JP5036655B2 - Receiving apparatus and demodulation method - Google Patents

Receiving apparatus and demodulation method Download PDF

Info

Publication number
JP5036655B2
JP5036655B2 JP2008192275A JP2008192275A JP5036655B2 JP 5036655 B2 JP5036655 B2 JP 5036655B2 JP 2008192275 A JP2008192275 A JP 2008192275A JP 2008192275 A JP2008192275 A JP 2008192275A JP 5036655 B2 JP5036655 B2 JP 5036655B2
Authority
JP
Japan
Prior art keywords
sub
symbol
processing
layer
replica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008192275A
Other languages
Japanese (ja)
Other versions
JP2010034672A (en
Inventor
昭範 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008192275A priority Critical patent/JP5036655B2/en
Publication of JP2010034672A publication Critical patent/JP2010034672A/en
Application granted granted Critical
Publication of JP5036655B2 publication Critical patent/JP5036655B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Radio Transmission System (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Noise Elimination (AREA)

Description

本発明は、変調信号を受信して復調する受信装置および復調方法に関する。   The present invention relates to a receiving apparatus and a demodulation method for receiving and demodulating a modulated signal.

多値シンボルを用いたMIMO伝送では、アンテナ間干渉等の影響で信号検出精度が大きく劣化し、それと共に伝送特性が劣化する。これらの劣化を解決するために、繰り返しMIMO等化と干渉キャンセルを用いることによって信号検出精度を改善する必要がある。従来の等化/干渉キャンセルとして、たとえば、下記非特許文献1に記載されているように、信号検出精度を向上させるために、MIMO(Multiple Input Multiple Output)等化と干渉キャンセルを繰り返し行っている。   In MIMO transmission using multi-level symbols, signal detection accuracy is greatly degraded due to the influence of inter-antenna interference and the like, and transmission characteristics are also degraded. In order to solve these degradations, it is necessary to improve the signal detection accuracy by using repeated MIMO equalization and interference cancellation. As conventional equalization / interference cancellation, for example, as described in Non-Patent Document 1 below, MIMO (Multiple Input Multiple Output) equalization and interference cancellation are repeatedly performed in order to improve signal detection accuracy. .

下記非特許文献1に記載の技術では、QAM(Quadrature Amplitude Modulation)シンボルを複数のQPSK(Quadrature Phase Shift Keying)サブシンボルが階層化されたものとしてみなし、繰り返し復調処理を各送信アンテナおよび各層について並列に行っている。初回の処理では、受信信号に対してMIMO等化のみが行われ、送信アンテナおよび層ごとに並列に軟判定を実施する。その後、誤り訂正復号器を介して信頼度情報を得て、その信頼度情報を次の繰り返し復調に必要となるQPSKサブシンボルレプリカに変換する。   In the technique described in Non-Patent Document 1 below, a QAM (Quadrature Amplitude Modulation) symbol is regarded as a hierarchy of a plurality of QPSK (Quadrature Phase Shift Keying) sub-symbols, and repeated demodulation processing is performed in parallel for each transmission antenna and each layer. Is going to. In the first processing, only MIMO equalization is performed on the received signal, and soft decision is performed in parallel for each transmission antenna and each layer. Thereafter, reliability information is obtained via an error correction decoder, and the reliability information is converted into a QPSK sub-symbol replica necessary for the next iterative demodulation.

このようにして得られたレプリカは送信アンテナおよび層の繰り返し復調で共有され、これらのレプリカを利用してMIMO等化と干渉キャンセルによる繰り返し復調処理が送信アンテナおよび層ごとに行われる。ある送信アンテナについての希望とする層を対象とした干渉キャンセル処理では、他アンテナからのQAMシンボルと希望の層を除く他の層のQPSKサブシンボルとを干渉成分と見なし、MIMO等化後の受信信号からレプリカを用いた干渉成分の減算操作を行う。同様の干渉キャンセル処理を送信アンテナおよび層ごとに実行する。その後、送信アンテナおよび層ごとに再び軟判定を行い、上記の復調処理を既定回数分だけ繰り返している。   The replicas thus obtained are shared by the transmission antenna and layer repetition demodulation, and the repetition demodulation processing by MIMO equalization and interference cancellation is performed for each transmission antenna and layer using these replicas. In the interference cancellation processing for a desired layer for a certain transmission antenna, QAM symbols from other antennas and QPSK sub-symbols of other layers excluding the desired layer are regarded as interference components, and reception after MIMO equalization is performed. An interference component is subtracted from the signal using a replica. Similar interference cancellation processing is executed for each transmission antenna and each layer. Thereafter, the soft decision is performed again for each transmission antenna and each layer, and the above demodulation process is repeated a predetermined number of times.

“Adaptive Transmission With Single-Carrier MultilevelBICM”,Matsumoto.T,Ibi.S,Sampei.S,Thoma R,Proceedings of the IEEE Volume 95,Issue 12,Dec.2007 pp.2354-2367“Adaptive Transmission With Single-Carrier MultilevelBICM”, Matsumoto. T, Ibi. S, Sampei. S, Thomas R, Proceedings of the IEEE Volume 95, Issue 12, Dec. 2007 pp.2354-2367

しかしながら、上記従来の非特許文献1に記載の技術によれば、階層化されたQPSKサブシンボルの信号検出精度の差異を考慮せずに、全層のサブシンボル単位すなわちQAMシンボル単位でレプリカを用いている。なお、サブシンボルの階層構造では、上層ほどQPSKサブシンボルの信号判定精度が悪く(上層ほど振幅が小さいとする)、レプリカ生成精度も低いという特徴がある。このため、上層では低精度なサブシンボルレプリカを生成して使用することになり、それによって干渉キャンセルの際に生じる干渉成分の除去誤差が大きく、良好な信号検出精度が得られない、という問題があった。   However, according to the technique described in the above-mentioned conventional Non-Patent Document 1, replicas are used in sub-symbol units in all layers, that is, in QAM symbol units, without considering the difference in signal detection accuracy of layered QPSK sub-symbols. ing. Note that the sub-symbol hierarchical structure is characterized in that the signal determination accuracy of the QPSK sub-symbol is worse in the upper layer (assuming that the amplitude is lower in the upper layer) and the replica generation accuracy is also lower. For this reason, in the upper layer, a low-accuracy sub-symbol replica is generated and used, and as a result, there is a problem that a large error in removing interference components caused by interference cancellation and a good signal detection accuracy cannot be obtained. there were.

本発明は、上記に鑑みてなされたものであって、多値シンボルを階層化されたサブシンボルとして復調する場合に、信号判定精度の低い層の誤差の影響を低減し、高い信号検出精度を得ることができる受信装置および復調方法を得ることを目的とする。   The present invention has been made in view of the above, and in the case of demodulating a multilevel symbol as a hierarchical sub-symbol, it reduces the influence of an error in a layer with low signal determination accuracy, and achieves high signal detection accuracy. It is an object to obtain a receiving device and a demodulation method that can be obtained.

上述した課題を解決し、目的を達成するために、本発明は、多値変調された受信信号の1シンボルを階層化された複数のサブシンボルとみなして、前記階層化の層単位で等化処理と干渉成分除去処理とを行う受信装置であって、信号精度の最も高い層を前記各処理の処理対象として指示し、前記指示に基づく処理の終了後に、前記処理対象の層に前記処理対象の層以外の層の中で次に信号精度の高い層を追加し、信号精度の高い順に2つの層を次の処理対象として指示し、以降、前記階層化の全層が処理対象となるまで、前回の処理対象の層に対して次に信号精度の高い層を追加した結果を、処理対象として指示する制御手段と、前記指示に基づいて処理対象の層のサブシンボルのレプリカであるサブシンボルレプリカを生成するサブシンボルレプリカ生成手段と、前記サブシンボルレプリカに基づいて伝送路推定を行う伝送路推定手段と、を備え、前記伝送路推定手段の推定結果に基づいて前記等化処理を行い、前記サブシンボルレプリカに基づいて前記干渉成分除去処理を行うことを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention considers one symbol of a multilevel modulated received signal as a plurality of hierarchized sub-symbols, and equalizes each hierarchized layer unit. A receiving apparatus that performs processing and interference component removal processing, instructing a layer with the highest signal accuracy as a processing target of each processing, and after completing processing based on the instructions, to the processing target layer Next, a layer with the next highest signal accuracy is added, and two layers are instructed as the next processing target in the order of the higher signal accuracy. Thereafter, until all layers in the hierarchy are processed , A control means for instructing a result of adding a layer having the next highest signal accuracy with respect to a previous processing target layer as a processing target, and a sub symbol which is a replica of a sub symbol of the processing target layer based on the instruction Sub symbol that generates replica Replica generation means, and transmission path estimation means for performing transmission path estimation based on the sub-symbol replica, performing the equalization processing based on the estimation result of the transmission path estimation means, and based on the sub-symbol replica Then, the interference component removal process is performed.

この発明によれば、多値変調されたシンボルをサブシンボルに階層化して復調を行う場合に、干渉成分のレプリカの精度が最も高いと推定される層についてはじめに信号処理/干渉キャンセルの処理対象とし、以下、レプリカの精度が高いと推定される順に処理対象の層を順次追加して信号処理/干渉キャンセルを行うようにしたので、階層化されたQPSKサブシンボルのレプリカ生成低精度な上層についても精度の高いレプリカを生成することができ、高い信号検出精度を得ることができる、という効果を奏する。また、信号検出精度を高めることができるため、送信電力を抑えた通信に適用することができる。   According to the present invention, when demodulation is performed by hierarchizing multi-level modulated symbols into sub-symbols, the layer that is estimated to have the highest accuracy of replica of interference components is first set as a signal processing / interference cancellation processing target. In the following, since the layers to be processed are sequentially added in the order in which the accuracy of the replica is estimated to be high, signal processing / interference cancellation is performed. It is possible to generate a highly accurate replica and to obtain high signal detection accuracy. In addition, since the signal detection accuracy can be increased, it can be applied to communication with reduced transmission power.

以下に、本発明にかかる受信装置および復調方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a receiving apparatus and a demodulation method according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態.
図1は、本発明にかかる復調方法の実施の形態の処理手順の一例を示すフローチャートである。本実施の形態では、22MQAMシンボルを用いた例について説明する。
Embodiment.
FIG. 1 is a flowchart showing an example of a processing procedure of an embodiment of a demodulation method according to the present invention. In the present embodiment, an example using 2 2M QAM symbols will be described.

図2は、22MQAMシンボルのシンボル階層化の一例を示す図である。図2に示すように、本実施の形態では、22MQAMシンボルを信号電力の異なるM個のQPSKシンボルが階層化されたシンボルとして考える。すなわち、振幅の大きい順に第0層から第(M−1)層までの階層化されたQPSKシンボル(サブシンボル)と考える。サブシンボルの階層化では、上層ほどQPSKサブシンボルの信号判定精度が悪く、レプリカ生成精度も低いという特徴がある。本実施の形態では、信号検出精度の高い下層のQPSKシンボルから信号検出/レプリカ生成と干渉キャンセル処理を優先的に実行することにより、QAMシンボル全体の信号検出精度を保ちつつ信号検出/レプリカ生成の対象層の範囲を徐々に拡大していく。これにより、従来技術で生じていた低精度レプリカによる干渉成分除去誤差の増大を避け効果的に干渉成分を抑圧することができる。 FIG. 2 is a diagram showing an example of symbol layering of 2 2M QAM symbols. As shown in FIG. 2, in the present embodiment, 2 2M QAM symbols are considered as symbols in which M QPSK symbols having different signal powers are hierarchized. That is, the QPSK symbols (sub-symbols) hierarchized from the 0th layer to the (M−1) th layer in descending order of amplitude are considered. The sub-symbol hierarchization is characterized in that the signal determination accuracy of the QPSK sub-symbol is lower and the replica generation accuracy is lower in the upper layer. In the present embodiment, signal detection / replica generation and interference cancellation processing are executed preferentially from lower QPSK symbols with high signal detection accuracy, so that signal detection / replica generation can be performed while maintaining the signal detection accuracy of the entire QAM symbol. Gradually expand the scope of the target audience. As a result, it is possible to effectively suppress the interference component while avoiding an increase in interference component removal error due to the low-precision replica that has occurred in the prior art.

また、ここでは、一例として、周波数領域等化を用いたシングルキャリア変調方式を適用した場合について説明するが、等化の方式は周波数領域等化に限定されるものではなく、また、変調方式がシングルキャリア変調に限定されるものではない。また、この例ではマルチアンテナを用いた場合について述べるが、マルチアンテナに限定されるものではない。さらに、光通信にも適用可能であり、無線通信に限定されるものではない。   In addition, here, as an example, a case where a single carrier modulation scheme using frequency domain equalization is applied will be described, but the equalization scheme is not limited to frequency domain equalization, and the modulation scheme is not limited. It is not limited to single carrier modulation. In this example, a case where a multi-antenna is used will be described, but the present invention is not limited to the multi-antenna. Furthermore, it is applicable to optical communication and is not limited to wireless communication.

なお、本実施の形態では、QAMシンボルを例にあげて説明するが、これに限らず、多値PSKでも、2ビット以上のシンボルであれば、階層化可能である。また、階層化した後の層の数と割当ビット数が、QAMまたはPSKの合計ビット数を満足するように階層化ができる場合には、ビット数も任意に設定可能であり、演算量と特性の観点から柔軟に階層化の方式設計ができる。   In this embodiment, a QAM symbol is described as an example. However, the present invention is not limited to this, and multilevel PSK can be hierarchized as long as it is a symbol of 2 bits or more. In addition, when hierarchization can be performed so that the number of layers and the number of allocated bits after hierarchization satisfy the total number of bits of QAM or PSK, the number of bits can be arbitrarily set, and the amount of calculation and characteristics It is possible to design a hierarchical system flexibly from the viewpoint of

つづいて、図1を用いて本実施の形態の復調方法について説明する。まず、最下層である第0層を処理対象として等化/干渉キャンセル処理を行う(ステップS1)。つぎに、第0層から第1層までを処理対象とした等化/干渉キャンセル処理,第0層から第2層までを処理対象とした等化/干渉キャンセル処理,…と順に処理対象の層を増やし、第0層から第(M−1)層を処理対象とする等化/干渉キャンセル処理まで順に処理を行う。ここでは、第0層〜第m層(0<m<(M−1))を処理対象とする処理について、処理内容を詳細に説明することとする。   Next, the demodulation method of this embodiment will be described with reference to FIG. First, equalization / interference cancellation processing is performed with the 0th layer being the lowest layer as a processing target (step S1). Next, an equalization / interference cancellation process for processing from the 0th layer to the first layer, an equalization / interference cancellation process for processing from the 0th layer to the second layer, and so on. And the processing is sequentially performed from the 0th layer to the equalization / interference cancellation processing for the (M−1) th layer as a processing target. Here, the processing contents of the processing targeted for processing from the 0th layer to the mth layer (0 <m <(M−1)) will be described in detail.

なお、ここでは、階層ごとに振幅が一定とし、振幅の大きい層がレプリカの精度が高いとしているが、層ごとの振幅が一定でない場合には、精度の良い層から順に第0層、第1層、…とし、同様に第0層から処理対象の層を順に増やしていくようにすればよい。   Here, it is assumed that the amplitude is constant for each layer and the layer having a large amplitude has a high accuracy of replica, but when the amplitude for each layer is not constant, the 0th layer, Similarly, the layers to be processed may be sequentially increased from the 0th layer.

第0層〜第m層(0<m<(M−1))を処理対象とする等化/干渉キャンセル処理の前に、第0層を処理対象とする等化/干渉キャンセル処理(ステップS1)から、第0層〜第(m−1)層を処理対象とする信号検出/レプリカ生成処理(ステップS2)まで、が行われているとする。   Prior to the equalization / interference cancellation process for the 0th layer to the mth layer (0 <m <(M-1)) as the processing target, the equalization / interference cancellation process for the 0th layer (step S1) ) To signal detection / replica generation processing (step S2) for processing from the 0th layer to the (m−1) th layer.

つぎに、第0層〜第m層を処理対象とする信号検出/レプリカ生成処理(ステップS3)として、まず、つぎのように周波数領域等化処理を行い、等化後の受信信号を得る(ステップS11)。なお、初回の周波数領域等化処理では、受信信号にFFT(Fast Fourier Transform)処理を実施し、周波数領域信号に変換しておくこととする。本実施の形態では、信号検出/レプリカ生成を繰り返し行うこととし、繰り返しの回数をimaxとする。i(1≦i≦imax)番目の繰り返し処理のf番目の周波数のt番目の送信アンテナの等化後受信信号は、W(f)t i,mを第0〜m層を信号検出/レプリカ生成対象としたときの繰り返しi回目のt番目の送信アンテナ用等化重みベクトルとし、R(f)を受信信号ベクトルとするとき、以下の式(1)に基づいて求めることができる。 Next, as signal detection / replica generation processing (step S3) for processing from the 0th layer to the mth layer, first, frequency domain equalization processing is performed as follows to obtain a reception signal after equalization ( Step S11). In the first frequency domain equalization process, the received signal is subjected to FFT (Fast Fourier Transform) processing and converted to a frequency domain signal. In this embodiment, signal detection / replica generation is repeatedly performed, and the number of repetitions is i max . The received signal after equalization of the t-th transmitting antenna of the f-th frequency in the i (1 ≦ i ≦ i max ) -th iterative process is obtained by detecting W (f) t i, m in the 0th to m- th layers. When the t-th transmission antenna equalization weight vector is used as a replica generation target and R (f) is a received signal vector, it can be obtained based on the following equation (1).

Figure 0005036655
Figure 0005036655

なお、W(f)t i,mは、(.)Hをエルミート転置操作,(.)-1を逆行列操作とし、Sを送信電力,σ2を雑音電力,H(f)を伝送路推定によって得られるチャネル利得行列とし、Gi,mを残留干渉電力推定値が配列される行列とするとき、以下の式(2)に基づいて求めることができる。 W (f) t i, m is (.) H is Hermitian transposition operation, (.) −1 is inverse matrix operation, S is transmission power, σ 2 is noise power, and H (f) is transmission path. When a channel gain matrix obtained by estimation is used and G i, m is a matrix in which residual interference power estimation values are arranged, it can be obtained based on the following equation (2).

Figure 0005036655
Figure 0005036655

i,mは、送信アンテナ本数分の行列サイズを持つ対角行列であり、各対角要素に対応する送信アンテナの残留干渉電力推定値が配列される。残留干渉電力推定値は、後段の干渉キャンセル処理で低減できない干渉電力推定値に相当する値であり、前回の繰り返し(i−1)回目の信号検出/レプリカ生成で生成された第0〜m層のサブシンボルレプリカから算出することができる。周波数領域等化では、その残留干渉電力分のみを干渉抑圧し、余った自由度をアンテナ・周波数ダイバーシチ利得獲得のために動作させている。 G i, m is a diagonal matrix having a matrix size corresponding to the number of transmission antennas, and the residual interference power estimation values of the transmission antennas corresponding to the respective diagonal elements are arranged. The residual interference power estimation value is a value corresponding to the interference power estimation value that cannot be reduced by the subsequent interference cancellation processing, and the 0th to mth layers generated in the previous iteration (i-1) signal detection / replica generation. Can be calculated from the sub-symbol replicas. In frequency domain equalization, only the residual interference power is suppressed, and the remaining degree of freedom is operated to acquire the antenna / frequency diversity gain.

つぎに、ステップS11で得た等化後受信信号から干渉レプリカを減算する干渉キャンセル処理を周波数領域で実行する(ステップS12)。具体的には、たとえば、Hiバー(f)を送信アンテナ本数を要素数とした等価チャネル横ベクトルとし、Di,mハット(f)を送信アンテナ本数を要素数としたレプリカ縦ベクトルとするとき、以下の式(3)に基づいて干渉キャンセル処理後の受信信号を求める。 Next, interference cancellation processing for subtracting the interference replica from the equalized reception signal obtained in step S11 is executed in the frequency domain (step S12). Specifically, for example, H i bar (f) is an equivalent channel horizontal vector with the number of transmission antennas as the number of elements, and D i, m hat (f) is a replica vertical vector with the number of transmission antennas as the number of elements. At this time, the reception signal after the interference cancellation processing is obtained based on the following equation (3).

Figure 0005036655
Figure 0005036655

レプリカ縦ベクトルは、後述のステップS18のFFT処理によって得られる周波数領域のサブシンボルレプリカに基づいて求める。レプリカ縦ベクトルDi,mハット(f)の各要素は、各送信アンテナの第0〜m層のサブシンボルレプリカが多重されている。t番目のアンテナのDi,mハット(f)に相当するDt i,mハット(f)は、Dt,m' i,mハット(f)を信号検出/レプリカ生成対象を第0〜m層とした場合の繰り返しi回目のt番目の送信アンテナの第m’層の周波数領域レプリカとするとき、以下の式(4)で表すことができる。 The replica vertical vector is obtained based on the sub-symbol replica in the frequency domain obtained by the FFT process in step S18 described later. In each element of the replica vertical vector D i, m hat (f), the 0th to mth layer sub-symbol replicas of each transmission antenna are multiplexed. t-th antenna of the D i, D t i corresponding to m hat (f), m hat (f) is, D t, m 'i, m hat (f) a signal detection / replica generation target zeroth When the frequency domain replica of the m'th layer of the i-th t-th transmitting antenna in the case of the m layer is used, it can be expressed by the following equation (4).

Figure 0005036655
Figure 0005036655

つぎに、干渉キャンセル処理後の受信信号に対してIFFT(Inverse Fast Fourier Transform)処理を実施し(ステップS13)、IFFT後の受信信号に基づいて処理対象の層について軟判定を実施し、信頼度情報を算出して算出した信頼度を判定帰還させる(ステップS14)。そして、iがimaxに等しいか否かを判定し(ステップS15)、等しくない場合(ステップS15 No)には、i=i+1とし(ステップS16)、帰還された信頼度情報を用いて処理対象層のサブシンボルレプリカを生成する(ステップS17)。サブシンボルレプリカをFFT処理して、周波数領域のサブシンボルレプリカとし(ステップS18)、ステップS11に戻りステップS11以降の処理を繰り返す。このとき、ステップS18で算出したサブシンボルレプリカを前述のステップS12の干渉キャンセル処理に用いる。また、ステップS11で用いる残留干渉電力推定値についてもステップS17またはS18で算出したサブシンボルレプリカに基づいて求める。 Next, IFFT (Inverse Fast Fourier Transform) processing is performed on the received signal after the interference cancellation processing (step S13), soft decision is performed on the processing target layer based on the received signal after IFFT, and the reliability Information is calculated and the calculated reliability is determined and fed back (step S14). Then, it is determined whether i is equal to i max (step S15). If not equal (step S15 No), i is set to i + 1 (step S16), and the processing object is processed using the feedback reliability information. A sub-symbol replica of the layer is generated (step S17). The sub-symbol replica is subjected to FFT processing to obtain a frequency-domain sub-symbol replica (step S18), and the process returns to step S11 to repeat the processes after step S11. At this time, the sub-symbol replica calculated in step S18 is used for the interference cancellation process in step S12 described above. Also, the residual interference power estimation value used in step S11 is obtained based on the sub-symbol replica calculated in step S17 or S18.

ステップS15で、iがimaxに等しいと判定した場合(ステップS15 Yes)には、第0〜(m+1)層を処理対象とした処理(ステップS4)に進む。そして、第0〜(M−1)層を処理対象とした処理(ステップS5)まで、順次処理対象の層を増やしてステップS3と同様の処理を実施する。このようにして、最終的に全層についての信号検出/干渉キャンセル処理が終了する。 If it is determined in step S15 that i is equal to i max (step S15 Yes), the process proceeds to a process (step S4) in which the 0th to (m + 1) th layers are processed. Then, the processes similar to those in step S3 are performed by sequentially increasing the layers to be processed until the process (step S5) in which the 0th to (M-1) th layers are processed. In this way, the signal detection / interference cancellation process for all layers is finally completed.

なお、上記の説明では、iが2以上の場合の処理について説明したが、i=1、すなわち、初回の繰り返し処理では、周波数領域のサブシンボルレプリカが得られていないため、ステップS12を行わず、ステップS11からステップS13に進み、ステップS11で求めた受信信号についてステップS13以降の処理を行う。また、ステップS1,S2およびステップS4,5の処理は、処理対象が異なるだけでステップS3の処理と同様である。   In the above description, the process when i is 2 or more has been described. However, since i = 1, that is, the frequency domain sub-symbol replica is not obtained in the first repetition process, step S12 is not performed. Then, the process proceeds from step S11 to step S13, and the processes after step S13 are performed on the received signal obtained in step S11. Further, the processes of steps S1, S2 and steps S4, 5 are the same as the process of step S3 except that the processing targets are different.

また、本実施の形態では、レプリカ生成のために軟判定出力を信頼度情報として用いたが、レプリカ生成のために用いる信頼度情報はこれに限らず他の方法により求めたものを用いてもよい。   In this embodiment, the soft decision output is used as reliability information for replica generation. However, the reliability information used for replica generation is not limited to this, and information obtained by other methods may be used. Good.

従来の技術では低精度サブシンボルレプリカを使用することにより干渉成分を十分に低減できなかったが、以上の処理により、サブシンボルレプリカの生成精度の高い層から逐次に等化/干渉キャンセル処理を行うことによって、低精度サブシンボルレプリカの使用に起因する誤差を避けることができ、高精度な信号検出が可能となる。   In the prior art, the interference component could not be sufficiently reduced by using the low-accuracy sub-symbol replica, but by the above processing, the equalization / interference cancellation processing is sequentially performed from the layer with high sub-symbol replica generation accuracy. As a result, errors due to the use of low-precision sub-symbol replicas can be avoided, and high-accuracy signal detection becomes possible.

図3は、本実施の形態の復調方法を実現する受信装置の機能構成例を示す図である。図3に示すように、この受信装置は、受信アンテナ1−1〜1−N,アナログ信号処理部2−1〜2−N,A/D変換部3−1〜3−N,チャネル推定処理部4,周波数領域等化処理部5,干渉キャンセル部6,軟判定部7,サブシンボルレプリカ生成部8,レプリカ生成制御部9,誤り訂正復号器10で構成される。   FIG. 3 is a diagram illustrating a functional configuration example of a receiving apparatus that implements the demodulation method according to the present embodiment. As shown in FIG. 3, this receiving apparatus includes receiving antennas 1-1 to 1-N, analog signal processing units 2-1 to 2-N, A / D conversion units 3-1 to 3-N, and channel estimation processing. 4, a frequency domain equalization processing unit 5, an interference cancellation unit 6, a soft decision unit 7, a sub-symbol replica generation unit 8, a replica generation control unit 9, and an error correction decoder 10.

この受信装置の受信動作について説明する。まず、送信された信号をN本の受信アンテナ1−1〜1−Nがそれぞれ受信し、対応する受信信号に対してアナログ信号処理部2−1〜2−Nがそれぞれ所定のアナログ受信処理を行う。そして、A/D(Analog/Digital)変換部3−1〜3−Nが、受信処理後のアナログ信号をそれぞれデジタル信号に変換し、時間領域受信サンプルとする。チャネル推定部4は、A/D変換部3−1〜3−Nから出力される時間領域受信サンプルに基づいて伝送路推定値を求める。   The receiving operation of this receiving apparatus will be described. First, the N reception antennas 1-1 to 1-N receive the transmitted signals, and the analog signal processing units 2-1 to 2-N respectively perform predetermined analog reception processing on the corresponding reception signals. Do. Then, the A / D (Analog / Digital) conversion units 3-1 to 3-N convert the analog signals after reception processing into digital signals, respectively, to obtain time domain reception samples. The channel estimation unit 4 obtains a transmission path estimation value based on the time domain received samples output from the A / D conversion units 3-1 to 3-N.

周波数領域等化処理部5は、A/D変換部3−1〜3−Nから出力される時間領域受信サンプルとチャネル推定処理部4が求めた伝送路推定値に基づいて各送信アンテナから送信された送信信号に対する周波数領域等化処理を行う。周波数領域等化処理部5以降の処理では、上述のように、まず、第0層を処理対象とし、以下、処理対象とする層を逐次増加させ、また、対象とする層について信号検出/干渉キャンセルの処理を繰り返し行う。周波数領域等化処理部5は、初回の繰り返し処理では、時間領域受信サンプルにFFT処理を実施し、周波数領域の受信信号としてから周波数領域等化処理を行う。   The frequency domain equalization processing unit 5 transmits from each transmission antenna based on the time domain reception samples output from the A / D conversion units 3-1 to 3-N and the channel estimation value obtained by the channel estimation processing unit 4. A frequency domain equalization process is performed on the transmitted signal. In the processing after the frequency domain equalization processing unit 5, as described above, first, the 0th layer is set as a processing target, and subsequently, the processing target layers are sequentially increased, and signal detection / interference is performed for the target layer. Repeat the cancellation process. In the first iterative process, the frequency domain equalization processing unit 5 performs an FFT process on the time domain received sample and performs a frequency domain equalization process after using the received signal in the frequency domain.

処理対象とする層についての、初回の繰り返し処理では、軟判定部7が周波数領域等化処理後の受信信号に対してIFFT処理を実施後、各送信アンテナの送信信号に対する軟判定処理を実施し、信頼度情報を得る。2回目以降の繰り返し処理では、周波数領域等化処理後に、干渉キャンセル部6が、上述のステップS12の干渉キャンセル処理を行った後に、軟判定部7が干渉キャンセル処理後の受信信号について軟判定処理を実施し、信頼度情報を得る。   In the first iterative process for the layer to be processed, the soft decision unit 7 performs an IFFT process on the received signal after the frequency domain equalization process, and then performs a soft decision process on the transmission signal of each transmitting antenna. Get reliability information. In the second and subsequent iterations, after the frequency domain equalization process, after the interference cancellation unit 6 performs the interference cancellation process of step S12 described above, the soft decision unit 7 performs a soft decision process on the received signal after the interference cancellation process. To obtain reliability information.

軟判定部7は、得られた信頼度情報をサブシンボルレプリカ生成部8に出力し、サブシンボルレプリカ生成部8は、レプリカ生成制御部9からの指示に基づいて処理対象の層のサブシンボルレプリカを生成する。なお、レプリカ生成制御部9は、処理対象となる層を順次サブシンボルレプリカ生成部8に指示するとともに、生成されたレプリカを管理する。すなわち、レプリカ生成制御部9は、信号検出/干渉キャンセル処理の処理対象の層を管理する全体の制御手段と考えることができる。そして、サブシンボルレプリカ生成部8は、生成したサブシンボルレプリカを周波数領域等化部5と干渉キャンセル部6に帰還させる。   The soft decision unit 7 outputs the obtained reliability information to the sub-symbol replica generation unit 8, and the sub-symbol replica generation unit 8 determines the sub-symbol replica of the processing target layer based on the instruction from the replica generation control unit 9. Is generated. Note that the replica generation control unit 9 sequentially instructs the sub-symbol replica generation unit 8 on the layer to be processed and manages the generated replica. That is, the replica generation control unit 9 can be considered as an overall control unit that manages the processing target layer of the signal detection / interference cancellation process. Then, the sub symbol replica generation unit 8 feeds back the generated sub symbol replica to the frequency domain equalization unit 5 and the interference cancellation unit 6.

図4は、周波数領域等化部5の機能構成例を示す図である。周波数領域等化部5は、図4に示すように、残留干渉電力計算部51と等化重み計算部52と等化重み乗算部53とで構成される。残留干渉電力計算部51は、サブシンボルレプリカを用いて残留干渉電力値を推定し、その推定結果と伝搬路推定値を用いて等化重み計算部52が等化重みを計算する。そして、等化重み乗算部53が、上述のステップS11で説明した周波数領域等化を行う。   FIG. 4 is a diagram illustrating a functional configuration example of the frequency domain equalization unit 5. As shown in FIG. 4, the frequency domain equalization unit 5 includes a residual interference power calculation unit 51, an equalization weight calculation unit 52, and an equalization weight multiplication unit 53. The residual interference power calculation unit 51 estimates the residual interference power value using the sub-symbol replica, and the equalization weight calculation unit 52 calculates the equalization weight using the estimation result and the propagation path estimation value. And the equalization weight multiplication part 53 performs the frequency domain equalization demonstrated by the above-mentioned step S11.

図5は、干渉キャンセル部6の機能構成例を示す図である。図5に示すように、干渉キャンセル部6は、干渉キャンセル部61,干渉レプリカ生成部62で構成される。干渉レプリカ生成部62は、前回の繰り返しで得られたサブシンボルレプリカと伝送路推定値と等化重みとを用いて受信信号の干渉成分のレプリカである干渉レプリカを生成し、干渉レプリカに対してFFT処理を行って周波数領域の干渉レプリカとし、干渉キャンセル部61が、上述のステップS12で説明したように、周波数領域等化処理後の受信信号から周波数領域の干渉レプリカを減算する(干渉キャンセル処理)。   FIG. 5 is a diagram illustrating a functional configuration example of the interference cancellation unit 6. As shown in FIG. 5, the interference cancellation unit 6 includes an interference cancellation unit 61 and an interference replica generation unit 62. The interference replica generation unit 62 generates an interference replica that is a replica of the interference component of the received signal using the sub-symbol replica obtained in the previous iteration, the transmission path estimation value, and the equalization weight, The FFT processing is performed to obtain a frequency domain interference replica, and the interference cancellation unit 61 subtracts the frequency domain interference replica from the received signal after the frequency domain equalization processing (interference cancellation processing) as described in step S12 above. ).

軟判定部7は、干渉キャンセル処理後の受信信号を用いて再び軟判定を行い、信頼度情報を求め、再び信頼度情報をサブシンボルレプリカ生成部8に出力する。そして、周波数領域等化処理を所定の回数(上述のimax)繰り返した後、処理対象とする層を1層増やして、同様の処理を行い、以下、順次処理対象とする層を1層ずつ増やし、処理対象が第0〜第(M−1)層となるまで同様の処理を行う。 Soft decision section 7 performs soft decision again using the received signal after the interference cancellation process, obtains reliability information, and outputs the reliability information to sub symbol replica generation section 8 again. Then, after repeating the frequency domain equalization processing a predetermined number of times (i max described above), the number of layers to be processed is increased by one, and the same processing is performed. The same processing is performed until the processing target becomes the 0th to (M-1) th layers.

なお、本実施の形態では、軟判定出力を用いてサブシンボルレプリカを生成しているが、これに限らず、誤り訂正符号の復号結果を用いてサブシンボルレプリカを生成するようにしてもよい。図6は、誤り訂正符号の復号結果を用いてサブシンボルレプリカを生成する受信装置の構成例を示す図である。図6に示すように、この受信装置では、図3の周波数領域等化処理部5,サブシンボルレプリカ生成部8を、それぞれ等化処理部11,サブシンボルレプリカ生成部8aに替えている。そして、サブシンボルレプリカ生成部8aは、誤り訂正復号器10の復号結果を用いてサブシンボルレプリカを生成する。等化処理部11の処理は、周波数領域等化部5の処理と同様である。また、これ以外の処理は図3の受信装置と同様である。   In this embodiment, the sub-symbol replica is generated using the soft-decision output. However, the present invention is not limited to this, and the sub-symbol replica may be generated using the decoding result of the error correction code. FIG. 6 is a diagram illustrating a configuration example of a receiving device that generates a sub-symbol replica using a decoding result of an error correction code. As shown in FIG. 6, in this receiving apparatus, the frequency domain equalization processing unit 5 and the sub symbol replica generation unit 8 in FIG. 3 are replaced with an equalization processing unit 11 and a sub symbol replica generation unit 8a, respectively. Then, the sub symbol replica generation unit 8 a generates a sub symbol replica using the decoding result of the error correction decoder 10. The processing of the equalization processing unit 11 is the same as the processing of the frequency domain equalization unit 5. Other processing is the same as that of the receiving apparatus of FIG.

また、軟判定出力を用いたサブシンボルレプリカの生成と、誤り訂正符号の復号結果を用いたサブシンボルレプリカの生成とを切り替えて実施するようにしてもよい。図7は、軟判定出力を用いたサブシンボルレプリカの生成と誤り訂正符号の復号結果を用いたサブシンボルレプリカの生成とを切り替えて実施する受信装置の構成例を示す図である。図7に示す受信装置では、図6の受信装置の等化処理部11,サブシンボルレプリカ生成部8aを、それぞれ等化処理部11a,サブシンボルレプリカ生成部8bに替え、切替器12を追加している。切替器12を切り替えることにより、サブシンボル生成部8bへの入力を軟判定出力とターボ復号の復号結果とで切り替えることができる。   Further, the generation of the sub-symbol replica using the soft decision output and the generation of the sub-symbol replica using the decoding result of the error correction code may be switched. FIG. 7 is a diagram illustrating a configuration example of a receiving apparatus that performs switching between generation of a sub-symbol replica using a soft decision output and generation of a sub-symbol replica using an error correction code decoding result. In the receiving apparatus shown in FIG. 7, the equalization processing unit 11 and the sub symbol replica generation unit 8a of the receiving apparatus in FIG. 6 are replaced with the equalization processing unit 11a and the sub symbol replica generation unit 8b, respectively, and a switch 12 is added. ing. By switching the switch 12, the input to the sub-symbol generator 8b can be switched between the soft decision output and the decoding result of turbo decoding.

図7に示したような構成とすると、たとえば、符号化率を変えるような適応変調等を採用する場合に、符号化率の低い場合には誤り訂正復号器10からの信頼度情報を帰還させ、符号化率の高い場合には軟判定部7からの軟判定出力を帰還させるような、符号化率に応じた処理を実施することができる。また、自動再送要求等の再送に応じて処理を切り替えることもできる。また、早い応答が要求される場合には、軟判定部7からの軟判定出力を帰還させ、多少の遅延が許される場合には、誤り訂正復号器10より帰還させるというように、アプリケーションの要求仕様に基づいて切り替えることもできる。さらには、このような切り替えとレプリカ生成制御部9が指示する制御内容を変更することで、より柔軟なシステム設計を行うことも可能である。   If the configuration as shown in FIG. 7 is adopted, for example, when adaptive modulation or the like that changes the coding rate is adopted, the reliability information from the error correction decoder 10 is fed back when the coding rate is low. When the coding rate is high, processing according to the coding rate, such as feeding back the soft decision output from the soft decision unit 7, can be performed. In addition, processing can be switched according to retransmission such as an automatic retransmission request. Further, when a quick response is required, the soft decision output from the soft decision unit 7 is fed back, and when a slight delay is allowed, the error correction decoder 10 feeds back the application request. It can also be switched based on the specification. Furthermore, it is possible to design a more flexible system by changing the control content instructed by such switching and the replica generation control unit 9.

このように、本実施の形態では、多値変調されたシンボルをサブシンボルに階層化して復調を行う場合に、干渉成分のレプリカの精度が最も高いと推定される層についてはじめに信号処理/干渉キャンセルの処理対象とし、以下、レプリカの精度が高いと推定される順に処理対象の層を追加し、信号処理/干渉キャンセルを行うようにした。このため、低精度サブシンボルレプリカの使用に起因する誤差を避けることができ、高精度な信号検出が可能となる。また、信号検出精度を高めることができるため、送信電力を抑えた通信に適用することができ、通信システム全体としての省エネルギー化を図ることができる。   As described above, in the present embodiment, when multilevel modulation symbols are hierarchized into sub-symbols and demodulation is performed, signal processing / interference cancellation is first performed for a layer that is estimated to have the highest accuracy of interference component replicas. In the following, signal processing / interference cancellation is performed by adding layers to be processed in the order in which replica accuracy is estimated to be high. For this reason, it is possible to avoid an error due to the use of a low-precision sub-symbol replica, and it is possible to detect a signal with high accuracy. In addition, since the signal detection accuracy can be increased, it can be applied to communication with reduced transmission power, and energy saving as the entire communication system can be achieved.

以上のように、本発明にかかる受信装置および復調方法は、変調信号を受信して復調する受信装置に有用であり、特に、多値シンボルを階層化サブシンボルとして復調する受信装置に適している。   As described above, the receiving apparatus and the demodulation method according to the present invention are useful for a receiving apparatus that receives and demodulates a modulated signal, and are particularly suitable for a receiving apparatus that demodulates multilevel symbols as hierarchical subsymbols. .

本発明にかかる復調方法の実施の形態の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of embodiment of the demodulation method concerning this invention. 2MQAMシンボルのシンボル階層化の一例を示す図である。It is a figure which shows an example of the symbol hierarchization of a 2 2M QAM symbol. 本発明の復調方法を実現する受信装置の機能構成例を示す図である。It is a figure which shows the function structural example of the receiver which implement | achieves the demodulation method of this invention. 周波数領域等化部の機能構成例を示す図である。It is a figure which shows the function structural example of a frequency domain equalization part. 干渉キャンセル部の機能構成例を示す図である。It is a figure which shows the function structural example of an interference cancellation part. ターボ復号の復号結果を用いてサブシンボルレプリカを生成する受信装置の構成例を示す図である。It is a figure which shows the structural example of the receiver which produces | generates a sub symbol replica using the decoding result of turbo decoding. 軟判定出力を用いたサブシンボルレプリカの生成とターボ復号の復号結果を用いたサブシンボルレプリカの生成とを切り替えて実施する受信装置の構成例を示す図である。It is a figure which shows the structural example of the receiver which switches and performs the production | generation of the subsymbol replica using a soft decision output, and the production | generation of a subsymbol replica using the decoding result of turbo decoding.

符号の説明Explanation of symbols

1−1〜1−N 受信アンテナ
2―1〜2−N アナログ信号処理部
3−1〜3−N A/D変換部
4 チャネル推定処理部
5 周波数領域等化処理部
6 干渉キャンセル部
7 軟判定部
8,8a,8b サブシンボルレプリカ生成部
9 レプリカ生成制御部
10 誤り訂正復号器
11,11a 等化処理部
1-1 to 1-N reception antenna 2-1 to 2-N analog signal processing unit 3-1 to 3-N A / D conversion unit 4 channel estimation processing unit 5 frequency domain equalization processing unit 6 interference cancellation unit 7 soft Determination unit 8, 8a, 8b Sub-symbol replica generation unit 9 Replica generation control unit 10 Error correction decoder 11, 11a Equalization processing unit

Claims (7)

多値変調された受信信号の1シンボルを階層化された複数のサブシンボルとみなして、前記階層化の層単位で等化処理と干渉成分除去処理とを行う受信装置であって、
信号精度の最も高い層を前記各処理の処理対象として指示し、前記指示に基づく処理の終了後に、前記処理対象の層に前記処理対象の層以外の層の中で次に信号精度の高い層を追加し、信号精度の高い順に2つの層を次の処理対象として指示し、以降、前記階層化の全層が処理対象となるまで、前回の処理対象の層に対して次に信号精度の高い層を追加した結果を、処理対象として指示する制御手段と、
前記指示に基づいて処理対象の層のサブシンボルのレプリカであるサブシンボルレプリカを生成するサブシンボルレプリカ生成手段と、
前記サブシンボルレプリカに基づいて伝送路推定を行う伝送路推定手段と、
を備え、
前記伝送路推定手段の推定結果に基づいて前記等化処理を行い、前記サブシンボルレプリカに基づいて前記干渉成分除去処理を行うことを特徴とする受信装置。
A reception device that performs equalization processing and interference component removal processing for each layer of the hierarchies by regarding one symbol of a multilevel modulated reception signal as a plurality of sub-symbols,
A layer having the highest signal accuracy is designated as a processing target of each processing, and after the processing based on the instructions is completed, a layer having the next highest signal accuracy among the layers other than the processing target layer is provided to the processing target layer. The two layers are designated as the next processing target in descending order of signal accuracy, and the signal accuracy of the next processing target layer is subsequently increased until all layers in the hierarchization are processed. Control means for instructing the result of adding a higher layer as a processing target;
Sub-symbol replica generation means for generating a sub-symbol replica that is a replica of the sub-symbol of the layer to be processed based on the instruction;
Transmission path estimation means for performing transmission path estimation based on the sub-symbol replica;
With
A receiving apparatus, wherein the equalization process is performed based on an estimation result of the transmission path estimation unit, and the interference component removal process is performed based on the sub-symbol replica.
前記信号精度を前記サブシンボルごとの振幅、受信後のSNR(Signal to noise power ratio)、SINR(Signal to interference plus noise power ratio)または信頼度情報に基づいて決定することを特徴とする請求項1に記載の受信装置。   2. The signal accuracy is determined based on amplitude for each sub-symbol, SNR (Signal to noise power ratio) after reception, SINR (Signal to interference plus noise power ratio), or reliability information. The receiving device described in 1. 処理対象ごとに前記等化処理と前記干渉成分除去処理とを所定の回数にわたって繰り返し実行することを特徴とする請求項1または2に記載の受信装置。   The receiving apparatus according to claim 1, wherein the equalization process and the interference component removal process are repeatedly executed a predetermined number of times for each processing target. 前記サブシンボルレプリカ生成手段は、さらに前記受信信号の軟判定結果として得られる信頼度情報に基づいてサブシンボルレプリカを生成することを特徴とする請求項1、2または3に記載の受信装置。   4. The receiving apparatus according to claim 1, wherein the sub-symbol replica generating unit further generates a sub-symbol replica based on reliability information obtained as a soft decision result of the received signal. 前記サブシンボルレプリカ生成手段は、さらに前記受信信号の誤り訂正復号結果として得られる信頼度情報に基づいてサブシンボルレプリカを生成することを特徴とする請求項1、2または3に記載の受信装置。   4. The receiving apparatus according to claim 1, wherein the sub-symbol replica generation unit further generates a sub-symbol replica based on reliability information obtained as an error correction decoding result of the received signal. 前記多値変調された受信信号の1シンボルをQAMシンボルとし、前記サブシンボルをQPSKシンボルとすることを特徴とする請求項1〜5のいずれか1つに記載の受信装置。   6. The receiving apparatus according to claim 1, wherein one symbol of the multilevel modulated reception signal is a QAM symbol, and the sub-symbol is a QPSK symbol. 多値変調された受信信号の1シンボルを階層化された複数のサブシンボルとみなして、前記階層化の層単位で等化処理と干渉成分除去処理とを行う場合における復調方法であって、
信号精度の最も高い層を前記各処理の処理対象として指示し、前記指示に基づく処理の終了後に、前記処理対象の層に前記処理対象の層以外の層の中で次に信号精度の高い層を追加し、信号精度の高い順に2つの層を次の処理対象として指示し、以降、前記階層化の全層が処理対象となるまで、前回の処理対象の層に対して次に信号精度の高い層を追加した結果を、処理対象として指示する制御ステップと、
前記指示に基づいて処理対象の層のサブシンボルのレプリカであるサブシンボルレプリカを生成するサブシンボルレプリカ生成ステップと、
前記サブシンボルレプリカに基づいて伝送路推定を行う伝送路推定ステップと、
前記伝送路推定の推定結果に基づいて前記等化処理を行う等化処理ステップと、
前記サブシンボルレプリカに基づいて前記干渉成分除去処理を行う干渉成分除去ステップと、
を含むこと特徴とする復調方法。
A demodulation method in the case where one symbol of a multilevel-modulated received signal is regarded as a plurality of sub-symbols that are hierarchized, and equalization processing and interference component removal processing are performed in units of the hierarchies,
A layer having the highest signal accuracy is designated as a processing target of each processing, and after the processing based on the instructions is completed, a layer having the next highest signal accuracy among the layers other than the processing target layer is provided to the processing target layer. The two layers are designated as the next processing target in descending order of signal accuracy, and the signal accuracy of the next processing target layer is subsequently increased until all layers in the hierarchization are processed. A control step for indicating the result of adding a higher layer as a processing target;
A sub-symbol replica generation step of generating a sub-symbol replica that is a replica of the sub-symbol of the layer to be processed based on the instruction;
A channel estimation step for performing channel estimation based on the sub-symbol replica;
An equalization processing step for performing the equalization processing based on the estimation result of the transmission path estimation;
An interference component removal step for performing the interference component removal processing based on the sub-symbol replica;
A demodulating method.
JP2008192275A 2008-07-25 2008-07-25 Receiving apparatus and demodulation method Expired - Fee Related JP5036655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008192275A JP5036655B2 (en) 2008-07-25 2008-07-25 Receiving apparatus and demodulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008192275A JP5036655B2 (en) 2008-07-25 2008-07-25 Receiving apparatus and demodulation method

Publications (2)

Publication Number Publication Date
JP2010034672A JP2010034672A (en) 2010-02-12
JP5036655B2 true JP5036655B2 (en) 2012-09-26

Family

ID=41738693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008192275A Expired - Fee Related JP5036655B2 (en) 2008-07-25 2008-07-25 Receiving apparatus and demodulation method

Country Status (1)

Country Link
JP (1) JP5036655B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10785071B2 (en) 2017-03-06 2020-09-22 Mitsubishi Electric Corporation Communication apparatus and received signal processing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9154342B2 (en) * 2011-10-12 2015-10-06 Zte Wistron Telecom Ab Apparatus and method for cancelling in-band interferences
EP3595251B1 (en) 2017-03-09 2021-07-07 Mitsubishi Electric Corporation Transmitter apparatus, receiver apparatus, communication system and transmission method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1521414B1 (en) * 2003-10-03 2008-10-29 Kabushiki Kaisha Toshiba Method and apparatus for sphere decoding
JP2006166382A (en) * 2004-12-10 2006-06-22 Samsung Yokohama Research Institute Co Ltd Wireless receiver, wireless communication system, channel estimation method and computer program
JP4294595B2 (en) * 2005-01-18 2009-07-15 日本電信電話株式会社 Transmission coefficient estimation circuit and transmission coefficient estimation method
JP4429945B2 (en) * 2005-03-23 2010-03-10 株式会社エヌ・ティ・ティ・ドコモ MIMO multiplex communication apparatus and signal separation method
JP2007028054A (en) * 2005-07-14 2007-02-01 Matsushita Electric Ind Co Ltd Interference cancel apparatus and interference cancel method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10785071B2 (en) 2017-03-06 2020-09-22 Mitsubishi Electric Corporation Communication apparatus and received signal processing method

Also Published As

Publication number Publication date
JP2010034672A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP5030279B2 (en) Wireless communication apparatus and wireless communication method
JP4503629B2 (en) Apparatus and method for generating log-likelihood ratio in multi-antenna communication system
KR100892104B1 (en) Apparatus and method for generating llr in mimo communication system
KR100895992B1 (en) Apparatus and method for increasing the number of antennas in wireless communication system using multiple antennas
US8213540B1 (en) System and method of transmit beam selection
CN110679093B (en) Estimation of channel conditions
CN103685101A (en) Receiver with multi layer interference cancellation
JP2010062944A (en) Wireless communications system, wireless reception device, and wireless transmission device
WO2017183631A1 (en) Los-mimo demodulation device, communication device, los-mimo transmission system, los-mimo demodulation method and program
JP2008205697A (en) Mimo receiver and reception method
JP5036655B2 (en) Receiving apparatus and demodulation method
WO2013141074A1 (en) Reception device, post-decoding likelihood calculation device, and reception method
JP5178632B2 (en) OFDM array receiver
EP4128598A1 (en) Estimation method of discrete digital signals in noisy overloaded wireless communication systems with csi errors
JP2009060177A (en) Radio communication device and radio reception method
JP2014060616A (en) Communication device and signal detection method
JP2008258899A (en) Receiver and receiving method
JP2005341131A (en) Mimo wireless signal transmission system and method therefor
KR100960418B1 (en) Apparatus and method for receiving signal in a communication system
JP5765105B2 (en) Receiving apparatus and receiving method
KR100945101B1 (en) Apparatus and method for receiving signal in a communication system
JP5207698B2 (en) Reception device and transmission path estimation method
AU2020369979B2 (en) M-MIMO receiver
KR101182153B1 (en) Device and method for controlling decoding order
KR101013704B1 (en) Apparatus and method for receiving data in broadband wireless communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5036655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees