JP5031469B2 - Optical fiber upper / lower judgment method - Google Patents

Optical fiber upper / lower judgment method Download PDF

Info

Publication number
JP5031469B2
JP5031469B2 JP2007182937A JP2007182937A JP5031469B2 JP 5031469 B2 JP5031469 B2 JP 5031469B2 JP 2007182937 A JP2007182937 A JP 2007182937A JP 2007182937 A JP2007182937 A JP 2007182937A JP 5031469 B2 JP5031469 B2 JP 5031469B2
Authority
JP
Japan
Prior art keywords
optical fiber
optical
communication base
light
base station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007182937A
Other languages
Japanese (ja)
Other versions
JP2009020320A (en
Inventor
正樹 和氣
和之 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007182937A priority Critical patent/JP5031469B2/en
Publication of JP2009020320A publication Critical patent/JP2009020320A/en
Application granted granted Critical
Publication of JP5031469B2 publication Critical patent/JP5031469B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable determination of upper part/lower part of an optical fiber with high accuracy without needing carrying of a wiring state diagram of optical fiber core wires or the like or acquiring operation of optical fiber state in a working site while minimizing the effect of measuring error. <P>SOLUTION: A determination light signal from a light source 6 disposed in a communication base station is incident on the other end (core) of an optical fiber 1, optical power of leaked light at an optical fiber connecting point 3 at which respective one-side ends of optical fibers 1 and 2 are mutually connected is measured, and the side larger in optical power is determined as a lower part of the optical fiber when the communication base station is taken as an upper part, and the side lower in optical power as an upper part of the optical fiber. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、通信基地局と加入者宅との間もしくは通信基地局同士の間に設置するまたは設置された光ファイバにおける通信基地局もしくはいずれか一方の通信基地局を上部としたときの光ファイバの上部・下部を判定する技術に関する。   The present invention relates to an optical fiber installed between a communication base station and a subscriber's house or between communication base stations or a communication base station in an installed optical fiber or any one of the communication base stations as an upper part. It is related with the technology which judges the upper part and the lower part.

従来、光ファイバ通信網を構築する際または構築後の電柱の上部や地下のとう道などの作業現場において、光ファイバの上部・下部の判定を行う場合、作業現場における光ファイバ心線の色や配置が記録された図面等を用意して携行し、予め作業現場で使用されている光ファイバ心線の種類やテープ化されているか等の状態を把握することにより行っていたが、手間と時間が掛かるという問題があった。   Conventionally, when building an optical fiber communication network, or when determining the upper or lower part of an optical fiber at a work site such as the upper part of an electric pole or underground roadway after construction, It was done by preparing and carrying drawings with recorded arrangements, and grasping the status of optical fiber cores used at the work site and whether they were taped in advance. There was a problem that it took.

また、従来の光ファイバの上部・下部の判定方法として、光ファイバを湾曲させ、当該湾曲部から漏洩する光の光パワーを、前記湾曲部のピーク位置に対して上流側および下流側から測定し、その差より光ファイバの上部・下部を判定する方法(特許文献1、2参照)があった。
特開2004−325334号公報 特許3711121号公報
In addition, as a method for determining the upper and lower portions of a conventional optical fiber, the optical fiber is bent, and the optical power of light leaking from the bent portion is measured from the upstream side and the downstream side with respect to the peak position of the bent portion. There is a method of determining the upper and lower portions of the optical fiber from the difference (see Patent Documents 1 and 2).
JP 2004-325334 A Japanese Patent No. 3711121

しかし、上述した漏洩光を用いた従来の判定方法では、漏洩光の光パワーの差が5dB程度しかなく、測定誤差などにより誤判定する可能性があった。   However, in the conventional determination method using the leaked light described above, the difference in the optical power of the leaked light is only about 5 dB, and there is a possibility of erroneous determination due to a measurement error or the like.

本発明は、前述した課題に鑑みて提案されたもので、光ファイバ心線の配線状態図等の携行や作業現場の光ファイバの状態の把握作業を不要とし、かつ測定誤差の影響を受け難く、高い精度で光ファイバの上部・下部を判定可能な方法を提供することを目的とする。   The present invention has been proposed in view of the above-described problems, and eliminates the need to carry the optical fiber core wiring state diagram and the like and to grasp the state of the optical fiber at the work site, and is less susceptible to measurement errors. An object of the present invention is to provide a method capable of determining the upper and lower portions of an optical fiber with high accuracy.

上述した課題を解決するため、本発明では、メカニカルスプライス素子による光ファイバの接続点の両側において、光ファイバのコアを伝搬する光の一部が当該光ファイバの外部に漏洩して生じた漏洩光の光電力をそれぞれ測定し、該光電力が大きい側を下部、小さい側を上部と判定することを特徴とする。 In order to solve the above-described problem, in the present invention, leaked light generated by leakage of a part of light propagating through the core of the optical fiber to the outside of the optical fiber on both sides of the connection point of the optical fiber by the mechanical splice element. The optical power is measured, and the side with the higher optical power is determined as the lower part and the side with the lower optical power is determined as the upper part.

本発明によれば、光ファイバ心線の配線状態図等の携行や作業現場の光ファイバの状態の把握作業が不要になるとともに、湾曲部の両側と異なり、メカニカルスプライス素子による光ファイバの接続点の両側における漏洩光の光パワーの差は10〜15dB程度あるため、測定誤差の影響を受け難く、高い精度で光ファイバの上部・下部を判定することができる。 According to the present invention, it is not necessary to carry the optical fiber core wire wiring state diagram or the like and to grasp the state of the optical fiber at the work site, and unlike the both sides of the bending portion, the connection point of the optical fiber by the mechanical splice element Since the difference in the optical power of the leaked light on both sides of the optical fiber is about 10 to 15 dB, it is difficult to be influenced by the measurement error, and the upper and lower portions of the optical fiber can be determined with high accuracy.

本発明の原理を説明するために、光ファイバ接続点における光の伝搬のようすを図1に示す。図中、1,2は光ファイバ、3は光ファイバ接続点、11,21は光ファイバ1,2のコア、12,22は光ファイバ1,2のクラッド、α1は光ファイバ1のコアを伝搬する光、α2は光ファイバ2のコアを伝搬する光、α3は光ファイバのコア以外、即ちクラッドもしくは図示しない被覆を伝搬する光(クラッドモード)、α4は光ファイバの外部へ漏洩する光(漏洩光)である。   In order to explain the principle of the present invention, the state of light propagation at an optical fiber connection point is shown in FIG. In the figure, 1 and 2 are optical fibers, 3 is an optical fiber connection point, 11 and 21 are cores of optical fibers 1 and 2, 12, 22 are claddings of optical fibers 1 and 2, and α1 is propagated through the core of optical fiber 1. , Α2 is the light propagating through the core of the optical fiber 2, α3 is the light propagating through the cladding or the coating (not shown) (cladding mode), and α4 is the light leaking outside the optical fiber (leakage) Light).

コア11とクラッド12との比屈折率差からコア11内に閉じ込められて光ファイバ1内を伝搬し、該光ファイバ1の一端に到達して(コア11から)出射したコア伝搬光α1は、光ファイバ接続点3を介して接続された光ファイバ2の一端(のコア21)に入射され、前記同様にコア21内に閉じ込められ、透過光α2として伝搬していく。   From the relative refractive index difference between the core 11 and the clad 12, the core propagating light α1 confined in the core 11 propagates in the optical fiber 1 and reaches one end of the optical fiber 1 and exits (from the core 11). The light is incident on one end (core 21) of the optical fiber 2 connected via the optical fiber connection point 3, and is confined in the core 21 as described above, and propagates as transmitted light α2.

この際、光ファイバ1の一端(のコア11)から出射したコア伝搬光α1の一部は光ファイバ接続点3における光ファイバ1および2の一端同士間の間隙、軸ずれ、角度ずれ等により散乱・漏洩し、さらにその一部が光ファイバ2のクラッド22に結合して、コア以外を伝搬するクラッドモードα3に変換される。   At this time, a part of the core propagation light α1 emitted from one end (core 11) of the optical fiber 1 is scattered due to a gap between the one ends of the optical fibers 1 and 2 at the optical fiber connection point 3, an axial deviation, an angular deviation, and the like. -Leakage, and a part of it is coupled to the clad 22 of the optical fiber 2 and converted into a clad mode α3 propagating outside the core.

光ファイバのコア以外を伝搬するクラッドモードα3は、コアを伝搬する光α1,α2に比べて光ファイバ内への閉じ込めが弱いため、図示しない被覆を介して容易に光ファイバの外部へ漏洩して漏洩光α4となる。   The cladding mode α3 propagating outside the core of the optical fiber is less confined in the optical fiber than the light α1 and α2 propagating through the core, and therefore easily leaks to the outside of the optical fiber through a coating (not shown). The leakage light α4.

前述したコア伝搬光α1の光パワーPin、透過光α2の光パワーPcおよびクラッドモードα3の光パワーPuの間には、 Light power P in the core propagating light α1 described above, between the light power P u of the optical power P c and the cladding modes α3 of the transmitted light α2 is

Figure 0005031469
Figure 0005031469

という関係があり、クラッドモードα3の光パワーPuは、光ファイバ接続点3における接続損失をαsとすると、 The optical power P u of the cladding mode α3 is expressed as follows. When the connection loss at the optical fiber connection point 3 is α s ,

Figure 0005031469
Figure 0005031469

と表すことができる。 It can be expressed as.

また、クラッドモードα3による漏洩光α4を光パワーメータで受光する場合の結合効率をηuとすると、該漏洩光α4を光パワーメータで測定した時の光パワーPlは、 If the coupling efficiency when the leakage light α4 due to the cladding mode α3 is received by the optical power meter is η u , the optical power P l when the leakage light α4 is measured by the optical power meter is

Figure 0005031469
Figure 0005031469

となる。 It becomes.

ここで、結合効率ηuを1、コア伝搬光α1の光パワーPinを0dBmと仮定した場合の漏洩光パワーPlと接続損失αsとの関係を計算すると、図2に示すようになり、接続損失が低下するほど漏洩光パワーも低下することが分かる。 Here, when the coupling efficiency η u is assumed to be 1 and the optical power P in of the core propagation light α1 is assumed to be 0 dBm, the relationship between the leakage light power P l and the connection loss α s is calculated as shown in FIG. It can be seen that the leakage light power decreases as the connection loss decreases.

本発明では、以下に示す実験により、光ファイバ接続点の上部と下部において前述した漏洩光パワーが異なることを発見したため、当該漏洩光パワーの差により、光ファイバの上部・下部を判定する。   In the present invention, the above-described experiment has found that the above-described leakage light power is different between the upper part and the lower part of the optical fiber connection point. Therefore, the upper and lower parts of the optical fiber are determined based on the difference in the leakage light power.

実験は、図3に示すように、光ファイバ1,2としてITU G.652の単一モードファイバを用い、これらをメカニカルスプライス素子4およびメカニカルスプライス接続工具5を用いてメカニカルスプライス接続した状態において、符号(イ)、(ロ)および(ハ)で示すメカニカルスプライス素子の上部、中心部および下部(即ち、光ファイバの上部、接続点および下部)における漏洩光パワーを光パワーメータで、メカニカルスプライス素子4内の光ファイバ1,2の端面間隔を変更することにより接続損失を変化させて測定した。実験結果を図4に示す。   In the experiment, as shown in FIG. The upper part of the mechanical splice element indicated by symbols (A), (B), and (C) in the state in which 652 single-mode fibers are used and these are mechanically spliced using the mechanical splice element 4 and the mechanical splice connecting tool 5. The connection loss is reduced by changing the distance between the end faces of the optical fibers 1 and 2 in the mechanical splice element 4 with the optical power meter for the leakage light power at the center and the lower part (ie, the upper part of the optical fiber, the connection point and the lower part). It was measured by changing. The experimental results are shown in FIG.

図4より、各接続損失に対して漏洩光パワーが(ハ)>(イ)>(ロ)となっており、(イ)と(ハ)の値の差が10〜15dB程度あることが分かる。この理由として、メカニカルスプライス素子4の中心部(ロ)には(イ)や(ロ)に比べて光が漏洩するための隙間が少なく、また、メカニカルスプライス素子4の上部(イ)では接続点での漏洩光の反射光が支配的であり、また、メカニカルスプライス素子4の下部(ハ)では漏洩光が直接漏洩しているためと考えられる。   FIG. 4 shows that the leakage light power is (c)> (b)> (b) for each connection loss, and the difference between the values of (b) and (c) is about 10 to 15 dB. . The reason for this is that the central part (b) of the mechanical splice element 4 has a smaller gap for light leakage than (b) and (b), and the upper part (b) of the mechanical splice element 4 has a connection point. It is considered that the reflected light of the leaked light is dominant and the leaked light leaks directly at the lower part (c) of the mechanical splice element 4.

図5は上述の原理に基づく本発明の光ファイバの上部・下部判定方法を実現するための構成を示すもので、図中、1,2はその一端同士で接続される光ファイバ、3は光ファイバ1,2を接続する光ファイバ接続点、6は通信基地局(図示せず)に配置され、光ファイバ1に判定用の光信号を入射する手段、具体的には光ファイバ1の他端に接続された光源である。また、7,8は漏洩光の光電力を測定する手段、ここでは周知の光パワーメータであり、それぞれ光ファイバ接続点3の両側において、その受光部が光ファイバ1,2(の被覆)に近接あるいは接触配置されて用いられる。   FIG. 5 shows a configuration for realizing the optical fiber upper / lower determination method of the present invention based on the above principle. In the figure, 1 and 2 are optical fibers connected at one end thereof, and 3 is an optical fiber. An optical fiber connection point for connecting the fibers 1 and 2, 6 is arranged at a communication base station (not shown), and a means for inputting an optical signal for determination into the optical fiber 1, specifically, the other end of the optical fiber 1 A light source connected to Reference numerals 7 and 8 denote means for measuring the optical power of the leaked light, here known optical power meters, and the light receiving portions on both sides of the optical fiber connection point 3 are connected to the optical fibers 1 and 2 (covering). Used in close proximity or in contact.

ここで、判定用の光信号としては、光ファイバ1,2中において大きく減衰されない光信号であればどのようなものでも良く、例えば光ファイバ1,2が運用開始前であれば、通信基地局や加入者宅における通信用の光信号を用いても良い。   Here, the determination optical signal may be any optical signal that is not significantly attenuated in the optical fibers 1 and 2. For example, if the optical fibers 1 and 2 are not yet in operation, the communication base station Alternatively, an optical signal for communication at a subscriber's house may be used.

前記構成において、光源6からの判定用の光信号を光ファイバ1の他端(のコア)に入射し、光パワーメータ7,8にて漏洩光の光電力をそれぞれ測定し、比較すれば、該光電力が大きい側を通信基地局を上部として捉えたときの光ファイバの下部、小さい側を光ファイバの上部と判定することができる。   In the above-described configuration, the optical signal for determination from the light source 6 is incident on the other end (core) of the optical fiber 1, and the optical power of the leaked light is measured by the optical power meters 7 and 8, respectively. It can be determined that the side with the higher optical power is the lower part of the optical fiber when the communication base station is taken as the upper part, and the lower side is the upper part of the optical fiber.

なお、前述した説明は、通信基地局と加入者宅との間に設置するまたは設置された光ファイバにおける通信基地局を上部としたときの光ファイバの上部・下部を判定するものであるが、通信基地局同士の間に設置するまたは設置された光ファイバの上部・下部を判定することもでき、この場合、光源6が配置され、判定用の光信号を入射する側の通信基地局を上部としたときの光ファイバの上部・下部を判定することになる。   The above description is for determining the upper and lower parts of the optical fiber when the communication base station in the optical fiber installed or installed between the communication base station and the subscriber's home is the upper part. It is also possible to determine the upper and lower portions of the optical fiber installed between the communication base stations or in this case. In this case, the light source 6 is arranged and the communication base station on the side on which the determination optical signal is incident The upper and lower portions of the optical fiber are determined.

また、前述した説明は、光ファイバ1,2が運用開始前であり、それぞれの他端に通信基地局や加入者宅内の通信装置が接続されていない場合に対応するが、運用中であれば、光ファイバ1と光源6とを光カプラなどの周知の光結合手段を用いて結合し、光源6からの判定用の光信号を光ファイバ1中に入射して通信基地局からの通信用の光信号に重畳させてやれば良い。また、この際、判定用の光信号としては、通信基地局や加入者宅における通信用の光信号と波長が異なり、かつ所定の周波数で変調されたものを用い、光パワーメータ7,8において当該変調光のみを受光するようにすれば良い。   The above explanation corresponds to the case where the optical fibers 1 and 2 are before the start of operation, and no communication base station or communication device in the subscriber's home is connected to the other end. The optical fiber 1 and the light source 6 are coupled using a known optical coupling means such as an optical coupler, and an optical signal for determination from the light source 6 enters the optical fiber 1 for communication from a communication base station. What is necessary is just to superimpose on an optical signal. At this time, as the optical signal for determination, an optical signal having a wavelength different from that of the optical signal for communication in the communication base station or the subscriber's house and modulated at a predetermined frequency is used. It suffices to receive only the modulated light.

また、ここでは光ファイバの接続点の両側における漏洩光の光電力を、2台の光パワーメータを用いて同時に測定するようにしたが、1台の光パワーメータの配置を切り替えて別々に測定しても良い。   In addition, here, the optical power of the leaked light on both sides of the connection point of the optical fiber is measured simultaneously using two optical power meters, but it is measured separately by switching the arrangement of one optical power meter. You may do it.

光ファイバ接続点における伝搬光の振る舞いを解説する図Diagram explaining the behavior of propagating light at an optical fiber connection point 漏洩光パワーと接続損失との関係を示すグラフGraph showing the relationship between leakage optical power and splice loss 本発明方法により光ファイバの上部・下部の判定が可能であることを示すための実験系を説明する図The figure explaining the experimental system for showing that determination of the upper part and the lower part of an optical fiber is possible by the method of the present invention 実験結果を示す図Figure showing experimental results 本発明の光ファイバの上部・下部判定方法の構成を示す図The figure which shows the structure of the upper / lower part determination method of the optical fiber of this invention

符号の説明Explanation of symbols

1,2:光ファイバ、3:光ファイバ接続点、11,21:光ファイバ1,2のコア、12,22:光ファイバ1,2のクラッド、6:光源、7,8:光パワーメータ、α1,α2:コア伝搬光、α3:クラッドモード、α4:漏洩光。   1, 2: Optical fiber, 3: Optical fiber connection point, 11, 21: Cores of optical fibers 1, 2, 12, 22: Clad of optical fibers 1, 2, 6: Light source, 7, 8: Optical power meter, α1, α2: Core propagation light, α3: Cladding mode, α4: Leakage light.

Claims (2)

通信基地局と加入者宅との間もしくは通信基地局同士の間にメカニカルスプライス素子による接続点を具備して設置するまたは設置された光ファイバにおける通信基地局もしくはいずれか一方の通信基地局を上部としたときの光ファイバの上部・下部を判定する方法であって、
通信基地局もしくは一方の通信基地局に配置され、前記光ファイバに判定用の光信号を入射する手段と、
前記光ファイバのコアを伝搬する前記判定用の光信号の一部が当該光ファイバの外部に漏洩して生じた漏洩光の光電力を測定する手段とを用いて、
前記メカニカルスプライス素子による前記光ファイバの接続点の両側における漏洩光の光電力をそれぞれ測定し、該光電力が大きい側を下部、小さい側を上部と判定する
ことを特徴とする光ファイバの上部・下部判定方法。
Install the communication base station between the communication base station and the subscriber's home or between the communication base stations with a connection point by a mechanical splice element or install the communication base station in the installed optical fiber or any one of the communication base stations It is a method of judging the upper and lower parts of the optical fiber when
Disposed communication base station or one of the communication base station, means for entering the optical signal for determining the optical fiber,
With means for measuring the optical power of the leaked light generated by leaking a part of the optical signal for determination propagating through the core of the optical fiber to the outside of the optical fiber,
The optical power of the leaked light on both sides of the connection point of the optical fiber by the mechanical splice element is measured, respectively, and the upper side of the optical fiber is determined to be the lower side and the lower side of the optical power. Lower judgment method.
請求項1記載の光ファイバの上部・下部判定方法において、
運用中の前記光ファイバに対する前記判定用の光信号は通信用の光信号と波長が異なり、かつ所定の周波数で変調されている
ことを特徴とする光ファイバの上部・下部判定方法。
In the optical fiber upper / lower determination method according to claim 1,
It said optical signal for the determination has different optical signals and the wavelength for communication, and the upper and lower determination method for an optical fiber, characterized in that it is modulated at a predetermined frequency for the optical fiber in operation.
JP2007182937A 2007-07-12 2007-07-12 Optical fiber upper / lower judgment method Expired - Fee Related JP5031469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007182937A JP5031469B2 (en) 2007-07-12 2007-07-12 Optical fiber upper / lower judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007182937A JP5031469B2 (en) 2007-07-12 2007-07-12 Optical fiber upper / lower judgment method

Publications (2)

Publication Number Publication Date
JP2009020320A JP2009020320A (en) 2009-01-29
JP5031469B2 true JP5031469B2 (en) 2012-09-19

Family

ID=40360002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007182937A Expired - Fee Related JP5031469B2 (en) 2007-07-12 2007-07-12 Optical fiber upper / lower judgment method

Country Status (1)

Country Link
JP (1) JP5031469B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255231A (en) * 2000-03-10 2001-09-21 Chubu Electric Power Co Inc Live-line detector for optical path
JP3784259B2 (en) * 2001-01-22 2006-06-07 東北電力株式会社 Optical monitor device
JP4087282B2 (en) * 2003-04-25 2008-05-21 日本電信電話株式会社 Optical fiber contrast method and light receiving device

Also Published As

Publication number Publication date
JP2009020320A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP5910087B2 (en) Light receiving method and separation device for light output from multi-core optical fiber
KR100715589B1 (en) Apparatus and method for monitoring a structure using a counter-propagating signal method for locating events
US20020101577A1 (en) Optical fiber test method and apparatus
JP5313079B2 (en) Optical fiber characterization method
JP5856823B2 (en) Optical fiber coupling method
CN102507149A (en) Fibre core loss measuring method and system of heterogeneous optical fiber fusion welding point
KR101235177B1 (en) Optical fiber interface adapter for carrying along
JP2015230263A (en) Characteristic evaluation method of optical fiber
JP5469816B2 (en) Core wire contrast method and device
JP2009025210A (en) Optical fiber lateral incidence method and its device
CN202255844U (en) System for measuring loss of fiber cores at heterogeneous optical fiber fusion welding point
CN102393220A (en) SMS (single mode-multimode-single mode) optical fiber structural duplexing sensor
KR20140068851A (en) Optical transmission line
JP5345459B2 (en) Local signal light input / output method and local signal light input / output device
CN203573005U (en) Light power monitor
JP4702846B2 (en) Connection loss judgment method at optical fiber connection point
JP5031469B2 (en) Optical fiber upper / lower judgment method
JP2010078701A (en) Splicing structure of optical fibers and single mode fiber
JP5524655B2 (en) Local signal optical fiber coupling method and local signal optical fiber coupling device
WO2020036218A1 (en) Raman gain efficiency distribution testing method, and raman gain efficiency distribution testing device
JP2008032592A (en) Optical fiber air route surveillance system
JP4822868B2 (en) Optical fiber status judgment method
JP2007057415A (en) Connection loss determination method of optical fiber
Fresno-Hernández et al. Downtaper on Multimode Fibers towards Sustainable Power over Fiber Systems. Photonics 2023, 10, 513
JPS63212907A (en) Method and device for contrasting optical fiber core wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090730

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110613

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110615

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110616

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees