JP2007057415A - Connection loss determination method of optical fiber - Google Patents

Connection loss determination method of optical fiber Download PDF

Info

Publication number
JP2007057415A
JP2007057415A JP2005243923A JP2005243923A JP2007057415A JP 2007057415 A JP2007057415 A JP 2007057415A JP 2005243923 A JP2005243923 A JP 2005243923A JP 2005243923 A JP2005243923 A JP 2005243923A JP 2007057415 A JP2007057415 A JP 2007057415A
Authority
JP
Japan
Prior art keywords
optical fiber
connection
light
light intensity
connection loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005243923A
Other languages
Japanese (ja)
Other versions
JP2007057415A5 (en
JP4548841B2 (en
Inventor
Kyozo Tsujikawa
恭三 辻川
Masaki Wake
正樹 和氣
Izumi Mikawa
泉 三川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005243923A priority Critical patent/JP4548841B2/en
Publication of JP2007057415A publication Critical patent/JP2007057415A/en
Publication of JP2007057415A5 publication Critical patent/JP2007057415A5/ja
Application granted granted Critical
Publication of JP4548841B2 publication Critical patent/JP4548841B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a determination method of optical fiber connection loss monitorable even after starting communication use with a simple structure. <P>SOLUTION: A first clad light intensity detecting means 101 for detecting the intensity of the light propagating in the clad of a first optical fiber 11 is disposed near a connection end face of the first optical fiber 11. While a light source 100 of light travelling from a second optical fiber 12 to the first optical fiber through a connection point is connected to the second optical fiber side, it is determined whether the connection loss exceeds a predetermined reference value based on the light intensity detected by the first clad light intensity detecting means 101. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光ファイバ通信網を構築する際又は構築後において、光ファイバ接続点における損失を測定・判定する技術に関する。   The present invention relates to a technique for measuring and determining a loss at an optical fiber connection point when or after an optical fiber communication network is constructed.

従来、光ファイバの接続部の接続損失測定・判定は、直接的に接続損失を測定する方法(非特許文献1参照)や、接続部の光ファイバを拡大してそのコア形状などから推定する方法(非特許文献2参照)が用いられている。   Conventionally, the connection loss measurement / determination of the connection portion of the optical fiber is a method of directly measuring the connection loss (see Non-Patent Document 1) or a method of enlarging the optical fiber of the connection portion and estimating it from its core shape, etc. (See Non-Patent Document 2).

前者の方法の一例を図11に示す。同図において、1は光ファイバ接続部、11,12は光ファイバ、100は光源、201は光ファイバの端面から出射する光強度を受ける端面受光素子、202は該端面受光素子201で受光した光の強度を光電力として計算・表示する表示部である。接続損失の測定方法は、まず、光ファイバの接続作業前に光ファイバ12からの出射光電力Pinを測定し、接続作業後に光ファイバ11からの出射光電力Poutを測定する。そして、両測定値の差分Pin−Poutから接続損失を求める。   An example of the former method is shown in FIG. In the figure, 1 is an optical fiber connection portion, 11 and 12 are optical fibers, 100 is a light source, 201 is an end face light receiving element that receives light intensity emitted from the end face of the optical fiber, and 202 is light received by the end face light receiving element 201. It is a display part which calculates and displays the intensity | strength of light as optical power. In the connection loss measurement method, first, the outgoing optical power Pin from the optical fiber 12 is measured before the optical fiber connection work, and the outgoing optical power Pout from the optical fiber 11 is measured after the connection work. And connection loss is calculated | required from the difference Pin-Pout of both measured values.

後者の方法は、融着接続で広く用いられており、融着された光ファイバを顕微鏡などで拡大し、光ファイバ11と12におけるコアのずれや変形などの不整量を測定し、当該不整量から接続損失を計算する方法である。なお、この方法は光ファイバコアを拡大表示する必要があるため、光ファイバ接続部1の材質は透明であることが必要である。このため、現在広く使用されているメカニカルスプライスといった光ファイバを突き合わせ・固定する接続方法(以降、突き合わせ接続と呼ぶ)では、スプライスの材質として有色(例えば黒)のプラスチックや金属が用いられていることから、当該方法は適用できない。
T.Tanifuji and Y.Kato, "Realization of a Low Loss Splice for Single-Mode Fibers in the Field Using an Automatic Arc-Fusion Splicing Machine", in Proceedings, Optical Fiber Communication, Feb. 1983, paper MG3 T.Haibara, M.Matsumoto, T.Tanifuji and M.Tokuda, "Monitoring Method for Axis Alignment of Single-Mode Optical Fiber and Splice-Loss Estimation", Opt. Lett. 8. 502 1983
The latter method is widely used for fusion splicing, and the fused optical fiber is enlarged with a microscope or the like, and irregularities such as core displacement and deformation in the optical fibers 11 and 12 are measured. The connection loss is calculated from In this method, since the optical fiber core needs to be enlarged and displayed, the material of the optical fiber connecting portion 1 needs to be transparent. For this reason, in the connection method (hereinafter referred to as “butt connection”) that butt-fixes optical fibers such as mechanical splices that are widely used at present, colored plastic (for example, black) plastic or metal is used as the splice material. Therefore, this method cannot be applied.
T. Tanifuji and Y. Kato, "Realization of a Low Loss Splice for Single-Mode Fibers in the Field Using an Automatic Arc-Fusion Splicing Machine", in Proceedings, Optical Fiber Communication, Feb. 1983, paper MG3 T. Haibara, M. Matsumoto, T. Tanifuji and M. Tokuda, "Monitoring Method for Axis Alignment of Single-Mode Optical Fiber and Splice-Loss Estimation", Opt. Lett. 8. 502 1983

しかしながら、上述した直接的に接続損失を測定する方法(非特許文献1)は、接続作業場所以外の稼働を前提とする。すなわち、光ファイバ11が長尺の場合などPoutを測定する地点への作業員の派遣が必要であり、Pout測定のための光ファイバ11の切断・端面作成が必要であるという課題がある。   However, the above-described method for directly measuring connection loss (Non-Patent Document 1) is premised on operation other than the connection work place. That is, there is a problem that it is necessary to dispatch a worker to a point where Pout is measured, such as when the optical fiber 11 is long, and it is necessary to cut and create an end face of the optical fiber 11 for Pout measurement.

また、コア形状などから推定する方法(非特許文献2)は、接続作業場所以外の稼働は不要であるが、接続損失の推定値と実際の接続損失とに差がある可能性がある。また、融着以外には適用することが困難であるという課題がある。   Moreover, although the method estimated from a core shape etc. (nonpatent literature 2) does not require operation other than a connection work place, there exists a possibility that there exists a difference in the estimated value of connection loss, and actual connection loss. Moreover, there exists a subject that it is difficult to apply except melt | fusion.

さらに、接続作業を完了し、光ファイバ伝送路の両端に伝送装置を設置、通信利用を開始した後の接続損失の経時的及び長期的な変化をモニタすることは、伝送路の保守監視の観点からは高い必要があるものの、従来方法では、上述の理由に加えて、伝送路及び通信へ影響を与える可能性を考慮すれば極めて困難であるという課題がある。   Furthermore, monitoring the changes over time and long-term of connection loss after completing the connection work, installing transmission devices at both ends of the optical fiber transmission line, and starting communication use However, in the conventional method, in addition to the above-described reason, there is a problem that it is extremely difficult in consideration of the possibility of affecting the transmission path and communication.

そこで、本発明は、前述した課題に鑑みて提案されたもので、接続作業現場のみの稼働に限定し、光ファイバの切断・端面作成を不要とするとともに、顕微鏡などの手段を用いず、光ファイバ接続部の材質に依存せず、通信利用を開始した後でも伝送路中の接続点での接続損失の経時的な変化をモニタ可能な、簡便な光ファイバ接続損失の判定方法を提供することを目的とする。   Therefore, the present invention has been proposed in view of the above-described problems, and is limited to the operation only at the connection work site, eliminates the need for cutting an optical fiber and creating an end face, and without using a means such as a microscope. To provide a simple optical fiber connection loss determination method that can monitor the change over time of connection loss at a connection point in a transmission line, regardless of the material of the fiber connection part, even after the start of communication use. With the goal.

上記目的を達成するために、本願では、一対の光ファイバの接続点における接続損失を測定する方法であって、第1の光ファイバの接続端面近傍に該第1の光ファイバのクラッドを伝搬する光の強度を検出する第1のクラッド光強度検出手段を設け、第2の光ファイバから接続点を通過して第1の光ファイバへと進む光の光源が第2の光ファイバ側に接続されている状況において、前記第1のクラッド光強度検出手段で検出した光強度に基づき、接続損失が所定の基準値を超えるか否かを判定することを特徴とするものを提案する。   In order to achieve the above object, the present application is a method for measuring a connection loss at a connection point of a pair of optical fibers, and propagates the cladding of the first optical fiber in the vicinity of the connection end face of the first optical fiber. A first clad light intensity detecting means for detecting the light intensity is provided, and a light source of light traveling from the second optical fiber to the first optical fiber through the connection point is connected to the second optical fiber side. Therefore, it is proposed to determine whether or not the connection loss exceeds a predetermined reference value based on the light intensity detected by the first clad light intensity detecting means.

一般的に、光ファイバの接続損失が所定の基準値を超えている場合には、光軸ずれ等により光ファイバのクラッドに光が漏れていることが多々ある。そこで本発明では、第1の光ファイバの接続端面近傍に該第1の光ファイバのクラッドを伝搬する光の強度を検出する第1のクラッド光強度検出手段を設け、クラッドを伝搬する光の強度に基づいて、接続損失が所定の基準値を超えるか否かを判定する。これにより、接続作業現場のみの稼働で足りる。また、光ファイバの切断・端面作成が不要であり、さらに顕微鏡などの手段を用いないので、光ファイバ接続部の材質に依存せず、融着接続やメカニカルスプライスや各種の光コネクタを用いた場合であっても接続損失の判定が可能となる。また、通信利用を開始した後でも伝送路中の接続点での接続損失の経時的な変化をモニタ可能となる。   Generally, when the connection loss of an optical fiber exceeds a predetermined reference value, light often leaks into the cladding of the optical fiber due to an optical axis shift or the like. Therefore, in the present invention, first clad light intensity detection means for detecting the intensity of light propagating through the cladding of the first optical fiber is provided in the vicinity of the connection end face of the first optical fiber, and the intensity of light propagating through the cladding is provided. Based on the above, it is determined whether or not the connection loss exceeds a predetermined reference value. As a result, only the connection work site needs to be operated. In addition, there is no need to cut or create an end face of the optical fiber, and since no means such as a microscope is used, when using fusion splicing, mechanical splices, or various optical connectors, regardless of the material of the optical fiber connection part Even so, connection loss can be determined. In addition, it is possible to monitor the change with time of the connection loss at the connection point in the transmission path even after the start of communication use.

また、上記発明の好適な態様の一例として、第1の光ファイバと第2の光ファイバの接続作業中において、第1のクラッド光強度検出手段で検出した光強度の変化に基づき、接続損失が所定の基準値を超えるか否かを判定することを特徴とするものを提案する。   Further, as an example of a preferred aspect of the above invention, the connection loss is determined based on the change in the light intensity detected by the first cladding light intensity detecting means during the connection work of the first optical fiber and the second optical fiber. What is characterized by determining whether it exceeds a predetermined reference value is proposed.

一般的に、接続作業が適切に実施されれば、接続作業後に第1のクラッド光強度検出手段で検出した光強度は作業中よりも十分に低下したものとなり、一方、接続作業が適切に実施されなかった場合には、接続作業後に第1のクラッド光強度検出手段で検出した光強度は作業中よりやや低い値であってり高い値となる。本発明では、このような作業中におけるクラッド光強度の変化に基づき接続損失の判定を行うので、確実な判定作業が可能となる。   In general, if the connection work is performed properly, the light intensity detected by the first cladding light intensity detection means after the connection work will be sufficiently lower than during the work, while the connection work is performed properly. If not, the light intensity detected by the first clad light intensity detecting means after the connection work is slightly lower or higher than that during the work. In the present invention, since the connection loss is determined based on such a change in the clad light intensity during the operation, a reliable determination operation is possible.

また、上記発明の好適な態様の一例として、第2の光ファイバの接続端面近傍に該第2の光ファイバのクラッドを伝搬する光の強度を検出する第2のクラッド光強度検出手段を設け、第1のクラッド光強度検出手段で検出した光強度及び第2のクラッド光強度検出手段で検出した光強度に基づき、接続損失が所定の基準値を超えるか否かを判定することを特徴とするものを提案する。   Further, as an example of a preferred aspect of the above invention, a second clad light intensity detecting means for detecting the intensity of light propagating through the clad of the second optical fiber is provided in the vicinity of the connection end face of the second optical fiber, It is characterized in that it is determined whether or not the connection loss exceeds a predetermined reference value based on the light intensity detected by the first cladding light intensity detection means and the light intensity detected by the second cladding light intensity detection means. Suggest a thing.

本発明では、接続端面より光源側である第2の光ファイバのクラッド伝搬光強度と、第1の光ファイバのクラッド伝搬光強度を比較対比することにより、より正確な判定が可能となる。   In the present invention, a more accurate determination can be made by comparing and comparing the clad propagation light intensity of the second optical fiber on the light source side with respect to the connection end face and the clad propagation light intensity of the first optical fiber.

上記のクラッド光強度検出手段の好適な態様の一例としては、光ファイバを所定の曲率で着脱自在に湾曲固定する固定部材と、該固定部材により湾曲した光ファイバの所定部位からの漏れ光の強度を検出する受光素子とを備えたものが挙げられる。このクラッド光強度検出手段では、光ファイバの切断が不要であり、また湾曲率や側圧条件を適切に調整することにより、コアを伝搬する通信光に影響を与えることなくクラッド光強度の検出が可能となる。これにより、光ファイバ通信網構築後の通信中の状況においても、接続損失を任意時に判定可能となる。したがって、接続損失の経時的変化を把握することが可能となる。   As an example of a preferable aspect of the above clad light intensity detecting means, a fixing member that detachably fixes an optical fiber with a predetermined curvature, and an intensity of leaked light from a predetermined portion of the optical fiber bent by the fixing member And a light receiving element that detects the light emission. With this clad light intensity detection means, it is not necessary to cut the optical fiber, and the clad light intensity can be detected without affecting the communication light propagating through the core by appropriately adjusting the curvature and lateral pressure conditions. It becomes. This makes it possible to determine the connection loss at any time even during communication after the construction of the optical fiber communication network. Therefore, it is possible to grasp the change with time of the connection loss.

本発明の光ファイバ接続損失を測定する方法によれば、接続作業場所にてクラッドを伝搬する光を検出するので、Poutの測定に必要であった稼働や光ファイバ切断作業を不要にすることができる。また、光ファイバ接続部の材質も任意でよく、融着接続やメカニカルスプライス、さらに各種の光コネクタでの接続損失を判定することが可能となる。また、クラッドを伝搬する光はわずかな曲げや側圧によって、光ファイバ及び外皮皮膜から漏洩し、光ファイバの側方からその光電力を検知できる。その際の曲げや側圧条件を適切に調整すれば、コアを伝搬する通信光に影響を与えないため、伝送路を構成し、通信中の状況においても、光ファイバ接続損失の経時的な変化を判定することが可能となる。   According to the method for measuring an optical fiber connection loss of the present invention, since light propagating through the cladding is detected at the connection work place, the operation and the optical fiber cutting work required for the measurement of Pout can be made unnecessary. it can. Further, the material of the optical fiber connecting portion may be arbitrary, and it becomes possible to determine the splicing connection, mechanical splice, and connection loss in various optical connectors. In addition, the light propagating through the cladding leaks from the optical fiber and the skin film due to slight bending and lateral pressure, and the optical power can be detected from the side of the optical fiber. If the bending and side pressure conditions at that time are adjusted appropriately, the communication light propagating through the core will not be affected, so a transmission path is constructed, and the optical fiber connection loss changes over time even during communication. It becomes possible to judge.

本発明の一実施の形態に係る光ファイバ接続損失の判定方法について図面を参照して説明する。まず、メカニカルスプライスに代表される突き合わせ接続を例に、光ファイバ接続部1の概要を説明する。   An optical fiber connection loss determination method according to an embodiment of the present invention will be described with reference to the drawings. First, the outline of the optical fiber connection portion 1 will be described by taking a butt connection represented by a mechanical splice as an example.

光ファイバ接続部1は、図1の構成図に示すように、断面V字形状の溝2aが直線状に形成されたV溝基板2と、V溝2aに沿って挿入された一対の光ファイバ11,12を挟み込むように押さえつける押さえ板3とを備えている。溝2aの深さは両端部は深く、光ファイバの端面同士が突き合う中心部は浅く形成されており、さらに両端部と中心部の接続部は段差が生じないように滑らかに接続している。なお、同図中、YとY’は対向する光ファイバ11と12が挿入される方向を表す。   As shown in the block diagram of FIG. 1, the optical fiber connector 1 includes a V-groove substrate 2 in which a groove 2a having a V-shaped cross section is formed in a straight line, and a pair of optical fibers inserted along the V-groove 2a. And a presser plate 3 that presses 11 and 12 in between. The depth of the groove 2a is deep at both ends, the center where the end faces of the optical fibers abut each other is formed shallow, and the connection between the both ends and the center is smoothly connected so that no step is generated. . In the figure, Y and Y 'represent directions in which the opposing optical fibers 11 and 12 are inserted.

このような光ファイバ接続部1にて突き合わせ接続を行う手順を図2及び図3を参照して説明する。図2は接続作業時の光ファイバ接続部の構成を説明する図、図3は接続作業時における光ファイバ11と12の状態を模式的に示す図である。   A procedure for performing the butt connection in the optical fiber connection unit 1 will be described with reference to FIGS. FIG. 2 is a diagram for explaining the configuration of the optical fiber connection portion during connection work, and FIG. 3 is a diagram schematically showing the states of the optical fibers 11 and 12 during connection work.

図2に示すように、本実施の形態では、V溝基板2と押さえ板3との間に、光ファイバ11,12の挿入作業の必要な隙間を作るために楔4を用いる。この楔4をV溝基板2と押さえ板3との間に挿入することにより両者間に隙間が生じるので、この状態で光ファイバ11,12をV溝2aに沿って挿入し、各光ファイバ11,12の端面を突き合わせる。そして、楔4を引き抜くことにより光ファイバ11,12がV溝2aに沿って軸が一致した状態で固定される。   As shown in FIG. 2, in this embodiment, a wedge 4 is used between the V-groove substrate 2 and the holding plate 3 in order to create a gap necessary for inserting the optical fibers 11 and 12. By inserting the wedge 4 between the V-groove substrate 2 and the pressing plate 3, a gap is created between them. In this state, the optical fibers 11 and 12 are inserted along the V-groove 2a, and each optical fiber 11 is inserted. , 12 face each other. Then, by pulling out the wedge 4, the optical fibers 11 and 12 are fixed with the axes aligned along the V groove 2 a.

このような突き合わせ接続作業は、以下のような状態の遷移として捉えることができる。すなわち、状態1:メカニカルスプライスの挿入状態(図3(a))、状態2:メカニカルプライズ内部でのファイバ端面突き当て(図3(b))、状態3:メカニカルプライスからの楔の除去(図3(c))、である。状態1では、光ファイバの端面間隔が減少していく。状態2では、対向する光ファイバ中心の軸が径方向にずれた状態で、ファイバ端面間隔が極小となっている。状態3では、ファイバ端面間隔が極小の状態で、対向する光ファイバ中心軸が調心している。   Such a butt connection operation can be understood as a state transition as follows. State 1: Inserted state of mechanical splice (FIG. 3A) State 2: Abutment of fiber end face inside mechanical prize (FIG. 3B) State 3: Removal of wedge from mechanical price (FIG. 3) 3 (c)). In state 1, the end face spacing of the optical fiber decreases. In state 2, the distance between the fiber end faces is minimized with the axis of the center of the opposing optical fiber shifted in the radial direction. In state 3, the optical fiber center axes are aligned while the fiber end face spacing is minimal.

このような突き合わせ接続における接続損失を判定する方法について図4の構成図を参照して説明する。同図において、100は光源、101は光ファイバ11に装着し該光ファイバ11のクラッドを伝搬する光を受光するクラッド光受光部、102は該クラッド光受光部101で受光した光の強度を光電力として計算・表示する表示部である。   A method of determining the connection loss in such a butt connection will be described with reference to the configuration diagram of FIG. In the figure, 100 is a light source, 101 is a clad light receiving unit that is attached to the optical fiber 11 and receives light propagating through the clad of the optical fiber 11, and 102 is the intensity of light received by the clad light receiving unit 101. It is a display unit that calculates and displays power.

前述したように、突き合わせ接続の際に、状態1では対向する光ファイバ11と12の軸はずれている。このため、光ファイバ12から出射する光の大部分は、光ファイバ11のコアに結合せず、両ファイバ端面の間で散乱・減衰するか、若しくは光ファイバ11のクラッドに結合し伝搬する。端面の間隔が減少するにつれて、光ファイバ11のクラッドに結合し伝搬する光が増加し、状態2でクラッドを伝搬する光の電力は安定する。そして、楔4が抜かれた状態3になると、両光ファイバの軸が一致する場合、すなわち良好な接続の場合には、それまでクラッドに結合していた光がコアと結合し、該クラッドを伝搬する光が急激に減少する。上記の各状態におけるクラッドを伝搬する光電力の変化を図5に示す。   As described above, the axes of the facing optical fibers 11 and 12 are shifted in the state 1 at the time of butt connection. For this reason, most of the light emitted from the optical fiber 12 is not coupled to the core of the optical fiber 11, but is scattered or attenuated between both fiber end faces, or is coupled to the cladding of the optical fiber 11 and propagates. As the distance between the end faces decreases, the light that is coupled to and propagates through the cladding of the optical fiber 11 increases, and the power of the light that propagates through the cladding in state 2 is stabilized. When the wedge 4 is pulled out 3 and the axes of the two optical fibers coincide with each other, that is, in the case of a good connection, the light previously coupled to the cladding is coupled to the core and propagates through the cladding. The light to be suddenly decreased. FIG. 5 shows changes in the optical power propagating through the cladding in each of the above states.

一方、楔4が抜かれたにもかかわらず、両光ファイバの軸が一致しない若しくはずれがさらに増大する場合は、図6に示すように、クラッドを伝搬する光は十分には減少しない、或いは増加する。   On the other hand, when the wedges 4 are pulled out and the axes of the two optical fibers do not coincide with each other or the deviation further increases, as shown in FIG. 6, the light propagating through the cladding is not sufficiently reduced or increased. To do.

すなわち、状態1から3に亘る、クラッド伝搬光強度の推移を測定することが、光ファイバ接続部1の接続損失の判定に好適となる。具体的には、状態3におけるクラッド伝搬光強度(光電力)が所定の基準値を超えるか否かにより接続の適否を判定する。なお、本例のメカニカルスプライスに限らず、各種の光コネクタや融着接続においても接続作業完了時の状態を状態3とし、それ以降の光電力の推移を測定すれば、光ファイバ接続部1の接続損失の経時的変化の判定に好適となる。   That is, measuring the transition of the clad propagation light intensity over the states 1 to 3 is suitable for determining the connection loss of the optical fiber connection portion 1. Specifically, the suitability of the connection is determined based on whether the clad propagation light intensity (optical power) in the state 3 exceeds a predetermined reference value. In addition, not only the mechanical splice of this example but also various optical connectors and fusion splicing, the state at the time of completion of the connection work is set to the state 3, and the transition of the optical power after that is measured. This is suitable for determining the temporal change in connection loss.

また、本発明の変形例について図7の構成図を参照して説明する。同図において、101’は光ファイバ12に装着し該光ファイバ12のクラッド伝搬光を受光するクラッド受光部である。このクラッド光受光部101’は、光ファイバ11に装着したクラッド光受光部101と同じものである。光ファイバ12では、クラッドを伝搬する光の強度は極めて小さく、且つ、状態1〜3の間で殆ど変化しない。該光ファイバ12のクラッド伝搬光の光電力と光ファイバ11のクラッド伝搬光の光電力の変化を図8に示す。図8において、実線は光ファイバ11のクラッド伝搬光の光電力を表し、一点鎖線は光ファイバ12のクラッド伝搬光の光電力を表す。   A modification of the present invention will be described with reference to the block diagram of FIG. In the figure, reference numeral 101 ′ denotes a clad light receiving portion that is attached to the optical fiber 12 and receives the clad propagation light of the optical fiber 12. The clad light receiving unit 101 ′ is the same as the clad light receiving unit 101 attached to the optical fiber 11. In the optical fiber 12, the intensity of light propagating through the cladding is extremely small and hardly changes between the states 1 to 3. FIG. 8 shows changes in the optical power of the clad propagation light of the optical fiber 12 and the optical power of the clad propagation light of the optical fiber 11. In FIG. 8, the solid line represents the optical power of the clad propagation light of the optical fiber 11, and the alternate long and short dash line represents the optical power of the clad propagation light of the optical fiber 12.

同図に示すように、クラッド光受光部101での光電力がクラッド光受光部101’での光電力と比較して十分に大きい場合、光ファイバ11のクラッドに光が多く存在することから、接続点でコアに結合していない光が存在する、すなわち接続損失が発生していることが分かる。そして、状態3において、クラッド光受光部101での光電力とクラッド光受光部101’での光電力とが近似することが分かる。以上から、両光電力を比較対比することが、光ファイバ接続部1の接続損失の判定に好適となる。   As shown in the figure, when the optical power in the clad light receiving unit 101 is sufficiently larger than the optical power in the clad light receiving unit 101 ′, there is a lot of light in the clad of the optical fiber 11, It can be seen that there is light that is not coupled to the core at the connection point, that is, connection loss occurs. In state 3, it can be seen that the optical power in the clad light receiving unit 101 and the optical power in the clad light receiving unit 101 'are approximate. From the above, comparing and comparing the two optical powers is suitable for determining the connection loss of the optical fiber connection unit 1.

なお、図7では、クラッド光受光部101と101’を用いて同時にクラッド伝搬光の光強度を測定する構造を記載しているが、1つのクラッド受光部のみで同様の接続損失の判定を行うことができる。この場合は、接続する前に、光ファイバ12にクラッド光受光部101にて測定を行った後、これを光ファイバ11に付け替えて、接続作業中の状態1〜3のクラッドを伝搬する光電力を測定すればよい。この方法は、限られた数のクラッド光受光部でも、光ファイバ接続部前後の光ファイバにおけるクラッド伝搬光を測定できるので、より確度の高い接続損失の判定を行うのに好適である。   Although FIG. 7 shows a structure in which the light intensity of the clad propagation light is simultaneously measured using the clad light receiving parts 101 and 101 ′, the same connection loss determination is performed with only one clad light receiving part. be able to. In this case, before the connection, the optical fiber 12 is measured by the clad light receiving unit 101, and then the optical power is transferred to the optical fiber 11 to propagate the clad in the states 1 to 3 during the connection work. Can be measured. Since this method can measure the clad propagation light in the optical fiber before and after the optical fiber connecting portion even with a limited number of the clad light receiving portions, it is suitable for determining the connection loss with higher accuracy.

また、図7の構成で測定を行った後にクラッド光受光部101’を取り除き、図4に示す構成によって、それ以降の光電力の推移を測定すれば、光ファイバ接続部1の接続損失の経時的な変化の判定に好適となる。   Further, if the cladding light receiving unit 101 ′ is removed after the measurement in the configuration of FIG. 7 and the transition of the optical power thereafter is measured by the configuration shown in FIG. It is suitable for determination of a typical change.

次に、クラッド光受光部101の構造について図9を参照して説明する。図9に示すように、クラッド光受光部101は、光ファイバ11を湾曲した状態で着脱自在に固定保持する保持具101aと、湾曲した光ファイバ11から漏れる光を受光する受光素子101bとからなる。保持具101aには所定の曲率半径rで湾曲した溝(図示省略)と、該溝の略中間地点から前記受光素子101bに亘って開口した導波口101cとが形成されている。   Next, the structure of the clad light receiving part 101 will be described with reference to FIG. As shown in FIG. 9, the clad light receiving unit 101 includes a holder 101 a that detachably fixes and holds the optical fiber 11 and a light receiving element 101 b that receives light leaking from the curved optical fiber 11. . The holder 101a is formed with a groove (not shown) that is curved with a predetermined radius of curvature r and a waveguide port 101c that opens from a substantially middle point of the groove to the light receiving element 101b.

実際に、1.3μm零分散単一モード光ファイバを対象に実験したところ、光源100として波長1.3μmの光源を用いる場合、曲率半径rが10mm以上ではクラッド伝搬を十分受光することが難しく、10mm未満が望ましいことが分かった。   Actually, when an experiment was performed on a 1.3 μm zero-dispersion single mode optical fiber, when a light source having a wavelength of 1.3 μm was used as the light source 100, it was difficult to sufficiently receive the clad propagation when the curvature radius r was 10 mm or more. It has been found that less than 10 mm is desirable.

一方、1.3μm零分散単一モード光ファイバに対して光源100として波長1.5μm以長の光源を用いる場合は、曲率半径rが10mmでもクラッド伝搬光を受光できる。ただし、コア伝搬光も曲げによって一部漏れて、受光素子101bで受光されるため、接続損失が小さめに判定される危険性がある。   On the other hand, when a light source having a wavelength of 1.5 μm or longer is used as the light source 100 for the 1.3 μm zero-dispersion single mode optical fiber, the clad propagation light can be received even if the curvature radius r is 10 mm. However, since the core propagation light partially leaks due to bending and is received by the light receiving element 101b, there is a risk that the connection loss is determined to be small.

また、分散シフト光ファイバの場合、光源100として波長1.5μm以長の光源と、曲率半径rが10mmのクラッド光受光部101でも、コア伝搬光を受光することはなく、クラッド伝搬光のみを受光でき、本発明を適用可能であることが分かった。   In the case of a dispersion-shifted optical fiber, the light source 100 and the clad light receiving unit 101 having a wavelength of 1.5 μm or longer and the radius of curvature r of 10 mm do not receive the core propagation light, but only the clad propagation light. It was found that light can be received and the present invention is applicable.

本実施の形態の場合において、通信開始前の状況では判定用の専用光源を光源100として用いることができる。また、コアを伝搬する通信光波長での曲げ損失が十分に小さくなるように曲率半径rを適切に設定すれば、光源100として、ユーザ宅や局内に設置する伝送装置の通信用光源(波長1.3μm帯又は波長1.55μm帯)を用いることもできる。さらに、ユーザの伝送装置前に波長1.65μm帯の試験・監視光の遮断フィルタが設置されている場合、光源100として、波長1.65μm帯の判定用の光源を用いて、局側の監視光入力ポートから伝送路に光を入光することもできる。これらの方法によって、通信中の状況において、光ファイバの接続損失の経時的な変化を判定することが可能となる。なお、曲率半径rの適切な設定については、コア伝搬光の曲げによる損失が生じにくい分散シフト光ファイバの場合の方がより容易であるが、1.3μm零分散単一モード光ファイバについても、例えば「山本他、”光線路の上部下部判定を可能とする心線対照器の検討”、2003年電子情報通信学会ソサエティ大会、B−10−10」に示されているように十分に可能である。   In the case of the present embodiment, a dedicated light source for determination can be used as the light source 100 in a situation before the start of communication. Further, if the curvature radius r is appropriately set so that the bending loss at the communication light wavelength propagating through the core is sufficiently small, the light source 100 is a communication light source (wavelength 1) of a transmission apparatus installed in a user's house or station. .3 μm band or 1.55 μm wavelength band) can also be used. Further, when a test / monitoring light cutoff filter having a wavelength of 1.65 μm is installed in front of the user's transmission device, the light source 100 is used as a light source for determination in the wavelength of 1.65 μm to monitor the station side. Light can be incident on the transmission path from the optical input port. By these methods, it is possible to determine a change with time in the connection loss of the optical fiber in a situation during communication. The appropriate setting of the radius of curvature r is easier in the case of a dispersion-shifted optical fiber that is less prone to loss due to bending of the core propagation light, but for a 1.3 μm zero-dispersion single-mode optical fiber, For example, as described in “Yamamoto et al.,“ Examination of core contrast device that enables determination of upper and lower parts of optical line ”, Society Conference of the Institute of Electronics, Information and Communication Engineers, B-10-10” is sufficiently possible. is there.

このように光源100の波長とクラッド光受光部101の曲率半径rを適切に選ぶことにより、多様な単一モード光ファイバについて、クラッド伝搬光の光強度を確実に検出し、その接続損失を判定することが可能である。   As described above, by appropriately selecting the wavelength of the light source 100 and the radius of curvature r of the clad light receiving portion 101, the light intensity of the clad propagation light can be reliably detected for various single mode optical fibers and the connection loss can be determined. Is possible.

また、本実施の形態によれば、クラッド光受光部101及び表示部102を接続作業完了後も装着し続けるか、若しくは、取り外した後に、必要に応じて再度装着することで、接続損失の経時的な変化を判定できる。測定の条件を一定するために、受光部101を再度装着する場合は、できるだけ一定の位置に装着することが望ましい。   In addition, according to the present embodiment, the cladding light receiving unit 101 and the display unit 102 are continuously mounted even after the connection work is completed, or after being removed, the cladding light receiving unit 101 and the display unit 102 are mounted again as necessary, so Change can be judged. In order to fix the measurement conditions, when the light receiving unit 101 is mounted again, it is desirable to mount it at a fixed position as much as possible.

接続損失の変化の原因としては、温度や湿度などの環境的なもの、引っ張り張力や振動などの機械的なものがあるが、接続部1でのコア伝搬光の損失分が100%クラッドに結合すると仮定して計算した理論値を図11に示す。横軸は接続損失の変化量、縦軸はクラッドを伝搬する光電力の変化量で、接続損失0.1dBを初期の基準値として表している。接続損失が0.1dB付近から0.5〜1d以上に増加すると、クラッドを伝搬する光電力は5〜10dB程度の増加が見込まれる。   Causes of changes in connection loss include environmental factors such as temperature and humidity, and mechanical factors such as tensile tension and vibration, but the loss of core propagation light at connection 1 is coupled to 100% cladding. FIG. 11 shows theoretical values calculated on the assumption. The horizontal axis represents the change amount of the connection loss, the vertical axis represents the change amount of the optical power propagating through the cladding, and the connection loss of 0.1 dB is represented as an initial reference value. When the connection loss increases from near 0.1 dB to 0.5 to 1 d or more, the optical power propagating through the cladding is expected to increase by about 5 to 10 dB.

以上から、本発明では、クラッドを伝搬する光電力を測定することにより、接続損失の経時的な変化、例えば光ファイバ通信網構築後の月単位や年単位での経時的な変化を、良好な精度で判定することが可能である。   From the above, in the present invention, by measuring the optical power propagating through the clad, the connection loss over time, for example, the change over time in the unit of months or years after the construction of the optical fiber communication network is improved. It is possible to determine with accuracy.

以上本発明の実施の形態について詳述したが、本発明はこれに限定されるものではない。例えば、上記実施の形態では光ファイバ接続部1としてメカニカルスプライスを用いた端面突き合わせ接続について説明したが、融着接続など種々の接続形態においても本発明を適用できる。   Although the embodiment of the present invention has been described in detail above, the present invention is not limited to this. For example, in the above embodiment, the end face butt connection using a mechanical splice as the optical fiber connection portion 1 has been described, but the present invention can also be applied to various connection forms such as fusion connection.

光ファイバ接続部の構成図Configuration diagram of optical fiber connection 光ファイバ接続作業を説明する図Diagram explaining optical fiber connection work 光ファイバ接続作業時における状態遷移を説明する光ファイバの模式図Schematic diagram of optical fiber explaining state transition during optical fiber connection work 接続損失判定方法で用いるシステム構成図System configuration diagram used in connection loss judgment method 接続作業時におけるクラッド伝搬光電力の推移を説明する図Diagram explaining the transition of clad propagation optical power during connection work 接続作業時におけるクラッド伝搬光電力の推移を説明する図Diagram explaining the transition of clad propagation optical power during connection work 接続損失判定方法で用いるシステム構成図System configuration diagram used in connection loss judgment method 接続作業時におけるクラッド伝搬光電力の推移を説明する図Diagram explaining the transition of clad propagation optical power during connection work クラッド光受光部の構成図Configuration diagram of clad light detector クラッド伝搬光電力の変化と接続損失の変化の相関図Correlation diagram of clad propagation optical power change and splice loss change 従来の接続損失判定方法を説明する図The figure explaining the conventional connection loss judgment method

符号の説明Explanation of symbols

1…光ファイバ接続部、2…V溝基板、2a…V溝、3…押さえ板、4…楔、11,12…光ファイバ、100…光源、101,101’…クラッド光受光部、101a…保持具、101b…受光素子、101c…導波口、102…表示部   DESCRIPTION OF SYMBOLS 1 ... Optical fiber connection part, 2 ... V groove board | substrate, 2a ... V groove, 3 ... Holding plate, 4 ... Wedge, 11, 12 ... Optical fiber, 100 ... Light source, 101, 101 '... Cladding light-receiving part, 101a ... Holder, 101b ... light receiving element, 101c ... waveguide opening, 102 ... display unit

Claims (4)

一対の光ファイバの接続点における接続損失を測定する方法であって、
第1の光ファイバの接続端面近傍に該第1の光ファイバのクラッドを伝搬する光の強度を検出する第1のクラッド光強度検出手段を設け、
第2の光ファイバから接続点を通過して第1の光ファイバへと進む光の光源が第2の光ファイバ側に接続されている状況において、前記第1のクラッド光強度検出手段で検出した光強度に基づき、接続損失が所定の基準値を超えるか否かを判定する
ことを特徴とする光ファイバの接続損失判定方法。
A method of measuring connection loss at a connection point of a pair of optical fibers,
Providing a first cladding light intensity detection means for detecting the intensity of light propagating through the cladding of the first optical fiber in the vicinity of the connection end face of the first optical fiber,
Detected by the first clad light intensity detecting means in a situation where a light source of light traveling from the second optical fiber through the connection point to the first optical fiber is connected to the second optical fiber side A method for determining an optical fiber connection loss, comprising: determining whether the connection loss exceeds a predetermined reference value based on light intensity.
第1の光ファイバと第2の光ファイバの接続作業中において、第1のクラッド光強度検出手段で検出した光強度の変化に基づき、接続損失が所定の基準値を超えるか否かを判定する
ことを特徴とする請求項1記載の光ファイバの接続損失判定方法。
During connection work of the first optical fiber and the second optical fiber, it is determined whether or not the connection loss exceeds a predetermined reference value based on the change in the light intensity detected by the first cladding light intensity detection means. The optical fiber splice loss determination method according to claim 1.
第2の光ファイバの接続端面近傍に該第2の光ファイバのクラッドを伝搬する光の強度を検出する第2のクラッド光強度検出手段を設け、
第1のクラッド光強度検出手段で検出した光強度及び第2のクラッド光強度検出手段で検出した光強度に基づき、接続損失が所定の基準値を超えるか否かを判定する
ことを特徴とする請求項1又は2何れか1項記載の光ファイバの接続損失判定方法。
Providing a second cladding light intensity detection means for detecting the intensity of light propagating through the cladding of the second optical fiber in the vicinity of the connection end face of the second optical fiber,
Determining whether or not the connection loss exceeds a predetermined reference value based on the light intensity detected by the first cladding light intensity detection means and the light intensity detected by the second cladding light intensity detection means; The optical fiber connection loss determination method according to claim 1 or 2.
前記クラッド光強度検出手段は、光ファイバを所定の曲率で着脱自在に湾曲固定する固定部材と、該固定部材により湾曲した光ファイバの所定部位からの漏れ光の強度を検出する受光素子とを備えた
ことを特徴とする請求項1乃至3何れか1項記載の光ファイバの接続損失判定方法。
The clad light intensity detecting means includes a fixing member that detachably fixes the optical fiber with a predetermined curvature, and a light receiving element that detects the intensity of leaked light from a predetermined portion of the optical fiber bent by the fixing member. The optical fiber connection loss determination method according to any one of claims 1 to 3, wherein the connection loss is determined.
JP2005243923A 2005-08-25 2005-08-25 Optical fiber splice loss judgment method Expired - Fee Related JP4548841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005243923A JP4548841B2 (en) 2005-08-25 2005-08-25 Optical fiber splice loss judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005243923A JP4548841B2 (en) 2005-08-25 2005-08-25 Optical fiber splice loss judgment method

Publications (3)

Publication Number Publication Date
JP2007057415A true JP2007057415A (en) 2007-03-08
JP2007057415A5 JP2007057415A5 (en) 2007-08-30
JP4548841B2 JP4548841B2 (en) 2010-09-22

Family

ID=37921037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005243923A Expired - Fee Related JP4548841B2 (en) 2005-08-25 2005-08-25 Optical fiber splice loss judgment method

Country Status (1)

Country Link
JP (1) JP4548841B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300317A (en) * 2008-06-16 2009-12-24 Nippon Telegr & Teleph Corp <Ntt> Method and device for estimating connection loss of optical fiber
CN108240900A (en) * 2018-01-26 2018-07-03 国网山东省电力公司信息通信公司 A kind of power engineering cable connection is averaged splice loss, splice attenuation method of real-time
CN110987011A (en) * 2019-12-13 2020-04-10 西安航天精密机电研究所 Optical path fusion performance detection method for fiber-optic gyroscope

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049239A (en) * 1983-08-29 1985-03-18 Nippon Telegr & Teleph Corp <Ntt> Evaluating method of loss of optical connector
JPH05126677A (en) * 1991-09-12 1993-05-21 Fujikura Ltd Judging and measuring method for optical fiber connection loss

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049239A (en) * 1983-08-29 1985-03-18 Nippon Telegr & Teleph Corp <Ntt> Evaluating method of loss of optical connector
JPH05126677A (en) * 1991-09-12 1993-05-21 Fujikura Ltd Judging and measuring method for optical fiber connection loss

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300317A (en) * 2008-06-16 2009-12-24 Nippon Telegr & Teleph Corp <Ntt> Method and device for estimating connection loss of optical fiber
CN108240900A (en) * 2018-01-26 2018-07-03 国网山东省电力公司信息通信公司 A kind of power engineering cable connection is averaged splice loss, splice attenuation method of real-time
CN110987011A (en) * 2019-12-13 2020-04-10 西安航天精密机电研究所 Optical path fusion performance detection method for fiber-optic gyroscope

Also Published As

Publication number Publication date
JP4548841B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
AU2006333352B2 (en) Apparatus and methods for verifying an acceptable splice termination
US7192195B2 (en) Methods and apparatus for estimating optical insertion loss
US6062743A (en) Splicing different optical fiber types
EP0697117B1 (en) Controlled splicing of optical fibers
JP5164271B2 (en) Optical connector connection confirmation method and connection confirmation device
JP4548841B2 (en) Optical fiber splice loss judgment method
JP4457873B2 (en) Optical fiber fusion splicing device and fusion splicing method
JP4702846B2 (en) Connection loss judgment method at optical fiber connection point
EP1567899B1 (en) Determining mfd of optical fibers
JPH0357450B2 (en)
US8976344B2 (en) Live optical fiber identifier tool
JP2005148180A (en) Optical power monitor, method of manufacturing same and analyzer
JPS61194411A (en) Detecting method for axial alignment of optical fiber
JP4822868B2 (en) Optical fiber status judgment method
JP2007225961A (en) Method of splicing optical fibers
JP2000205999A (en) Optical fiber measuring apparatus
JP2009300317A (en) Method and device for estimating connection loss of optical fiber
Cheng et al. Loss measuring and process monitoring in splicing of two different fibers
JP5031469B2 (en) Optical fiber upper / lower judgment method
JPH0791934A (en) Method for inspecting connector for optical fiber
JPS6210401B2 (en)
JPH10293084A (en) Connection testing method for optical fiber cable
Smith et al. Factors Affecting Splice Loss Measurements Using The OTDR
JPH05126677A (en) Judging and measuring method for optical fiber connection loss

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

R150 Certificate of patent or registration of utility model

Ref document number: 4548841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees