JP5033183B2 - Method for producing carbon nanosheet - Google Patents

Method for producing carbon nanosheet Download PDF

Info

Publication number
JP5033183B2
JP5033183B2 JP2009519066A JP2009519066A JP5033183B2 JP 5033183 B2 JP5033183 B2 JP 5033183B2 JP 2009519066 A JP2009519066 A JP 2009519066A JP 2009519066 A JP2009519066 A JP 2009519066A JP 5033183 B2 JP5033183 B2 JP 5033183B2
Authority
JP
Japan
Prior art keywords
carbon
solid
carbon nanosheet
nanosheet
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009519066A
Other languages
Japanese (ja)
Other versions
JPWO2008152680A1 (en
Inventor
国民 米
Original Assignee
有限会社 キョウセツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社 キョウセツ filed Critical 有限会社 キョウセツ
Publication of JPWO2008152680A1 publication Critical patent/JPWO2008152680A1/en
Application granted granted Critical
Publication of JP5033183B2 publication Critical patent/JP5033183B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/46Graphite
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • C09C1/565Treatment of carbon black ; Purification comprising an oxidative treatment with oxygen, ozone or oxygenated compounds, e.g. when such treatment occurs in a region of the furnace next to the carbon black generating reaction zone
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Wood Science & Technology (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、フレイク状の黒鉛(グラファイト)粉末等を原料としたカーボンナノシートの製造方法に関する。   The present invention relates to a method for producing a carbon nanosheet using flaky graphite (graphite) powder or the like as a raw material.

ナノスケール即ち原子、分子のレベルで精密に調整した材料や素子を作り出そうという試みが近年盛んになってきた。ナノ材料で現在最も注目され、研究が進展しているのがカーボン系である。炭素といえば、結晶構造により黒鉛にもダイヤモンドにもなる材料であることがよく知られているが、さらに近年、中空の針状分子であるカーボンナノチューブ、サッカーボール状分子であるフラーレンといったナノ構造体が発見された。また高純度の同軸カーボンナノチューブシートが従来知られている(例えば特許文献1参照)。
特開2006−335604号公報
In recent years, attempts have been made to create materials and devices that are precisely adjusted at the nanoscale, that is, the atomic and molecular level. Carbon-based materials are currently attracting the most attention and research is progressing. Speaking of carbon, it is well known that it is a material that can be both graphite and diamond due to its crystal structure, but in recent years, nanostructures such as carbon nanotubes that are hollow needle-like molecules and fullerenes that are soccerball-like molecules Was discovered. A high purity coaxial carbon nanotube sheet is conventionally known (see, for example, Patent Document 1).
JP 2006-335604 A

炭素は数ある元素の中でも非常に多様性のある変幻自在な材料であることが明らかになりつつある。カーボンナノシートはそのひとつである。カーボンナノシートの特徴はその形状である。結晶構造の基本最小単位を取り出したものであることから、厚さは1〜数十nm前後と原子数個分しかないのに対して、横サイズは通常ミクロン以上であり、極めて高い2次元異方性を持っている。ナノスケールと極めて高い2次元異方性によってカーボンナノシートは高い反応性、大比表面積、量子閉じこめ効果と高導電性などの特性を持つ。しかるに現在、このカーボンナノシートの製造方法の報告例はまだない。
本発明はカーボンナノシートの製造方法を提供することを目的とし、簡便に工業的な生産が可能な方法を提供することを目的とする。
It is becoming clear that carbon is an extremely versatile material among many elements. Carbon nanosheets are one of them. The feature of the carbon nanosheet is its shape. Since the basic minimum unit of the crystal structure is taken out, the thickness is only about 1 to several tens of nanometers and several atoms, whereas the lateral size is usually more than a micron and extremely high two-dimensional difference. Has a direction. Carbon nanosheets have high reactivity, large specific surface area, quantum confinement effect and high conductivity due to nanoscale and extremely high two-dimensional anisotropy. However, there are no reports on the method for producing this carbon nanosheet.
An object of this invention is to provide the manufacturing method of a carbon nanosheet, and it aims at providing the method which can be industrially produced simply.

上記目的を達成するため本発明は、フレイク状のカーボン固体よりなる粉状のカーボンナノシート原料を強酸化剤に浸し電気化学酸化反応を生起させる化学酸化処理工程と、前記化学酸化処理工程で酸化させたカーボンナノシート原料を水又はアルカリで洗浄し該洗浄時に超音波を投射する水洗・超音波処理工程と、前記水洗いしたカーボンナノシートの原料を遠心分離機・ろ過機により液体とカーボン固体とに固液分離する固・液分離処理工程と、前記固液分離した後のカーボン固体を乾燥し加熱する乾燥・加熱処理工程と、前記乾燥し加熱したカーボン固体を水又はアルカリで洗浄し該洗浄時に超音波を投射する水洗・超音波処理工程と、前記洗浄し超音波処理を加えたカーボン固体を遠心分離機・ろ過機により液体とカーボン固体とに固液分離する固・液分離処理工程と、前記固液分離したカーボン固体に水を加え発泡剤を添加してカーボンナノシートを選別する浮遊選別処理工程と、選別したカーボンナノシートを水洗いした後液体とカーボンナノシートを固液分離する水洗・固・液分離処理工程と、前記固液分離したカーボンナノシートを乾燥する乾燥処理工程とを備えたものである。
また本発明は、前記カーボンナノシート原料は、カーボンブラック、アセチレンブラック、グラファイト又はグラファイト酸化物の中のいずれかであることを特徴とする。
また本発明は、前記化学酸化処理工程において、酸化剤を添加したものである。
また本発明は、前記酸化剤として、濃硫酸と濃シウ酸の混合酸、過酸化水素、オゾン、過酸化ナトリウム、過酸化カリウム、過マンガン酸ナトリウム、過硫酸のような無機過酸化物、過シュウ酸、過酢酸、過酸化ベンゾイル、ペルフルオロ過酢酸などの有機過酸化物の中のいずれかを用いたことを特徴とする。
また本発明は、前記酸化剤として、濃硫酸と濃シウ酸の混合酸を用いたことを特徴とする。
また本発明は、前記酸化剤として、過酸化水素を用いたことを特徴とする。
また本発明は、前記浮遊選別処理工程において、捕収剤を添加したことを特徴とする。
また本発明は、前記浮遊選別処理工程において、空気を導入することによってカーボンナノシートを無数の泡に吸着させカーボンナノシートが泡とともに浮上するようにしたものである。
In order to achieve the above object, the present invention comprises a chemical oxidation treatment step in which a powdery carbon nanosheet raw material made of a flake-like carbon solid is immersed in a strong oxidizing agent to cause an electrochemical oxidation reaction, and is oxidized in the chemical oxidation treatment step. The carbon nanosheet raw material is washed with water or alkali, and a water washing / ultrasonic treatment process for projecting ultrasonic waves at the time of the washing, and the water-washed carbon nanosheet raw material is solid-liquid into a liquid and a carbon solid by a centrifuge / filter. A solid / liquid separation treatment step for separating, a drying / heating treatment step for drying and heating the carbon solid after the solid-liquid separation, and washing the dried and heated carbon solid with water or an alkali and performing ultrasonic treatment during the washing. The water washing and ultrasonic treatment process for projecting and the carbon solid after the washing and ultrasonic treatment are converted into a liquid and a carbon solid by a centrifuge / filter. A solid / liquid separation process for liquid separation, a floating sorting process for sorting the carbon nanosheets by adding water to the solid-liquid separated carbon solid and adding a foaming agent, and then washing the sorted carbon nanosheets with water and carbon It comprises a water washing / solid / liquid separation treatment step for solid-liquid separation of the nanosheet, and a drying treatment step for drying the solid-liquid separated carbon nanosheet.
In the invention, it is preferable that the carbon nanosheet raw material is any one of carbon black, acetylene black, graphite, and graphite oxide.
In the present invention, an oxidizing agent is added in the chemical oxidation treatment step.
The present invention, as the oxidizing agent, a mixed acid of concentrated sulfuric acid and stiffness ® c acid, hydrogen peroxide, ozone, sodium peroxide, potassium peroxide, sodium permanganate, inorganic peroxides such as persulfate Any one of organic peroxides such as peroxalic acid, peracetic acid, benzoyl peroxide, and perfluoroperacetic acid is used.
The present invention, as the oxidizing agent, characterized by using a mixed acid of concentrated sulfuric acid and stiffness ® c acid.
The present invention is characterized in that hydrogen peroxide is used as the oxidizing agent.
Further, the present invention is characterized in that a collecting agent is added in the floating sorting process.
Further, the present invention is such that in the floating sorting process step, air is introduced to adsorb carbon nanosheets to a myriad of bubbles so that the carbon nanosheets float with the bubbles.

サイズ200〜2000ナノメートル、厚み10〜50ナノメートルのカーボンナノシートを工業的に大量生産することができる。   Carbon nanosheets having a size of 200 to 2000 nanometers and a thickness of 10 to 50 nanometers can be industrially mass-produced.

本発明にかかるカーボンナノシート製造工程を示す流れ図である。It is a flowchart which shows the carbon nanosheet manufacturing process concerning this invention. インターカレーション量と濃硫酸/濃シウ酸の混合比率の関係を示すグラフである。It is a graph showing the relationship between the mixing ratio of intercalation amount and concentrated sulfuric acid / elasticity ® c acid. インターカレーション量とグラファイトの酸化時間の関係を示すグラフである。It is a graph which shows the relationship between the amount of intercalation and the oxidation time of graphite. 本発明に係る製造方法により製造されたカーボンナノシートの電子顕微鏡写真である。It is an electron micrograph of the carbon nanosheet manufactured by the manufacturing method concerning the present invention.

以下に本発明の実施の形態を添付した図面を参照して詳細に説明する。
ナノシートはインターカレーションにより、無機層状化合物のホスト層を1枚ずつ剥離することによって得られる物質で、厚さ1〜数十ナノメートル(1ナノメートル=10−9メートル)、横方向のサイズが数百ナノメートルと高い形状異方性を持つことから、バルク物質には見られない様々な特徴がある。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
A nanosheet is a substance obtained by exfoliating a host layer of an inorganic layered compound one by one by intercalation, and has a thickness of 1 to several tens of nanometers (1 nanometer = 10 −9 meters) and a lateral size. Since it has a high shape anisotropy of several hundred nanometers, it has various characteristics not found in bulk materials.

本発明のカーボンナノシートとしては、たとえばカーボンブラック、アセチレンブラック、グラファイト又はグラファイト酸化物などのナノシートであり、これらは層状の炭素、たとえばカーボンブラック、アセチレンブラック、グラファイト又はその酸化物たとえばグラファイト酸化物などを膨潤及び剥離させて得ることができる。これらの層状体はいずれも層間に無機、有機化合物をインターカレートすれば膨潤性を示すが剥離性の観点からはグラファイト酸化物が好ましい。 Examples of the carbon nanosheet of the present invention include nanosheets such as carbon black, acetylene black, graphite or graphite oxide, and these include layered carbon such as carbon black, acetylene black, graphite or oxide thereof such as graphite oxide. It can be obtained by swelling and peeling. Any of these layered bodies exhibits swelling properties when intercalating an inorganic or organic compound between the layers, but graphite oxide is preferred from the viewpoint of peelability.

この層状のグラファイト酸化物を十分に剥離させるには、酸化物層間のプロトンをアルカリで処理し、イオン交換させればよい。このようなアルカリとして、アルカリ金属の水酸化物やアンモニア、有機アンモニウムの水酸化物などを用いることができるが、層間のプロトンをイオン交換できるアルカリであれば特に制限はない。またポリオキシエチレン、ドデシル硫酸塩などの界面活性剤を用いて行うこともできる。
次に本発明に係るカーボンナノシートの製造方法の実施の形態について説明する。
In order to sufficiently exfoliate the layered graphite oxide, protons between the oxide layers may be treated with an alkali and ion exchanged. As such an alkali, an alkali metal hydroxide, ammonia, an organic ammonium hydroxide, or the like can be used, but there is no particular limitation as long as it is an alkali capable of ion exchange of protons between layers. Moreover, it can also carry out using surfactant, such as polyoxyethylene and dodecyl sulfate.
Next, an embodiment of a method for producing a carbon nanosheet according to the present invention will be described.

図1はカーボンナノシートの製造工程を示す流れ図である。本発明に係るカーボンナノシートの原料は、人造又は天然のフレイク状の黒鉛(グラファイト)粉末が用いられる。原料としては、たとえばカーボンブラック、アセチレンブラック、グラファイト酸化物を用いることができる。本実施形態では、グラファイトを用いた場合について説明する。   FIG. 1 is a flowchart showing a manufacturing process of a carbon nanosheet. As a raw material of the carbon nanosheet according to the present invention, artificial or natural flaky graphite (graphite) powder is used. As a raw material, for example, carbon black, acetylene black, or graphite oxide can be used. In this embodiment, a case where graphite is used will be described.

[化学酸化処理]
前記原料を強酸化剤の中に浸し、電気化学酸化反応を生起させる。この化学酸化処理において、電気化学酸化反応をより迅速に進めるためには、酸化の促進剤として、酸化剤の添加が好ましい。このような酸化剤としては、たとえば濃硫酸と濃シウ酸の混合酸、過酸化水素、オゾン、過酸化ナトリウム、過酸化カリウム、過マンガン酸ナトリウム、過硫酸のような無機過酸化物、過シュウ酸、過酢酸、過酸化ベンゾイル、ペルフルオロ過酢酸などの有機過酸化物が用いられるが、入手が容易で取り扱い易い点で濃硫酸と濃シウ酸の混合酸又は、過酸化水素が好ましい。グラファイトと混合酸化物添加の比率はグラファイト質量に対し1〜10倍の範囲が好ましい。できれば4〜6倍が良い。
[Chemical oxidation treatment]
The raw material is immersed in a strong oxidizing agent to cause an electrochemical oxidation reaction. In this chemical oxidation treatment, in order to advance the electrochemical oxidation reaction more rapidly, it is preferable to add an oxidant as an oxidation accelerator. Such oxidizing agents, e.g. mixed acid, hydrogen peroxide, ozone, sodium peroxide in concentrated sulfuric acid and stiffness ® c acid, potassium peroxide, sodium permanganate, inorganic peroxides such as peracetic acid, excessive oxalate, peracetic acid, benzoyl peroxide, and organic peroxides such as perfluoro peracetic acid is used, a mixed acid of concentrated sulfuric acid and stiffness ® c acid in terms of ease of handling and ready availability, or hydrogen peroxide preferable. The ratio of graphite and mixed oxide addition is preferably in the range of 1 to 10 times the graphite mass. 4-6 times better if possible.

図2はインターカレーション量と混合酸(濃硫酸 SO /濃シウ酸HNO )の混合比率の関係を示している。インターカレーションとは、無機層状結晶の層と層の間に、異種の分子やイオンを取り込ませる反応を意味し、インターカレーションによってできる物質は、無機シートの間に分子が組織的に配置されたハイブリッドである。
グラファイトの酸化時間は、10〜150分の範囲が好ましい。できれば30〜60分が良い。図3はインターカレーション量とグラファイトの酸化時間の関係を示している。
Figure 2 shows the relationship between the mixing ratio of intercalation amount of mixed acid (concentrated sulfuric acid H 2 SO 4 / waist ® U acid HNO 3). Intercalation means a reaction that incorporates different types of molecules and ions between layers of inorganic layered crystals. In intercalation, substances are systematically arranged between inorganic sheets. Hybrid.
The oxidation time of graphite is preferably in the range of 10 to 150 minutes. 30-60 minutes is good if possible. FIG. 3 shows the relationship between the amount of intercalation and the oxidation time of graphite.

[水洗、超音波処理]
酸化したグラファイトは更に水又はアルカリの溶液で洗浄する。洗浄するとき、強力な超音波処理を加える。この超音波エネルギーの強度は500W/cm以上が好ましい。処理時間は1時間から12時間までが良いが、2〜3時間が好ましい。
[固・液分離処理]
次に、酸化したグラファイトの固体と水分とを遠心分離機とろ過機とを用いて、固液分離する。この工程は一回又は複数回必要な場合がある。
[Washing, ultrasonic treatment]
The oxidized graphite is further washed with water or an alkaline solution. When washing, apply powerful sonication. The intensity of the ultrasonic energy is preferably 500 W / cm 2 or more. The treatment time is preferably 1 to 12 hours, but preferably 2 to 3 hours.
[Solid / liquid separation]
Next, the solid and moisture of the oxidized graphite are subjected to solid-liquid separation using a centrifuge and a filter. This step may be required once or multiple times.

[乾燥・加熱処理]
遠心分離機により得た固体は更に乾燥機で乾燥させる。この乾燥は50〜120度Cの温度で行うが、80度Cより低い温度が好ましい。更に乾燥させた固体を電気炉の中で加熱する。この加熱は500〜1200度Cの温度で行うが、800度Cが好ましい。加熱時間は短い方が好ましく、たとえば1分間加熱する。以上のインターカレーション処理によりナノハイブリッドと呼ばれる層状のグラファイト酸化物が生成される。
[Drying and heat treatment]
The solid obtained by the centrifuge is further dried by a dryer. This drying is performed at a temperature of 50 to 120 ° C., but a temperature lower than 80 ° C. is preferable. Further, the dried solid is heated in an electric furnace. This heating is performed at a temperature of 500 to 1200 ° C., preferably 800 ° C. A shorter heating time is preferable, for example, heating is performed for 1 minute. Through the above intercalation treatment, a layered graphite oxide called nanohybrid is generated.

[水洗・超音波処理]
上記の層状のグラファイト酸化物を膨潤させ、剥離させてカーボンナノシートを得るには、層状のグラファイト酸化物を水中に分散させ洗浄する。洗浄するとき、強力な超音波投射処理が好ましい。超音波のエネルギーは、500W/cmが好ましい。またこの超音波処理時間は1時間から12時間までが良いが、2〜3時間が好ましい。
[Washing / Sonication]
In order to swell and exfoliate the above layered graphite oxide to obtain a carbon nanosheet, the layered graphite oxide is dispersed in water and washed. When cleaning, a powerful ultrasonic projection process is preferred. The ultrasonic energy is preferably 500 W / cm 2 . The sonication time is preferably 1 to 12 hours, but preferably 2 to 3 hours.

[固・液分離処理]
超音波処理をした後、水洗いした層状のグラファイト酸化物を遠心分離機・ろ過機の中でアルカリ又は界面活性剤を添加して振り混ぜる。アルカリ又は界面活性剤の添加量はグラファイト酸化物の性質で異なってくるが、その混合物のPHは、1〜7の範囲で、好ましくは3〜4の範囲が良い。遠心分離機・ろ過機の中で層状のグラファイト酸化物は固液分離される。
[Solid / liquid separation]
After ultrasonic treatment, the layered graphite oxide washed with water is added with an alkali or a surfactant in a centrifuge / filter and shaken. The amount of alkali or surfactant added varies depending on the nature of the graphite oxide, but the pH of the mixture is in the range of 1 to 7, preferably in the range of 3 to 4. The layered graphite oxide is solid-liquid separated in the centrifuge / filter.

[浮遊選別処理]
更に固液分離された固体は、浮遊選別機により、カーボンナノシートが選別される。当該浮遊選別処理工程における残渣(残り滓)は化学酸化処理工程に戻され、化学酸化処理工程と浮遊選別処理工程が繰り返し実行される。当該工程ではカーボンナノシートを選別するため、固体に水を加える。この水の添加量はカーボン固体物の濃度が5〜20%となるようにし、できれば10%の濃度が好ましい。
[Floating sorting process]
Furthermore, carbon nanosheets are separated from the solid separated into solid and liquid by a floating sorter. The residue (residual residue) in the floating sorting process is returned to the chemical oxidation process, and the chemical oxidation process and the floating sorting process are repeated. In this process, water is added to the solid in order to select the carbon nanosheet. The amount of water added is such that the concentration of the carbon solid is 5 to 20%, preferably 10%.

さらに本工程において選別に使用される捕収剤としては、ケロシン(灯油)、ディーゼル油、重油などの炭化水素基を有する油系捕収剤(捕収油)やタール油が好ましい。捕収剤の添加量は水溶液質量に対して50〜200g/t(グラム/トン)とするが、100g/tが好ましい。更に本工程で添加される発泡剤はMIBC(メチルイソブチルカルビノール)に代表される芳香族アルコール系の非イオン浮遊選別剤や不飽和炭化水素系列のパイン油などが好ましく、添加量はカーボン固体物に対して50〜300g/tとするが、100g/tが好ましい。 Furthermore, as the collection agent used for selection in this step, oil-based collection agents (collection oil) having a hydrocarbon group such as kerosene (kerosene), diesel oil, heavy oil, and tar oil are preferable. Although the addition amount of a collection agent shall be 50-200 g / t (gram / ton) with respect to aqueous solution mass, 100 g / t is preferable. Further, the blowing agent added in this step is preferably an aromatic alcohol-based nonionic floating sorter represented by MIBC (methyl isobutyl carbinol) or an unsaturated hydrocarbon series pine oil, and the amount added is a carbon solid. However, it is preferably 100 g / t.

また、このとき油系捕収剤を使用せず発泡剤のみの添加でもカーボンナノシートを選別することが可能である。更にカーボンナノシートを浮遊選別機で撹拌しながら、スラリーの中に空気を導入することによって、カーボンナノシートが無数の泡に吸着され、泡とともに浮上し、これによってカーボンナノシートの選出が可能となる。導入する空気量は1mスラリーに対して0.05〜0.2mとするが、0.1mが好ましい。Further, at this time, the carbon nanosheet can be selected by adding only the foaming agent without using the oil-based collector. Furthermore, by introducing air into the slurry while stirring the carbon nanosheets with a floating sorter, the carbon nanosheets are adsorbed by countless bubbles and floated together with the bubbles, which makes it possible to select the carbon nanosheets. The amount of air introduced is a 0.05~0.2M 3 against 1 m 3 slurry, preferably 0.1 m 3.

[水洗・固・液分離処理]
選別したカーボンナノシートは、水洗いされ、且つ遠心分離機・ろ過機で固液分離が行われる。
[乾燥処理]
固液分離されたカーボンナノシートは230度Cで乾燥される。
以上の工程によって、サイズ200〜2000ナノメートル、厚み10〜50ナノメートルのカーボンナノシートを大量に製造することができる。
[Washing / Solid / Liquid separation]
The selected carbon nanosheet is washed with water and subjected to solid-liquid separation with a centrifuge / filter.
[Drying process]
The solid-liquid separated carbon nanosheet is dried at 230 ° C.
Through the above steps, carbon nanosheets having a size of 200 to 2000 nanometers and a thickness of 10 to 50 nanometers can be produced in large quantities.

本発明は、サイズ200〜2000ナノメートル、厚み10〜50ナノメートルのカーボンナノシートを大量に製造することができるので、その製品カーボンナノシートはアルカリ電池、リチウム電池、電気二重層キャパシタ、導電塗料などの分野に広く応用できる。   Since the present invention can produce a large amount of carbon nanosheets having a size of 200 to 2000 nanometers and a thickness of 10 to 50 nanometers, the product carbon nanosheets can be used for alkaline batteries, lithium batteries, electric double layer capacitors, conductive paints, etc. Widely applicable in the field.

Claims (8)

フレイク状のカーボン固体よりなる粉状のカーボンナノシート原料を強酸化剤に浸し電気化学酸化反応を生起させる化学酸化処理工程と、前記化学酸化処理工程で酸化させたカーボンナノシート原料を水又はアルカリで洗浄し該洗浄時に超音波を投射する水洗・超音波処理工程と、前記水洗いしたカーボンナノシートの原料を遠心分離機・ろ過機により液体とカーボン固体とに固液分離する固・液分離処理工程と、前記固液分離した後のカーボン固体を乾燥し加熱する乾燥・加熱処理工程と、前記乾燥し加熱したカーボン固体を水又はアルカリで洗浄し該洗浄時に超音波を投射する水洗・超音波処理工程と、前記洗浄し超音波処理を加えたカーボン固体を遠心分離機・ろ過機により液体とカーボン固体とに固液分離する固・液分離処理工程と、前記固液分離したカーボン固体に水を加え発泡剤を添加してカーボンナノシートを選別する浮遊選別処理工程と、選別したカーボンナノシートを水洗いした後液体とカーボンナノシートを固液分離する水洗・固・液分離処理工程と、前記固液分離したカーボンナノシートを乾燥する乾燥処理工程とを備えたことを特徴とするカーボンナノシートの製造方法。A chemical oxidation treatment step in which a powdery carbon nanosheet raw material made of flaky carbon solid is immersed in a strong oxidizing agent to cause an electrochemical oxidation reaction, and the carbon nanosheet raw material oxidized in the chemical oxidation treatment step is washed with water or alkali A water washing / ultrasonic treatment process for projecting ultrasonic waves at the time of the washing, and a solid / liquid separation treatment process for solid-liquid separation of the raw material of the washed carbon nanosheet into a liquid and a carbon solid by a centrifuge / filter; A drying / heat treatment step for drying and heating the carbon solid after the solid-liquid separation, and a water washing / sonication step for washing the dried and heated carbon solid with water or alkali and projecting an ultrasonic wave during the washing, A solid / liquid separation treatment step of solid-liquid separation of the washed and sonicated carbon solid into liquid and carbon solid using a centrifuge / filter; Floating sorting process in which water is added to the solid-liquid separated carbon solid and a foaming agent is added to sort out the carbon nanosheet, and the water and solid / liquid are separated from the liquid and carbon nanosheet by solid-liquid separation after washing the selected carbon nanosheet. A method for producing a carbon nanosheet, comprising: a separation treatment step; and a drying treatment step of drying the solid-liquid separated carbon nanosheet. 前記カーボンナノシート原料は、カーボンブラック、アセチレンブラック、グラファイト又はグラファイト酸化物の中のいずれかであることを特徴とする請求項1に記載のカーボンナノシートの製造方法。The method for producing a carbon nanosheet according to claim 1, wherein the carbon nanosheet raw material is any one of carbon black, acetylene black, graphite, and graphite oxide. 前記化学酸化処理工程において、酸化剤を添加したことを特徴とする請求項1に記載のカーボンナノシートの製造方法。The method for producing a carbon nanosheet according to claim 1, wherein an oxidizing agent is added in the chemical oxidation treatment step. 前記酸化剤として、濃硫酸と濃シウ酸の混合酸、過酸化水素、オゾン、過酸化ナトリウム、過酸化カリウム、過マンガン酸ナトリウム、過硫酸のような無機過酸化物、過シュウ酸、過酢酸、過酸化ベンゾイル、ペルフルオロ過酢酸などの有機過酸化物の中のいずれかを用いたことを特徴とする請求項3に記載のカーボンナノシートの製造方法。As the oxidizing agent, a mixed acid of concentrated sulfuric acid and stiffness ® c acid, hydrogen peroxide, ozone, sodium peroxide, potassium peroxide, sodium permanganate, inorganic peroxides such as persulfate, oxalic acid, The method for producing a carbon nanosheet according to claim 3, wherein any one of organic peroxides such as peracetic acid, benzoyl peroxide, and perfluoroperacetic acid is used. 前記酸化剤として、濃硫酸と濃シウ酸の混合酸を用いたことを特徴とする請求項3に記載のカーボンナノシートの製造方法。Wherein as the oxidizing agent, concentrated sulfuric acid and stiffness ® carbon nano sheet manufacturing method according to claim 3, characterized by using a mixed acid of c acid. 前記酸化剤として、過酸化水素を用いたことを特徴とする請求項3に記載のカーボンナノシートの製造方法。The method for producing a carbon nanosheet according to claim 3, wherein hydrogen peroxide is used as the oxidizing agent. 前記浮遊選別処理工程において、捕収剤を添加したことを特徴とする請求項1に記載のカーボンナノシートの製造方法。The carbon nanosheet manufacturing method according to claim 1, wherein a collection agent is added in the floating sorting process. 前記浮遊選別処理工程において、空気を導入することによってカーボンナノシートを無数の泡に吸着させカーボンナノシートが泡とともに浮上するようにしたことを特徴とする請求項1に記載のカーボンナノシートの製造方法。The method for producing a carbon nanosheet according to claim 1, wherein in the floating sorting process, the carbon nanosheet is adsorbed by countless bubbles by introducing air so that the carbon nanosheet floats together with the bubbles.
JP2009519066A 2007-06-14 2007-06-14 Method for producing carbon nanosheet Expired - Fee Related JP5033183B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/000634 WO2008152680A1 (en) 2007-06-14 2007-06-14 Process for producing carbon nanosheet

Publications (2)

Publication Number Publication Date
JPWO2008152680A1 JPWO2008152680A1 (en) 2010-08-26
JP5033183B2 true JP5033183B2 (en) 2012-09-26

Family

ID=40129298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009519066A Expired - Fee Related JP5033183B2 (en) 2007-06-14 2007-06-14 Method for producing carbon nanosheet

Country Status (4)

Country Link
JP (1) JP5033183B2 (en)
CN (1) CN101687645B (en)
HK (1) HK1142869A1 (en)
WO (1) WO2008152680A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2389338B1 (en) * 2009-01-26 2013-06-19 Dow Global Technologies LLC Nitrate salt-based process for manufacture of graphite oxide
JP2011195432A (en) * 2010-02-26 2011-10-06 Sekisui Chem Co Ltd Method for producing flaky graphite and flaky graphite
CN103253662B (en) * 2013-06-01 2015-04-15 上海轻丰新材料科技有限公司 Large-scale controllable low-cost graphene preparation method
CN103288078B (en) * 2013-07-05 2016-01-20 何钊 The preparation method of graphene oxide
JP6538415B2 (en) * 2015-04-28 2019-07-03 株式会社ダイセル Method of oxidizing carbon material, graphene oxide and composition
CN104891474B (en) * 2015-05-26 2017-04-12 南昌大学 Method for preparing ultrathin carbon nanosheets
CN106044756B (en) * 2016-05-31 2019-05-24 湖北航天化学技术研究所 A kind of method of graphene oxide functional modification
SE543430C2 (en) * 2019-06-28 2021-02-16 Grafren Ab Method for redistributing a flake material into at least two flake size fractions

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562807A (en) * 1978-11-06 1980-05-12 Agency Of Ind Science & Technol Production of expanded graphite
EP0406008B1 (en) * 1989-06-30 1994-09-21 Ucar Carbon Technology Corporation Graphite sheet material
US5149518A (en) * 1989-06-30 1992-09-22 Ucar Carbon Technology Corporation Ultra-thin pure flexible graphite calendered sheet and method of manufacture
DE10003927A1 (en) * 2000-01-29 2001-08-02 Sgl Technik Gmbh Process for the preparation of expandable graphite intercalation compounds using phosphoric acids
JP4798411B2 (en) * 2000-08-09 2011-10-19 三菱瓦斯化学株式会社 Method for synthesizing thin-film particles having a carbon skeleton
JP2003176116A (en) * 2001-12-07 2003-06-24 Mitsubishi Gas Chem Co Inc Large, thin film particle consisting of carbon
JP4678152B2 (en) * 2003-07-23 2011-04-27 三菱瓦斯化学株式会社 Dispersion of thin film particles with a carbon skeleton

Also Published As

Publication number Publication date
HK1142869A1 (en) 2010-12-17
CN101687645A (en) 2010-03-31
CN101687645B (en) 2012-12-12
JPWO2008152680A1 (en) 2010-08-26
WO2008152680A1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP5033183B2 (en) Method for producing carbon nanosheet
Sharif et al. Electrochemical regeneration of a reduced graphene oxide/magnetite composite adsorbent loaded with methylene blue
Wang et al. Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective
Ban et al. Graphene oxide and its electrochemical performance
CN105110318B (en) A kind of graphene water paste and preparation method thereof
Chen et al. One-step synthesis of low defect density carbon nanotube-doped Ni (OH) 2 nanosheets with improved electrochemical performances
Le et al. A highly active based graphene cathode for the electro-fenton reaction
WO2017000731A1 (en) Graphene oxide quantum dot, material composed of same and graphene-like structure, and preparation method therefor
TWI429586B (en) Preparation of graphene nanobelt
JP7336987B2 (en) Graphene production
KR20180088660A (en) Chemical-free manufacturing of graphene materials
Sevilla et al. Aqueous dispersions of graphene from electrochemically exfoliated graphite
US10472243B2 (en) Industrial method for preparing large-sized graphene
US10971281B2 (en) Conducting polymer composite containing ultra-low loading of graphene
CN109573989A (en) A kind of porous MXene two-dimensional material and preparation method thereof
CN105460919B (en) A method of graphene quantum dot is prepared based on ozone oxidation
Li et al. Facile treatment of wastewater produced in Hummer's method to prepare Mn 3 O 4 nanoparticles and study their electrochemical performance in an asymmetric supercapacitor
JP2003238131A (en) Random aggregate of thin particle with carbon skeletal structure
WO2020028653A1 (en) Environmentally benign production of graphene suspensions
Sahoo et al. Vanadium pentaoxide-doped waste plastic-derived graphene nanocomposite for supercapacitors: a comparative electrochemical study of low and high metal oxide doping
Rukman et al. GO-Fe3O4 Nanocomposite from coconut shell: synthesis and characterization
Mkhondo et al. Effects of different acid-treatment on the nanostructure and performance of carbon nanotubes in electrochemical hydrogen storage
CN106430153A (en) Preparing method of ultrashort carbon nano tube with high dispersibility
CN105789628B (en) A kind of azepine graphene and manganese dioxide hybrid aerogel and its preparation method and application
Han et al. Progress in the preparation, application, and recycling of black phosphorus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120629

R150 Certificate of patent or registration of utility model

Ref document number: 5033183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees