JP5034784B2 - Method for dehydrating hexafluroacetone hydrate - Google Patents

Method for dehydrating hexafluroacetone hydrate Download PDF

Info

Publication number
JP5034784B2
JP5034784B2 JP2007222846A JP2007222846A JP5034784B2 JP 5034784 B2 JP5034784 B2 JP 5034784B2 JP 2007222846 A JP2007222846 A JP 2007222846A JP 2007222846 A JP2007222846 A JP 2007222846A JP 5034784 B2 JP5034784 B2 JP 5034784B2
Authority
JP
Japan
Prior art keywords
hydrogen fluoride
hexafluoroacetone
column
distillation
hydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007222846A
Other languages
Japanese (ja)
Other versions
JP2009051799A (en
Inventor
豊 勝原
達哉 早坂
芳章 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2007222846A priority Critical patent/JP5034784B2/en
Priority to CN200880104256.XA priority patent/CN101784510B/en
Priority to US12/675,725 priority patent/US7919657B2/en
Priority to EP08828871.7A priority patent/EP2189437B1/en
Priority to PCT/JP2008/065359 priority patent/WO2009028584A1/en
Publication of JP2009051799A publication Critical patent/JP2009051799A/en
Application granted granted Critical
Publication of JP5034784B2 publication Critical patent/JP5034784B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/81Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C45/82Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • C07C45/83Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation by extractive distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/81Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C45/82Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/85Separation; Purification; Stabilisation; Use of additives by treatment giving rise to a chemical modification

Description

本発明は、ヘキサフルオロアセトン水和物をフッ化水素により脱水する方法に関し、また、ヘキサフルオロアセトンフッ化水素付加体を製造する方法に関する。   The present invention relates to a method for dehydrating hexafluoroacetone hydrate with hydrogen fluoride, and also relates to a method for producing a hexafluoroacetone hydrogen fluoride adduct.

ヘキサフルオロアセトンは、フッ素ゴムの架橋剤として重要な2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン(ビスフェノール−AF)や医薬品中間体として重要なヘキサフルオロイソプロパノール等の工業原料として大量に生産されている。ヘキサフルオロアセトンは、工業的にはヘキサフルオロプロペンのエポキシ化とそれに続く異性化による方法、アセトンを塩素化して得られるヘキサクロロアセトンをクロム活性炭担持触媒等によりフッ化水素で置換フッ素化する方法などで製造される。ヘキサフルオロアセトンは大気圧で沸点が−28℃の気体であることから取り扱い上の便宜を図るため、106℃の定沸点組成物として得られるヘキサフルオロアセトン・3水和物が多くの反応において原料として使用されており、あるいは保存に供される。しかしながら、反応条件、目的物その他の要求によっては水の存在が許されない場合があり、さらに水和物は通常は無水物と比べて反応性が低いことが多いことから、ヘキサフルオロアセトンの無水物が求められる場合もあって、使用に際してはその場で水和物を無水物に変換することもしばしば行われる。   Hexafluoroacetone is produced in large quantities as industrial raw materials such as 2,2-bis (4-hydroxyphenyl) hexafluoropropane (bisphenol-AF), which is important as a cross-linking agent for fluororubber, and hexafluoroisopropanol, which is important as a pharmaceutical intermediate. Has been. Hexafluoroacetone is industrially produced by epoxidation of hexafluoropropene followed by isomerization, hexachloroacetone obtained by chlorinating acetone with hydrogen fluoride using a chromium activated carbon supported catalyst, etc. Manufactured. Hexafluoroacetone is a gas having a boiling point of −28 ° C. at atmospheric pressure. For convenience in handling, hexafluoroacetone trihydrate obtained as a constant boiling point composition at 106 ° C. is a raw material in many reactions. Or used for storage. However, the presence of water may not be allowed depending on the reaction conditions, target product and other requirements, and hydrates are usually less reactive than anhydrides. Is often required, and in use, the hydrate is often converted to the anhydride in situ.

ヘキサフルオロアセトン水和物の脱水方法としては、モレキュラーシーブ(登録商標)(特許文献1)、濃硫酸、無水硫酸、五酸化リン(特許文献2)などとの接触による方法が報告されている。濃硫酸、無水硫酸、五酸化リン、発煙硫酸などを脱水剤とすると、ヘキサフルオロアセトンの分解生成物が生成することがあり、また、水や分解生成有機物を含んだ硫酸やリン酸の大量の廃棄物が発生する。また、合成ゼオライトを使用した場合を含めてこれらの方法で脱水するとヘキサフルオロアセトンの回収率が必ずしも高くないという問題もある。   As a method for dehydrating hexafluoroacetone hydrate, a method involving contact with molecular sieve (registered trademark) (Patent Document 1), concentrated sulfuric acid, anhydrous sulfuric acid, phosphorus pentoxide (Patent Document 2), or the like has been reported. When concentrated sulfuric acid, anhydrous sulfuric acid, phosphorus pentoxide, fuming sulfuric acid, etc. are used as dehydrating agents, hexafluoroacetone decomposition products may be generated, and a large amount of sulfuric acid and phosphoric acid containing water and decomposition product organic substances may be produced. Waste is generated. Further, there is a problem that the recovery rate of hexafluoroacetone is not necessarily high when dehydration is performed by these methods including the case of using synthetic zeolite.

一方、ヘキサフルオロアセトンを原料とする反応においては、フッ化水素が触媒としてまたは溶媒として使用されることがある。例えば、ビスフェノール−AFはヘキサフルオロアセトンとフェノールとフッ化水素の混合物から脱水反応により得られる(非特許文献1)。
特開昭59−157045号公報 特開昭57−81433号公報 Isz. Akad-Nauk SSSR, Otdel. Khim, Nauk, vol.4 pp.686-692(1960);英語版 pp.647-653
On the other hand, in a reaction using hexafluoroacetone as a raw material, hydrogen fluoride may be used as a catalyst or a solvent. For example, bisphenol-AF is obtained by a dehydration reaction from a mixture of hexafluoroacetone, phenol, and hydrogen fluoride (Non-patent Document 1).
JP 59-157045 A JP-A-57-81433 Isz. Akad-Nauk SSSR, Otdel. Khim, Nauk, vol.4 pp.686-692 (1960); English version pp.647-653

ヘキサフルオロアセトン水和物を脱水して、ヘキサフルオロアセトンフッ化水素付加体とフッ化水素からなる混合物を得る方法であって、廃棄物を実質的に発生させない方法を提供する。     A method for dehydrating hexafluoroacetone hydrate to obtain a mixture of hexafluoroacetone hydrogen fluoride adduct and hydrogen fluoride, which does not substantially generate waste is provided.

本発明者らは、特定の反応においてヘキサフルオロアセトンと同様の反応挙動を呈するヘキサフルオロアセトンフッ化水素付加体を工業的に製造する方法について検討したところ、ヘキサフルオロアセトン水和物をフッ化水素と混合し蒸留することからなる簡便な方法により収率よく、かつ、実質的に廃棄物の発生を伴わないでヘキサフルオロアセトン水和物を脱水しヘキサフルオロアセトンフッ化水素付加体のフッ化水素溶液を定量的に製造できることを見出し、本発明を完成した。   The present inventors examined a method for industrially producing a hexafluoroacetone hydrofluoride adduct exhibiting the same reaction behavior as hexafluoroacetone in a specific reaction. As a result, hexafluoroacetone hydrate was converted to hydrogen fluoride. Hydrogen fluoride of hexafluoroacetone hydrofluoride adduct is obtained by dehydrating hexafluoroacetone hydrate with high yield by a simple method consisting of mixing and distilling with substantially no waste generation The inventors have found that the solution can be produced quantitatively and have completed the present invention.

すなわち、本発明は、ヘキサフルオロアセトン水和物をフッ化水素と接触させてそのまま蒸留することで、ヘキサフルオロアセトンフッ化水素付加体とフッ化水素とからなる成分と、水とフッ化水素からなる成分とにそれぞれ分割して得ることからなるヘキサフルオロアセトンフッ化水素付加体の製造方法である。
[請求項1]ヘキサフルオロアセトン水和物とフッ化水素をあらかじめ混合してまたは別々に蒸留塔に導入し、低沸点成分としてヘキサフルオロアセトンまたはヘキサフルオロアセトンフッ化水素付加体とフッ化水素を含む組成物を得、高沸点成分として水およびフッ化水素を含む組成物として得ることからなるヘキサフルオロアセトン水和物の脱水方法。
[請求項2]ヘキサフルオロアセトン水和物とフッ化水素をあらかじめ混合してまたは別々に連続的に蒸留塔に導入する請求項1に記載の脱水方法。
[請求項3]ヘキサフルオロアセトン水和物とフッ化水素をあらかじめ混合してまたは別々に蒸留塔に連続的に導入し、低沸点成分としてヘキサフルオロアセトンまたはヘキサフルオロアセトンフッ化水素付加体とフッ化水素を含む組成物を塔頂部から連続的に得、高沸点成分として水およびフッ化水素を含む組成物を塔底部から連続的に得ることからなるヘキサフルオロアセトン水和物の脱水方法。
[請求項4]ヘキサフルオロアセトン水和物がヘキサフルオロアセトン3水和物である請求項1〜3に記載の脱水方法。
[請求項5]ヘキサフルオロアセトン水和物が水を含むヘキサフルオロアセトン水和物である請求項1〜4に記載の脱水方法。
That is, the present invention is made by bringing hexafluoroacetone hydrate into contact with hydrogen fluoride and distilling it as it is, from a component comprising hexafluoroacetone hydrogen fluoride adduct and hydrogen fluoride, water and hydrogen fluoride. It is a manufacturing method of the hexafluoroacetone hydrogen fluoride adduct which consists of dividing | segmenting into each component and obtaining.
[Claim 1] Hexafluoroacetone hydrate and hydrogen fluoride are mixed in advance or separately introduced into a distillation column, and hexafluoroacetone or hexafluoroacetone hydrogen fluoride adduct and hydrogen fluoride are introduced as a low boiling point component. A method for dehydrating hexafluoroacetone hydrate comprising obtaining a composition comprising water and obtaining a composition containing water and hydrogen fluoride as high-boiling components.
[Claim 2] The dehydration method according to claim 1, wherein hexafluoroacetone hydrate and hydrogen fluoride are mixed in advance or separately separately introduced into the distillation column.
[Claim 3] Hexafluoroacetone hydrate and hydrogen fluoride are mixed in advance or separately introduced continuously into a distillation column, and hexafluoroacetone or hexafluoroacetone hydrofluoride adduct and fluorine are added as low boiling point components. A method for dehydrating hexafluoroacetone hydrate comprising continuously obtaining a composition containing hydrogen fluoride from the top of the column and continuously obtaining a composition containing water and hydrogen fluoride as high-boiling components from the bottom of the column.
[4] The dehydration method according to any one of [1] to [3], wherein the hexafluoroacetone hydrate is hexafluoroacetone trihydrate.
[5] The dehydration method according to any one of [1] to [4], wherein the hexafluoroacetone hydrate is hexafluoroacetone hydrate containing water.

本発明の脱水方法は、得られるヘキサフルオロアセトンまたはヘキサフルオロアセトンフッ化水素付加体はフッ化水素との混合物であるので、フッ化水素を原料、触媒または溶媒としてヘキサフルオロアセトンを使用する反応にはそのまま用いることができることから工程の簡略化に有効であり、また、従来行われていた濃硫酸、発煙硫酸などを用いる方法では避けられない有機物質を含む廃硫酸などの廃棄物処理を必要としないことから、環境保護の面でも優れた方法である。   In the dehydration method of the present invention, since the obtained hexafluoroacetone or hexafluoroacetone hydrogen fluoride adduct is a mixture with hydrogen fluoride, the reaction using hexafluoroacetone as a raw material, catalyst or solvent is used. Is effective in simplifying the process because it can be used as it is, and also requires waste treatment such as waste sulfuric acid containing organic substances that cannot be avoided by the conventional methods using concentrated sulfuric acid, fuming sulfuric acid, etc. This is an excellent method in terms of environmental protection.

以下、本発明を詳細に説明する。
明細書において、フッ化水素を「HF」と表すことがある。
明細書において、ヘキサフルオロアセトンを「HFA」と表すことがある。
明細書において、ヘキサフルオロアセトンフッ化水素付加体を「HFA・HF」と表すことがある。
明細書において、ヘキサフルオロアセトン水和物は水和数を限定しない水和物またはその水溶液をいい、ヘキサフルオロアセトン3水和物を含む概念である。
明細書において、ヘキサフルオロアセトン3水和物を「HFA・3W」と表すことがある。
Hereinafter, the present invention will be described in detail.
In the specification, hydrogen fluoride may be expressed as “HF”.
In the specification, hexafluoroacetone may be represented as “HFA”.
In the specification, the hexafluoroacetone hydrogen fluoride adduct may be expressed as “HFA · HF”.
In the specification, hexafluoroacetone hydrate refers to a hydrate that does not limit the number of hydration or an aqueous solution thereof, and includes hexafluoroacetone trihydrate.
In the specification, hexafluoroacetone trihydrate may be represented as “HFA · 3W”.

本発明は、ヘキサフルオロアセトン水和物をフッ化水素と接触させてそのまま蒸留することで、ヘキサフルオロアセトンフッ化水素付加体とフッ化水素とからなる成分と、水とフッ化水素からなる成分とにそれぞれ分割して得ることからなるヘキサフルオロアセトンフッ化水素付加体の製造方法である。ここで、「そのまま」とは、、濃硫酸、無水硫酸、五酸化リンなどの一般的に「脱水剤」として用いられる化学物質やモレキュラーシーブなどの吸着剤による処理をしないで、ということをいう。   In the present invention, hexafluoroacetone hydrate is brought into contact with hydrogen fluoride and distilled as it is, so that a component composed of hexafluoroacetone hydrogen fluoride adduct and hydrogen fluoride, and a component composed of water and hydrogen fluoride. It is a manufacturing method of the hexafluoroacetone hydrogen fluoride adduct which consists of respectively dividing | segmenting and obtaining. Here, “as is” means that treatment with an adsorbent such as a chemical substance or molecular sieve generally used as a “dehydrating agent” such as concentrated sulfuric acid, sulfuric anhydride, or phosphorus pentoxide is not performed. .

ヘキサフルオロアセトンの代替反応試剤として取り扱われることのあるHFA・3Wは、   HFA-3W, which is sometimes handled as an alternative reaction reagent for hexafluoroacetone,

Figure 0005034784
Figure 0005034784

で表されるように、ヘキサフルオロアセトンと水が反応したgem−ジオールの2水和物であって、沸点106℃の液体である。HFA・3Wを蒸留しても水を放出させてヘキサフルオロアセトンを得ることはできない。 As described above, it is a dihydrate of gem-diol obtained by reacting hexafluoroacetone and water, and is a liquid having a boiling point of 106 ° C. Even if HFA · 3W is distilled, water cannot be released to obtain hexafluoroacetone.

また、ヘキサフルオロアセトンの1水和物はヘキサフルオロアセトンとは異なる化合物であって、gem−ジオールとして表され、ヘキサフルオロアセトンと水との間で次式の平衡が成り立ち、平衡は著しく右に片寄っている。   Hexafluoroacetone monohydrate is a compound different from hexafluoroacetone and is expressed as gem-diol. The equilibrium of the following formula is established between hexafluoroacetone and water, and the equilibrium is remarkably to the right. I'm offset.

Figure 0005034784
Figure 0005034784

ヘキサフルオロアセトンの1水和物は昇華性の高い吸湿性の強い融点52℃の固体であり、46℃で分解するが、HFA・3Wと同様、蒸留によってはヘキサフルオロアセトンを得ることはできない。 Hexafluoroacetone monohydrate is a highly sublimable, highly hygroscopic solid with a melting point of 52 ° C. and decomposes at 46 ° C. However, like HFA · 3W, hexafluoroacetone cannot be obtained by distillation.

一方、ヘキサフルオロアセトンフッ化水素付加体は、次式のヘプタフルオロイソプロパノールで示されるヘキサフルオロアセトンとフッ化水素の1:1付加体である。ヘプタフルオロイソプロパノールは単独では熱的に不安定な化合物であり、沸点(14〜16℃)以上の温度においては一部へキサフルオロアセトンとフッ化水素に分解し、次式の平衡が成り立つと考えられる。平衡は温度に依存し、20℃では35%、100℃では70%のヘプタフルオロイソプロパノールが分解している。   On the other hand, the hexafluoroacetone hydrogen fluoride adduct is a 1: 1 adduct of hexafluoroacetone and hydrogen fluoride represented by the following formula: heptafluoroisopropanol. Heptafluoroisopropanol is a thermally unstable compound by itself, and at temperatures above the boiling point (14 to 16 ° C.), it is partially decomposed into hexafluoroacetone and hydrogen fluoride, and the equilibrium of the following formula holds: It is done. The equilibrium depends on the temperature, with 35% heptafluoroisopropanol being decomposed at 20 ° C. and 70% at 100 ° C.

Figure 0005034784
Figure 0005034784

HFA・HFを非平衡状態での蒸留により分離できることが報告されている(米国第3745093号特許公報)が、通常の方法で蒸留してもヘキサフルオロアセトンとフッ化水素とを分離することはできない(仏国特許第1372549号)。 Although it has been reported that HFA / HF can be separated by distillation in a non-equilibrium state (US Pat. No. 3,745,093), it is not possible to separate hexafluoroacetone and hydrogen fluoride by distillation by an ordinary method. (French Patent No. 1372549).

本発明を完成させる過程において発明者等により、HFA・HFがヘプタフルオロイソプロパノールであり、過剰量のフッ化水素が共存すると、室温以上においても分解することなく安定にヘプタフルオロイソプロパノールのまま存在することがフッ化水素中でのNMR測定により確認された。   In the process of completing the present invention, by the inventors, HFA · HF is heptafluoroisopropanol, and when excessive amount of hydrogen fluoride coexists, it should exist stably as heptafluoroisopropanol without decomposition even at room temperature or higher. Was confirmed by NMR measurement in hydrogen fluoride.

本発明のヘキサフルオロアセトン水和物の脱水は、蒸留缶、蒸留カラム、凝縮器及びその他の装置を備えた一般的な蒸留装置を用いて、バッチ式、半バッチ式または連続式のいずれかの形式でも実施できる。装置の材質は、ステンレス鋼、ニッケル合金鋼、銀、フッ素樹脂、炭素、ポリエチレンまたはこれらの材質でライニングされもしくはクラッドされた金属材料が使用できる。比較的高温のフッ化水素水溶液が接する蒸留缶並びに蒸留カラムおよび充填材は銀、フッ素樹脂などのフッ化水素水溶液に耐える樹脂材料またはこれらの材質でライニングされもしくはクラッドされた金属材料の使用が好ましい。蒸留カラムは、公知の充填材からなる充填式、棚段塔などのいずれでも使用できる。   The dehydration of the hexafluoroacetone hydrate of the present invention can be carried out by using a general distillation apparatus equipped with a distillation can, a distillation column, a condenser and other apparatuses, and is either batch type, semi-batch type or continuous type. It can also be implemented in the form. As the material of the apparatus, stainless steel, nickel alloy steel, silver, fluororesin, carbon, polyethylene, or a metal material lined or clad with these materials can be used. For distillation cans and distillation columns and fillers that come into contact with a relatively high temperature hydrogen fluoride aqueous solution, it is preferable to use a resin material that can withstand a hydrogen fluoride aqueous solution such as silver or fluororesin, or a metal material that is lined or clad with these materials. . The distillation column can be either a packed type made of a known packing material or a plate tower.

本発明の方法は、減圧下または加圧条件、具体的には0.05〜2MPa程度の圧力条件下でも実施できるが、以下では、大気圧下で行う場合について説明する。他の圧力条件で行うことも本発明の範囲に属し、以下の説明とこの技術分野における技術常識に基づいて当業者が条件を最適化することは容易である。   Although the method of the present invention can be carried out under reduced pressure or under pressurized conditions, specifically, under a pressure condition of about 0.05 to 2 MPa, a case where it is carried out under atmospheric pressure will be described below. Performing under other pressure conditions is also within the scope of the present invention, and it is easy for those skilled in the art to optimize the conditions based on the following description and common general technical knowledge in this technical field.

バッチ式脱水方法について説明する。   The batch type dehydration method will be described.

HFA・3Wとフッ化水素を蒸留塔の蒸留缶(塔底)に導入する。HFA・3Wの1モルに対してフッ化水素は1モル以上必要であるが、2〜100モルが好ましく、3〜50モルがより好ましく、5〜30がさらに好ましい。フッ化水素が過少であると脱水の効果が不十分でありまた蒸留の操業が安定せず、過剰であれば脱水の効果においては問題ないが、ユーティリティの消費が大きくなったり、装置の大型化を伴いそれぞれ好ましくない。ここで、HFA・3Wは、ヘキサフルオロアセトン水和物であればよく、ヘキサフルオロアセトン1水和物などの水和数が3未満のものであってもよく、また、ヘキサフルオロアセトン水和物の水溶液であってもよいが、脱水に供する原料としてはHFA・3Wまたはそれよりも水和数の小さいものであるのが好ましい。フッ化水素は工業用に入手できる無水フッ化水素が適当であるが、50質量%程度の水を含むものでも使用できる。   HFA · 3W and hydrogen fluoride are introduced into a distillation can (column bottom) of the distillation column. Although 1 mol or more of hydrogen fluoride is required with respect to 1 mol of HFA · 3W, 2 to 100 mol is preferable, 3 to 50 mol is more preferable, and 5 to 30 is more preferable. If the amount of hydrogen fluoride is too small, the effect of dehydration will be insufficient, and the operation of distillation will not be stable. If it is excessive, there will be no problem in the effect of dehydration, but the consumption of utilities will increase and the equipment will become larger Each is not preferable. Here, HFA · 3W may be hexafluoroacetone hydrate, may have a hydration number of less than 3, such as hexafluoroacetone monohydrate, and hexafluoroacetone hydrate. The raw material used for dehydration is preferably HFA · 3W or a material having a smaller hydration number than that. Anhydrous hydrogen fluoride available for industrial use is suitable as the hydrogen fluoride, but one containing about 50% by mass of water can also be used.

塔底温度をフッ化水素の沸点を越えるまで高めると、塔頂では蒸気が凝縮器で液化されて還流が始まり、一定の時間の後HFA・HFの沸点の16℃に近づく。還流液を徐々に抜き出すと温度がフッ化水素の沸点(19.5℃)に近づくが、還流状態を保つように調節しながら還流液を抜き出す。還流量が減少する場合には塔底温度を徐々に上げる。蒸留初期にはHFA・HFを多く含む成分が16〜20℃で塔頂から抜出され、その後徐々に還流液の温度は上昇しHFA・HFの含有量は減少してフッ化水素を多く含む成分が抜き出されるが、還流液の温度はフッ化水素の沸点を大きく超えることのない範囲に維持しなければならない。そうでないと、フッ化水素の脱水が不完全になり塔頂液に水を含むこととなるからである。さらに蒸留を続け、フッ化水素と水の組成により決まる塔底の温度は、フッ化水素水溶液の共沸温度112℃に上昇するまで継続できる。このとき塔底液はフッ化水素62質量%と水38質量%の最高共沸の組成を形成している。塔底液にはヘキサフルオロアセトンは実質的には含まれていない。塔底温度は、フッ化水素水溶液の最高共沸温度まで行うことができ、フッ化水素の沸点(19.5℃)以上であれば最高共沸温度より低い温度で行うことも可能である。その場合、沸点により決まる濃度のフッ化水素水溶液が得られることとなるが、その濃度はフッ化水素水溶液の用途によって決定すればよい。このようにして、ヘキサフルオロアセトンまたはHFA・HFとフッ化水素の組成からなる成分とフッ化水素及び水からなる成分(フッ化水素水溶液)が分離して得られる。   When the column bottom temperature is increased to exceed the boiling point of hydrogen fluoride, the vapor is liquefied by the condenser at the top of the column and starts to reflux, and after a certain time, approaches the boiling point of 16 ° C. of HFA / HF. When the reflux liquid is gradually withdrawn, the temperature approaches the boiling point of hydrogen fluoride (19.5 ° C.), but the reflux liquid is withdrawn while adjusting to maintain the reflux state. When the reflux amount decreases, the column bottom temperature is gradually increased. At the beginning of distillation, a component containing a large amount of HFA / HF is withdrawn from the top of the column at 16 to 20 ° C., and then the temperature of the reflux liquid gradually rises and the content of HFA / HF decreases to contain a large amount of hydrogen fluoride. Although the components are extracted, the temperature of the reflux liquid must be maintained within a range that does not greatly exceed the boiling point of hydrogen fluoride. Otherwise, the dehydration of hydrogen fluoride will be incomplete and water will be contained in the column top liquid. Further distillation is continued, and the temperature at the bottom of the column determined by the composition of hydrogen fluoride and water can be continued until the azeotropic temperature of the aqueous hydrogen fluoride solution rises to 112 ° C. At this time, the bottom liquid of the column forms the highest azeotropic composition of 62% by mass of hydrogen fluoride and 38% by mass of water. The column bottom liquid is substantially free of hexafluoroacetone. The tower bottom temperature can be up to the maximum azeotropic temperature of the aqueous hydrogen fluoride solution, and can be lower than the maximum azeotropic temperature as long as it is higher than the boiling point of hydrogen fluoride (19.5 ° C.). In this case, a hydrogen fluoride aqueous solution having a concentration determined by the boiling point is obtained, but the concentration may be determined depending on the use of the hydrogen fluoride aqueous solution. In this way, a component composed of hexafluoroacetone or HFA.HF and hydrogen fluoride and a component composed of hydrogen fluoride and water (hydrogen fluoride aqueous solution) are obtained separately.

次に、本発明の方法を連続法で行う場合について説明する。   Next, the case where the method of this invention is performed by a continuous method is demonstrated.

前述のバッチ式脱水方法において、蒸留塔が安定した還流状態に維持されている状態から連続法に移行することが好ましい。連続法ではヘキサフルオロアセトンと水の組成比が一定のヘキサフルオロアセトン水和物例えばHFA・3Wを用いることが操業的に容易であるので以下HFA・3Wで説明する。HFA・3Wとフッ化水素を連続的に蒸留塔に導入し、塔頂からHFA・HFとフッ化水素を、塔底からフッ化水素水溶液を連続的に抜き出す。ヘキサフルオロアセトン水和物とフッ化水素の導入、塔頂からのHFA・HFとフッ化水素の抜き出し、塔底からのフッ化水素水溶液の抜き出し、の連続操作は、断続的に行うこともできる。   In the batch dehydration method described above, it is preferable to shift from a state in which the distillation column is maintained in a stable reflux state to a continuous method. In the continuous method, it is easy to use hexafluoroacetone hydrate having a constant composition ratio of hexafluoroacetone and water, for example, HFA · 3W. HFA · 3W and hydrogen fluoride are continuously introduced into the distillation column, HFA · HF and hydrogen fluoride are continuously withdrawn from the top of the column, and an aqueous hydrogen fluoride solution is continuously withdrawn from the bottom of the column. Continuous operation of introduction of hexafluoroacetone hydrate and hydrogen fluoride, extraction of HFA / HF and hydrogen fluoride from the top of the column, and extraction of aqueous hydrogen fluoride solution from the bottom of the column can be performed intermittently. .

ヘキサフルオロアセトン水和物とフッ化水素は別々の配管を通して蒸留塔に導入することもできるし、あらかじめ混合して導入することもできるが、蒸留塔への導入位置は同一とすることが好ましい。蒸留塔への導入位置(高さ)は塔底から塔頂まで任意の位置でよいが、好ましくはHFA・3Wとフッ化水素との脱水反応により生成する理論量の水とフッ化水素とから生じる混合液の沸点に相当する蒸留塔の位置(高さ)に導入するのが好ましい。   Hexafluoroacetone hydrate and hydrogen fluoride can be introduced into the distillation column through separate pipes, or can be mixed and introduced in advance, but the introduction position into the distillation column is preferably the same. The introduction position (height) to the distillation column may be any position from the bottom to the top, but preferably from the theoretical amount of water and hydrogen fluoride produced by the dehydration reaction of HFA · 3W and hydrogen fluoride. It is preferable to introduce into the position (height) of the distillation column corresponding to the boiling point of the resulting mixed liquid.

本発明の方法において効果的に脱水できる理由は、ヘキサフルオロアセトン3水和物と1当量以上のフッ化水素を混合した場合、次式で示す反応または平衡が短時間で成立し、蒸留においては、HFA・HF、フッ化水素、水とフッ化水素の共沸組成物の3成分からなる平衡状態が成り立っているからと推測される。   The reason why it can be effectively dehydrated in the method of the present invention is that when hexafluoroacetone trihydrate and 1 equivalent or more of hydrogen fluoride are mixed, the reaction or equilibrium shown by the following formula is established in a short time, and in distillation, It is presumed that an equilibrium state consisting of three components of HFA / HF, hydrogen fluoride, and an azeotropic composition of water and hydrogen fluoride is established.

Figure 0005034784
Figure 0005034784

以下に、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

[実施例1]バッチ式製造法
脱水装置の材質はヘキサフルオロアセトン、ヘキサフルオロアセトン3水和物、無水フッ化水素が接触する部分については全てフッ素樹脂またはポリエチレンを用いた。蒸留ポットは10cm直径×15cm高さのポリテトラフルオロエチレン製容器、蒸留塔は充填材としてポリエチレン製ラシヒリング(4mm直径×4mm長さ)を35cm長さ充填したPFA製の3cm直径×45cm高さのカラム、冷却器としてPFA製の10cm直径×15cm高さの円筒形で内部に冷媒を流す蛇管を備えた容器を使用し、塔頂からの流出物の受器として500mlのPFA製容器を用いた。
[Example 1] Batch type production method The material of the dehydrator was hexafluoroacetone, hexafluoroacetone trihydrate, and the part in contact with anhydrous hydrogen fluoride was fluororesin or polyethylene. The distillation pot is a 10 cm diameter x 15 cm high polytetrafluoroethylene container, and the distillation tower is filled with polyethylene Raschig rings (4 mm diameter x 4 mm length) 35 cm long as a filler. As a column and a cooler, a PFA made cylinder with a diameter of 10 cm × 15 cm and provided with a serpentine tube through which a refrigerant flows is used, and a 500 ml PFA container is used as a receiver for the effluent from the top. .

蒸留ポットに220gのHFA・3Wを投入後、ドライアイス/アセトンバスで冷却し、固化した。次いで、240gのフッ化水素を秤量して投入し、冷却された状態(−20℃)で蒸留塔にセッティングした。そのまま室温まで放置し、外部からウォーターバス次いでオイルバスで加熱を開始した。この間、混合による蒸留ポット内の目立った発熱は観測されなかった。   After adding 220 g of HFA · 3W to the distillation pot, it was cooled in a dry ice / acetone bath and solidified. Next, 240 g of hydrogen fluoride was weighed and charged, and set in a distillation column in a cooled state (−20 ° C.). The mixture was allowed to stand to room temperature, and heating was started from the outside with a water bath and an oil bath. During this time, no noticeable exotherm in the distillation pot due to mixing was observed.

加熱を続けるのに伴って、蒸留塔上部で還流が観測され、その後、還流部の温度がフッ化水素の沸点(19.5℃)を下回り始め、HFA・HFの還流が確認された。この時点で、塔頂の温度がフッ化水素の沸点19.5℃近辺を保つよう還流を確保しながら還流液の抜き出しを開始した。抜き出した還流液(HFA・nHF)は氷冷した受器に受け、経時的に容量を記録した。適当な容量が溜まった時点で、容器を交換し、容量と質量を測定し、ポリエチレン製保存容器に入れ、密栓して冷凍庫に保管した。   As the heating was continued, reflux was observed at the upper part of the distillation column, and then the temperature of the reflux part began to fall below the boiling point of hydrogen fluoride (19.5 ° C.), confirming the reflux of HFA / HF. At this time, extraction of the reflux liquid was started while ensuring reflux so that the temperature at the top of the column was kept at the boiling point of hydrogen fluoride near 19.5 ° C. The extracted reflux liquid (HFA · nHF) was received in an ice-cooled receiver, and the volume was recorded over time. When an appropriate capacity was accumulated, the container was replaced, the capacity and mass were measured, put into a polyethylene storage container, sealed, and stored in a freezer.

蒸留の進行による塔底部のフッ化水素濃度の低下に伴い、塔底温度が上昇するので常に20℃以上の温度差がつくよう、オイルバス温を調節した。塔底の温度は内容量の減少により蒸留ポットの気相部の温度を示す場合があった(以下において同じ。)。塔底部および蒸留カラムの温度は徐々に上昇するが、適度の還流を維持するように、塔頂の温度は20℃でほぼ一定を保った。塔底温度が60℃を示したところで蒸留を停止した。   The temperature of the oil bath was adjusted so that a temperature difference of 20 ° C. or more always occurred because the tower bottom temperature increased with a decrease in the hydrogen fluoride concentration at the bottom of the tower due to the progress of distillation. The temperature at the bottom of the column sometimes showed the temperature of the gas phase part of the distillation pot due to the decrease in the internal volume (the same applies hereinafter). The temperature at the bottom of the column and the distillation column gradually increased, but the temperature at the top of the column was kept almost constant at 20 ° C. so as to maintain a moderate reflux. The distillation was stopped when the column bottom temperature showed 60 ° C.

蒸留の後、塔頂から回収した還流液(塔頂留出物)は252g(HFA・nHFのモル比n4.3、ヘキサフルオロアセトンの収率99%)であり、塔底液は188gのフッ化水素水溶液(71質量%)であった。還流液の水分をカールフィッシャー法により測定したところ、水分の存在は確認されなかった。塔底液にはヘキサフルオロアセトンは検出されなかった。   After the distillation, the reflux liquid recovered from the top of the column (column top distillate) was 252 g (HFA / nHF molar ratio n4.3, hexafluoroacetone yield 99%), and the bottom liquid was 188 g of fluorine. It was a hydrogen fluoride aqueous solution (71 mass%). When the water content of the reflux liquid was measured by the Karl Fischer method, the presence of water was not confirmed. Hexafluoroacetone was not detected in the bottom liquid.

[実施例2]バッチ式製造法
(a)実施例1の蒸留の終了後塔底から回収したフッ化水素水溶液(71質量%)181gと220gのHFA・3Wと344gの無水フッ化水素を蒸留ポットに投入し、実施例1と同様の蒸留を開始した。塔頂の還流液を抜き出しながら塔底温度が51℃を示すまで蒸留を続けたところ、塔頂留出物は249g(HFA・nHFのモル比n4.15、ヘキサフルオロアセトンの収率99%)であり、塔底液は489gのフッ化水素水溶液(76質量%)であった。塔頂留出物の水分をカールフィッシャー法により測定したところ水分の存在は確認されなかった。塔底液にはヘキサフルオロアセトンは検出されなかった。
(b)(a)の蒸留の終了後塔底から回収したフッ化水素水溶液(76質量%)412gを蒸留ポットに投入し、実施例1と同様の蒸留を開始した。塔頂の還流液を抜き出しながら塔底温度が85℃を示すまで蒸留を続けたところ、塔頂留出物は197gのフッ化水素であり、塔底液は275gのフッ化水素水溶液(62質量%)であった。塔頂留出物の水分をカールフィッシャー法により測定したところ水分の存在は確認されなかった。塔底液にはヘキサフルオロアセトンは検出されなかった。
(c)(b)の蒸留の終了後塔底から回収したフッ化水素水溶液(62質量%)267gを蒸留ポットに投入し、実施例1と同様の蒸留を開始した。塔頂の還流液を抜き出しながら塔底温度が116℃を示すまで蒸留を続けたところ、塔頂留出物は54gのフッ化水素であり、塔底液は206gのフッ化水素水溶液(48質量%)であった。塔頂留出物の水分をカールフィッシャー法により測定したところ、水分の存在は確認されなかった。塔底液にはヘキサフルオロアセトンは検出されなかった。
[Example 2] Batch type production method (a) After completion of distillation in Example 1, 181 g of an aqueous hydrogen fluoride solution (71% by mass) recovered from the bottom of the column, 220 g of HFA · 3W, and 344 g of anhydrous hydrogen fluoride were distilled. It poured into the pot and the distillation similar to Example 1 was started. Distillation was continued while removing the reflux solution at the top of the tower until the bottom temperature showed 51 ° C., and 249 g of the top distillate was obtained (molar ratio of HFA · nHF n4.15, yield of hexafluoroacetone 99%). The column bottom liquid was 489 g of an aqueous hydrogen fluoride solution (76% by mass). When the water content of the top distillate was measured by the Karl Fischer method, the presence of water was not confirmed. Hexafluoroacetone was not detected in the bottom liquid.
(B) After completion of the distillation in (a), 412 g of an aqueous hydrogen fluoride solution (76% by mass) recovered from the bottom of the column was added to the distillation pot, and the same distillation as in Example 1 was started. Distillation was continued while the reflux liquid at the top of the tower was withdrawn until the bottom temperature showed 85 ° C., the top distillate was 197 g of hydrogen fluoride, and the bottom liquid was 275 g of hydrogen fluoride aqueous solution (62 mass). %)Met. When the water content of the top distillate was measured by the Karl Fischer method, the presence of water was not confirmed. Hexafluoroacetone was not detected in the bottom liquid.
(C) After completion of the distillation in (b), 267 g of an aqueous hydrogen fluoride solution (62% by mass) recovered from the bottom of the column was added to the distillation pot, and the same distillation as in Example 1 was started. Distillation was continued while extracting the reflux liquid at the top of the tower until the bottom temperature showed 116 ° C., and the top distillate was 54 g of hydrogen fluoride, and the bottom liquid was 206 g of hydrogen fluoride aqueous solution (48 mass). %)Met. When the water content of the top distillate was measured by the Karl Fischer method, the presence of water was not confirmed. Hexafluoroacetone was not detected in the bottom liquid.

[実施例3]バッチ式製造法
実施例1と同じ装置を用いて蒸留を行った。蒸留ポットに220gのHFA・3Wを投入後、ドライアイス/アセトンバスで冷却した。次いで、122gのフッ化水素を秤量して投入し、冷却された状態(−20℃)で蒸留塔にセッティングした。その後、実施例1と同様に塔底温度が121℃を示すまで蒸留を続け、停止した。
[Example 3] Batch production method Distillation was carried out using the same apparatus as in Example 1. After putting 220 g of HFA · 3 W into the distillation pot, it was cooled in a dry ice / acetone bath. Next, 122 g of hydrogen fluoride was weighed and charged, and set in a distillation column in a cooled state (−20 ° C.). Thereafter, distillation was continued and stopped until the bottom temperature of the column showed 121 ° C. as in Example 1.

蒸留の後、塔頂から回収した還流液(塔頂留出物)は229g(HFA・nHFのモル比n3.5、ヘキサフルオロアセトンの収率99%)であり、塔底液は104gのフッ化水素水溶液(46質量%)であった。還流液の水分をカールフィッシャー法により測定したところ水分の存在は確認されなかった。塔底液にはヘキサフルオロアセトンは検出されなかった。   After the distillation, the reflux liquid (column top distillate) recovered from the top of the tower was 229 g (HFA / nHF molar ratio n3.5, hexafluoroacetone yield 99%), and the bottom liquid was 104 g of fluorine. It was a hydrogen fluoride aqueous solution (46 mass%). When the water content of the reflux liquid was measured by the Karl Fischer method, the presence of water was not confirmed. Hexafluoroacetone was not detected in the bottom liquid.

[実施例4]バッチ式製造法
実施例1と同じ装置を用いて蒸留を行った。蒸留ポットに220gのHFA・3Wを投入後、ドライアイス/アセトンバスで冷却した。次いで、271gのフッ化水素を秤量して投入し、冷却された状態(−20℃)で蒸留塔にセッティングした。その後、実施例1と同様に塔底温度が128℃を示すまで蒸留を続け、停止した。
Example 4 Batch Production Method Distillation was carried out using the same apparatus as in Example 1. After putting 220 g of HFA · 3 W into the distillation pot, it was cooled in a dry ice / acetone bath. Next, 271 g of hydrogen fluoride was weighed and charged, and set in a distillation column in a cooled state (−20 ° C.). Thereafter, the distillation was continued and stopped until the column bottom temperature showed 128 ° C. as in Example 1.

蒸留の後、塔頂から回収した還流液(塔頂留出物)は389g(HFA・nHFのモル比n11、ヘキサフルオロアセトンの収率99%)であり、塔底液は96gのフッ化水素水溶液(38質量%)であった。還流液の水分をカールフィッシャー法により測定したところ、水分の存在は確認されなかった。塔底液にはヘキサフルオロアセトンは検出されなかった。   After the distillation, the reflux liquid recovered from the top of the column (column top distillate) was 389 g (molar ratio n11 of HFA · nHF, 99% yield of hexafluoroacetone), and the bottom liquid was 96 g of hydrogen fluoride. It was an aqueous solution (38 mass%). When the water content of the reflux liquid was measured by the Karl Fischer method, the presence of water was not confirmed. Hexafluoroacetone was not detected in the bottom liquid.

[実施例5]連続式製造法
脱水装置は、実施例1に示した装置に、HFA・3Wの供給装置として定量ポンプ(イワキ社製EH-B10SH-100PR9)、フッ化水素の供給装置としてステンレス製の内挿管と枝管を備えたボンベにニードルバルブを組み合わせた装置を付加して使用した。流量は上皿秤の表示により調節した。
[Example 5] Continuous production method The dehydration apparatus is the same as the apparatus shown in Example 1 except that a metering pump (EH-B10SH-100PR9 manufactured by Iwaki Co., Ltd.) is used as the HFA-3W supply device and stainless steel is used as the hydrogen fluoride supply device A cylinder with a needle valve was added to a cylinder equipped with an internal intubation tube and a branch tube. The flow rate was adjusted by the display on the pan scale.

まず、蒸留ポットにフッ化水素と水を混合して調製した60質量%のフッ化水素水溶液303gを投入し、蒸留を開始した。フッ化水素の還流が確認された時点で、HFA・3Wとフッ化水素の混合液(フッ化水素のHFA・3Wに対するモル比13)638gを塔頂から蒸留塔高さの1/4の位置に5時間にわたって連続的に供給し、塔頂からの流出物を受器に回収した。混合液の供給の間、塔底温度を約107℃に保ちながら、留出量を調節して塔頂温度を16.5℃〜20.5℃に保った。   First, 303 g of a 60% by mass hydrogen fluoride aqueous solution prepared by mixing hydrogen fluoride and water was put into a distillation pot, and distillation was started. When the reflux of hydrogen fluoride was confirmed, 638 g of a mixed solution of HFA · 3W and hydrogen fluoride (molar ratio of hydrogen fluoride to HFA · 3W of 13) was ¼ of the column height from the top of the column. The effluent from the top of the column was collected in a receiver. During the supply of the mixed liquid, the column top temperature was maintained at 16.5 ° C. to 20.5 ° C. by adjusting the distillation amount while maintaining the column bottom temperature at about 107 ° C.

脱水処理の終了時点で塔頂から回収された567gの塔頂留出物はヘキサフルオロアセトン/フッ化水素のモル比が10であった。この塔頂からの留出物に含まれる水分をカールフィッシャー法により測定したところ水分の存在は確認されなかった。蒸留終了時の塔底液は370gのフッ化水素水溶液(48質量%)であり、塔底液にはヘキサフルオロアセトンは検出されなかった。全体の回収率(物質収支)は99.9%以上であり、ヘキサフルオロアセトンの回収率は99.6%、フッ化水素の回収率は100%であった。   567 g of the overhead distillate recovered from the top of the tower at the end of the dehydration treatment had a hexafluoroacetone / hydrogen fluoride molar ratio of 10. When the moisture contained in the distillate from the top of the column was measured by the Karl Fischer method, the presence of moisture was not confirmed. The column bottom liquid at the end of the distillation was 370 g of hydrogen fluoride aqueous solution (48% by mass), and no hexafluoroacetone was detected in the column bottom liquid. The overall recovery rate (material balance) was 99.9% or higher, the recovery rate of hexafluoroacetone was 99.6%, and the recovery rate of hydrogen fluoride was 100%.

本発明の脱水方法は、フッ化水素を脱水剤とするため、廃棄物をほとんど発生させないという利点があり、加えて、得られる無水物がヘキサフルオロアセトンのフッ化水素付加体であることから、フッ化水素を溶媒等として反応に供する場合には特に有効であるという特徴がある。   Since the dehydration method of the present invention uses hydrogen fluoride as a dehydrating agent, there is an advantage that almost no waste is generated. In addition, since the obtained anhydride is a hydrogen fluoride adduct of hexafluoroacetone, It is particularly effective when hydrogen fluoride is used as a solvent for the reaction.

Claims (5)

ヘキサフルオロアセトン水和物とフッ化水素をあらかじめ混合してまたは別々に蒸留塔に導入し、低沸点成分としてヘキサフルオロアセトンまたはヘキサフルオロアセトンフッ化水素付加体とフッ化水素を含む組成物を得、高沸点成分として水およびフッ化水素を含む組成物として得ることからなるヘキサフルオロアセトン水和物の脱水方法。 Hexafluoroacetone hydrate and hydrogen fluoride are mixed in advance or separately introduced into the distillation column to obtain a composition containing hexafluoroacetone or hexafluoroacetone hydrogen fluoride adduct and hydrogen fluoride as low-boiling components. A method for dehydrating hexafluoroacetone hydrate comprising obtaining a composition containing water and hydrogen fluoride as high-boiling components. ヘキサフルオロアセトン水和物とフッ化水素をあらかじめ混合してまたは別々に連続的に蒸留塔に導入する請求項1に記載の脱水方法。 The dehydration method according to claim 1, wherein hexafluoroacetone hydrate and hydrogen fluoride are mixed in advance or separately and continuously introduced into the distillation column. ヘキサフルオロアセトン水和物とフッ化水素をあらかじめ混合してまたは別々に蒸留塔に連続的に導入し、低沸点成分としてヘキサフルオロアセトンまたはヘキサフルオロアセトンフッ化水素付加体とフッ化水素を含む組成物を塔頂部から連続的に得、高沸点成分として水およびフッ化水素を含む組成物を塔底部から連続的に得ることからなるヘキサフルオロアセトン水和物の脱水方法。 Hexafluoroacetone hydrate and hydrogen fluoride are premixed or separately introduced continuously into the distillation column, and the composition contains hexafluoroacetone or hexafluoroacetone hydrogen fluoride adduct and hydrogen fluoride as low-boiling components. A method of dehydrating hexafluoroacetone hydrate comprising continuously obtaining a product from the top of the column and continuously obtaining a composition containing water and hydrogen fluoride as high-boiling components from the bottom of the column. ヘキサフルオロアセトン水和物がヘキサフルオロアセトン3水和物である請求項1〜3に記載の脱水方法。 The dehydration method according to claim 1, wherein the hexafluoroacetone hydrate is hexafluoroacetone trihydrate. ヘキサフルオロアセトン水和物が水を含むヘキサフルオロアセトン水和物である請求項1〜4に記載の脱水方法。 The dehydration method according to claim 1, wherein the hexafluoroacetone hydrate is hexafluoroacetone hydrate containing water.
JP2007222846A 2007-08-29 2007-08-29 Method for dehydrating hexafluroacetone hydrate Expired - Fee Related JP5034784B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007222846A JP5034784B2 (en) 2007-08-29 2007-08-29 Method for dehydrating hexafluroacetone hydrate
CN200880104256.XA CN101784510B (en) 2007-08-29 2008-08-28 Process for dehydration of hexafluoroacetone hydrate
US12/675,725 US7919657B2 (en) 2007-08-29 2008-08-28 Process for dehydration of hexafluoroacetone hydrate
EP08828871.7A EP2189437B1 (en) 2007-08-29 2008-08-28 Rocess for dehydration of hexafluoroacetone trihydrate
PCT/JP2008/065359 WO2009028584A1 (en) 2007-08-29 2008-08-28 Process for dehydration of hexafluoroacetone hydrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007222846A JP5034784B2 (en) 2007-08-29 2007-08-29 Method for dehydrating hexafluroacetone hydrate

Publications (2)

Publication Number Publication Date
JP2009051799A JP2009051799A (en) 2009-03-12
JP5034784B2 true JP5034784B2 (en) 2012-09-26

Family

ID=40387299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007222846A Expired - Fee Related JP5034784B2 (en) 2007-08-29 2007-08-29 Method for dehydrating hexafluroacetone hydrate

Country Status (5)

Country Link
US (1) US7919657B2 (en)
EP (1) EP2189437B1 (en)
JP (1) JP5034784B2 (en)
CN (1) CN101784510B (en)
WO (1) WO2009028584A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5482013B2 (en) * 2009-08-18 2014-04-23 セントラル硝子株式会社 Method for producing hexafluoroacetone monohydrate
JP5585291B2 (en) * 2010-08-12 2014-09-10 セントラル硝子株式会社 Method for producing hexafluoroacetone monohydrate
CN106699504A (en) * 2015-11-18 2017-05-24 浙江蓝天环保高科技股份有限公司 Preparation method of 2,2-bis(3,4-dimethylphenyl)hexafluoropropane

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE644654A (en) * 1963-03-07 1964-07-01
NL295962A (en) 1963-07-30
US3433838A (en) * 1966-09-21 1969-03-18 Allied Chem Purification of perhaloacetones
US3745093A (en) 1970-07-17 1973-07-10 Du Pont Process for separating hexafluoroacetone from hydrogen fluoride
JPS5823855B2 (en) * 1976-12-03 1983-05-18 ダイキン工業株式会社 Purification method for hexafluoro-2-propanone
JPS5781433A (en) 1980-11-11 1982-05-21 Central Glass Co Ltd Purification of hexafluoroacetone
US4388223A (en) * 1981-04-06 1983-06-14 Euteco Impianti S.P.A. Catalyst for the conversion of unsaturated hydrocarbons into diolefins or unsaturated aldehydes and nitriles, and process for preparing the same
JPS59157045A (en) 1983-02-28 1984-09-06 Nippon Mektron Ltd Dehydration of hexafluoroacetone hydrate
JPS59204149A (en) * 1983-04-30 1984-11-19 Central Glass Co Ltd Method for purifying hexafluoroacetone hydrate
FR2556340B1 (en) 1983-12-13 1986-05-16 Atochem CATALYTIC PROCESS FOR THE PREPARATION OF HEXAFLUOROACETONE
US4570974A (en) * 1984-04-30 1986-02-18 Arthur Dove Safety vest
JP3066294B2 (en) * 1995-08-02 2000-07-17 三洋電機株式会社 Air conditioning system with commercial power supply function
CN1321962C (en) * 2005-11-07 2007-06-20 上海三爱富新材料股份有限公司 Hexafluoroacetone hydrate dehydrolyzing method

Also Published As

Publication number Publication date
WO2009028584A1 (en) 2009-03-05
CN101784510B (en) 2013-03-20
CN101784510A (en) 2010-07-21
EP2189437A4 (en) 2013-11-20
EP2189437B1 (en) 2016-10-12
JP2009051799A (en) 2009-03-12
US20100217049A1 (en) 2010-08-26
EP2189437A1 (en) 2010-05-26
US7919657B2 (en) 2011-04-05

Similar Documents

Publication Publication Date Title
JP5339782B2 (en) Method for producing alkali metal alcoholate
JP4587262B2 (en) Production of formic acid
JP5482013B2 (en) Method for producing hexafluoroacetone monohydrate
JP6183370B2 (en) Process for producing 1,2-dichloro-3,3,3-trifluoropropene
JP5668319B2 (en) Method for producing 2,2-bis (4-hydroxyphenyl) hexafluoropropane
JP5694576B2 (en) Method for producing difluoroacetonitrile and its derivatives
US3983180A (en) Process for preparing methyl chloride
JP2014051485A (en) Separation method of 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride, and production method of 1-chloro-3,3,3-trifluoropropene using the same
JP5034784B2 (en) Method for dehydrating hexafluroacetone hydrate
US4209457A (en) Production of halogenated benzonitriles
WO2019026582A1 (en) Fluoroacetaldehyde preservation method
CA1267158A (en) Production of dibromonitro compound
JP2010037286A (en) Method for producing n-propyl acetate
EP2522652B1 (en) Method for producing difluoroacetic acid ester
JP2008019257A (en) Production pathway of 4-bromo-1-oxypentafluorosulfanylbenzene
JP5896220B2 (en) Method for producing erythritan
JP2015224218A (en) Production method of perfluoroalkylperfluoroalkane sulfonate
CN112500262A (en) Process for producing fluoromethane
US8257557B2 (en) Dehydration method
JP2006104096A (en) Purification method of ethylene carbonate
JP6299905B1 (en) Method for producing sevoflurane
JP2001342167A (en) Method of producing schiff's base
JP2009035522A (en) Production method of cyclopentyl alcohol compound
JPH1180088A (en) Production of ethyl pyruvate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5034784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees