、臨床で普及しているものとしては、被検体の主たる構成物質である水素原子核(プロトン)である。プロトン密度の空間分布や、励起状態の緩和時間の空間分布に関する情報を画像化することで、人体頭部、腹部、四肢等の形態または、機能を2次元もしくは3次元的に撮像する。   At present, the radionuclide to be imaged by the MRI apparatus is a hydrogen nucleus (proton) which is a main constituent material of the subject as being widely used clinically. By imaging information on the spatial distribution of proton density and the spatial distribution of relaxation time in the excited state, the form or function of the human head, abdomen, limbs, etc. is imaged two-dimensionally or three-dimensionally.

次に、本発明の一実施形態について図2を用いて説明する。図2は本発明システムのブロック図である。   Next, an embodiment of the present invention will be described with reference to FIG. FIG. 2 is a block diagram of the system of the present invention.

受信系6においてエコー信号は受信コイルで受信された後、シンセサイザからの参照信号によって中間周波数に変換され、アナログフィルタ201でノイズ処理された後、A/D変換器17でA/D変換されCPU8に入力される。本発明のMRI装置は、A/D変換器17からCPU8間に適応線スペクトル強調器202を配置し、中心周波数のみ通過させる。   In the receiving system 6, the echo signal is received by the receiving coil, then converted to an intermediate frequency by a reference signal from the synthesizer, subjected to noise processing by the analog filter 201, A / D converted by the A / D converter 17, and CPU 8 Is input. In the MRI apparatus of the present invention, the adaptive line spectrum enhancer 202 is arranged between the A / D converter 17 and the CPU 8 and passes only the center frequency.

適応線スペクトル強調器202は、入力周波数が未知の信号に雑音が混入している場合でも、受信信号から核磁気共鳴周波数の信号のみ通過させ、他の周波数成分を阻止するフィルタである。   The adaptive line spectrum enhancer 202 is a filter that passes only the signal of the nuclear magnetic resonance frequency from the received signal and blocks other frequency components even when noise is mixed in the signal whose input frequency is unknown.

具体的には、適応線スペクトル強調器は、図3に示すように、所望信号に広帯域雑音が重畳された入力信号dkと出力ykとの誤差εkの二乗平均誤差が最小となるように係数が設定された係数可変フィルタ301を有して成る。つまり、係数可変フィルタ301には入力信号dkが遅延された遅延信号xkが入力され、誤差εkの二乗平均誤差が最小となるように遅延器の数と遅延信号xkにかける係数ckが設定される。このように遅延器の数と係数が設定されることにより、入力信号dkと遅延信号xk間で相関のある信号、すなわち、所望信号が強調されることになる。 Specifically, as shown in FIG. 3, the adaptive line spectrum enhancer minimizes the mean square error of the error ε k between the input signal d k and the output y k in which broadband noise is superimposed on the desired signal. Is provided with a coefficient variable filter 301 in which coefficients are set. That is, the coefficient variable filter 301 receives the delayed signal x k obtained by delaying the input signal d k, and the coefficient c to be applied to the number of delay units and the delayed signal x k so as to minimize the mean square error of the error ε k k is set. By setting the number of delay units and the coefficients in this way, a signal having a correlation between the input signal d k and the delayed signal x k , that is, a desired signal is emphasized.

以上より入力周波数が未知の信号の場合でも所望信号のみ通過させることが可能である。   As described above, even when the input frequency is unknown, only the desired signal can be passed.

なお、適応線スペクトル強調器は、図4に示すように、アナログで構成されて受信系6のA/D変換器17の前段に配置されても良い。或いは、適応線スペクトル強調器は、信号処理系7内に配置されても良い。或いは、図5に示すように、送信系5内に適応線スペクトル強調器をディジタルで構成してD/A変換器501の前段に配置することによりSNの良いSinc波形を得ても良い。或いは、図6に示すように、送信系5内に適応線スペクトル強調器をアナログで構成し、D/A変換器501の後段に配置することによりSNの良いSinc波形を得ても良い。   As shown in FIG. 4, the adaptive line spectrum enhancer may be configured in an analog manner and disposed before the A / D converter 17 of the reception system 6. Alternatively, the adaptive line spectrum enhancer may be arranged in the signal processing system 7. Alternatively, as shown in FIG. 5, an adaptive line spectrum enhancer may be configured digitally in the transmission system 5 and arranged in the front stage of the D / A converter 501 to obtain a sinc waveform with good SN. Alternatively, as shown in FIG. 6, an adaptive line spectrum enhancer may be configured in analog in the transmission system 5 and arranged at the subsequent stage of the D / A converter 501 to obtain a sinc waveform with good SN.

以上説明したように、本発明のMRI装置によれば、所望の周波数成分の信号のみ通過させることができるため、高いSNが得られる。また、本適応線スペクトル強調器をFPGAなどを用いてディジタル構成することにより、低コストで実現でき、且つ、設計仕様の変更も容易に行えるようになる。   As described above, according to the MRI apparatus of the present invention, since only a signal having a desired frequency component can be passed, a high SN can be obtained. In addition, by digitally configuring the adaptive line spectrum enhancer using an FPGA or the like, the adaptive line spectrum enhancer can be realized at a low cost and the design specification can be easily changed.

MRI装置の構成例を示す図。The figure which shows the structural example of an MRI apparatus. 適応線スペクトル強調器のブロック構成図。The block diagram of an adaptive line spectrum enhancer. 適応線スペクトル強調器の内部構成を表わす図。The figure showing the internal structure of an adaptive line spectrum enhancer. アナログ適応線スペクトル強調器を配置した受信系を表わす図。The figure showing the receiving system which has arrange | positioned the analog adaptive line spectrum enhancer. ディジタル適応線スペクトル強調器を配置した送信系を表わす図。The figure showing the transmission system which has arrange | positioned the digital adaptive line spectrum enhancer. アナログ適応線スペクトル強調器を配置した送信系を表わす図。The figure showing the transmission system which has arrange | positioned the analog adaptive line spectrum enhancer.

符号の説明Explanation of symbols

1 被検体、2 静磁場発生系、3 傾斜磁場発生系、4 シーケンサ、5 送信系、6 受信系、7 信号処理系、8 中央処理装置(CPU)、9 傾斜磁場コイル、10 傾斜磁場電源、11 高周波発信器、12 変調器、13 高周波増幅器、14a 高周波コイル(送信コイル)、14b 高周波コイル(受信コイル)、15 信号増幅器、16 直交位相検波器、17 A/D変換器、18 磁気ディスク、19 光ディスク、20 ディスプレイ、21 ROM、22 RAM、23 トラックボール又はマウス、24 キーボード、51 ガントリ、52 テーブル、53 筐体、54 処理装置   1 subject, 2 static magnetic field generation system, 3 gradient magnetic field generation system, 4 sequencer, 5 transmission system, 6 reception system, 7 signal processing system, 8 central processing unit (CPU), 9 gradient magnetic field coil, 10 gradient magnetic field power supply, DESCRIPTION OF SYMBOLS 11 High frequency transmitter, 12 Modulator, 13 High frequency amplifier, 14a High frequency coil (transmission coil), 14b High frequency coil (reception coil), 15 Signal amplifier, 16 Quadrature phase detector, 17 A / D converter, 18 Magnetic disk, 19 optical disk, 20 display, 21 ROM, 22 RAM, 23 trackball or mouse, 24 keyboard, 51 gantry, 52 table, 53 housing, 54 processing device

Claims (1)

被検体に静磁場および傾斜磁場を与える磁場発生系と、前記被検体の生体組織を構成する原子核に核磁気共鳴を起こさせるための高周波磁場を照射する送信系と、この核磁気共鳴により放出される核磁気共鳴信号を受信する受信系と、前記受信系で受信された受信信号を用いて画像再構成演算をおこなう信号処理系と、装置全体の動作を制御する中央処理装置とを備えた磁気共鳴イメージング装置において、
前記受信系は、前記受信信号から所望の周波数成分のみを通過させる適応線スペクトル強調器を有し、
前記適応線スペクトル強調器は、前記受信信号と、該受信信号が遅延された遅延信号が入力される係数可変フィルタを備え、
得られる前記受信信号と前記遅延信号の二乗平均誤差が最小となるように係数が決定された前記係数可変フィルタを用いて、スペクトル強調をすることを特徴とする磁気共鳴イメージング装置。
A magnetic field generation system that applies a static magnetic field and a gradient magnetic field to the subject, a transmission system that irradiates a high-frequency magnetic field for causing nuclear magnetic resonance to cause nuclear nuclei constituting the biological tissue of the subject, A magnetic system comprising: a receiving system for receiving a nuclear magnetic resonance signal; a signal processing system for performing an image reconstruction operation using the received signal received by the receiving system; and a central processing unit for controlling the operation of the entire apparatus. In a resonance imaging apparatus,
The receiving system may have a adaptive line enhancer for passing only a desired frequency component from the received signal,
The adaptive line spectrum enhancer includes a coefficient variable filter to which the received signal and a delayed signal obtained by delaying the received signal are input,
A magnetic resonance imaging apparatus characterized in that spectrum enhancement is performed using the coefficient variable filter whose coefficient is determined so that a mean square error between the received signal and the delay signal obtained is minimized.
JP2007012108A 2007-01-23 2007-01-23 Magnetic resonance imaging system Expired - Fee Related JP5037956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007012108A JP5037956B2 (en) 2007-01-23 2007-01-23 Magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012108A JP5037956B2 (en) 2007-01-23 2007-01-23 Magnetic resonance imaging system

Publications (2)

Publication Number Publication Date
JP2008178433A JP2008178433A (en) 2008-08-07
JP5037956B2 true JP5037956B2 (en) 2012-10-03

Family

ID=39722813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012108A Expired - Fee Related JP5037956B2 (en) 2007-01-23 2007-01-23 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP5037956B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2503821B2 (en) * 1991-12-05 1996-06-05 株式会社日立製作所 NMR signal processing method and apparatus
JPH09154830A (en) * 1995-12-11 1997-06-17 Hitachi Medical Corp Inspection method using nuclear magnetic resonance and its device
US5912558A (en) * 1997-11-14 1999-06-15 Picker International, Inc. Automatic frequency tuning for MR scanners
JP3041688B2 (en) * 1998-08-07 2000-05-15 技術研究組合医療福祉機器研究所 High spatial resolution magnetic resonance imaging system

Also Published As

Publication number Publication date
JP2008178433A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
CN107209238B (en) Parallel multi-slice MR imaging with suppression of banding artifacts
WO2013158455A1 (en) System and method for spectrally-resolved three-dimensional magnetic resonance imaging without frequency-encoding gradients
JP6162142B2 (en) Magnetic resonance imaging apparatus and SAR prediction method
JP6417406B2 (en) MR imaging with enhanced susceptibility contrast
JP5337162B2 (en) Magnetic resonance imaging system
JP2017513627A (en) Reduced field magnetic resonance imaging system and method
JP2014502910A (en) Interleaved spin locking imaging
JP6618988B2 (en) Magnetic resonance imaging apparatus and RF shimming parameter setting method
US9335394B2 (en) Method and magnetic resonance scanner for hyperintense display of areas in the vicinity of dipole fields
JP2007282860A (en) Magnetic resonance imaging device and method
WO2015076082A1 (en) Magnetic resonance imaging device
JP5037956B2 (en) Magnetic resonance imaging system
JP5718148B2 (en) Magnetic resonance imaging apparatus and dual slice measurement method
JP6579908B2 (en) Magnetic resonance imaging apparatus and diffusion weighted image calculation method
JP6157976B2 (en) Magnetic resonance imaging apparatus and method
JP6192371B2 (en) Magnetic resonance imaging apparatus and non-imaging region excitation method
JP3526347B2 (en) Magnetic resonance imaging system
JP2017213042A (en) Magnetic resonance imaging device and multi-channel rf pulse generation method
JP5280127B2 (en) Magnetic resonance imaging system
JP4349646B2 (en) Nuclear magnetic resonance imaging system
JP6788510B2 (en) Magnetic resonance imaging device
JP3317552B2 (en) MRI equipment
JP2011015702A (en) Magnetic resonance imaging apparatus
JP2016140417A (en) Magnetic resonance imaging apparatus, and irradiation phase control method of fse sequence
Young et al. Aspects off the engineering design of whole-body nuclear magnetic resonance machines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5037956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees