JP5034291B2 - Electro-optical device, driving method of electro-optical device, and electronic apparatus - Google Patents

Electro-optical device, driving method of electro-optical device, and electronic apparatus Download PDF

Info

Publication number
JP5034291B2
JP5034291B2 JP2006088289A JP2006088289A JP5034291B2 JP 5034291 B2 JP5034291 B2 JP 5034291B2 JP 2006088289 A JP2006088289 A JP 2006088289A JP 2006088289 A JP2006088289 A JP 2006088289A JP 5034291 B2 JP5034291 B2 JP 5034291B2
Authority
JP
Japan
Prior art keywords
voltage
electro
optical device
gate terminal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006088289A
Other languages
Japanese (ja)
Other versions
JP2007264241A (en
Inventor
勉 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006088289A priority Critical patent/JP5034291B2/en
Publication of JP2007264241A publication Critical patent/JP2007264241A/en
Application granted granted Critical
Publication of JP5034291B2 publication Critical patent/JP5034291B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2230/00Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0417Special arrangements specific to the use of low carrier mobility technology
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0267Details of drivers for scan electrodes, other than drivers for liquid crystal, plasma or OLED displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0289Details of voltage level shifters arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

本発明は、電界を印加することに泳動する電気泳動粒子を含有する分散系を備えた電気
光学装置、電気光学装置の駆動方法、及び電子機器に関する。
The present invention relates to an electro-optical device including a dispersion system containing electrophoretic particles that migrate when an electric field is applied, a driving method of the electro-optical device, and an electronic apparatus.

従来、非発光型の電気光学装置として、電気泳動現象を利用した電気泳動表示装置が知
られている(例えば、特許文献1参照)。電気泳動現象は、液体中(分散媒)に微粒子(
電気泳動粒子)を分散させた分散系に電界を印加したとき、該微粒子がクーロン力により
泳動する現象をいう。
2. Description of the Related Art Conventionally, an electrophoretic display device using an electrophoretic phenomenon is known as a non-light-emitting electro-optical device (see, for example, Patent Document 1). Electrophoresis is caused by fine particles (in the dispersion medium)
A phenomenon in which, when an electric field is applied to a dispersion system in which (electrophoretic particles) are dispersed, the fine particles migrate by Coulomb force.

ここで、電気泳動表示装置の概略的な構成を簡単に述べる。電気泳動表示装置は、一方
の電極と他方の電極とを所定の間隔で対向させ、その間に画像の表示単位である画素とし
ての分散系をマトリクス状に多数配置して構成されている。そして、電気泳動表示装置は
、それらの分散系に電界を印加するための周辺回路を備えている。
Here, a schematic configuration of the electrophoretic display device will be briefly described. The electrophoretic display device has one electrode and the other electrode facing each other at a predetermined interval, and a large number of dispersion systems as pixels, which are display units of an image, are arranged in a matrix therebetween. The electrophoretic display device includes a peripheral circuit for applying an electric field to the dispersion system.

図7は、電気泳動表示装置の機械的な構成を示す分解斜視図であり、図8は、1画素に
対応した分散系を示す表示パネルの要部断面図である。画素となる分散系61は、画素電
極62等を設けた素子基板63と共通電極64等を設けた対向基板65との間に隔壁66
を形成し、両電極62,64と隔壁66とで形成される空間69に電気泳動粒子67を分
散させた液体(分散媒)68を充填して構成される。共通電極64及び対向基板65とし
ては、透過性を有する材料が用いられる。ここで、例えば2値表示を実現する場合、分散
媒68は黒色に染色され、電気泳動粒子67としては酸化チタン等の白色粒子が用いられ
る。そして、電気泳動粒子67は正負いずれかの電荷を持つように帯電される。
FIG. 7 is an exploded perspective view showing a mechanical configuration of the electrophoretic display device, and FIG. 8 is a cross-sectional view of a main part of the display panel showing a dispersion system corresponding to one pixel. A dispersion system 61 serving as a pixel includes a partition wall 66 between an element substrate 63 provided with a pixel electrode 62 and the like and a counter substrate 65 provided with a common electrode 64 and the like.
And a liquid (dispersion medium) 68 in which electrophoretic particles 67 are dispersed is filled in a space 69 formed by both electrodes 62 and 64 and partition walls 66. As the common electrode 64 and the counter substrate 65, a material having transparency is used. Here, for example, when realizing binary display, the dispersion medium 68 is dyed black, and the electrophoretic particles 67 are white particles such as titanium oxide. The electrophoretic particles 67 are charged so as to have either a positive or negative charge.

また、素子基板63には上述した画素電極62の他に、走査線、データ線及びスイッチ
ング素子として機能する薄膜トランジスタ(Thin Film Transistor:以下、TFT)が形
成されている(図8ではその様子を省略している)。
In addition to the pixel electrode 62 described above, a thin film transistor (hereinafter referred to as TFT) functioning as a scanning line, a data line, and a switching element is formed on the element substrate 63 (this is not shown in FIG. 8). is doing).

図9は、1画素に対応した等価回路を説明する説明図である。すなわち、表示パネルの
素子基板63上には互いに直交する方向に沿って走査線71とデータ線72とが設けられ
、それらの交差部に対応してTFT73が設けられている。TFT73は、そのゲート電
極が走査線71に接続され、そのソース電極がデータ線72に接続され、そのドレイン電
極が分散系61を挟持する一方の画素電極62に接続されている。尚、分散系61を挟持
する他方の共通電極64には、共通電圧Vcom(一般には接地電圧)が印加される。
FIG. 9 is an explanatory diagram for explaining an equivalent circuit corresponding to one pixel. That is, the scanning lines 71 and the data lines 72 are provided on the element substrate 63 of the display panel along directions orthogonal to each other, and the TFTs 73 are provided corresponding to the intersections thereof. The TFT 73 has a gate electrode connected to the scanning line 71, a source electrode connected to the data line 72, and a drain electrode connected to one pixel electrode 62 sandwiching the dispersion system 61. A common voltage Vcom (generally a ground voltage) is applied to the other common electrode 64 sandwiching the dispersion system 61.

このような構成において、走査線71は、図示しない走査線駆動回路から供給される走
査線信号によってアクティブになり、このアクティブになる期間(選択期間)に於いてT
FT73はオンされる。そして、データ線72及びオンしたTFT73を介して図示しな
いデータ線駆動回路からデータ信号が供給されることにより、画素電極62に電圧が印加
される。
In such a configuration, the scanning line 71 is activated by a scanning line signal supplied from a scanning line driving circuit (not shown), and during this active period (selection period), T
The FT 73 is turned on. A voltage is applied to the pixel electrode 62 by supplying a data signal from a data line driving circuit (not shown) via the data line 72 and the turned on TFT 73.

画素電極62と共通電極64との間に電位差を与えると、クーロン力によって電気泳動
粒子67が画素電極62又は共通電極64のどちらか一方の電極に引き寄せられる。この
とき、電気泳動粒子67が透明の共通電極64側に引き寄せられると、該共通電極64か
ら入射した光は電気泳動粒子67によって反射され、電気泳動粒子67の色(白色)が見
えることになる。一方、電気泳動粒子67が画素電極62側に引き寄せられると、前述し
た入射光と反射光は分散媒68によって吸収され、分散媒68の染色した色(黒色)が見
えることになる。つまり、電気泳動表示装置は、表示パネルにマトリクス状に多数配置さ
れた各々の分散系61について、分散系61の電気泳動粒子67の移動位置をそれぞれ個
々に制御することによって画像を形成する。
When a potential difference is applied between the pixel electrode 62 and the common electrode 64, the electrophoretic particles 67 are attracted to either the pixel electrode 62 or the common electrode 64 by Coulomb force. At this time, when the electrophoretic particles 67 are drawn toward the transparent common electrode 64, the light incident from the common electrode 64 is reflected by the electrophoretic particles 67, and the color (white) of the electrophoretic particles 67 can be seen. . On the other hand, when the electrophoretic particles 67 are attracted to the pixel electrode 62 side, the incident light and the reflected light described above are absorbed by the dispersion medium 68, and the color (black) stained by the dispersion medium 68 can be seen. That is, the electrophoretic display device forms images by individually controlling the movement positions of the electrophoretic particles 67 of the dispersion system 61 for each of the dispersion systems 61 arranged in a matrix on the display panel.

特開2002−116734号公報JP 2002-116734 A

しかしながら、特許文献1では、例えばTFT73がPchTFTの場合、走査線71
からTFT73のゲート電極に供給される電圧値は、TFT73をオンにする電圧(0V
)と、TFT73をオフにする電圧(電源電圧)の2値であったため、分散系61を挟持
する画素電極62と共通電極64間の電圧は電源電圧からTFT73の閾値電圧を差し引
いた電圧となり十分な電圧が得られない。そこで、TFT73の閾値電圧を測定し、オフ
にする電圧から閾値電圧を差し引いてゲート端子に印加すれば、画素電極62と共通電極
64間を電源電圧にすることができるが、温度、湿度などの外的要因や、通電時間経過に
よる経時変化によりTFT73の閾値電圧が変動した場合、閾値電圧が小さくなるとゲー
ト端子に過電圧が印加されTFT73のゲート破壊を起したり、閾値電圧が大きくなると
電圧不足により正確な画像を形成することができなくなる問題があった。
However, in Patent Document 1, for example, when the TFT 73 is a Pch TFT, the scanning line 71
To the gate electrode of the TFT 73 is a voltage for turning on the TFT 73 (0V
) And the voltage for turning off the TFT 73 (power supply voltage), the voltage between the pixel electrode 62 and the common electrode 64 sandwiching the dispersion system 61 is sufficiently obtained by subtracting the threshold voltage of the TFT 73 from the power supply voltage. Can not get the correct voltage. Therefore, by measuring the threshold voltage of the TFT 73 and subtracting the threshold voltage from the voltage to be turned off and applying it to the gate terminal, the power supply voltage can be made between the pixel electrode 62 and the common electrode 64. When the threshold voltage of the TFT 73 fluctuates due to external factors or changes over time due to the passage of energization time, an overvoltage is applied to the gate terminal when the threshold voltage is reduced, causing gate breakdown of the TFT 73, or a voltage shortage when the threshold voltage is increased. There is a problem that an accurate image cannot be formed.

本発明は、このような事情に鑑みてなされたものであり、スイッチング素子の閾値電圧
が通電時間経過により変動してもオン/オフが可能な電気光学装置、電気光学装置の駆動
方法及び電子機器を提供することを目的とするものである。
The present invention has been made in view of such circumstances, and an electro-optical device that can be turned on / off even when the threshold voltage of the switching element fluctuates with the passage of energization time, a driving method of the electro-optical device, and an electronic apparatus Is intended to provide.

上記課題を解決するために、本発明の電気光学装置の駆動方法では、共通電極及び複数
の画素電極を介して印加される電界により泳動する電気泳動粒子が分散媒に分散された分
散系を備えた電気光学装置の駆動方法であって、前記電気光学装置は、記憶部と、前記電
気光学装置への通電経過時間を求める計時部と、を有し、前記電気光学装置への通電経過
時間に対する、前記複数の画素電極の各々に接続されたスイッチング素子の閾値電圧を予
め測定した結果を前記記憶部に記憶し、前記スイッチング素子をオン状態にするために前
記スイッチング素子のゲート端子に印加する電圧である第1の電圧を前記画素電極の電圧
値が飽和する第1の時点まで印加し、前記第1の時点以降、前記計時部から現時点の通電
経過時間を求め、前記通電経過時間に対する前記スイッチング素子の閾値電圧を前記記憶
部から求め、前記第1の電圧よりも低くかつ前記第1の電圧から前記閾値電圧を引いた電
圧よりも高い1種類以上の電圧を前記ゲート端子に印加する、ことを要旨とする。
In order to solve the above problems, the electro-optical device driving method of the present invention includes a dispersion system in which electrophoretic particles that migrate by an electric field applied through a common electrode and a plurality of pixel electrodes are dispersed in a dispersion medium. In addition, the electro-optical device includes a storage unit and a time measuring unit that obtains an elapsed time for energization of the electro-optical device, and the electro-optical device corresponds to the elapsed time for energization of the electro-optical device. , A result of previously measuring a threshold voltage of a switching element connected to each of the plurality of pixel electrodes is stored in the storage unit, and a voltage applied to a gate terminal of the switching element to turn on the switching element Is applied until a first time point at which the voltage value of the pixel electrode is saturated, and after the first time point, a current energization elapsed time is obtained from the timing unit, and the energization progress is obtained. A threshold voltage of the switching element with respect to the gap is obtained from the storage unit, and one or more kinds of voltages lower than the first voltage and higher than a voltage obtained by subtracting the threshold voltage from the first voltage are applied to the gate terminal. The gist is to apply.

この構成によれば、スイッチング素子の閾値電圧が通電時間経過により変動してもスイ
ッチング素子のゲート破壊を防ぎ、画素電極と共通電極間を電源電圧にすることができる
ので、正確な画像を形成することができる。
According to this configuration, even when the threshold voltage of the switching element fluctuates with the passage of energization time, the gate of the switching element can be prevented and the power supply voltage can be set between the pixel electrode and the common electrode, thereby forming an accurate image. be able to.

また、本発明の電気光学装置の駆動方法では、前記1種類以上の電圧は、前記第1の電
圧から前記閾値電圧を引いた電圧である。
In the driving method of the electro-optical device according to the aspect of the invention, the one or more types of voltages are voltages obtained by subtracting the threshold voltage from the first voltage.

この構成によれば、スイッチング素子の閾値電圧が通電時間経過により変動してもスイ
ッチング素子のゲート破壊を防ぎ、画素電極と共通電極間を電源電圧にすることができる
ので、正確な画像を形成することができる。
According to this configuration, even when the threshold voltage of the switching element fluctuates with the passage of energization time, the gate of the switching element can be prevented and the power supply voltage can be set between the pixel electrode and the common electrode, thereby forming an accurate image. be able to.

また、本発明の電気光学装置の駆動方法では、前記1種類以上の電圧は、前記第1の電
圧よりも低くかつ前記第1の電圧から前記閾値電圧を引いた電圧の間よりも高い所定の第
2の電圧と、前記第1の電圧から前記閾値電圧を引いた電圧である第3の電圧と、から構
成され、前記第2の電圧を前記ゲート端子に印加後、前記第3の電圧を前記ゲート端子に
印加する。
In the driving method of the electro-optical device according to the aspect of the invention, the one or more types of voltages may be a predetermined voltage that is lower than the first voltage and higher than a voltage obtained by subtracting the threshold voltage from the first voltage. And a third voltage that is a voltage obtained by subtracting the threshold voltage from the first voltage. After applying the second voltage to the gate terminal, the third voltage is Applied to the gate terminal.

この構成によれば、スイッチング素子の閾値電圧が通電時間経過により変動してもスイ
ッチング素子のゲート破壊を防ぎ、画素電極と共通電極間を電源電圧にすることができる
ので、正確な画像を形成することができる。
According to this configuration, even when the threshold voltage of the switching element fluctuates with the passage of energization time, the gate of the switching element can be prevented and the power supply voltage can be set between the pixel electrode and the common electrode, thereby forming an accurate image. be able to.

また、本発明の電気光学装置では、前記1種類以上の電圧は、前記第1の電圧と前記第
1の電圧から前記閾値電圧を引いた電圧を線形補間した複数の電圧から構成され、前記複
数の電圧を順次前記ゲート端子に印加する。
In the electro-optical device according to the aspect of the invention, the one or more types of voltages include the first voltage and a plurality of voltages obtained by linearly interpolating a voltage obtained by subtracting the threshold voltage from the first voltage. Are sequentially applied to the gate terminals.

この構成によれば、スイッチング素子の閾値電圧が通電時間経過により変動してもスイ
ッチング素子のゲート破壊を防ぎ、画素電極と共通電極間を電源電圧にすることができる
ので、正確な画像を形成することができる。
According to this configuration, even when the threshold voltage of the switching element fluctuates with the passage of energization time, the gate of the switching element can be prevented and the power supply voltage can be set between the pixel electrode and the common electrode, thereby forming an accurate image. be able to.

また、本発明の電気光学装置では、上述した電気光学装置の駆動方法により駆動する。   The electro-optical device of the present invention is driven by the above-described driving method of the electro-optical device.

この構成によれば、スイッチング素子の閾値電圧が通電時間経過により変動してもスイ
ッチング素子のゲート破壊を防ぎ、画素電極と共通電極間を電源電圧にすることができる
ので、正確な画像を形成することができる。
According to this configuration, even when the threshold voltage of the switching element fluctuates with the passage of energization time, the gate of the switching element can be prevented and the power supply voltage can be set between the pixel electrode and the common electrode, thereby forming an accurate image. be able to.

また、本発明の電気光学装置では、前記電気光学装置は、前記ゲート端子に電圧を印加
する走査線駆動回路を有し、前記走査線駆動回路の電圧出力部は、トランスファーゲート
で構成されている。
In the electro-optical device according to the aspect of the invention, the electro-optical device includes a scanning line driving circuit that applies a voltage to the gate terminal, and the voltage output unit of the scanning line driving circuit includes a transfer gate. .

この構成によれば、スイッチング素子の閾値電圧が通電時間経過により変動してもスイ
ッチング素子のゲート破壊を防ぎ、画素電極と共通電極間を電源電圧にすることができる
ので、正確な画像を形成することができる。
According to this configuration, even when the threshold voltage of the switching element fluctuates with the passage of energization time, the gate of the switching element can be prevented and the power supply voltage can be set between the pixel electrode and the common electrode, thereby forming an accurate image. be able to.

次に、本発明に係る電子機器は、上述した電気光学装置を備え、例えば、パーソナルコ
ンピュータ、携帯電話機、および携帯情報端末等が該当する。
Next, an electronic apparatus according to the present invention includes the above-described electro-optical device, and corresponds to, for example, a personal computer, a mobile phone, and a portable information terminal.

また、本発明の電気光学装置では、第1の電極及び第2の電極を介して電圧を印加する
ことにより泳動する、分散媒に分散された電気泳動粒子を備えた電気光学装置の駆動方法
であって、前記第1の電極に接続されたスイッチングトランジスタのゲート端子に第1の
電圧を印加することにより前記スイッチングトランジスタを介してデータ線と前記第1の
電極を電気的に接続した後、さらに前記スイッチングトランジスタの前記ゲート端子に前
記第1の電圧とは異なる電圧レベルを有する第2の電圧を印加することにより前記スイッ
チングトランジスタを介して前記データ線と前記第1の電極を電気的に接続することを要
旨とする。
The electro-optical device according to the present invention is a method for driving an electro-optical device including electrophoretic particles dispersed in a dispersion medium that migrates by applying a voltage through the first electrode and the second electrode. And after electrically connecting the data line and the first electrode through the switching transistor by applying a first voltage to the gate terminal of the switching transistor connected to the first electrode, By applying a second voltage having a voltage level different from the first voltage to the gate terminal of the switching transistor, the data line and the first electrode are electrically connected through the switching transistor. This is the gist.

この構成によれば、スイッチング素子の閾値電圧が通電時間経過により変動してもスイ
ッチング素子のゲート破壊を防ぎ、画素電極と共通電極間を電源電圧にすることができる
ので、正確な画像を形成することができる。
According to this configuration, even when the threshold voltage of the switching element fluctuates with the passage of energization time, the gate of the switching element can be prevented and the power supply voltage can be set between the pixel electrode and the common electrode, thereby forming an accurate image. be able to.

以下、本発明を具体化した実施形態について図面に従って説明する。
(第1実施形態)
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described with reference to the drawings.
(First embodiment)

<電気光学装置の構成>
まず、第1実施形態に係る電気光学装置である電気泳動表示装置の構成について、図1
を参照して説明する。
<Configuration of electro-optical device>
First, a configuration of an electrophoretic display device that is an electro-optical device according to the first embodiment will be described with reference to FIG.
Will be described with reference to FIG.

図1は、本発明の第1実施形態に係る電気泳動表示装置の構成を示すブロック図である
。図1に示すように、電気泳動表示装置1は、図7に示した表示領域A1と周辺領域A2
に分かれ、表示領域A1には、図8、図9で示した分散系61がm行n列(m、nは任意
の自然数)配列されている。
FIG. 1 is a block diagram showing the configuration of the electrophoretic display device according to the first embodiment of the present invention. As shown in FIG. 1, the electrophoretic display device 1 includes a display area A1 and a peripheral area A2 shown in FIG.
In the display area A1, the dispersion system 61 shown in FIGS. 8 and 9 is arranged in m rows and n columns (m and n are arbitrary natural numbers).

また、周辺領域A2(図7参照)は、データ線駆動回路100、走査線駆動回路200
、制御回路300、記憶部310、計時部320、共通電圧出力回路400が配置されて
いる。
The peripheral area A2 (see FIG. 7) includes a data line driving circuit 100 and a scanning line driving circuit 200.
A control circuit 300, a storage unit 310, a timer unit 320, and a common voltage output circuit 400 are arranged.

データ線駆動回路100は、n本のデータ線72を介し、TFT73のソース端子にデ
ータ信号X1〜Xnを供給する。走査線駆動回路200は、m本の走査線71を介し、T
FT73のゲート端子に走査信号Y1〜Ymを供給する。
The data line driving circuit 100 supplies data signals X1 to Xn to the source terminal of the TFT 73 via the n data lines 72. The scanning line driving circuit 200 passes through the m scanning lines 71, and T
Scan signals Y1 to Ym are supplied to the gate terminal of FT73.

制御回路300は、図示しない外部機器からの制御信号や、記憶部310及び計時部3
20からの情報に基づき、走査信号Y1〜Ymに供給する電圧を決定し、データ線駆動回
路100、走査線駆動回路200、共通電圧出力回路400を制御する。
The control circuit 300 includes a control signal from an external device (not shown), a storage unit 310 and a timer unit 3.
Based on the information from 20, the voltage supplied to the scanning signals Y1 to Ym is determined, and the data line driving circuit 100, the scanning line driving circuit 200, and the common voltage output circuit 400 are controlled.

記憶部310は、EEPROM(Electronically Erasable and Programmable Read On
ly Memory)などの記憶回路で構成され、図示しない外部機器からの情報を記憶する。計
時部320は、電気泳動表示装置1の電源が投入された時点からの経過時間をカウントす
る。共通電圧出力回路400は、すべての分散系61の共通電極64に共通電圧Vcom
を供給する。
The storage unit 310 is an EEPROM (Electronically Erasable and Programmable Read On
ly Memory) and the like, and stores information from an external device (not shown). The timer unit 320 counts the elapsed time from the time when the electrophoretic display device 1 is turned on. The common voltage output circuit 400 supplies a common voltage Vcom to the common electrode 64 of all the distributed systems 61.
Supply.

<分散系を制御するTFTの動作の構成>
次に、分散系を制御するTFTの動作について図2を参照して説明する。図2は、分散
系61を制御するTFT73の動作を説明するタイミングチャート図である。なお、本実
施形態では、TFT73の導電型はpチャネル型で、有機TFTで構成されているものと
する。
<Operation configuration of TFT controlling dispersion system>
Next, the operation of the TFT for controlling the dispersion system will be described with reference to FIG. FIG. 2 is a timing chart for explaining the operation of the TFT 73 that controls the dispersion system 61. In the present embodiment, it is assumed that the conductivity type of the TFT 73 is a p-channel type and is composed of an organic TFT.

図2(A)は、各々の分散系61の電気泳動粒子67を共通電極64側に引き寄せる動
作(データ書き込み)を説明するタイミング図であり、図2(B)は、逆に画素電極62
側に引き寄せる動作(データクリア)を説明するタイミング図である。
FIG. 2A is a timing chart for explaining an operation (data writing) for attracting the electrophoretic particles 67 of each dispersion system 61 to the common electrode 64 side, and FIG.
It is a timing diagram explaining the operation | movement (data clear) drawn near.

データ書き込み時は、図2(A)に示すように、共通電圧Vcomを接地電位(0V)
、データ信号Xi(1≦i≦n)を電源電位(VDD、例えば40V)、走査信号Yj(
1≦j≦m)を第1の電圧である接地電位(0V)、にそれぞれ設定する。この状態にお
いてTFT73のソース端子にVDD、ゲート端子に0Vが印加されるので、TFT73
はオン状態となり、TFT73のドレイン端子は、分散系61が充電される期間t(第1
の時点)を経てVDDとなる。
At the time of data writing, the common voltage Vcom is set to the ground potential (0 V) as shown in FIG.
, The data signal Xi (1 ≦ i ≦ n) is supplied from the power supply potential (VDD, for example, 40 V), and the scanning signal Yj (
1 ≦ j ≦ m) is set to the ground potential (0 V) which is the first voltage. In this state, VDD is applied to the source terminal of the TFT 73 and 0 V is applied to the gate terminal.
Is turned on, and the drain terminal of the TFT 73 has a period t (first time during which the dispersion system 61 is charged.
After that, it becomes VDD.

一方、データクリア時は、図2(B)に示すように、共通電圧VcomをVDD、デー
タ信号Xiを0V、走査信号Yjを0V、にそれぞれ設定する。この状態においてTFT
73のソース端子に0V、ゲート端子に0Vが印加されるので、TFT73はオン状態と
なるが、TFT73のドレイン端子は、分散系61が充電される期間tを経ても0Vまで
推移せず、TFT73の閾値電圧Vthに留まってしまう。このため、分散系61の画素
電極62と共通電極64間の電位差がVDD−Vthのため、電気泳動粒子67が画素電
極62側に引き寄せられる動作が遅くなる、もしくは十分に引き寄せられない問題があっ
た。
On the other hand, at the time of data clear, as shown in FIG. 2B, the common voltage Vcom is set to VDD, the data signal Xi is set to 0V, and the scanning signal Yj is set to 0V. TFT in this state
Since 0V is applied to the source terminal of 73 and 0V to the gate terminal, the TFT 73 is turned on. However, the drain terminal of the TFT 73 does not change to 0V even after the period t during which the dispersion system 61 is charged. The threshold voltage Vth remains. For this reason, since the potential difference between the pixel electrode 62 and the common electrode 64 of the dispersion system 61 is VDD−Vth, the operation of attracting the electrophoretic particles 67 toward the pixel electrode 62 becomes slow or not sufficiently attracted. It was.

この問題を解決するためには、TFT73のゲート端子に−Vthの電位を印加すれば
よいが、例えば、半導体層が有機材料で形成されたいわゆる有機TFTや半導体層がアモ
ルファスシリコンで形成されたアモルファスシリコンTFTは、通電時間の増加に伴い閾
値電圧が変化するいわゆる閾値電圧シフトが顕著であるため、−Vthとしてゲート端子
に印加すべき電圧を設定することが困難である。例えば、一律に−Vthをゲート端子に
印加すると閾値電圧が当初のVthよりも低い電位になった場合、ゲート破壊を引き起こ
す恐れがある。
In order to solve this problem, a potential of −Vth may be applied to the gate terminal of the TFT 73. For example, a so-called organic TFT in which a semiconductor layer is formed of an organic material or an amorphous structure in which a semiconductor layer is formed of amorphous silicon. Since a so-called threshold voltage shift in which a threshold voltage changes with an increase in energization time is remarkable in a silicon TFT, it is difficult to set a voltage to be applied to the gate terminal as -Vth. For example, if −Vth is uniformly applied to the gate terminal, the gate breakdown may occur if the threshold voltage becomes lower than the initial Vth.

図3(A)は、TFT73の通電経過時間に対する閾値電圧の変移を説明するグラフ図
である。なお、図3(A)のグラフ図の値は、説明を簡略化するために用意したものであ
り、実際の値に基づくものではない。
FIG. 3A is a graph illustrating the transition of the threshold voltage with respect to the energization elapsed time of the TFT 73. Note that the values in the graph of FIG. 3A are prepared for simplifying the explanation, and are not based on actual values.

図3(A)に示すように、TFT73の閾値電圧は、通電前に測定した時点で5Vであ
ったものが、1時間経過後から5時間経過までに4Vまで線形に減少している。有機TF
Tの閾値電圧が通電時間経過に伴い変移する理由としては、半導体界面(下地層〜半導体
界面、またはゲート絶縁層〜半導体界面)への水分子、イオン等の吸着などにより電子供
与性/電子受容性が発現することなどが考えられる。
As shown in FIG. 3A, the threshold voltage of the TFT 73, which was 5 V when measured before energization, linearly decreases from 4 hours to 4 V after 5 hours. Organic TF
The reason why the threshold voltage of T changes as the energization time elapses is that electron donation / electron acceptance is caused by adsorption of water molecules, ions, etc. on the semiconductor interface (underlayer to semiconductor interface, or gate insulating layer to semiconductor interface). It is possible that sex is manifested.

本実施形態では、予めTFT73の通電経過時間に対する閾値電圧の値を測定し、記憶
部310に図3(B)に示すように通電経過時間に対する閾値電圧を記憶させたテーブル
を記憶させておくことにより、現時点での閾値電圧の値に基づきTFT73のゲート端子
に印加する電圧を制御回路300が設定するように構成されている。
In this embodiment, the threshold voltage value for the energization elapsed time of the TFT 73 is measured in advance, and a table in which the threshold voltage for the energization elapsed time is stored in the storage unit 310 as shown in FIG. Thus, the control circuit 300 is configured to set the voltage to be applied to the gate terminal of the TFT 73 based on the current threshold voltage value.

図4は、制御回路300の動作を説明するフローチャート図である。制御回路300は
、分散系61のデータをクリアする時点で処理を行う。
FIG. 4 is a flowchart for explaining the operation of the control circuit 300. The control circuit 300 performs processing when the data in the distributed system 61 is cleared.

先ず、ステップS100では、制御回路300は、計時部320から現時点での経過時
間を取得する。
First, in step S <b> 100, the control circuit 300 acquires the current elapsed time from the time measuring unit 320.

次に、ステップS102では、記憶部310の通電経過時間に対する閾値電圧を記憶さ
せたテーブルを参照し、経過時間に対するTFT73の閾値電圧の値Vthを取得する。
Next, in step S102, the threshold voltage value Vth of the TFT 73 with respect to the elapsed time is acquired with reference to a table storing the threshold voltage with respect to the elapsed time of energization in the storage unit 310.

次に、ステップS104では、走査線駆動回路200からの走査信号YjによりTFT
73のゲート端子に期間tの間0Vを印加後、−Vthの電位を印加する。
Next, in step S104, the TFT is detected by the scanning signal Yj from the scanning line driving circuit 200.
A voltage of −Vth is applied to the gate terminal 73 after 0V is applied for a period t.

図5(A)は、第1実施形態におけるTFT73のゲート端子に印加する電圧とTFT
73のドレイン端子の電圧の変化を示すタイミング図である。図5(A)に示すように、
TFT73のゲート端子に期間tの間0Vを印加すると、TFT73のドレイン端子の電
位はVDDからVthに移行する。その後、TFT73のゲート端子に−Vthの電位を
印加するので、TFT73のドレイン端子の電位はVthから0Vに移行する。
FIG. 5A shows the voltage applied to the gate terminal of the TFT 73 and the TFT in the first embodiment.
FIG. 73 is a timing diagram showing changes in voltage at 73 drain terminals. As shown in FIG.
When 0V is applied to the gate terminal of the TFT 73 for a period t, the potential of the drain terminal of the TFT 73 shifts from VDD to Vth. After that, since the potential of −Vth is applied to the gate terminal of the TFT 73, the potential of the drain terminal of the TFT 73 shifts from Vth to 0V.

図6は、走査線駆動回路200の構成を説明する回路図である。走査線駆動回路200
は、シフトレジスタ210と、走査信号Y1〜Ymを出力する各々の走査線71に対し、
レベルシフタ220と、インバータ230と、トランスファーゲート240と、から構成
されている。
FIG. 6 is a circuit diagram illustrating the configuration of the scanning line driving circuit 200. Scanning line driving circuit 200
Is for the shift register 210 and each scanning line 71 that outputs the scanning signals Y1-Ym.
A level shifter 220, an inverter 230, and a transfer gate 240 are included.

以上に述べた前記実施形態によれば、以下の効果が得られる。   According to the embodiment described above, the following effects can be obtained.

本実施形態では、画素電極と共通電極間との電位差を、変化するTFT73の閾値電圧
に依存しない所定値にすることができるので、正確な画像を表示することができる。所定
値を適宜設定すればスイッチング素子であるTFT73の閾値電圧が通電時間経過により
変動してもTFT73のゲート破壊を防止することができる。
In the present embodiment, since the potential difference between the pixel electrode and the common electrode can be set to a predetermined value that does not depend on the threshold voltage of the changing TFT 73, an accurate image can be displayed. If the predetermined value is appropriately set, the gate breakdown of the TFT 73 can be prevented even if the threshold voltage of the TFT 73 serving as a switching element varies with the passage of energization time.

(第2実施形態)
次に、第1実施形態で説明した電気泳動表示装置1を搭載した電子機器の適用について
図10に従って説明する。図10は、モバイル型パーソナルコンピュータの一構成を示す
斜視図である。同図において、パーソナルコンピュータ2000は、キーボード2002
を備える本体部2010と、前記電気泳動表示装置1を用いた表示ユニット2001を備
えている。この場合でも、電気泳動表示装置1を用いた表示ユニット2001は前記第1
実施形態と同様な効果を発揮する。その結果、パーソナルコンピュータ2000は、高品
質の画像を実現することができる。
(Second Embodiment)
Next, application of an electronic apparatus equipped with the electrophoretic display device 1 described in the first embodiment will be described with reference to FIG. FIG. 10 is a perspective view showing a configuration of a mobile personal computer. In the figure, a personal computer 2000 includes a keyboard 2002.
And a display unit 2001 using the electrophoretic display device 1. Even in this case, the display unit 2001 using the electrophoretic display device 1 is the first unit.
The same effect as the embodiment is exhibited. As a result, the personal computer 2000 can realize a high-quality image.

以上、本発明の実施形態を説明したが、本発明はこうした実施の形態に何ら限定される
ものではなく、本発明の趣旨を逸脱しない範囲内において様々な形態で実施し得ることが
できる。以下、変形例を挙げて説明する。
As mentioned above, although embodiment of this invention was described, this invention is not limited to such embodiment at all, In the range which does not deviate from the meaning of this invention, it can be implemented with various forms. Hereinafter, a modification will be described.

(変形例1)本発明に係る電気光学装置の第1変形例について説明する。前記第1実施
形態では、図5(A)に示すように、期間t以降にTFT73のゲート端子に印加する電
圧は、−Vthの電位であったが、図5(B)に示すように、−Vthの電位を印加する
前に0Vから−Vthの間の電位(例えば、−1/2×Vth)を印加するようにしても
よい。また、2段階に限らず複数段階で印加してもよい。
(Modification 1) A first modification of the electro-optical device according to the invention will be described. In the first embodiment, as shown in FIG. 5A, the voltage applied to the gate terminal of the TFT 73 after the period t is a potential of −Vth. However, as shown in FIG. A potential between 0 V and −Vth (for example, −½ × Vth) may be applied before applying the potential of −Vth. Moreover, you may apply in multiple steps not only in two steps.

(変形例2)本発明に係る電気光学装置の第2変形例について説明する。前記第1実施
形態では、図5(A)に示すように、期間t以降にTFT73のゲート端子に印加する電
圧は、−Vthの電位であったが、図5(C)に示すように、0Vから−Vthの間を線
形補間し、順次電圧を0Vから−Vthに変移するようにしてもよい。
(Modification 2) A second modification of the electro-optical device according to the invention will be described. In the first embodiment, as shown in FIG. 5A, the voltage applied to the gate terminal of the TFT 73 after the period t is a potential of −Vth. However, as shown in FIG. Linear interpolation may be performed between 0V and -Vth, and the voltage may be sequentially changed from 0V to -Vth.

(変形例3)本発明に係る電気光学装置の第3変形例について説明する。前記第1実施
形態では、図1に示すように、電気泳動表示装置1に記憶部310と計時部320を含む
場合について説明したが、電気泳動表示装置1は、記憶部310と計時部320を含まず
、電気泳動表示装置1を制御する外部機器に記憶部310と計時部320を含ませてもよ
い。
(Modification 3) A third modification of the electro-optical device according to the invention will be described. In the first embodiment, as shown in FIG. 1, the case where the electrophoretic display device 1 includes the storage unit 310 and the time measuring unit 320 has been described. However, the electrophoretic display device 1 includes the storage unit 310 and the time measuring unit 320. The storage unit 310 and the time measuring unit 320 may be included in an external device that controls the electrophoretic display device 1 without including the storage unit 310.

電気泳動表示装置の構成を示すブロック図。1 is a block diagram illustrating a configuration of an electrophoretic display device. (A)はデータ書き込み時の各信号の動きを説明するタイミング図、(B)はデータクリア時の各信号の動きを説明するタイミング図。(A) is a timing chart explaining the movement of each signal at the time of data writing, (B) is a timing chart explaining the movement of each signal at the time of data clear. (A)はTFTの通電経過時間に対する閾値電圧の変化を説明するグラフ図、(B)は記憶部に通電経過時間に対する閾値電圧を記憶させたテーブルを説明する図。FIG. 5A is a graph for explaining a change in threshold voltage with respect to the elapsed time of energization of a TFT, and FIG. 制御回路の動作を説明するフローチャート図。The flowchart figure explaining operation | movement of a control circuit. (A)は第1実施形態におけるTFTのゲート端子に印加する電圧とTFTのドレイン端子の電圧の変化を示すタイミング図、(B)は変形例1におけるTFTのゲート端子に印加する電圧とTFTのドレイン端子の電圧の変化を示すタイミング図、(C)は変形例2におけるTFTのゲート端子に印加する電圧とTFTのドレイン端子の電圧の変化を示すタイミング図。(A) is a timing chart showing changes in the voltage applied to the gate terminal of the TFT and the voltage at the drain terminal of the TFT in the first embodiment, and (B) is a voltage applied to the gate terminal of the TFT in Modification 1 and the TFT. FIG. 9C is a timing diagram showing changes in the voltage at the drain terminal, and FIG. 6C is a timing diagram showing changes in the voltage applied to the gate terminal of the TFT and the voltage at the drain terminal of the TFT in Modification 2. 走査線駆動回路の構成を説明する回路図。FIG. 10 is a circuit diagram illustrating a structure of a scan line driver circuit. 電気泳動表示装置の機械的な構成を示す分解斜視図。The disassembled perspective view which shows the mechanical structure of an electrophoretic display apparatus. 1画素に対応した分散系を示す表示パネルの要部断面図。The principal part sectional drawing of the display panel which shows the dispersion system corresponding to 1 pixel. 1画素に対応した等価回路を説明する説明図。Explanatory drawing explaining the equivalent circuit corresponding to 1 pixel. 第2実施形態のパーソナルコンピュータの構成を示す概観斜視図。FIG. 6 is an overview perspective view illustrating a configuration of a personal computer according to a second embodiment.

符号の説明Explanation of symbols

1…電気泳動表示装置、61…分散系、62…画素電極、63…素子基板、64…共通
電極、65…対向基板、66…隔壁、67…電気泳動粒子、68…分散媒、69…空間、
71…走査線、72…データ線、73…TFT、100…データ線駆動回路、200…走
査線駆動回路、210…シフトレジスタ、220…レベルシフタ、230…インバータ、
240…トランスファーゲート、300…制御回路、310…記憶部、320…計時部、
400…共通電圧出力回路。
DESCRIPTION OF SYMBOLS 1 ... Electrophoretic display apparatus, 61 ... Dispersion system, 62 ... Pixel electrode, 63 ... Element substrate, 64 ... Common electrode, 65 ... Opposite substrate, 66 ... Partition, 67 ... Electrophoretic particle, 68 ... Dispersion medium, 69 ... Space ,
71 ... Scanning line, 72 ... Data line, 73 ... TFT, 100 ... Data line driving circuit, 200 ... Scanning line driving circuit, 210 ... Shift register, 220 ... Level shifter, 230 ... Inverter,
240 ... transfer gate, 300 ... control circuit, 310 ... storage unit, 320 ... timer,
400: Common voltage output circuit.

Claims (8)

共通電極及び複数の画素電極を介して印加される電界により泳動する電気泳動粒子が分散媒に分散された分散系を備えた電気光学装置の駆動方法であって、
前記電気光学装置は、記憶部と、前記電気光学装置への通電経過時間を求める計時部と、を有し、
前記電気光学装置への通電経過時間に対する、前記複数の画素電極の各々に接続されたスイッチング素子の閾値電圧を予め測定した結果を前記記憶部に記憶し、
前記スイッチング素子をオン状態にするために前記スイッチング素子のゲート端子に印加する電圧である第1の電圧を前記画素電極の電圧値が飽和する第1の時点まで印加し、
前記第1の時点以降、前記計時部から現時点の通電経過時間を求め、前記通電経過時間に対する前記スイッチング素子の閾値電圧を前記記憶部から求め、前記第1の電圧よりも低くかつ前記第1の電圧から前記閾値電圧を引いた電圧以上の範囲にある1種類以上の電圧を前記ゲート端子に印加する、
ことを特徴とする電気光学装置の駆動方法。
A driving method of an electro-optical device including a dispersion system in which electrophoretic particles that migrate by an electric field applied through a common electrode and a plurality of pixel electrodes are dispersed in a dispersion medium,
The electro-optical device includes a storage unit, and a time measuring unit that calculates an elapsed time of energization to the electro-optical device,
The result of measuring in advance the threshold voltage of the switching element connected to each of the plurality of pixel electrodes with respect to the energization elapsed time to the electro-optical device is stored in the storage unit,
Applying a first voltage, which is a voltage applied to a gate terminal of the switching element to turn on the switching element, until a first time point when a voltage value of the pixel electrode is saturated;
After the first time point, a current energization elapsed time is obtained from the timing unit, a threshold voltage of the switching element with respect to the energization elapsed time is obtained from the storage unit, and is lower than the first voltage and the first Applying one or more types of voltages in a range equal to or higher than a voltage obtained by subtracting the threshold voltage from a voltage to the gate terminal;
A driving method for an electro-optical device.
請求項1に記載の電気光学装置の駆動方法において、前記1種類以上の電圧は、前記第1の電圧から前記閾値電圧を引いた電圧である、ことを特徴とする電気光学装置の駆動方法。   2. The electro-optical device driving method according to claim 1, wherein the one or more types of voltages are voltages obtained by subtracting the threshold voltage from the first voltage. 請求項1または2に記載の電気光学装置の駆動方法において、前記1種類以上の電圧は、前記第1の電圧よりも低くかつ前記第1の電圧から前記閾値電圧を引いた電圧よりも高い所定の第2の電圧と、前記第1の電圧から前記閾値電圧を引いた電圧である第3の電圧と、から構成され、前記第2の電圧を前記ゲート端子に印加後、前記第3の電圧を前記ゲート端子に印加する、ことを特徴とする電気光学装置の駆動方法。 3. The method of driving an electro-optical device according to claim 1, wherein the one or more types of voltages are lower than the first voltage and higher than a voltage obtained by subtracting the threshold voltage from the first voltage. And a third voltage that is a voltage obtained by subtracting the threshold voltage from the first voltage, and after applying the second voltage to the gate terminal, the third voltage Is applied to the gate terminal, and the electro-optical device is driven. 請求項1から3のいずれか一項に記載の電気光学装置の駆動方法において、前記1種類以上の電圧は、前記第1の電圧と前記第1の電圧から前記閾値電圧を引いた電圧を線形補間した複数の電圧から構成され、前記複数の電圧を順次前記ゲート端子に印加する、ことを特徴とする電気光学装置の駆動方法。   4. The electro-optical device driving method according to claim 1, wherein the one or more types of voltages are linearly obtained by subtracting the threshold voltage from the first voltage and the first voltage. 5. An electro-optical device driving method comprising: a plurality of interpolated voltages, wherein the plurality of voltages are sequentially applied to the gate terminal. 請求項1から4のいずれか一項に記載の電気光学装置の駆動方法により駆動することを特徴とする電気光学装置。   An electro-optical device that is driven by the driving method of the electro-optical device according to claim 1. 請求項5に記載の電気光学装置において、前記電気光学装置は、前記ゲート端子に電圧を印加する走査線駆動回路を有し、前記走査線駆動回路の電圧出力部は、トランスファーゲートで構成されている、ことを特徴とする電気光学装置。   6. The electro-optical device according to claim 5, wherein the electro-optical device includes a scanning line driving circuit that applies a voltage to the gate terminal, and a voltage output unit of the scanning line driving circuit is configured by a transfer gate. An electro-optical device. 請求項5または6に記載の電気光学装置を備えた電子機器。   An electronic apparatus comprising the electro-optical device according to claim 5. 第1の電極及び第2の電極を介して電圧を印加することにより泳動する、分散媒に分散された電気泳動粒子を備えた電気光学装置の駆動方法であって、
前記第1の電極に接続されたスイッチングトランジスタのゲート端子に第1の電圧を印加することにより前記スイッチングトランジスタを介してデータ線と前記第1の電極を電気的に接続した後、さらに前記スイッチングトランジスタの前記ゲート端子に前記第1の電圧よりも低くかつ前記第1の電圧から前記閾値電圧を引いた電圧以上の範囲にある電圧レベルを有する第2の電圧を印加することにより前記スイッチングトランジスタを介して前記データ線と前記第1の電極を電気的に接続すること、
を特徴とする電気光学装置の駆動方法。
A method for driving an electro-optical device including electrophoretic particles dispersed in a dispersion medium, which migrates by applying a voltage through a first electrode and a second electrode,
After electrically connecting the data line and the first electrode through the switching transistor by applying a first voltage to the gate terminal of the switching transistor connected to the first electrode, the switching transistor By applying a second voltage having a voltage level lower than the first voltage and in a range equal to or higher than a voltage obtained by subtracting the threshold voltage from the first voltage to the gate terminal of the gate terminal via the switching transistor. Electrically connecting the data line and the first electrode;
A method for driving an electro-optical device.
JP2006088289A 2006-03-28 2006-03-28 Electro-optical device, driving method of electro-optical device, and electronic apparatus Expired - Fee Related JP5034291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006088289A JP5034291B2 (en) 2006-03-28 2006-03-28 Electro-optical device, driving method of electro-optical device, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006088289A JP5034291B2 (en) 2006-03-28 2006-03-28 Electro-optical device, driving method of electro-optical device, and electronic apparatus

Publications (2)

Publication Number Publication Date
JP2007264241A JP2007264241A (en) 2007-10-11
JP5034291B2 true JP5034291B2 (en) 2012-09-26

Family

ID=38637295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088289A Expired - Fee Related JP5034291B2 (en) 2006-03-28 2006-03-28 Electro-optical device, driving method of electro-optical device, and electronic apparatus

Country Status (1)

Country Link
JP (1) JP5034291B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009098300A (en) * 2007-10-15 2009-05-07 Seiko Epson Corp Electrophoretic display device, electronic apparatus, and method of driving electrophoretic display device
JP5019177B2 (en) * 2007-10-16 2012-09-05 セイコーエプソン株式会社 Electrophoretic display device, electronic apparatus, and driving method of electrophoretic display device
JP2009103972A (en) * 2007-10-24 2009-05-14 Seiko Epson Corp Electrophoretic display apparatus, electronic equipment, and driving method for electrophoretic display apparatus
CN104299588B (en) * 2014-10-27 2017-01-11 京东方科技集团股份有限公司 Grid drive circuit, grid drive method and display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09258174A (en) * 1996-03-21 1997-10-03 Toshiba Corp Active matrix type liquid crystal display device
JP3947848B2 (en) * 2003-06-12 2007-07-25 セイコーエプソン株式会社 Electro-optical device and electronic apparatus

Also Published As

Publication number Publication date
JP2007264241A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
TWI415080B (en) Variable common electrode
JP5348363B2 (en) Electrophoretic display device, electrophoretic display device driving method, and electronic apparatus
JP4378771B2 (en) Electrophoresis device, electrophoretic device driving method, and electronic apparatus
JP4862589B2 (en) Electrophoretic display panel control device and electrophoretic display device
JP4811510B2 (en) Electrophoretic display device and driving method thereof
US6791740B2 (en) Electro-optical device, method of driving electro-optical device, and electronic apparatus
JP4269187B2 (en) Electrophoresis device, electrophoretic device driving method, and electronic apparatus
US20080238865A1 (en) Electrophoretic display device, method for driving electrophoretic display device, and electronic apparatus
JP2009175492A (en) Electrophoresis display device, method of driving the same, and electronic apparatus
JP2004271609A (en) Driving method of display device
KR20080008197A (en) Drive apparatus for bistable displayer and method thereof
US9123301B2 (en) Electro-optical device
CN100468504C (en) Driving a bi-stable matrix display device
US8144098B2 (en) Dot-matrix display refresh charging/discharging control method and system
JP5034291B2 (en) Electro-optical device, driving method of electro-optical device, and electronic apparatus
JP2009237543A (en) Electrophoretic device, method for driving electrophoretic device, and electronic apparatus
US20150009245A1 (en) Electro-optical device, driving method of electro-optical device, control circuit of electro-optical device, and electronic apparatus
US20150206478A1 (en) Electrophoretic display device, drive method of electrophoretic display device, control circuit, and electronic apparatus
US20150269891A1 (en) Electrophoretic device and electronic apparatus
JP2004287425A (en) Driving method of display device
JP5445310B2 (en) Electrophoretic display device, control circuit, electronic apparatus, and driving method
JP2004177590A (en) Electrooptical device, method for driving electrooptical device, and electronic appliance
JP2004101746A (en) Method for driving electrophoresis display device, electrophoresis display panel, controller, electrophoresis display device, and electronic appliance
US20120133576A1 (en) Liquid crystal display device circuit, liquid crystal display device board, and liquid crystal display device
JP2004157450A (en) Electro-optical device and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees