JP5035772B2 - 多殻構造材料及びその一軸圧縮試験方法 - Google Patents

多殻構造材料及びその一軸圧縮試験方法 Download PDF

Info

Publication number
JP5035772B2
JP5035772B2 JP2007166980A JP2007166980A JP5035772B2 JP 5035772 B2 JP5035772 B2 JP 5035772B2 JP 2007166980 A JP2007166980 A JP 2007166980A JP 2007166980 A JP2007166980 A JP 2007166980A JP 5035772 B2 JP5035772 B2 JP 5035772B2
Authority
JP
Japan
Prior art keywords
shell
specimen
shell structure
compression test
structure material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007166980A
Other languages
English (en)
Other versions
JP2009002124A (ja
Inventor
和夫 谷
久也 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2007166980A priority Critical patent/JP5035772B2/ja
Publication of JP2009002124A publication Critical patent/JP2009002124A/ja
Application granted granted Critical
Publication of JP5035772B2 publication Critical patent/JP5035772B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、多殻構造材料及びその一軸圧縮試験方法に関するものであり、より詳細には、多数の空殻を内部に有し、トリ・リニア型の応力−ひずみ関係において破壊前の高い剛性及び強度と破壊後の高い圧縮性及びエネルギー吸収性を特徴とする多殻構造材料と、このような多殻構造材料の一次元圧縮特性を調べるための圧縮試験方法に関するものである。
大規模地震発生時に生じる断層変位現象が知られているが、建築物等の比較的小規模な構造物の場合は、断層変位が生じ得る地盤を避けて構造物を構築することにより、断層変位に起因する構造物の損傷・破壊を防止することができる。このため、構造物の地震対策に関する過去の研究・開発の努力は、主として、構造物自体の耐震性又は耐震強度や、構造物に組込まれる制振構造又は免震構造の開発等に向けられてきた。
これに対し、鉄道、道路、パイプライン等のように地域間を連なる交通・輸送機関の場合、断層を横断した配置を採用せざるを得ない状況が比較的多く生じる。しかし、断層変位に起因した構造物の損傷又は破壊は、構造物自体の構造的改良のみによっては防止し難い。例えば、近年発生した大規模地震においては、断層変位によってダム堤体が破壊され、橋桁が落下し、或いは、鉄道又は道路が寸断される事例が確認されている。本発明者は、このような事情を考慮し、断層変位に起因する地盤のせん断変形を分散させることにより、構造物の被害を緩和する地盤改良方法を特願2001−316161号(特開2003−119765号公報)において提案している。
特開2003−119765号公報
上記特許文献1において提案したように、断層変位を吸収する変形吸収層を構造物の断層横断部分に適切に配設することにより、断層変位の発生時に断層のずれ変位を吸収し、構造物の変形又は破損を抑制することが可能となると考えられる。このような変位吸収層の材料として、破壊前の剛性及び強度が高く、破壊後の圧縮性及びエネルギー吸収性能が高い軽量な材料を採用することが望ましい。
このような変形吸収層の材料として、微細な空隙、気泡等を多量に含む構造材料、例えば、粗骨材間の空隙に対するモルタルの充填率を低く抑えた軽量コンクリート、発泡材料を粗骨材として使用した軽量コンクリート、多量の気泡をモルタル中に含むALC等の気泡コンクリート、或いは、空隙に発泡性樹脂を充填したコンクリート等を使用し得るかもしれない。
しかしながら、この種のコンクリート材料は、十分な構造強度を発揮する一方、重量がかなり大きく、軟弱地盤に設置することは困難であり、仮に設置し得たとしても、大型且つ高コストの基礎を設ける必要が生じる。しかも、従来のコンクリート材料では、破壊前に高い剛性及び強度を発揮する性質と、破壊後に大きな圧縮性(エネルギー吸収性)を発揮する性質とを両立し難く、例えば、空隙又は気泡の密度を増大してコンクリート材料の比重又は密度を低下させると、破壊後の圧縮性は向上するが、反面、破壊前の剛性及び強度は低下してしまう。即ち、構造物の形態及び強度を通常時に維持する一方、地震時又は衝撃時に変形、衝撃を十分に吸収する機能を発揮する軽量なコンクリート材料は、過去に開発されていない。
また、この種の材料を研究・開発する場合には、材料の一次元圧縮特性を調べる圧縮試験を実施する必要がある。しかしながら、従来の一軸圧縮試験では、供試体の側方変位が許容されるので、一次元圧縮状態を維持することはできない。また、標準圧密試験や、摩擦低減材料を側面に設けた圧縮試験では、大変位時に過大な側面摩擦が生じるので、やはり一次元圧縮状態を保つことができず、適用可能な材料も低剛性の材料に限定されてしまう。
本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、破壊前の剛性及び強度が高く、しかも、地震時の断層変位に起因した地盤の変形により圧壊し、圧壊時の圧縮により高いエネギー吸収性を発揮する軽量な構造材料を提供することにある。
本発明は又、供試体の側方変位を概ね拘束するとともに、摩擦低減材料を供試体の側面に設けることなく、破壊後の大変形時まで一次元圧縮状態を維持することができる圧縮試験方法を提供することを目的とする。
本発明は、上記目的を達成すべく、少なくとも20mmの外形寸法を有し、所定容積の空間に予め密に充填された多数の中空構造の空殻と、該空殻の間に形成された間隙に充填されて硬化した流動性充填材料の硬化体とから構成される複合材料からなり、
前記空殻の殻体は、前記充填材料の硬化体からなる構造用マトリックスによって一体的に接合されており、
前記構造用マトリックスが、前記複合材料の全域に拡がり且つ連続した多殻構造材料であって
前記構造用マトリックスは、前記多殻構造材料の一次元圧縮特性に基づいて予め設定された圧縮力を超える圧縮力により破壊して前記空殻を圧壊せしめ、前記多殻構造材料を圧縮変形させるようになっており、
前記多殻構造材料の一次元圧縮特性は、該多殻構造材料の供試体の高さ方向に間隔を隔てて配置された複数の剛性環状部材によって、前記供試体の外周面にせん断応力を実質的に作用させずに前記供試体の側方変位を拘束して前記供試体を軸方向に一次元圧縮する一次元圧縮試験によって求められたことを特徴とする多殻構造材料を提供する。
本発明において、構造用マトリックスは、セメントモルタル、セメントペースト、コンクリート、樹脂、石膏、水ガラス等の流動性材料の硬化体である。多数の空殻を有する本発明の多殻構造材料は、微細な気泡を混入した気泡コンクリート等の構造材料と比べ、遥かに軽量である。例えば、単一粒径の球形空殻を型枠内の閉鎖空間に密に充填した場合、充填率(全体容積に対する空殻部分の容積の比(体積比))は、最密充填において0.74であり、ランダム密充填において0.64である。殻体の重量を無視し、構造用マトリックスの密度が2.3g/cm3であると仮定すると、多殻構造材料の密度は、最密充填において0.60 g/cm3であり、ランダム密充填において0.83 g/cm3である。
空殻は、例えば、合成樹脂、金属、セミックス、ゴム又はエラストー等の殻材を有する中空体からなり、少なくとも、流動性充填材料の充填時に変形しない程度の剛性を有する。
空殻の殻体は、硬化後の充填材料に接着する。間隙に充填された構造用マトリックスは、多殻構造材料全域に拡がり且つ連続し、従って、多殻構造材料は、高い剛性及び強度を発揮する。他方、多殻構造材料は、構造用マトリックスが破壊すると、空殻の圧壊により、容積を大きく低減させる。即ち、多殻構造材料は、常時は、剛性及び強度が高く、破壊後に大きく圧縮し、高いエネルギー吸収性を発揮する。なお、このような多殻構造材料においては、比較的広範な軸ひずみ範囲において低剛性の傾向が顕れるトリ・リニア型の軸応力−軸ひずみ特性が得られる。これは、本発明者の実験で既に確認されている。
断層を横断するトンネル構造物等に関し、本発明の多殻構造材料を使用した変形吸収層を設けた場合、変形吸収層は、予め設定された範囲内の圧縮力を受けた状態では、地圧に抗する一方、断層変位時に設定範囲を超える圧縮力を受けたときに容積を大きく減少させ、地盤の変形エネルギーを吸収する。
本発明は又、少なくとも20mmの外形寸法を有し、所定容積の空間に予め密に充填された多数の中空構造の空殻と、該空殻の間に形成された間隙に充填されて硬化した流動性充填材料の硬化体とから構成される複合材料からなり、前記充填材料の硬化体からなる構造用マトリックスによって前記空殻の殻体を一体的に接合するとともに、前記構造用マトリックスを前記複合材料の全域に拡げ且つ連続せしめてなる多殻構造材料の供試体を軸方向に一次元圧縮する圧縮試験方法であって
前記多殻構造材料の一次元圧縮特性を求めるために、前記供試体の高さ方向に間隔を隔てて配置された複数の剛性環状部材によって、前記供試体の外周面にせん断応力を実質的に作用させずに前記供試体の側方変位を拘束することを特徴とする圧縮試験方法を提供する。
破壊前の剛性及び強度が高く、破壊後の圧縮量が大きい多殻構造材料の力学特性は、トリ・リニア型の応力−ひずみ関係によって代表されると考えられるが、従来の一軸圧縮試験方法では、このような力学特性を正確に測定することができなかった。しかしながら、本発明者の実験によれば、供試体の高さ方向に間隔を隔てて配置した複数の剛性環状部材によって供試体の外周面を拘束した状態で供試体を軸圧縮すると、供試体の外周部にせん断応力を実質的に生じさせずに供試体を大きく圧縮変形させることができると判明した。この供試体の側方変位を剛性環状部材により拘束する方法によれば、破壊後の大変形時まで一次元圧縮状態を維持することができ、しかも、摩擦低減材料を供試体の側面に設ける煩雑な作業は、必要とされない。即ち、本発明の圧縮試験方法は、前述の多殻構造材料の力学特性を判定する上で実用的に使用可能な圧縮試験方法である。なお、本発明の多殻構造材料に関する力学的性質の解明や、多殻構造材料からなる変形吸収層の数値解析は、本発明の試験方法によって得られた各種データに基づいて初めて可能となったものである。
本発明の好適な実施形態において、多殻構造材料は、地盤の変形によって圧縮力を受けるように配置され、前述の構造用マトリックスの破壊時に生じるエネルギー吸収作用によって地盤の変形を吸収する変形吸収層を構成する。変形吸収層は、断層を横断するトンネル構造物等の人工構造物に配設される。変形吸収層は、地震時の断層変位を吸収し、人工構造物に作用する外力を低下させ、これにより、人工構造物の損傷を緩和する。このような変形吸収層によれば、断層を横断するトンネル構造物等の人工構造物を地震時の断層変位から保護することが可能となる。
本発明の多殻構造材料を物体衝突時の衝撃緩和手段、緩衝材又は緩衝手段として使用し、或いは、構造物の軽量化を企図して使用される軽量な構造材料として使用しても良い。好ましくは、空殻間の充填材料は、セメント系組成物からなり、多殻構造材料は、軽量なセメント系構造材料を構成する。
本発明の好適な実施形態に係る多殻構造材料試験方法においては、各剛性環状部材は、供試体の外径と実質的に同じ寸法の内径を有する真円形環状部材からなる。複数の剛性環状部材は、前記供試体の高さ方向に等間隔に配置される。更に好ましく、円柱状供試体の側面は、薄い膜状の被覆材(ネット等)で被覆され、剛性環状部材は、被覆材の外側に配置される。このような試験治具の使用により、破壊後の大変形時まで、材料の一次元圧縮特性を測定することができる。なお、剛性環状部材の間隔は、破壊時に破砕片が過度にはみ出すことを防止可能な程度に設定される。また、剛性環状部材の幅と個数は、必要とする圧縮量の大きさより定めることが望ましい。
本発明の多殻構造材料の製造方法においては、上記構成の多殻構造材料の供試体を用いた前述の一次元圧縮試験が行われ、空殻の形状又は寸法、或いは、粒度組成の調整により、間隙率又は充填率が調整される。好ましくは、空殻の形状の設定、空殻の寸法の設定、空殻の粒度組成の調整、充填材料の素材の選択、及び/又は、充填材料の物性の調整により、多殻構造材料の破壊前の剛性及び強度が調整されるとともに、破壊後の圧縮変形の大きさが調整される。
図1(A)は、平滑化層、吸収層、継手構造及び摩擦除去層を備えたトンネル構造体の概略平面図である。図1(B)、図1(C)及び図1(D)は、吸収層を備えた鉄道用トンネル構造物の構成を示す平面図及びI−I線断面図である。
図1(A)には、断層2を有するトンネル周辺の地盤1が示されている。断層2は、トンネル構造物10に対して交角αの方向に延びる。大規模な地震によって矢印Fで示す断層変位がトンネル周辺の地盤1に発生し得ると仮定される。近年発生した国内外各地の大型地震では、断層変位に起因すると推定されるトンネル覆工コンクリートの大規模崩落が確認されている。トンネル構造物10は、一般的なトンネル構造物と同じく、無筋構造の覆工コンクリート11によって全体的に施工されるが、断層2に跨がる所定距離の範囲βのトンネル部分14は、このような断層変位に依る覆工の損傷を防止すべく、鉄筋コンクリート構造又は繊維補強コンクリート構造等の補強構造を備えた覆工コンクリート12によって施工される。無筋の覆工コンクリート11で施工された低剛性のトンネル部分13と、補強構造を含む覆工コンクリート12で施工された高剛性のトンネル部分14との間には、トンネル構造物10の軸方向変位(軸方向の伸縮)を許容する継手構造15が介装される。
断層2の両側に跨がる範囲βの地盤には、高剛性のトンネル部分14と関連した吸収層3及び摩擦除去層4が配設される。吸収層3は、断層変位時に圧縮力が作用する側において、トンネル部分14と原地盤1との間に配置される。吸収層3は、常時は、トンネル部分14の覆工コンクリート12を安定的に支持する高い剛性を発揮するが、断層変位発生時には、断層2のずれ変位を吸収するように降伏し、高い圧縮性を発揮する。摩擦除去層4は、断層変位に伴ってトンネル構造物10に軸方向変位が生じたときに、トンネル周辺の地盤1に対する局所的なトンネル構造物10の軸方向挙動を可能にする。
図1(B)及び図1(D)には、吸収層3を備えた鉄道用トンネル構造物10の構成が概略的に示されている。補強工17を備えた覆工コンクリート12が、断層2を跨がる所定距離の範囲L2のトンネル部分14に施工される。補強工17は、トンネル構造物10の曲げ剛性を高める鉄筋コンクリート等からなる。断層2から離間した範囲L3のトンネル部分13は、無筋の覆工コンクリート11によって施工される。
断層2を跨がる所定距離の範囲L1には、吸収層3が配置される。吸収層3は、高い初期剛性を発揮する一方、降伏後の体積圧縮量が極めて大きい材料によって施工される。図1(C)には、断層変位Fによって断層2のずれ変位が発生した状態が示されている。吸収層3は、断層変位Fによって圧縮し、ずれ変位を少なくとも部分的に吸収し、トンネル構造物10の破壊を防止する。
なお、トンネル構造物10の底部には、図1(D)示すようにインバート18が施工される。また、図1(B)〜図1(D)においては、図1(A)に示す摩擦除去層4及び継手構造15は、図示を省略されている。
本発明者は、吸収層3の材料として、剛壁に囲まれた空隙を多量に含む後述の多殻構造材料を提案する。このような材料の成立性及びその特性を検証し且つ調査するには、円柱形供試体の側方向変位を拘束した一次元圧縮条件下において材料の応力−ひずみ関係を求めなければならない。しかし、側面に作用する直応力をゼロ又は一定値に維持する従来の一軸又は三軸圧縮試験方法では、軸圧縮の際に供試体の半径方向に変位が生じてしまう問題がある。他方、剛な円筒セル内で一次元圧縮する圧密試験では、側面に過大なせん断応力が作用する。このため、従来の一軸又は三軸圧縮試験方法及び圧密試験では、軸圧縮時に供試体の側面に過大な摩擦応力が発生しないように供試体の側方変位を拘束することができない。即ち、上記吸収層3を構成する新材料を開発するには、新材料の特性を検証し且つ調査する圧縮試験方法及びその治具を先ず開発する必要がある。本発明者は、このような事情より、以下に説明する試験方法及び側方変位の拘束治具を提案する。
吸収層構成材料の供試体が満たすべき条件は、以下の三点である。
(1)供試体は、内部応力及びひずみが一様に分布する要素である。
(2)供試体は、その両端面及び側面が主応力面である(即ち、拘束治具を取付ける供試体の側面にせん断応力が作用してはならない)。
(3)供試体は一次元圧縮(側方向ひずみ=0%)し、最大軸ひずみは、数十パーセントである。
上記条件(2)及び(3)を満たすためには、剛な拘束治具を用いる必要があるのみならず、供試体及び拘束治具の接触面における両者の相対変位を小さくする必要があり、従って、拘束治具も又、軸方向に圧縮又は変位することが望ましい。
図2(A)には、環状の鋼製部材を供試体Tの側面に一定間隔Sに配置した構成のリング型治具20が示されている。図2(B)には、螺旋状の鋼製部材を供試体の側面に設置した構成のスパイラル型治具30が示されている。
図2(A)に示すリング型治具20は、供試体Tの頂面に面接触する円形鋼板21と、上下方向に所定間隔Sを隔てて供試体外周に配置された複数の鋼製リング部材22とから構成される。図2(B)に示すスパイラル型治具30は、供試体Tの頂面に面接触する円形鋼板31と、上下方向に所定間隔Sを隔てて供試体外周に配置された連続螺旋形態の鋼製螺旋部材32とから構成される。鋼製リング部材22及び鋼製螺旋部材32は、糸等の線材23、33によって鋼板21、31に懸吊される。鋼板21、31の直径Dsは、供試体Tの直径Dよりも大きい。
リング型治具20又はスパイラル型治具30を用いた場合、供試体Tの側方向への膨出変形を阻止できる程度に無拘束部分の間隔Sを小さく設定すれば、供試体T全体としての側方向ひずみを微小に保つことができる。鋼製リング部材22は、リング高Bの範囲において供試体Tを拘束するにすぎない。しかし、鋼製螺旋部材32は、供試体Tの側方変位を拘束し得るものの、鋼製螺旋部材32自体の軸方向の剛性が高いために、供試体Tの側面にせん断応力が実質的に発生することが懸念される。このため、以下の実験においては、前述の条件(1)〜(3)を確実に充足し得るリング型治具20が採用された。
本発明者は、リング型治具20を使用して一軸圧縮試験を実施した。実験は、岩石の一軸圧縮試験(JGS 2521-2000)に準拠して行われた。石膏、豊浦砂及び水の混練材料が直径D=50mm、高さH=100mmの円柱供試体用モールド内に打設され、所定の硬化・養生期間(24時間)を経て供試体Tが製作された。なお、石膏:砂:水の配合(重量比)は、1.4:0.8:1.0である。
一軸圧縮試験では、供試体T上に鋼板21が載せられ、間隔Sを隔てた複数の鋼製リング部材22が、4本の線材23によって鋼板21に懸吊された。鋼板21の直径Dsは100mmであり、板厚は1mmである。なお、図2には、矩形断面を有する鋼製リング部材22が示されているが、一軸圧縮試験においては、円形断面を有する鋼製リング部材22が使用された。鋼製リング部材22の断面直径(=高さB)は、約6mmである。
図3及び図4は、供試体Tを用いた一軸圧縮試験の試験状況を示す正面図である。
図3に示す一軸圧縮試験(以下、「試験1」という。)では、6体の鋼製リング部材22を備えたリング型治具20が使用された。鋼製リング部材22の間隔Sは、12mmであり、間隔S/リング高B=約2に設定された。
図4に示す一軸圧縮試験(以下、「試験2」という。)では、3体の鋼製リング部材22を備えたリング型治具20が使用された。鋼製リング部材22の間隔Sは35mmであり、間隔S/リング高B=約6に設定された。
試験1、2において、載荷装置(図示せず)は、載荷速度0.3%/minの変位制御下に作動され、軸荷重Pは、供試体Tの下側に設置されたロードセル(荷重計)によって計測され、軸ひずみは、載荷板(鋼板21)に設置された変位計によって計測された。なお、試験2では、供試体Tの外面は、伸縮性を有するストッキング素材等のネット材(図示せず)によって被覆された。
試験1、2のいずれの試験においても、鋼製リング部材22の間隔Sは、供試体Tの圧縮変形に伴って均等に縮小し、供試体Tは、一様に圧縮した。
試験1では、2.5%<軸ひずみεaの状態で、鋼製リング部材22の間に位置する供試体Tの部分に亀裂が発生した。0.5mm以下の粒子が亀裂から僅かに外側に崩落することが観察された。25%<軸ひずみεaの状態では、亀裂密度が増大し、粒子の崩落量は増加した。εa=40%に達した時点で中央の鋼製リング部材22が破断した(破断部25として図3(C)に示す)。しかしながら、試験1においては、供試体Tの半径方向の膨らみは、目視では観察されなかった。
他方、試験2では、鋼製リング部材22の間に位置する供試体Tの部分から0.5mm以下の粒子が多量に崩落してネット内に滞留し、ネット材は10mm以上外側に膨らみ、最終的には、破断した供試体Tの数mm程度の細片の集合体が20mm以上外側に膨み出る部分も観られた。従って、間隔S=35mmを隔てた3体の鋼製リング部材22では、供試体Tを十分に拘束できないことが判明した。
図5は、図3及び図4に示す一軸圧縮試験によって測定された軸応力σa及び軸ひずみεaの関係を示す線図である。
試験1では、供試体Tは、軸ひずみεa=約1%で、軸応力σa=12.7MPaに達した後、過渡的に軸応力σaが低減したが、軸応力σaは、その後、再び増大した。供試体Tは、εa=2.5%において剛性を急に低下させ、εa=2.5〜25%の範囲では、概ね一定の剛性を示した。供試体Tは、εa=25〜36%の範囲で剛性を若干増大させた後、εa=36%において過渡的に軸応力σaを減少させ、しかる後、εa=約37〜42%の範囲で再び剛性を増大させる傾向を示した。軸ひずみεa及び軸応力σaの測定は、εa=42%において鋼製リング部材22が破断部25で破断した時点まで継続された。
試験2において測定された軸応力σa及び軸ひずみεaの関係も又、図5に示されている。図5を参照すると、供試体Tは、軸ひずみεa=1%程度でピーク応力を示して軟化した後、軸ひずみεa=2%程度で再び軸応力σaを増加させる傾向を示した。しかしながら、軸応力σaは、軸ひずみεa=約2.5%において再び減少に転じ、その後は、軸応力σaの増加は観られず、εa>6%の範囲で緩やかな軸応力σaの減少が観られるにすぎなかった。
図3及び図4に示す供試体Tの破壊状況より把握し得るように、鋼製リング部材22の間隔Sは、均等に狭まる傾向を示すので、軸ひずみεaは、供試体Tに概ね一様に生じる。側方向の変位の拘束については、試験1では、鋼製リング部材22による拘束が可能であったのに対し、試験2では、鋼製リング部材22による拘束を行うことができなかった。これは、試験2では鋼製リング部材22の間隔Sが過大(間隔S/リング高B=約6)であり、供試体Tの破壊に伴う破片の崩落を鋼製リング部材22によって阻止できなかったことに起因すると考えられる。多数の空隙を含む供試体Tの圧縮試験を想定すると、空隙の直径よりも間隔Sが小さく、また、S/B<1〜2であれば、鋼製リング部材22によって供試体Tの側方変位を確実に拘束し得ると考えられる。
図6は、軸応力σa及び軸ひずみεaの関係をモデル化して示す線図である。
上記試験によって測定された軸応力σa及び軸ひずみεaの関係(図5の試験1)には、供試体Tと鋼製リング部材22との間に初期的に存在する僅かな間隙や、鋼製リング部材22の破断等がかなり影響しているものと考えられる。これらの影響を除外すると、軸応力σa及び軸ひずみεaの関係を図6に示す如くモデル化することができる。
図6に示す軸応力σa及び軸ひずみεaの特性線は、トリリニア型の応力−ひずみ関係を示しており、高剛性材料の応力−ひずみ特性を示すゾーンI、IIIと、低剛性材料の応力−ひずみ特性を示すゾーンIIとから構成される。前述の吸収層3(図1)を構成する材料として有効に機能するには、ゾーンIIに相当する軸ひずみεaの範囲を可能な限り大きく設定し得る材料であることが望ましく、また、地震力に対するトンネル構造物10の負荷を軽減するには、ゾーンIIの剛性値EIIを可能な限りゼロに近づけることができる材料であることが望ましい。
本発明者は、剛壁に囲まれた空隙を多量に含む多殻構造材料を吸収層3(図1)の材料として提案すべく、図7〜図9に示す構造の多殻構造材料(多殻モルタル)を試作し、吸収層3の応力−ひずみ関係を図10に示す如くモデル化し、これにより、断層変位を受けるトンネル構造物10における損傷緩和効果を調べ、多殻モルタルを用いた吸収層3の適応性を検討した。
図7は、多数の空殻を所定容積の閉鎖空間に最密充填した状態を示す正面図であり、図8は、閉鎖空間に充填材料(セメントモルタル)を流し込んだ状態を示す正面図である。また、図9は、多殻モルタルの部分拡大断面図である。
図7に示す如く、硬質又は半硬質合成樹脂の中空球体からなる多数の空殻50が、型枠(図示せず)によって形成された閉鎖空間内に充填(プレ・パックド)される。流動状態のセメントモルタル60が、図8に示すように型枠内に注入される。空殻50の間に形成された間隙51は、閉鎖空間の全域に亘って連続するので、セメントモルタル60は、図9に示す如く、間隙51に密実に充填される。空殻50の直径Drは、例えば、20〜60mm程度に設定される。セメントモルタル60が乾燥・硬化した後、空殻50及びセメントモルタル60を一体化した多殻モルタルの硬化体が型枠から脱型される。かくして、空殻50の間の間隙51には、セメントモルタル硬化物65が構造用マトリックスとして充填され、空殻50の内部には、空気層(空隙)55が形成された多殻モルタル硬化体が成形される。構造用マトリックスを構成する硬化物65は、多殻モルタル全域に連続するとともに、空殻50の球殻52に付着し、球殻52を相互接着する。硬化物65の構造用マトリックスが球殻52の回転又は滑りを阻止することにより、多殻モルタル硬化体の高い剛性及び強度が得られ、かくて、多殻モルタル硬化体は、全体として高い剛性及び強度を発揮する。
空殻50の形状や寸法(又は粒度組成)により、間隙率(又は充填率)を調整することができる。空殻50の形状及び寸法(又は粒度組成)の設定、材料の選択、間隙51に充填される充填材料の選択により、多殻モルタルの破壊前の剛性及び強度を調整するとともに、破壊後の圧縮変形の大きさを調整することができる。
上記空殻50のような単一粒径(直径Dr)の球形粒子(球殻52)を用いた場合の充填率(全容積に対する空殻部分の容積の比(体積比))は、最密充填0.74、ランダム密充填0.64である。球殻52の重量を無視し、セメントモルタルの密度を2.3g/cm3として計算すると、空殻50を含むコンクリートの密度は、最密充填0.60 g/cm3、ランダム密充填0.83 g/cm3である。なお、この密度は、空殻50の形状・寸法(粒度組成)を設定変更することより、更に低減することができる。
充填材料として、セメントモルタルに換えて、コンクリートを使用しても良い。充填材料の打設(型枠内充填)を容易にすべく、高流動型又は自己充填型のセメントモルタル又はコンクリートを使用することが望ましい。水ガラス、石膏、樹脂等の流動材料を充填材料として使用することも可能である。
流動性が高いセメントモルタル又はコンクリート等の充填材料を型枠内に打設する場合、確実な充填のために打設空間の下部から充填材料を型枠内に導入することが望ましい。打設中に空殻50が浮上し又は浮遊することがないように、空殻50は打設空間全域に密に充填される。
空殻50の外形は、球体に限定されるものではなく、多面体、楕円体、偏平球体、不定形立体等の他の輪郭のものであっても良い。空殻50の型枠内充填率を空殻50の外形及び寸法によって設定することができる。また、空殻50の表面の粗度を高め、或いは、空殻50の表面に突起、凹凸、不陸部等を設けることにより、空殻50同士の接触部の摩擦を高めるとともに、充填材料との付着力を高めることができる。
図10は、このような構成を有する多殻モルタル硬化体の応力qa−ひずみεa関係を示す線図である。
本発明者は、空殻50として直径約40mmのピンポン玉(卓球ボール)を型枠内に最密充填し、セメントモルタルを型枠内に充填して多殻モルタル(多殻構造材料)を試作した。多殻モルタルの応力−ひずみ関係は、図10に示す如く、トリリニアモデルで示すことができる。
図10に示すトリリニアモデルを構成する地盤パラメータqI,qII,εI,εII,EIIIと、セメントモルタルの水セメント比W/C及び一軸圧縮強さquとの関係について検討したところ、図11に示す水セメント比W/C及び一軸圧縮強さqu の関係と、図12に示すセメントモルタルの一軸圧縮強さqu 及び多殻モルタルの地盤パラメータの関係が得られた。本発明者は、これらの関係を基に、多殻モルタルの応力−ひずみ関係を求め、トンネル構造物10における多殻モルタル(多殻モルタル硬化体)の作用について数値解析を行った。なお、トンネル構造物10が常時の列車荷重に耐えるには、一軸圧縮強さqu>1.4MPaを確保しなければならない。
数値解析に用いた計算モデルは、トンネル構造物10を梁と仮定し、吸収層3及びトンネル周辺地盤1の地盤反力を離散型ばねと仮定してモデル化したものであり、水セメント比W/C=50%、80%の2ケースについて多殻モルタルの緩和効果が検討された。また、数値解析において、トンネル周辺の地盤1は、硬岩に設定され、トンネル断面は、外径11m、内径10mに設定され、吸収層3の厚さは、1.25mに設定された。吸収層3の設置領域は、断層2の両側35mの区間に設定され、トンネル構造物10と断層2との交角αは、90°に設定された。また、断層変位Dfは、0.1m、0.3m、0.5m、1mの4 段階に設定された。数値解析は、トンネル延長500mの範囲で行われた。
評価項目は、トンネル断面の曲げモーメントMと、トンネル軸の折れ角θcである。折れ角θcは、列車が走行中に脱線しないための制限値であり、100km/h、200km/h、300km/hの走行車両に対する制限値が一般に規定されている。
図13には、断層変位Df=0.5mにおける曲げモーメントM及び折れ角θcの分布が示されている。曲げモーメントMは、概ね断層位置においてゼロを示し、断層位置±10mの位置において正負のピーク値を示している。折れ角θcは、断層位置においてゼロを示し、断層位置±6mの位置において正負のピーク値を示している。断層変位Df=0.5mにおいては、曲げモーメントMは、配合(W/C)の相違に依る影響をほとんど受けないと考えられる。これに対し、折れ角θcは、水セメント比W/C=80%のセメントモルタルを用いた場合、水セメント比W/C=50%のセメントモルタルを用いた場合に比べて、約0.02(rad)だけ小さく顕れている。
数値解析で得られた曲げモーメントM及び折れ角θcの最大値によって設計許容値を除すことにより求められた安全率が、図14に示されている。
図14(A)に示す如く、曲げモーメントについては、水セメント比W/C=50%、80%の2ケース共、断層変位Df=0.1mにおいて安全率が1を超える。また、W/C=80%の場合、断層変位Df=0.2mであっても安全率が1を超える。
図14(B)に示すように、折れ角θcについては、水セメント比W/C=50%の場合、断層変位Df=0.1mにおいては、列車が200km/hで走行していた場合であっても、安全率が1 を超えることが判明した。水セメント比W/C=80%の場合には、断層変位Df=0.3mにおいて列車が100km/hで走行したとしても、安全率が1 を超え、また、断層変位Df=0.1mでは、列車が300km/hで走行したとしても、安全率が1 を超えることが判明した。
以上の解析より、多殻モルタルを用いた吸収層3は、断層変位を受けるトンネル構造物10の損傷を緩和すると考えられる。また、以上の解析より、次の点が判明した。
(1)水セメント比W/C の値が高いほど、多殻モルタル吸収層の緩和効果が向上する。
(2)水セメント比W/C=50%の配合では、断層変位Df=0.1mまで所望の緩和効果が得られる。
(3)水セメント比W/C=80%の配合では、断層変位Df=0.2mまで所望の緩和効果が得られる。
かくして、多殻モルタルは、断層変位を受けるトンネル構造物10の損傷を緩和するための吸収層3として適応することが確認された。
以上、本発明の好適な実施例について詳細に説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。
例えば、上記実施例においては、鉄道用トンネル構造物を例示したが、本発明は、断層を横断する高速道路、高架道路、大規模建設物等の各種構造物に同様に適用し得るものである。
また、本発明の多殻構造材料は、列車、船舶等の衝突時の衝撃緩和を目的とした防舷材等の衝撃吸収帯や、従来の軽量コンクリートよりも更に軽量なセメント系軽量構造材料として使用しても良い。
更に、上記実施例では、硬質又は半硬質合成樹脂製の中空部材を空殻材料として使用しているが、金属製、セラミック製、ゴム製、エラストマー製等の各種素材の中空部材を空殻材料として使用しても良い。
また、本発明の試験方法は、吸収層構成材料の試験のみならず、供試体の側面にせん断応力が作用しない状態で実施すべき一軸圧縮試験において広く採用し得るものである。
本発明の多殻構造材料は、断層変位に起因した構造物の損傷又は破壊を防止する変形吸収層の構築に使用することができる。
本発明の多殻構造材料は、殊に、地震断層を横断する鉄道、道路、パイプライン等の構造物の施工、例えば、地震時に断層変位の影響を受ける山岳トンネルの覆工に好ましく使用し得る。本発明に従って構築された変形吸収層は、断層変位を吸収し、トンネル構造物等を地震時の断層変位から保護する。
本発明は又、移動物体の衝突による移動物体又は構造物の大破を防止する手段の構築に適用することができる。本発明の多殻構造材料によって構築される衝撃力緩和用の手段として、例えば、船舶の衝突が懸念される水中橋脚や岸壁の防舷材、或いは、鉄道の終端駅におけるレール終端部等が挙げられる。
また、本発明に従ってセメント系組成物を空殻の間に充填することにより、極めて軽量なコンクリート部材を製造することができる。
従って、本発明の多殻構造材料は、変形吸収、衝撃干渉、或いは、構造体軽量化等の各種用途に広く使用し得るので、その実用的価値は、顕著である。
図1(A)は、平滑化層、吸収層、継手構造及び摩擦除去層を備えたトンネル構造体の概略平面図であり、図1(B)、図1(C)及び図1(D)は、吸収層を備えた鉄道用トンネル構造物の構成を示す平面図及びI−I線断面図である。 図2(A)は、リング型治具を示す正面図であり、図2(B)は、スパイラル型治具を示す正面図である。 図2(A)に示すリング型治具を使用した供試体の一軸圧縮試験の試験状況を示す正面図である。 図2(A)に示すリング型治具を使用した他の一軸圧縮試験の試験状況を示す正面図である。 図3及び図4に示す一軸圧縮試験によって測定された軸応力σa及び軸ひずみεaの関係を示す線図である。 軸応力σa及び軸ひずみεaの関係をモデル化して示す線図である。 多数の空殻を所定容積の閉鎖空間に最密充填した状態を示す正面図である。 閉鎖空間に充填材料(セメントモルタル)を流し込んだ状態を示す正面図である。 多殻モルタルの部分拡大断面図である。 図7〜図9に示す多殻モルタル硬化体における応力qa−ひずみεaの関係を示す線図である。 水セメント比W/C及び一軸圧縮強さqu の関係を示す線図である。 一軸圧縮強さqu 及び各種地盤パラメータの関係を示す線図である。 断層変位Df=0.5mにおける曲げモーメントM及び折れ角θcの分布を示す線図である。 数値解析で得られた曲げモーメントM及び折れ角θcの最大値によって設計許容値を除すことにより求められた安全率を示す線図である。
符号の説明
1 トンネル周辺の地盤
2 断層
3 吸収層
4 摩擦除去層
10 トンネル構造物
11、12 覆工コンクリート
13、14 トンネル部分
15 継手構造
20 リング型治具
30 スパイラル型治具
50 空殻
51 間隙
52 球殻(球形殻体)
55 空気層(空隙)
60 セメントモルタル(流動性充填材料)
65 セメントモルタル硬化物(構造用マトリックス)
F 断層変位
T 供試体

Claims (9)

  1. 少なくとも20mmの外形寸法を有し、所定容積の空間に予め密に充填された多数の中空構造の空殻と、該空殻の間に形成された間隙に充填されて硬化した流動性充填材料の硬化体とから構成される複合材料からなり、
    前記空殻の殻体は、前記充填材料の硬化体からなる構造用マトリックスによって一体的に接合されており、
    前記構造用マトリックスが、前記複合材料の全域に拡がり且つ連続した多殻構造材料であって
    前記構造用マトリックスは、前記多殻構造材料の一次元圧縮特性に基づいて予め設定された圧縮力を超える圧縮力により破壊して前記空殻を圧壊せしめ、前記多殻構造材料を圧縮変形させるようになっており、
    前記多殻構造材料の一次元圧縮特性は、該多殻構造材料の供試体の高さ方向に間隔を隔てて配置された複数の剛性環状部材によって、前記供試体の外周面にせん断応力を実質的に作用させずに前記供試体の側方変位を拘束して前記供試体を軸方向に一次元圧縮する一次元圧縮試験によって求められたことを特徴とする多殻構造材料。
  2. 請求項1に記載された多殻構造材料の製造方法において、前記多殻構造材料の供試体を用いた前記一次元圧縮試験を行うとともに、前記空殻の形状又は寸法、或いは、粒度組成の調整により、間隙率又は充填率を調整することを特徴とする多殻構造材料の製造方法。
  3. 請求項1に記載された多殻構造材料の製造方法において、前記多殻構造材料の供試体を用いた前記一次元圧縮試験を行うとともに、空殻の形状の設定、空殻の寸法の設定、空殻の粒度組成の調整、充填材料の素材の選択、及び/又は、充填材料の物性の調整により、破壊前の多殻構造材料の剛性及び強度を調整し且つ破壊後の多殻構造材料の圧縮変形の大きさを調整することを特徴とする多殻構造材料の製造方法。
  4. 少なくとも20mmの外形寸法を有し、所定容積の空間に予め密に充填された多数の中空構造の空殻と、該空殻の間に形成された間隙に充填されて硬化した流動性充填材料の硬化体とから構成される複合材料からなり、前記充填材料の硬化体からなる構造用マトリックスによって前記空殻の殻体を一体的に接合するとともに、前記構造用マトリックスを前記複合材料の全域に拡げ且つ連続せしめてなる多殻構造材料の供試体を軸方向に一次元圧縮する圧縮試験方法であって
    前記多殻構造材料の一次元圧縮特性を求めるために、前記供試体の高さ方向に間隔を隔てて配置された複数の剛性環状部材によって、前記供試体の外周面にせん断応力を実質的に作用させずに前記供試体の側方変位を拘束することを特徴とする圧縮試験方法。
  5. 各々の前記剛性環状部材は、前記供試体の外径と実質的に同じ寸法の内径を有する真円形環状部材からなり、複数の前記剛性環状部材は、前記供試体の高さ方向に等間隔に配置されることを特徴とする請求項4に記載の圧縮試験方法。
  6. 前記供試体の側面は、薄い膜状の被覆材で被覆され、前記剛性リングは、被覆材の外側に配置されることを特徴とする請求項4又は5に記載の圧縮試験方法。
  7. 地盤の変形によって圧縮力を受けるように配置された請求項1に記載の多殻構造材料を有し、前記構造用マトリックスの破壊時に生じる前記空殻の圧壊によって降伏し、地盤の変形を吸収するように圧縮することを特徴とする変形吸収層。
  8. 衝撃力によって圧縮力を受ける請求項1に記載の多殻構造材料から構成され、前記構造用マトリックスの破壊時に生じる前記空殻の圧壊によって降伏し、衝撃力を吸収するように構成されたことを特徴とする衝撃緩和材。
  9. セメント系組成物を前記充填材料として前記間隙に充填した請求項1に記載の多殻構造材料から構成されるセメント系軽量構造材料。
JP2007166980A 2007-06-25 2007-06-25 多殻構造材料及びその一軸圧縮試験方法 Expired - Fee Related JP5035772B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166980A JP5035772B2 (ja) 2007-06-25 2007-06-25 多殻構造材料及びその一軸圧縮試験方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166980A JP5035772B2 (ja) 2007-06-25 2007-06-25 多殻構造材料及びその一軸圧縮試験方法

Publications (2)

Publication Number Publication Date
JP2009002124A JP2009002124A (ja) 2009-01-08
JP5035772B2 true JP5035772B2 (ja) 2012-09-26

Family

ID=40318802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166980A Expired - Fee Related JP5035772B2 (ja) 2007-06-25 2007-06-25 多殻構造材料及びその一軸圧縮試験方法

Country Status (1)

Country Link
JP (1) JP5035772B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105865921B (zh) * 2016-05-06 2018-09-25 安徽理工大学 一种大尺寸模拟巷道喷砼支护喷层加载方法
CN107144461B (zh) * 2017-07-05 2023-07-14 四川大学 模拟断层处隧道应力特征的实验装置
CN109443930B (zh) * 2018-11-30 2024-02-13 西南交通大学 一种盾构隧道管片衬砌结构纵向刚度测试装置及方法
CN113976820B (zh) * 2021-10-30 2023-11-21 中国地质科学院地质力学研究所 一种用于砂箱实验预设断层装置及断层形成方法
CN114878277A (zh) * 2022-05-27 2022-08-09 中铁隧道局集团有限公司 一种密度可调节管片构件及使用方法
CN115789375A (zh) * 2022-11-02 2023-03-14 中国船舶重工集团公司第七一九研究所 一种压缩锁能式位移补偿减振接管

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604155B2 (ja) * 1977-09-07 1985-02-01 宇部興産株式会社 エネルギ−吸収及び衝撃減衰用低密度コンクリ−ト組成物及びその製造方法
JPS618636A (ja) * 1984-06-22 1986-01-16 Hazama Gumi Ltd 円柱供試体の3軸測定方法
JPH07311132A (ja) * 1994-05-20 1995-11-28 Mitsubishi Materials Corp 一軸圧縮強度試験方法
JPH08338796A (ja) * 1995-06-14 1996-12-24 Fuji P S:Kk 簡易三軸圧縮試験方法とその装置
US5783297A (en) * 1995-08-16 1998-07-21 Cemcom Corporation Materials for shock attenuation
JP3491671B2 (ja) * 1998-08-24 2004-01-26 株式会社大林組 シールドトンネルの免震構造及びその構築方法並びにそれに用いるシールドトンネル用セグメント
JP4037124B2 (ja) * 2002-02-20 2008-01-23 鹿島建設株式会社 トンネル構造およびトンネルの構築方法

Also Published As

Publication number Publication date
JP2009002124A (ja) 2009-01-08

Similar Documents

Publication Publication Date Title
JP5035772B2 (ja) 多殻構造材料及びその一軸圧縮試験方法
US8869468B2 (en) Buckling-restrained brace
US7174680B2 (en) Bearing brace apparatus
CN109184737B (zh) 可让压吸能的隧道预应力约束充填衬砌支护体系及工艺
US7404694B2 (en) Method and device for stabilizing a cavity excavated in underground construction
Yan et al. Fiber-reinforced polymer jacketed and shape-modified compression members: I-experimental behavior
Huang et al. Impact behavior of concrete columns confined by both GFRP tube and steel spiral reinforcement
Anandan et al. Comparative study on the behavior of conventional ferrocement and modified ferrocement wrapped columns
WO2010115356A1 (zh) 一种灌浆套管耗能元件
CN211573533U (zh) 一种可适应围岩大变形的隧道约束充填型衬砌结构
Guerrini et al. Self-centering precast concrete dual-steel-shell columns for accelerated bridge construction: seismic performance, analysis, and design
CN111962533A (zh) 一种强震区消能型桩锚结构及其施工方法
Li et al. A constitutive model of concrete confined by steel reinforcements and steel jackets
Roy et al. Strengthening of heat damaged reinforced concrete short columns
CN111577326B (zh) 适用于高烈度地震区隧道衬砌的抗震结构及其施工方法
CN105442591A (zh) 高性能低预应力混凝土空心方桩
Song et al. Energy-absorption behavior of metallic hollow sphere structures under impact loading
JP2019116778A (ja) 二重円形スパイラルせん断補強筋が配置されたpc橋脚を用いた高架橋
KR20110038050A (ko) 탄성적인 기초 시공 방법
Worsfold et al. Moment transfer at column-foundation connections: physical tests
Kim et al. Grid U-wrap anchorage for reinforced concrete beams strengthened with carbon fiber-reinforced polymer sheets
AU2021102873A4 (en) A system and a method to provide ductile detailing in reinforced concrete wall–flat slab joint
JP5536619B2 (ja) 耐荷構造物用の支柱
JP6860381B2 (ja) 複数微細ひび割れ型繊維補強セメント複合材料を用いた鋼管杭の補強方法および構造体
Khusru et al. Hybrid double skin FRP–Steel column with rubberised concrete infill under axial loading

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees