JP5031445B2 - LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE - Google Patents

LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE Download PDF

Info

Publication number
JP5031445B2
JP5031445B2 JP2007142822A JP2007142822A JP5031445B2 JP 5031445 B2 JP5031445 B2 JP 5031445B2 JP 2007142822 A JP2007142822 A JP 2007142822A JP 2007142822 A JP2007142822 A JP 2007142822A JP 5031445 B2 JP5031445 B2 JP 5031445B2
Authority
JP
Japan
Prior art keywords
light
layer
organic compound
electrode
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007142822A
Other languages
Japanese (ja)
Other versions
JP2008010410A5 (en
JP2008010410A (en
Inventor
恒徳 鈴木
哲史 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2007142822A priority Critical patent/JP5031445B2/en
Publication of JP2008010410A publication Critical patent/JP2008010410A/en
Publication of JP2008010410A5 publication Critical patent/JP2008010410A5/ja
Application granted granted Critical
Publication of JP5031445B2 publication Critical patent/JP5031445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、電流励起型の発光素子に関する。また、発光素子を有する発光装置、電子機器に関する。
より詳しくは、本発明は、色純度に優れ、寿命の長い発光素子に関する。さらに、色純度に優れ寿命の長い発光装置及び電子機器に関する。
The present invention relates to a current excitation type light emitting element. In addition, the present invention relates to a light-emitting device and an electronic device each having a light-emitting element.
More specifically, the present invention relates to a light-emitting element having excellent color purity and a long lifetime. Furthermore, the present invention relates to a light-emitting device and an electronic device having excellent color purity and a long lifetime.

近年、エレクトロルミネッセンス(Electroluminescence)を利用した発光素子の研究開発が盛んに行われている。これら発光素子の基本的な構成は、一対の電極間に発光性の物質を含む層を挟んだものである。この素子に電圧を印加することにより、発光性の物質からの発光を得ることができる。   In recent years, research and development of light emitting elements using electroluminescence have been actively conducted. The basic structure of these light-emitting elements is such that a layer containing a light-emitting substance is sandwiched between a pair of electrodes. By applying voltage to this element, light emission from the light-emitting substance can be obtained.

このような発光素子は自発光型であるため、液晶ディスプレイに比べ画素の視認性が高く、バックライトが不要である等の利点があり、フラットパネルディスプレイ素子として好適であると考えられている。また、このような発光素子は、薄型軽量に作製できることも大きな利点である。さらに非常に応答速度が速いことも特徴の一つである。   Since such a light-emitting element is a self-luminous type, it has advantages such as higher pixel visibility than a liquid crystal display and the need for a backlight, and is considered suitable as a flat panel display element. In addition, it is a great advantage that such a light-emitting element can be manufactured to be thin and light. Another feature is that the response speed is very fast.

そして、これらの発光素子は膜状に形成することが可能であるため、大面積の素子を形成することにより、面状の発光を容易に得ることができる。このことは、白熱電球やLEDに代表される点光源、あるいは蛍光灯に代表される線光源では得難い特色であるため、照明等に応用できる面光源としての利用価値も高い。   Since these light-emitting elements can be formed in a film shape, planar light emission can be easily obtained by forming a large-area element. This is a feature that is difficult to obtain with a point light source typified by an incandescent bulb or LED, or a line light source typified by a fluorescent lamp, and therefore has a high utility value as a surface light source applicable to illumination or the like.

そのエレクトロルミネッセンスを利用した発光素子は、発光性の物質が有機化合物であるか、無機化合物であるかによって大別できるが、本発明は、発光性の物質に有機化合物を用いるものである。
その場合、発光素子に電圧を印加することにより、一対の電極から電子および正孔がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それらキャリア(電子および正孔)が再結合することにより、発光性の有機化合物が励起状態を形成し、その励起状態が基底状態に戻る際に発光する。
A light-emitting element using the electroluminescence can be roughly classified depending on whether the light-emitting substance is an organic compound or an inorganic compound, but the present invention uses an organic compound as the light-emitting substance.
In that case, by applying a voltage to the light-emitting element, electrons and holes are each injected from the pair of electrodes into the layer containing a light-emitting organic compound, and a current flows. Then, these carriers (electrons and holes) recombine, whereby the light-emitting organic compound forms an excited state, and emits light when the excited state returns to the ground state.

このようなメカニズムから、このような発光素子は電流励起型の発光素子と呼ばれる。なお、有機化合物が形成する励起状態の種類としては、一重項励起状態と三重項励起状態が可能であり、一重項励起状態からの発光が蛍光、三重項励起状態からの発光が燐光と呼ばれている。   Due to such a mechanism, such a light-emitting element is called a current-excitation light-emitting element. Note that the excited states formed by the organic compound can be singlet excited state or triplet excited state. Light emission from the singlet excited state is called fluorescence, and light emission from the triplet excited state is called phosphorescence. ing.

このような発光素子に関しては、その素子特性を向上させる上で、材料に依存した問題が多く、これらを克服するために素子構造の改良や材料開発等が行われている。
例えば、特許文献1では、発光層を二層とし、色系統の異なる蛍光性物質を複数種類ドーピングすることにより、色安定性を確保し、長寿命の有機EL素子を開示している。しかしながら、特許文献1では、色系統の異なる蛍光性物質を複数種類ドーピングしているため、色安定性の良い白色発光を得ることはできるが、色純度の良い発光は得られない。
With respect to such a light emitting element, there are many problems depending on the material in improving the element characteristics, and improvement of the element structure, material development, and the like have been performed in order to overcome these problems.
For example, Patent Document 1 discloses a long-life organic EL element that has two light emitting layers and is doped with a plurality of types of fluorescent substances having different color systems to ensure color stability. However, in Patent Document 1, since multiple types of fluorescent substances having different color systems are doped, white light emission with good color stability can be obtained, but light emission with good color purity cannot be obtained.

また、発光性の有機化合物を用いた発光素子は、発光性の無機化合物を用いた発光素子に比べ、低電圧での駆動が可能であるが、素子の寿命が短いという問題を有している。よって、発光素子のさらなる長寿命化が望まれている。
特開2000−68057号公報
In addition, a light-emitting element using a light-emitting organic compound can be driven at a lower voltage than a light-emitting element using a light-emitting inorganic compound, but has a problem that the lifetime of the element is short. . Therefore, further extension of the life of the light emitting element is desired.
JP 2000-68057 A

したがって、本発明は、発光性の物質が有機化合物を用いた場合において、純度に優れ、寿命の長い発光素子を提供することを課題とする。また、色純度に優れ寿命の長い発光装置及び電子機器を提供することも課題とする。   Therefore, an object of the present invention is to provide a light-emitting element having excellent purity and a long lifetime when an organic compound is used as the light-emitting substance. It is another object to provide a light-emitting device and an electronic device that have excellent color purity and a long lifetime.

本発明者らは、鋭意検討を重ねた結果、発光領域を発光層の中央付近にすることで、課題を解決できることを見出した。
すなわち、両電極の間に正孔輸送層と電子輸送層がある場合には、発光領域を発光層と正孔輸送層との界面や発光層と電子輸送層との界面ではなく、発光層の中央付近にすることで、課題を解決できることを見出した。
また、正孔輸送層と電子輸送層がない場合にも、両電極と発光層との界面ではなく、発光層の中央付近にすることで、課題を解決できることを見出した。
本発明は、前記のような知見に基づいて開発されたものであり、本発明の発光素子には多くの態様がある。
As a result of intensive studies, the present inventors have found that the problem can be solved by making the light emitting region near the center of the light emitting layer.
That is, when there is a hole transport layer and an electron transport layer between the two electrodes, the light emitting region is not the interface between the light emitting layer and the hole transport layer or the interface between the light emitting layer and the electron transport layer. We found that the problem could be solved by making it near the center.
Further, the present inventors have found that even when there is no hole transport layer and electron transport layer, the problem can be solved by setting the center of the light emitting layer, not the interface between both electrodes and the light emitting layer.
The present invention has been developed based on the above findings, and the light emitting device of the present invention has many modes.

その第1態様は、第1の電極と第2の電極の間に、発光層を有し、発光層は、第1の層と第2の層を有し、第1の層は、第1の有機化合物と、第2の有機化合物とを有し、第2の層は、第3の有機化合物と、第4の有機化合物とを有し、第1の層は、第2の層の第1の電極側に設けられており、第2の有機化合物は電子輸送性を有し、第3の有機化合物は電子トラップ性を有し、第4の有機化合物は電子輸送性を有し、第1の有機化合物の発光色と第3の有機化合物の発光色は、同じ色系統であり、第1の電極の方が第2の電極よりも電位が高くなるように、第1の電極と第2の電極とに電圧を印加することにより、第1の有機化合物からの発光が得られることを特徴とするものである。   The first aspect includes a light emitting layer between the first electrode and the second electrode, the light emitting layer includes the first layer and the second layer, and the first layer includes the first layer. The second organic compound, the second layer has the third organic compound and the fourth organic compound, and the first layer is the second layer of the second layer. The second organic compound has an electron transporting property, the third organic compound has an electron trapping property, the fourth organic compound has an electron transporting property, and the second organic compound has an electron transporting property. The emission color of the first organic compound and the emission color of the third organic compound are the same color system, and the first electrode and the third organic compound have a higher potential than the second electrode so that the first electrode has a higher potential than the second electrode. Light emission from the first organic compound can be obtained by applying a voltage to the second electrode.

第2の態様は、第1の電極と第2の電極の間に、発光層を有し、発光層は、第1の層と第2の層を有し、第1の層は、第1の有機化合物と、第2の有機化合物とを有し、第2の層は、第3の有機化合物と、第4の有機化合物とを有し、第1の層は、第2の層の第1の電極側に設けられており、第2の有機化合物は電子輸送性を有し、第3の有機化合物は第4の有機化合物の最低空軌道準位より0.3eV以上低い最低空軌道準位を有し、第4の有機化合物は電子輸送性を有し、第1の有機化合物の発光色と第3の有機化合物の発光色は、同じ色系統であり、第1の電極の方が第2の電極よりも電位が高くなるように、第1の電極と第2の電極とに電圧を印加することにより、第1の有機化合物からの発光が得られることを特徴とするものである。   The second aspect includes a light emitting layer between the first electrode and the second electrode, the light emitting layer includes the first layer and the second layer, and the first layer includes the first layer. The second organic compound, the second layer has the third organic compound and the fourth organic compound, and the first layer is the second layer of the second layer. The second organic compound has an electron transporting property, and the third organic compound has a lowest orbital level lower by 0.3 eV or more than the lowest orbital level of the fourth organic compound. The fourth organic compound has an electron transporting property, and the emission color of the first organic compound and the emission color of the third organic compound are the same color system, and the first electrode is more Light emission from the first organic compound can be obtained by applying a voltage to the first electrode and the second electrode so that the potential is higher than that of the second electrode. .

第3の態様は、第1の電極と第2の電極の間に、発光層を有し、発光層は、第1の層と第2の層を有し、第1の層は、第1の有機化合物と、第2の有機化合物とを有し、第2の層は、第3の有機化合物と、第4の有機化合物とを有し、第1の層は、第2の層の第1の電極側に設けられており、第2の有機化合物は電子輸送性を有し、第3の有機化合物は第4の有機化合物の最低空軌道準位より0.3eV以上低い最低空軌道準位を有し、第4の有機化合物は電子輸送性を有し、第1の有機化合物の発光スペクトルのピーク値と、第3の有機化合物の発光スペクトルのピーク値の差は30nm以内であり、第1の電極の方が第2の電極よりも電位が高くなるように、第1の電極と第2の電極とに電圧を印加することにより、第1の有機化合物からの発光が得られることを特徴とするものである。   The third aspect includes a light emitting layer between the first electrode and the second electrode, the light emitting layer includes the first layer and the second layer, and the first layer includes the first layer. The second organic compound, the second layer has the third organic compound and the fourth organic compound, and the first layer is the second layer of the second layer. The second organic compound has an electron transporting property, and the third organic compound has a lowest orbital level lower by 0.3 eV or more than the lowest orbital level of the fourth organic compound. The fourth organic compound has an electron transport property, and the difference between the peak value of the emission spectrum of the first organic compound and the peak value of the emission spectrum of the third organic compound is within 30 nm, By applying a voltage to the first electrode and the second electrode so that the potential of the first electrode is higher than that of the second electrode, the first organic compound It is characterized in that the light emission can be obtained.

第4の態様は、第1の電極と第2の電極の間に、電子輸送層と正孔輸送層を有し、電子輸送層と正孔輸送層との間に、第1の層と第2の層を有し、第1の層は、第1の有機化合物と、第2の有機化合物とを有し、第2の層は、第3の有機化合物と、第4の有機化合物とを有し、第1の層は、第2の層の第1の電極側に設けられており、第2の有機化合物は電子輸送性を有し、第3の有機化合物は電子トラップ性を有し、第4の有機化合物は電子輸送性を有し、第1の有機化合物の発光色と第3の有機化合物の発光色は、同じ色系統であり、第1の電極の方が第2の電極よりも電位が高くなるように、第1の電極と第2の電極とに電圧を印加することにより、第1の有機化合物からの発光が得られることを特徴とするものである。   The fourth aspect includes an electron transport layer and a hole transport layer between the first electrode and the second electrode, and the first layer and the second layer are disposed between the electron transport layer and the hole transport layer. The first layer has a first organic compound and a second organic compound, and the second layer has a third organic compound and a fourth organic compound. And the first layer is provided on the first electrode side of the second layer, the second organic compound has an electron transporting property, and the third organic compound has an electron trapping property. The fourth organic compound has an electron transport property, and the emission color of the first organic compound and the emission color of the third organic compound are the same color system, and the first electrode is the second electrode. Light emission from the first organic compound can be obtained by applying a voltage to the first electrode and the second electrode so that the potential becomes higher than that of the first organic compound.

第5の態様は、第1の電極と第2の電極の間に、電子輸送層と正孔輸送層を有し、電子輸送層と正孔輸送層との間に、第1の層と第2の層を有し、第1の層は、第1の有機化合物と、第2の有機化合物とを有し、第2の層は、第3の有機化合物と、第4の有機化合物とを有し、第1の層は、第2の層の第1の電極側に設けられており、第2の有機化合物は電子輸送性を有し、第3の有機化合物は第4の有機化合物の最低空軌道準位より0.3eV以上低い最低空軌道準位を有し、第4の有機化合物は電子輸送性を有し第1の有機化合物の発光色と第3の有機化合物の発光色は、同じ色系統であり、第1の電極の方が第2の電極よりも電位が高くなるように、第1の電極と第2の電極とに電圧を印加することにより、第1の有機化合物からの発光が得られることを特徴とするものである。   The fifth aspect includes an electron transport layer and a hole transport layer between the first electrode and the second electrode, and the first layer and the second layer are disposed between the electron transport layer and the hole transport layer. The first layer has a first organic compound and a second organic compound, and the second layer has a third organic compound and a fourth organic compound. And the first layer is provided on the first electrode side of the second layer, the second organic compound has an electron transporting property, and the third organic compound is the fourth organic compound. It has a lowest unoccupied orbital level lower by 0.3 eV or more than the lowest unoccupied orbital level, the fourth organic compound has an electron transport property, and the emission color of the first organic compound and the emission color of the third organic compound are The first organic compound having the same color system and applying a voltage to the first electrode and the second electrode so that the potential of the first electrode is higher than that of the second electrode. Departure from It is characterized in that is obtained.

第6の態様は、第1の電極と第2の電極の間に、電子輸送層と正孔輸送層を有し、電子輸送層と正孔輸送層との間に、第1の層と第2の層を有し、第1の層は、第1の有機化合物と、第2の有機化合物とを有し、第2の層は、第3の有機化合物と、第4の有機化合物とを有し、第1の層は、第2の層の第1の電極側に設けられており、第2の有機化合物は電子輸送性を有し、第3の有機化合物は第4の有機化合物の最低空軌道準位より0.3eV以上低い最低空軌道準位を有し、第4の有機化合物は電子輸送性を有し、第1の有機化合物の発光スペクトルのピーク値と、第3の有機化合物の発光スペクトルのピーク値の差は30nm以内であり、第1の電極の方が第2の電極よりも電位が高くなるように、第1の電極と第2の電極とに電圧を印加することにより、第1の有機化合物からの発光が得られることを特徴とするものである。   The sixth aspect includes an electron transport layer and a hole transport layer between the first electrode and the second electrode, and the first layer and the second layer are disposed between the electron transport layer and the hole transport layer. The first layer has a first organic compound and a second organic compound, and the second layer has a third organic compound and a fourth organic compound. And the first layer is provided on the first electrode side of the second layer, the second organic compound has an electron transporting property, and the third organic compound is the fourth organic compound. The lowest organic orbital level is 0.3 eV or more lower than the lowest empty orbital level, the fourth organic compound has an electron transport property, the peak value of the emission spectrum of the first organic compound, and the third organic compound. The difference in the peak value of the emission spectrum of the compound is within 30 nm, and a voltage is applied to the first electrode and the second electrode so that the potential of the first electrode is higher than that of the second electrode. By pressing, it is characterized in that the light emitted from the first organic compound is obtained.

それら多くの発光素子の態様においては、第1の層と第2の層は接して設けられていることが好ましい。   In many of these light-emitting element embodiments, the first layer and the second layer are preferably provided in contact with each other.

また、本発明は、上述した発光素子を有する発光装置も範疇に含むものである。本明細書中における発光装置とは、画像表示デバイス、発光デバイス、もしくは光源(照明装置を含む)等を含む。また、発光素子が形成されたパネルにコネクター、例えばFPC(Flexible printed circuit)もしくはTAB(Tape Automated Bonding)テープもしくはTCP(Tape Carrier Package)が取り付けられたモジュール、TABテープやTCPの先にプリント配線板が設けられたモジュール、または発光素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュール等も全て発光装置に含むものである。
さらに、発光素子がその発光を制御する制御手段を具備する場合についても本発明の発光装置に含むものである。
The present invention also includes a light emitting device having the above-described light emitting element. The light emitting device in this specification includes an image display device, a light emitting device, a light source (including a lighting device), and the like. Also, a panel in which a light emitting element is formed, a connector, for example, a FPC (Flexible printed circuit) or TAB (Tape Automated Bonding) tape or a TCP (Tape Carrier Package) attached module, a printed wiring board on the end of the TAB tape or TCP The light emitting device also includes a module provided with a light emitting device or a module in which an IC (integrated circuit) is directly mounted on a light emitting element by a COG (Chip On Glass) method.
Further, the case where the light emitting element includes a control means for controlling the light emission is included in the light emitting device of the present invention.

また、本発明の発光素子を表示部に用いた電子機器も本発明の範疇に含むものである。さらに、本発明の電子機器は、表示部を有し、該表示部は、上述した発光素子と発光素子の発光を制御する制御手段とを備えたものを含むことを特徴とする。   In addition, an electronic device using the light emitting element of the present invention for the display portion is also included in the category of the present invention. Furthermore, an electronic device of the present invention includes a display portion, and the display portion includes the above-described light emitting element and a control unit that controls light emission of the light emitting element.

本発明の発光素子は、発光層と正孔輸送層との界面または発光層と電子輸送層との界面ではなく、発光層の中央付近に発光領域が形成されているため、素子が劣化しにくく、寿命の長い発光素子を得ることができる。
なお、正孔輸送層と電子輸送層がない場合にも、両電極と発光層との界面ではなく、発光層の中央付近にすることで、同様の効果を得ることができる。
In the light emitting device of the present invention, since the light emitting region is formed near the center of the light emitting layer, not the interface between the light emitting layer and the hole transport layer or the interface between the light emitting layer and the electron transport layer, the device is not easily deteriorated. A light-emitting element with a long lifetime can be obtained.
Even when the hole transport layer and the electron transport layer are not provided, the same effect can be obtained by setting the vicinity of the center of the light emitting layer instead of the interface between both electrodes and the light emitting layer.

また、本発明の発光素子は、第1の有機化合物の発光色と第3の有機化合物の発光色は同系色であるため、第1の有機化合物だけでなく、第3の有機化合物が発光しても、色純度の良い発光を得ることができる。
さらに、本発明の発光素子を発光装置および電子機器に適用することにより、色純度に優れ、寿命の長い発光装置および電子機器を得ることができる。
In the light-emitting element of the present invention, since the emission color of the first organic compound and the emission color of the third organic compound are similar colors, not only the first organic compound but also the third organic compound emits light. However, light emission with good color purity can be obtained.
Furthermore, by applying the light-emitting element of the present invention to a light-emitting device and an electronic device, a light-emitting device and an electronic device having excellent color purity and a long lifetime can be obtained.

以下において、本発明を実施するための最良の形態を含む本発明の各種実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更することが可能である。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。   Hereinafter, various embodiments of the present invention including the best mode for carrying out the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.

(実施の形態1)
本発明の発光素子の一態様について図1(A)を用いて以下に説明する。
本発明の発光素子は、一対の電極間に複数の層を有する。当該複数の層は、電極から離れたところに発光領域が形成されるように、つまり電極から離れた部位でキャリアの再結合が行われるように、キャリア注入性の高い物質やキャリア輸送性の高い物質からなる層を組み合わせて積層されたものである。
(Embodiment 1)
One embodiment of a light-emitting element of the present invention is described below with reference to FIG.
The light-emitting element of the present invention has a plurality of layers between a pair of electrodes. The plurality of layers have a high carrier injecting property and a high carrier transporting property so that a light emitting region is formed at a distance from the electrode, that is, a carrier is recombined at a position away from the electrode. It is a combination of layers of materials.

本形態において、発光素子は、第1の電極102と、第2の電極104と、第1の電極102と第2の電極104との間に設けられたEL層103とから構成されている。なお、本形態では第1の電極102は陽極として機能し、第2の電極104は陰極として機能するものとして、以下説明をする。つまり、第1の電極102の方が第2の電極104よりも電位が高くなるように、第1の電極102と第2の電極104に電圧を印加したときに、発光が得られるものとして、以下説明をする。   In this embodiment mode, the light-emitting element includes a first electrode 102, a second electrode 104, and an EL layer 103 provided between the first electrode 102 and the second electrode 104. Note that in this embodiment mode, the first electrode 102 functions as an anode and the second electrode 104 functions as a cathode. That is, when voltage is applied to the first electrode 102 and the second electrode 104 so that the potential of the first electrode 102 is higher than that of the second electrode 104, light emission can be obtained. A description will be given below.

基板101は発光素子の支持体として用いられる。基板101としては、例えばガラス、またはプラスチックなどを用いることができる。なお、発光素子の作製工程において支持体として機能するものであれば、これら以外のものでもよい。   The substrate 101 is used as a support for the light emitting element. As the substrate 101, for example, glass or plastic can be used. Note that other materials may be used as long as they function as a support in the manufacturing process of the light-emitting element.

第1の電極102としては、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジウム−酸化スズ(ITO:Indium Tin Oxide)、珪素若しくは酸化珪素を含有した酸化インジウム−酸化スズ、酸化インジウム−酸化亜鉛(IZO:Indium Zinc Oxide)、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)等が挙げられる。   As the first electrode 102, a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a high work function (specifically, 4.0 eV or more) is preferably used. Specifically, for example, indium tin oxide (ITO), indium oxide-tin oxide containing silicon or silicon oxide, indium zinc oxide (IZO), tungsten oxide, and oxide. Examples thereof include indium oxide containing zinc (IWZO).

これらの導電性金属酸化物膜は、通常スパッタにより成膜されるが、ゾル−ゲル法などを応用して作製しても構わない。例えば、酸化インジウム−酸化亜鉛(IZO)は、酸化インジウムに対し1〜20wt%の酸化亜鉛を加えたターゲットを用いてスパッタリング法により形成することができる。また、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)は、酸化インジウムに対し酸化タングステンを0.5〜5wt%、酸化亜鉛を0.1〜1wt%含有したターゲットを用いてスパッタリング法により形成することができる。   These conductive metal oxide films are usually formed by sputtering, but may be formed by applying a sol-gel method or the like. For example, indium oxide-zinc oxide (IZO) can be formed by a sputtering method using a target in which 1 to 20 wt% of zinc oxide is added to indium oxide. Indium oxide containing tungsten oxide and zinc oxide (IWZO) is formed by sputtering using a target containing 0.5 to 5 wt% tungsten oxide and 0.1 to 1 wt% zinc oxide with respect to indium oxide. can do.

これらのほかにも、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、または金属材料の窒化物(例えば、窒化チタン:TiN)等が挙げられる。   Besides these, gold (Au), platinum (Pt), nickel (Ni), tungsten (W), chromium (Cr), molybdenum (Mo), iron (Fe), cobalt (Co), copper (Cu) , Palladium (Pd), or a nitride of a metal material (for example, titanium nitride: TiN).

EL層103は、層の積層構造については特に限定されず、電子輸送性の高い物質、正孔輸送性の高い物質、電子注入性の高い物質、正孔注入性の高い物質、またはバイポーラ性(電子及び正孔の輸送性の高い物質)の物質等から成る層と、本実施の形態で示す発光層とを適宜組み合わせて構成すればよい。例えば、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層等を適宜組み合わせて構成することができる。各層を構成する材料について以下に具体的に示す。図1では、一例として、第1の電極102、正孔輸送層112、発光層111、電子輸送層113、第2の電極104が順に積層した構成を示している。   The layer structure of the EL layer 103 is not particularly limited, and a substance having a high electron transporting property, a substance having a high hole transporting property, a substance having a high electron injecting property, a substance having a high hole injecting property, or a bipolar property ( A layer formed of a substance having a high electron and hole transport property) and the light-emitting layer described in this embodiment may be combined as appropriate. For example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like can be appropriately combined. The materials constituting each layer are specifically shown below. In FIG. 1, as an example, a structure in which a first electrode 102, a hole transport layer 112, a light-emitting layer 111, an electron transport layer 113, and a second electrode 104 are sequentially stacked is illustrated.

第1の電極102と正孔輸送層112との間に正孔注入層を設けてもよい。正孔注入層は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、モリブデン酸化物(MoOx)やバナジウム酸化物(VOx)、ルテニウム酸化物(RuOx)、タングステン酸化物(WOx)、マンガン酸化物(MnOx)等を用いることができる。この他にも、フタロシアニン(略称:H2Pc)や銅フタロシアニン(略称:CuPc)等のフタロシアニン系の化合物、或いはポリ(エチレンジオキシチオフェン)/ポリ(3,4−スチレンスルホン酸)(PEDOT/PSS)等の高分子等によっても正孔注入層を形成することができる。 A hole injection layer may be provided between the first electrode 102 and the hole transport layer 112. The hole injection layer is a layer containing a substance having a high hole injection property. Examples of the material having a high hole injection property include molybdenum oxide (MoO x ), vanadium oxide (VO x ), ruthenium oxide (RuO x ), tungsten oxide (WO x ), manganese oxide (MnO x ), and the like. Can be used. In addition, phthalocyanine compounds such as phthalocyanine (abbreviation: H 2 Pc) and copper phthalocyanine (abbreviation: CuPc), or poly (ethylenedioxythiophene) / poly (3,4-styrenesulfonic acid) (PEDOT / The hole injection layer can also be formed by a polymer such as PSS).

また、正孔注入層として、正孔輸送性の高い物質にアクセプター性物質を含有させた複合材料を用いることができる。このように正孔輸送性の高い物質にアクセプター性物質を含有させたものを用いることにより、電極の仕事関数に依らず電極を形成する材料を選ぶことができる。つまり、第1の電極102として仕事関数の大きい材料だけでなく、仕事関数の小さい材料を用いることができる。
なお、本明細書中において、複合とは、単に複数の材料を混合させるだけでなく、混合することによって材料間での電荷の授受が行われ得る状態になることを言う。
For the hole injection layer, a composite material in which an acceptor substance is contained in a substance having a high hole-transport property can be used. By using a material having an acceptor substance contained in a substance having a high hole transporting property, a material for forming an electrode can be selected regardless of the work function of the electrode. That is, not only a material with a high work function but also a material with a low work function can be used for the first electrode 102.
Note that in this specification, “composite” means not only that a plurality of materials are mixed but also a state in which charge can be transferred between the materials by mixing.

アクセプター性物質としては、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F4−TCNQ)、クロラニル等を挙げることができる。また、遷移金属酸化物を挙げることができる。また元素周期表における第4族乃至第8族に属する金属の酸化物を挙げることができる。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化レニウムは電子受容性が高いため好ましい。中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好ましい。 As the acceptor substance, 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane (abbreviation: F 4 -TCNQ), chloranil, and the like can be given. Moreover, a transition metal oxide can be mentioned. In addition, oxides of metals belonging to Groups 4 to 8 in the periodic table can be given. Specifically, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, manganese oxide, and rhenium oxide are preferable because of their high electron accepting properties. Among these, molybdenum oxide is especially preferable because it is stable in the air, has a low hygroscopic property, and is easy to handle.

複合材料に用いる正孔輸送性の高い物質としては、芳香族アミン化合物、カルバゾール誘導体、芳香族炭化水素、高分子化合物(オリゴマー、デンドリマー、ポリマー等)など、種々の化合物を用いることができる。具体的には、10-6cm2/Vs以上の正孔移動度を有する物質であることが好ましい。但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。以下では、複合材料に用いることのできる正孔輸送性の高い有機化合物を具体的に列挙する。 As the substance having a high hole-transport property used for the composite material, various compounds such as an aromatic amine compound, a carbazole derivative, an aromatic hydrocarbon, and a high molecular compound (oligomer, dendrimer, polymer, and the like) can be used. Specifically, a substance having a hole mobility of 10 −6 cm 2 / Vs or higher is preferable. Note that other than these substances, any substance that has a property of transporting more holes than electrons may be used. Hereinafter, organic compounds having high hole transportability that can be used for the composite material are specifically listed.

例えば、芳香族アミン化合物としては、N,N’−ビス(4−メチルフェニル)−N,N’−ジフェニル−p−フェニレンジアミン(略称:DTDPPA)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、4,4’−ビス(N−{4−[N’−(3−メチルフェニル)−N’−フェニルアミノ]フェニル}−N−フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン(略称:DPA3B)等を挙げることができる。   For example, as an aromatic amine compound, N, N′-bis (4-methylphenyl) -N, N′-diphenyl-p-phenylenediamine (abbreviation: DTDPPA), 4,4′-bis [N- (4 -Diphenylaminophenyl) -N-phenylamino] biphenyl (abbreviation: DPAB), 4,4'-bis (N- {4- [N '-(3-methylphenyl) -N'-phenylamino] phenyl}- N-phenylamino) biphenyl (abbreviation: DNTPD), 1,3,5-tris [N- (4-diphenylaminophenyl) -N-phenylamino] benzene (abbreviation: DPA3B), and the like can be given.

複合材料に用いることのできるカルバゾール誘導体としては、具体的には、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)等を挙げることができる。   Specific examples of the carbazole derivative that can be used for the composite material include 3- [N- (9-phenylcarbazol-3-yl) -N-phenylamino] -9-phenylcarbazole (abbreviation: PCzPCA1), 3 , 6-Bis [N- (9-phenylcarbazol-3-yl) -N-phenylamino] -9-phenylcarbazole (abbreviation: PCzPCA2), 3- [N- (1-naphthyl) -N- (9- Phenylcarbazol-3-yl) amino] -9-phenylcarbazole (abbreviation: PCzPCN1) and the like.

また、複合材料に用いることのできるカルバゾール誘導体としては、他に、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9−[4−(N−カルバゾリル)]フェニル−10−フェニルアントラセン(略称:CzPA)、1,4−ビス[4−(N−カルバゾリル)フェニル]−2,3,5,6−テトラフェニルベンゼン等を用いることができる。   As other carbazole derivatives that can be used for the composite material, 4,4′-di (N-carbazolyl) biphenyl (abbreviation: CBP), 1,3,5-tris [4- (N-carbazolyl) Phenyl] benzene (abbreviation: TCPB), 9- [4- (N-carbazolyl)] phenyl-10-phenylanthracene (abbreviation: CzPA), 1,4-bis [4- (N-carbazolyl) phenyl] -2, 3,5,6-tetraphenylbenzene or the like can be used.

また、複合材料に用いることのできる芳香族炭化水素としては、例えば、2−tert−ブチル−9,10−ジ(2−ナフチル)アントラセン(略称:t−BuDNA)、2−tert−ブチル−9,10−ジ(1−ナフチル)アントラセン、9,10−ビス(3,5−ジフェニルフェニル)アントラセン(略称:DPPA)、2−tert−ブチル−9,10−ビス(4−フェニルフェニル)アントラセン(略称:t−BuDBA)、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、9,10−ジフェニルアントラセン(略称:DPAnth)等が挙げられる。   Examples of aromatic hydrocarbons that can be used for the composite material include 2-tert-butyl-9,10-di (2-naphthyl) anthracene (abbreviation: t-BuDNA), 2-tert-butyl-9. , 10-di (1-naphthyl) anthracene, 9,10-bis (3,5-diphenylphenyl) anthracene (abbreviation: DPPA), 2-tert-butyl-9,10-bis (4-phenylphenyl) anthracene ( Abbreviations: t-BuDBA), 9,10-di (2-naphthyl) anthracene (abbreviation: DNA), 9,10-diphenylanthracene (abbreviation: DPAnth), and the like.

さらに、2−tert−ブチルアントラセン(略称:t−BuAnth)、9,10−ビス(4−メチル−1−ナフチル)アントラセン(略称:DMNA)、9,10−ビス[2−(1−ナフチル)フェニル]−2−tert−ブチル−アントラセン、9,10−ビス[2−(1−ナフチル)フェニル]アントラセン、2,3,6,7−テトラメチル−9,10−ジ(1−ナフチル)アントラセン、2,3,6,7−テトラメチル−9,10−ジ(2−ナフチル)アントラセン等が挙げられる。   Furthermore, 2-tert-butylanthracene (abbreviation: t-BuAnth), 9,10-bis (4-methyl-1-naphthyl) anthracene (abbreviation: DMNA), 9,10-bis [2- (1-naphthyl) Phenyl] -2-tert-butyl-anthracene, 9,10-bis [2- (1-naphthyl) phenyl] anthracene, 2,3,6,7-tetramethyl-9,10-di (1-naphthyl) anthracene 2,3,6,7-tetramethyl-9,10-di (2-naphthyl) anthracene and the like.

それらに加えて、9,9’−ビアントリル、10,10’−ジフェニル−9,9’−ビアントリル、10,10’−ビス(2−フェニルフェニル)−9,9’−ビアントリル、10,10’−ビス[(2,3,4,5,6−ペンタフェニル)フェニル]−9,9’−ビアントリル、アントラセン、テトラセン、ルブレン、ペリレン、2,5,8,11−テトラ(tert−ブチル)ペリレン等が挙げられる。さらに、この他、ペンタセン、コロネン等も用いることができる。このように、1×10-6cm2/Vs以上の正孔移動度を有し、炭素数14〜42である芳香族炭化水素を用いることがより好ましい。 In addition to these, 9,9′-bianthryl, 10,10′-diphenyl-9,9′-bianthryl, 10,10′-bis (2-phenylphenyl) -9,9′-bianthryl, 10,10 ′ -Bis [(2,3,4,5,6-pentaphenyl) phenyl] -9,9'-bianthryl, anthracene, tetracene, rubrene, perylene, 2,5,8,11-tetra (tert-butyl) perylene Etc. In addition, pentacene, coronene, and the like can also be used. Thus, it is more preferable to use an aromatic hydrocarbon having a hole mobility of 1 × 10 −6 cm 2 / Vs or more and having 14 to 42 carbon atoms.

また、複合材料に用いることのできる芳香族炭化水素は、ビニル骨格を有していてもよく、そのような芳香族炭化水素としては、例えば、4,4’−ビス(2,2−ジフェニルビニル)ビフェニル(略称:DPVBi)、9,10−ビス[4−(2,2−ジフェニルビニル)フェニル]アントラセン(略称:DPVPA)等が挙げられる。
さらに、ポリ(N−ビニルカルバゾール)(略称:PVK)やポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
The aromatic hydrocarbon that can be used for the composite material may have a vinyl skeleton. Examples of such aromatic hydrocarbon include 4,4′-bis (2,2-diphenylvinyl). ) Biphenyl (abbreviation: DPVBi), 9,10-bis [4- (2,2-diphenylvinyl) phenyl] anthracene (abbreviation: DPVPA), and the like.
Further, a high molecular compound such as poly (N-vinylcarbazole) (abbreviation: PVK) or poly (4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used.

正孔輸送層112は、正孔輸送性の高い物質を含む層である。正孔輸送性の高い物質としては、例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPBまたはα−NPD)やN,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N―フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物等を用いることができる。   The hole transport layer 112 is a layer containing a substance having a high hole transport property. As a substance having a high hole-transport property, for example, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB or α-NPD), N, N′-bis ( 3-methylphenyl) -N, N′-diphenyl- [1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 4,4 ′, 4 ″ -tris (N, N-diphenyl) Amino) triphenylamine (abbreviation: TDATA), 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (abbreviation: MTDATA), 4,4′- An aromatic amine compound such as bis [N- (spiro-9,9′-bifluoren-2-yl) -N-phenylamino] biphenyl (abbreviation: BSPB) can be used.

ここに述べた物質は、主に10-6cm2/Vs以上の正孔移動度を有する物質である。但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。なお、正孔輸送性の高い物質を含む層は、単層のものだけでなく、上記物質からなる層を二層以上積層したものとしてもよい。 The substances mentioned here are mainly substances having a hole mobility of 10 −6 cm 2 / Vs or higher. Note that other than these substances, any substance that has a property of transporting more holes than electrons may be used. Note that the layer containing a substance having a high hole-transport property is not limited to a single layer, and two or more layers containing the above substances may be stacked.

発光層111は、発光性の高い物質を含む層である。本発明の発光素子において、発光層は、第1の層121と第2の層122を有する。第1の層121は、第1の有機化合物と第2の有機化合物とを有し、第2の層122は、第3の有機化合物と第4の有機化合物を有する。   The light-emitting layer 111 is a layer including a substance having high light-emitting properties. In the light-emitting element of the present invention, the light-emitting layer includes a first layer 121 and a second layer 122. The first layer 121 includes a first organic compound and a second organic compound, and the second layer 122 includes a third organic compound and a fourth organic compound.

第1の層121に含まれる第1の有機化合物は、発光性の高い物質であり、種々の材料を用いることができる。具体的には、青色系の発光材料として、N,N’−ビス[4−(9H−カルバゾール−9−イル)フェニル]−N,N’−ジフェニルスチルベン−4,4’−ジアミン(略称:YGA2S)、4−(9H−カルバゾール−9−イル)−4’−(10−フェニル−9−アントリル)トリフェニルアミン(略称:YGAPA)などが挙げられる。   The first organic compound included in the first layer 121 is a substance having high light-emitting properties, and various materials can be used. Specifically, as a blue light-emitting material, N, N′-bis [4- (9H-carbazol-9-yl) phenyl] -N, N′-diphenylstilbene-4,4′-diamine (abbreviation: YGA2S), 4- (9H-carbazol-9-yl) -4 ′-(10-phenyl-9-anthryl) triphenylamine (abbreviation: YGAPA), and the like.

また、緑色系の発光材料として、N−(9,10−ジフェニル−2−アントリル)−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCAPA)、N−[9,10−ビス(1,1’−ビフェニル−2−イル)−2−アントリル]−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCABPhA)、N−(9,10−ジフェニル−2−アントリル)−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPA)、N−[9,10−ビス(1,1’−ビフェニル−2−イル)−2−アントリル]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPABPhA)、9,10−ビス(1,1’−ビフェニル−2−イル)−N−[4−(9H−カルバゾール−9−イル)フェニル]−N−フェニルアントラセン−2−アミン(略称:2YGABPhA)、N,N,9−トリフェニルアントラセン−9−アミン(略称:DPhAPhA)などが挙げられる。   As green light-emitting materials, N- (9,10-diphenyl-2-anthryl) -N, 9-diphenyl-9H-carbazol-3-amine (abbreviation: 2PCAPA), N- [9,10-bis] (1,1′-biphenyl-2-yl) -2-anthryl] -N, 9-diphenyl-9H-carbazol-3-amine (abbreviation: 2PCABPhA), N- (9,10-diphenyl-2-anthryl) -N, N ', N'-triphenyl-1,4-phenylenediamine (abbreviation: 2DPAPA), N- [9,10-bis (1,1'-biphenyl-2-yl) -2-anthryl]- N, N ′, N′-triphenyl-1,4-phenylenediamine (abbreviation: 2DPABPhA), 9,10-bis (1,1′-biphenyl-2-yl) -N- [4- (9H-carbazole) 9-yl) phenyl] -N- phenyl-anthracene-2-amine (abbreviation: 2YGABPhA), N, N, 9- triphenylamine anthracene-9-amine (abbreviation: DPhAPhA), and the like.

また、黄色系の発光材料として、ルブレン、5,12−ビス(1,1’−ビフェニル−4−イル)−6,11−ジフェニルテトラセン(略称:BPT)などが挙げられる。さらに、赤色系の発光材料として、N,N,N’,N’−テトラキス(4−メチルフェニル)テトラセン−5,11−ジアミン(略称:p−mPhTD)、7,13−ジフェニル−N,N,N’,N’−テトラキス(4−メチルフェニル)アセナフト[1,2−a]フルオランテン−3,10−ジアミン(略称:p−mPhAFD)などが挙げられる。   In addition, examples of a yellow light-emitting material include rubrene, 5,12-bis (1,1′-biphenyl-4-yl) -6,11-diphenyltetracene (abbreviation: BPT), and the like. Further, as red light-emitting materials, N, N, N ′, N′-tetrakis (4-methylphenyl) tetracene-5,11-diamine (abbreviation: p-mPhTD), 7,13-diphenyl-N, N , N ′, N′-tetrakis (4-methylphenyl) acenaphtho [1,2-a] fluoranthene-3,10-diamine (abbreviation: p-mPhAFD) and the like.

第1の層121に含まれる第2の有機化合物は、正孔輸送性よりも電子輸送性の方が高い物質であり、また、上述した発光性の高い物質を分散させる物質である。好ましくは正孔と電子の移動度の差が10倍以内である、いわゆるバイポーラ性の材料である。具体的には、9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:CzPA)、トリス(8−キノリノラト)アルミニウム(III)(略称:Alq)、4,4’−(キノキサリン−2,3−ジイル)ビス(N,N−ジフェニルアニリン)(略称:TPAQn)、9,10−ジフェニルアントラセン(略称:DPAnth)、N,N’−(キノキサリン−2,3−ジイルジ−4,1−フェニレン)ビス(N−フェニル−1,1’−ビフェニル−4−アミン)(略称:BPAPQ)、4,4’−(キノキサリン−2,3−ジイル)ビス{N−[4−(9H−カルバゾール−9−イル)フェニル]−N−フェニルアニリン}(略称:YGAPQ)、9,10−ジフェニルアントラセン(略称:DPAnth)などが挙げられる。   The second organic compound included in the first layer 121 is a substance that has a higher electron transporting property than a hole transporting property, and a substance that disperses the above-described highly light-emitting substance. Preferred is a so-called bipolar material in which the difference in mobility between holes and electrons is 10 times or less. Specifically, 9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: CzPA), tris (8-quinolinolato) aluminum (III) (abbreviation: Alq), 4,4 '-(Quinoxaline-2,3-diyl) bis (N, N-diphenylaniline) (abbreviation: TPAQn), 9,10-diphenylanthracene (abbreviation: DPAnth), N, N'-(quinoxaline-2,3- Diyldi-4,1-phenylene) bis (N-phenyl-1,1′-biphenyl-4-amine) (abbreviation: BPAPQ), 4,4 ′-(quinoxaline-2,3-diyl) bis {N- [ 4- (9H-carbazol-9-yl) phenyl] -N-phenylaniline} (abbreviation: YGAPQ), 9,10-diphenylanthracene (abbreviation: DPAnth), etc. And the like.

第2の層122に含まれる第3の有機化合物は、電子をトラップする機能を有する有機化合物である。したがって、第3の有機化合物は、第2の層122に含まれる第4の有機化合物の最低空軌道準位(LUMO準位)より0.3eV以上低い最低空軌道準位(LUMO準位)を有する有機化合物であることが好ましい。また、第3の有機化合物は発光してもよいが、その場合は発光素子の色純度を保つため、第1の有機化合物の発光色と第3の有機化合物の発光色は同系色であることが好ましい。
すなわち、例えば前記第1の有機化合物がYGA2SやYGAPAのような青色系の発光を示す場合、第3の有機化合物はアクリドン、クマリン102、クマリン6H、クマリン480D、クマリン30などの青色〜青緑色の発光を示す物質が好ましい。
The third organic compound included in the second layer 122 is an organic compound having a function of trapping electrons. Therefore, the third organic compound has a lowest orbital level (LUMO level) that is 0.3 eV or more lower than the lowest unoccupied orbital level (LUMO level) of the fourth organic compound included in the second layer 122. It is preferable that it is an organic compound to have. In addition, the third organic compound may emit light. In that case, the light emission color of the first organic compound and the light emission color of the third organic compound must be similar to maintain the color purity of the light-emitting element. Is preferred.
That is, for example, when the first organic compound exhibits blue light emission such as YGA2S or YGAPA, the third organic compound is blue to blue-green such as acridone, coumarin 102, coumarin 6H, coumarin 480D, coumarin 30 and the like. Substances that exhibit luminescence are preferred.

さらに、前記第1の有機化合物が2PCAPA、2PCABPhA、2DPAPA、2DPABPhA、2YGABPhA、DPhAPhAのような緑色系の発光を示す場合、第3の有機化合物はN,N’−ジメチルキナクリドン(略称:DMQd)、N,N’−ジフェニルキナクリドン(略称:DPQd)、9,18−ジヒドロベンゾ[h]ベンゾ[7,8]キノ[2,3−b]アクリジン−7,16−ジオン(略称:DMNQd−1)、9,18−ジメチル−9,18−ジヒドロベンゾ[h]ベンゾ[7,8]キノ[2,3−b]アクリジン−7,16−ジオン(略称:DMNQd−2)、クマリン30、クマリン6、クマリン545T、クマリン153などの青緑色〜黄緑色の発光を示す物質が好ましい。   Further, when the first organic compound exhibits green emission such as 2PCAPA, 2PCABPhA, 2DPAPA, 2DPABPhA, 2YGABPhA, DPhAPhA, the third organic compound is N, N′-dimethylquinacridone (abbreviation: DMQd), N, N′-diphenylquinacridone (abbreviation: DPQd), 9,18-dihydrobenzo [h] benzo [7,8] quino [2,3-b] acridine-7,16-dione (abbreviation: DMNQd-1) 9,18-dimethyl-9,18-dihydrobenzo [h] benzo [7,8] quino [2,3-b] acridine-7,16-dione (abbreviation: DMNQd-2), coumarin 30, coumarin 6 Substances exhibiting blue-green to yellow-green light emission such as Coumarin 545T and Coumarin 153 are preferable.

また、前記第1の有機化合物がルブレン、BPTのような黄色系の発光を示す場合、第3の有機化合物はDMQd、(2−{2−[4−(9H−カルバゾール−9−イル)フェニル]エテニル}−6−メチル−4H−ピラン−4−イリデン)プロパンジニトリル(略称:DCMCz)などの黄緑色〜黄橙色の発光を示す物質が好ましい。   In addition, when the first organic compound emits yellow light such as rubrene or BPT, the third organic compound is DMQd, (2- {2- [4- (9H-carbazol-9-yl) phenyl]. ] Ethenyl} -6-methyl-4H-pyran-4-ylidene) propanedinitrile (abbreviation: DCMCz) and the like, a substance exhibiting yellow-green to yellow-orange emission is preferable.

さらに、前記第1の有機化合物がp−mPhTD、p−mPhAFDのような赤色系の発光を示す場合、第3の有機化合物は(2−{2−[4−(ジメチルアミノ)フェニル]エテニル}−6−メチル−4H−ピラン−4−イリデン)プロパンジニトリル(略称:DCM1)、{2−メチル−6−[2−(2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:DCM2)、{2−(1,1−ジメチルエチル)−6−[2−(2,3,6,7−テトラヒドロ−1,1,7,7−テトラメチル−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:DCJTB)、ナイルレッドなどの橙色〜赤色の発光を示す物質が好ましい。上述した化合物は、発光素子に用いられる化合物の中でもLUMO準位が低い化合物であり、後述する第4の有機化合物に添加することで良好な電子トラップ性を示す。   Furthermore, when the first organic compound exhibits red light emission such as p-mPhTD and p-mPhAFD, the third organic compound is (2- {2- [4- (dimethylamino) phenyl] ethenyl}. -6-methyl-4H-pyran-4-ylidene) propanedinitrile (abbreviation: DCM1), {2-methyl-6- [2- (2,3,6,7-tetrahydro-1H, 5H-benzo [ij ] Quinolinidin-9-yl) ethenyl] -4H-pyran-4-ylidene} propanedinitrile (abbreviation: DCM2), {2- (1,1-dimethylethyl) -6- [2- (2,3,6) , 7-tetrahydro-1,1,7,7-tetramethyl-1H, 5H-benzo [ij] quinolizin-9-yl) ethenyl] -4H-pyran-4-ylidene} propanedinitrile (abbreviation: DCJTB), Na Substance having an orange to red light emission, such as Rureddo are preferred. The above-described compound is a compound having a low LUMO level among compounds used for a light-emitting element, and exhibits excellent electron trapping properties when added to a fourth organic compound described later.

前記のとおりではあるものの、第3の有機化合物としては、前記列挙した物質の中でも、DMQd、DPQd、DMNQd−1、DMNQd−2のようなキナクリドン誘導体が化学的に安定であるため好ましい。すなわち、キナクリドン誘導体を適用することにより、特に発光素子を長寿命化することができる。また、キナクリドン誘導体は緑色系の発光を示すため、本発明の発光素子の素子構造は、緑色系の発光素子に対して特に有効である。緑色は、フルカラーディスプレイを作製する際には最も輝度が必要な色であるため、劣化が他の色に比して大きくなってしまう場合があるが、本発明を適用することによりそれを改善することができる。   As described above, among the substances listed above, quinacridone derivatives such as DMQd, DPQd, DMNQd-1, and DMNQd-2 are preferable as the third organic compound because they are chemically stable. That is, by using the quinacridone derivative, the lifetime of the light-emitting element can be particularly prolonged. Further, since the quinacridone derivative emits green light, the element structure of the light-emitting element of the present invention is particularly effective for a green light-emitting element. Since green is the color that needs the most brightness when manufacturing a full-color display, degradation may be larger than other colors, but this can be improved by applying the present invention. be able to.

第2の層122に含まれる第4の有機化合物は、電子輸送性を有する化合物である。つまり、正孔輸送性よりも電子輸送性の方が高い物質である。具体的には、トリス(8−キノリノラト)アルミニウム(III)(略称:Alq)、ビス(8−キノリノラト)亜鉛(II)(略称:Znq2)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)等が挙げられる。 The fourth organic compound contained in the second layer 122 is a compound having an electron transporting property. That is, the substance has a higher electron transporting property than a hole transporting property. Specifically, tris (8-quinolinolato) aluminum (III) (abbreviation: Alq), bis (8-quinolinolato) zinc (II) (abbreviation: Znq 2 ), bis (2-methyl-8-quinolinolato) (4 -Phenylphenolato) aluminum (III) (abbreviation: BAlq), bis [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), bis [2- (2-benzothiazolyl) phenolate] And zinc (II) (abbreviation: ZnBTZ).

また、先に述べたように、第3の有機化合物のLUMO準位は、第4の有機化合物のLUMO準位より0.3eV以上低いことが好ましい。したがって、用いる第3の有機化合物の種類に応じて、そのような条件を満たすように適宜第4の有機化合物を選択すればよい。例えば、実施例にて後述するように、第3の有機化合物としてDPQdを用いる場合、第4の有機化合物としてAlqを用いることで、上述の条件を満たすようになる。   Further, as described above, it is preferable that the LUMO level of the third organic compound is lower by 0.3 eV or more than the LUMO level of the fourth organic compound. Therefore, the fourth organic compound may be appropriately selected so as to satisfy such a condition according to the type of the third organic compound to be used. For example, as described later in the examples, when DPQd is used as the third organic compound, the above-described condition is satisfied by using Alq as the fourth organic compound.

なお、第1の有機化合物の発光色と第3の有機化合物の発光色は同系色であることが好ましいため、第1の有機化合物の発光スペクトルのピーク値と第3の有機化合物の発光スペクトルのピーク値との差は、30nm以内であることが好ましい。30nm以内であることにより、第1の有機化合物の発光色と第3の有機化合物の発光色は、同系色となる。よって、電圧等の変化により、第3の有機化合物が発光した場合にも、発光素子の発光色の変化を抑制することができる。   Since the emission color of the first organic compound and the emission color of the third organic compound are preferably similar colors, the peak value of the emission spectrum of the first organic compound and the emission spectrum of the third organic compound The difference from the peak value is preferably within 30 nm. By being within 30 nm, the emission color of the first organic compound and the emission color of the third organic compound are similar colors. Therefore, even when the third organic compound emits light due to a change in voltage or the like, a change in the emission color of the light-emitting element can be suppressed.

ただし、第3の有機化合物が必ずしも発光する必要はない。例えば、第1の有機化合物の方が発光効率が高い場合は、実質的に第1の有機化合物の発光のみが得られるように、第2の層122における第3の有機化合物の濃度を調節する(第3の有機化合物の発光が抑制されるように、その濃度を若干低くする)ことが好ましい。この場合、第1の有機化合物の発光色と第3の有機化合物の発光色は同系色である(すなわち、同程度のエネルギーギャップを持つ)ため、第1の有機化合物から第3の有機化合物へのエネルギー移動は生じにくく、高い発光効率が得られる。   However, the third organic compound does not necessarily emit light. For example, when the light emission efficiency of the first organic compound is higher, the concentration of the third organic compound in the second layer 122 is adjusted so that substantially only light emission of the first organic compound can be obtained. It is preferable to slightly reduce the concentration so that light emission of the third organic compound is suppressed. In this case, since the emission color of the first organic compound and the emission color of the third organic compound are similar colors (that is, having the same energy gap), the first organic compound is changed to the third organic compound. Energy transfer is not likely to occur, and high luminous efficiency is obtained.

電子輸送層113は、電子輸送性の高い物質を含む層である。例えば、トリス(8−キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4−メチル−8−キノリノラト)アルミニウム(III)(略称:Almq3)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq2)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(III)(略称:BAlq)など、キノリン骨格またはベンゾキノリン骨格を有する金属錯体等からなる層である。
さらに、この他ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などのオキサゾール系、チアゾール系配位子を有する金属錯体なども用いることができる。
The electron transport layer 113 is a layer containing a substance having a high electron transport property. For example, tris (8-quinolinolato) aluminum (III) (abbreviation: Alq), tris (4-methyl-8-quinolinolato) aluminum (III) (abbreviation: Almq 3 ), bis (10-hydroxybenzo [h] quinolinato) A layer formed of a metal complex having a quinoline skeleton or a benzoquinoline skeleton such as beryllium (abbreviation: BeBq 2 ), bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) (abbreviation: BAlq) It is.
In addition, bis [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ), etc. A metal complex having an oxazole-based or thiazole-based ligand can also be used.

また、金属錯体以外にも、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)や、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(略称:TAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)なども用いることができる。 ここに述べた物質は、主に10-6cm3/Vs以上の電子移動度を有する物質である。なお、正孔よりも電子の輸送性の高い物質であれば、上記以外の物質を電子輸送層として用いても構わない。また、電子輸送層は、単層のものだけでなく、上記物質からなる層を二層以上積層したものとしてもよい。 In addition to metal complexes, 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (abbreviation: PBD), 1,3-bis [5 -(P-tert-butylphenyl) -1,3,4-oxadiazol-2-yl] benzene (abbreviation: OXD-7), 3- (4-biphenylyl) -4-phenyl-5- (4- tert-Butylphenyl) -1,2,4-triazole (abbreviation: TAZ), bathophenanthroline (abbreviation: BPhen), bathocuproin (abbreviation: BCP), and the like can also be used. The substances mentioned here are mainly substances having an electron mobility of 10 −6 cm 3 / Vs or higher. Note that other than the above substances, any substance that has a property of transporting more electrons than holes may be used for the electron-transport layer. Further, the electron-transporting layer is not limited to a single layer, and two or more layers including the above substances may be stacked.

また、電子輸送層113と第2の電極104との間に、電子注入性の高い物質を含む層である電子注入層を設けてもよい。電子注入層としては、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF2)等のようなアルカリ金属もしくはアルカリ土類金属の化合物を用いることができる。さらに、電子輸送性を有する物質からなる層中にアルカリ金属もしくはアルカリ土類金属を含有させたもの、例えばAlq中にマグネシウム(Mg)を含有させたもの等を用いることもできる。なお、電子注入層として、電子輸送性を有する物質からなる層中にアルカリ金属又はアルカリ土類金属を含有させたものを用いることにより、第2の電極104からの電子注入が効率良く行われるためより好ましい。 Further, an electron injecting layer that is a layer containing a substance having a high electron injecting property may be provided between the electron transporting layer 113 and the second electrode 104. As the electron injection layer, an alkali metal or alkaline earth metal compound such as lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), or the like can be used. Furthermore, a layer made of a substance having an electron transporting property containing alkali metal or alkaline earth metal, for example, Alq containing magnesium (Mg) can be used. Note that by using an electron injection layer containing an alkali metal or an alkaline earth metal in a layer made of a substance having an electron transporting property, electron injection from the second electrode 104 is efficiently performed. More preferred.

第2の電極104を形成する物質としては、仕事関数の小さい(具体的には3.8eV以下が好ましい。)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることができる。このような陰極材料の具体例としては、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、及びこれらを含む合金(MgAg、AlLi)、並びにユウロピウム(Eu)、イッテルビウム(Yb)等の希土類金属及びこれらを含む合金等が挙げられる。しかしながら、第2の電極104と電子輸送層との間に、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、珪素若しくは酸化珪素を含有した酸化インジウム−酸化スズ等様々な導電性材料を第2の電極104として用いることができる。   As a material for forming the second electrode 104, a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a low work function (specifically, 3.8 eV or less is preferable) can be used. Specific examples of such a cathode material include elements belonging to Group 1 or Group 2 of the periodic table of elements, that is, alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), calcium (Ca). , Alkaline earth metals such as strontium (Sr), alloys containing these (MgAg, AlLi), rare earth metals such as europium (Eu) and ytterbium (Yb), and alloys containing these. However, by providing an electron injection layer between the second electrode 104 and the electron transport layer, indium oxide-tin oxide containing Al, Ag, ITO, silicon, or silicon oxide regardless of the work function. Various conductive materials such as the above can be used for the second electrode 104.

また、EL層103の形成方法としては、乾式法、湿式法を問わず、種々の方法を用いることができる。例えば、真空蒸着法、インクジェット法またはスピンコート法など用いても構わない。さらに、各電極または各層ごとに異なる成膜方法を用いて形成しても構わない。   In addition, as a formation method of the EL layer 103, various methods can be used regardless of a dry method or a wet method. For example, a vacuum deposition method, an ink jet method, a spin coating method, or the like may be used. Furthermore, it may be formed using a different film forming method for each electrode or each layer.

以上のような構成を有する本発明の発光素子は、第1の電極102と第2の電極104との間に生じた電位差により電流が流れ、EL層103において正孔と電子とが再結合し、発光するものである。より具体的には、EL層103中の発光層111において、第1の層121および第1の層121と第2の層122との界面付近にかけて発光領域が形成されるような構成となっている。この原理に関し、以下に説明する。   In the light-emitting element of the present invention having the above structure, a current flows due to a potential difference generated between the first electrode 102 and the second electrode 104, and holes and electrons are recombined in the EL layer 103. , Emit light. More specifically, the light emitting layer 111 in the EL layer 103 has a structure in which a light emitting region is formed near the interface between the first layer 121 and the first layer 121 and the second layer 122. Yes. This principle will be described below.

図21は、図1で示した本発明の発光素子のバンド図の一例である。図21において、第1の電極102から注入された正孔は、正孔輸送層112を通り第1の層121に注入される。ここで、第1の層121を構成する第2の有機化合物は、正孔輸送性よりも電子輸送性の方が高い物質であり、好ましくは正孔と電子の移動度の差が10倍以内である、いわゆるバイポーラ性の材料であるため、第1の層121に注入された正孔は移動が遅くなる。   FIG. 21 is an example of a band diagram of the light-emitting element of the present invention shown in FIG. In FIG. 21, holes injected from the first electrode 102 pass through the hole transport layer 112 and are injected into the first layer 121. Here, the second organic compound constituting the first layer 121 is a substance having a higher electron transport property than a hole transport property, and preferably the difference in mobility between holes and electrons is within 10 times. Therefore, the holes injected into the first layer 121 move slowly.

したがって、もし第2の層122を設けない従来の発光素子であれば、発光領域は正孔輸送層112と第1の層121との界面近傍に形成される。その場合、電子が正孔輸送層112にまで達してしまい、正孔輸送層112を劣化させる恐れがある。また、経時的に正孔輸送層112にまで達してしまう電子の量が増えていくと、経時的に再結合確率が低下していくことになるため、輝度の経時劣化が起こってしまう。その結果、素子寿命の低下に繋がってしまう。   Therefore, in the case of a conventional light emitting element in which the second layer 122 is not provided, the light emitting region is formed in the vicinity of the interface between the hole transport layer 112 and the first layer 121. In that case, electrons reach the hole transport layer 112 and the hole transport layer 112 may be deteriorated. In addition, when the amount of electrons that reach the hole transport layer 112 with time increases, the recombination probability decreases with time, so that the luminance deteriorates with time. As a result, the device life is shortened.

本発明の発光素子においては、発光層111において、第2の層122がさらに設けられている点が特徴である。第2の電極104から注入された電子は、電子輸送層113を通り第2の層122に注入される。ここで、第2の層122は、電子輸送性を有する第4の有機化合物に、電子をトラップする機能を有する第3の有機化合物を添加した構成となっている。そのため、第2の層122に注入された電子は、その移動が遅くなり、第1の層121への電子注入が制御される。   The light-emitting element of the present invention is characterized in that a second layer 122 is further provided in the light-emitting layer 111. Electrons injected from the second electrode 104 pass through the electron transport layer 113 and are injected into the second layer 122. Here, the second layer 122 has a structure in which a third organic compound having a function of trapping electrons is added to a fourth organic compound having an electron transporting property. Therefore, the movement of the electrons injected into the second layer 122 is slow, and the electron injection into the first layer 121 is controlled.

その結果、従来では正孔輸送層112と第1の層121との界面近傍で形成されたはずの発光領域が、本発明の発光素子においては、第1の層121から、第1の層121と第2の層122との界面付近にかけて形成されることになる。したがって、電子が正孔輸送層112にまで達してしまい、正孔輸送層112を劣化させる可能性が低くなる。また正孔に関しても、第1の層121における第2の有機化合物が電子輸送性であるため、正孔が電子輸送層113にまで達して電子輸送層113を劣化させる可能性は低い。   As a result, the light emitting region that should have been formed in the vicinity of the interface between the hole transport layer 112 and the first layer 121 in the related art is changed from the first layer 121 to the first layer 121 in the light emitting element of the present invention. And near the interface between the second layer 122 and the second layer 122. Therefore, the possibility that electrons reach the hole transport layer 112 and the hole transport layer 112 is deteriorated is reduced. In addition, regarding the holes, since the second organic compound in the first layer 121 has an electron transporting property, the possibility that the holes reach the electron transporting layer 113 and deteriorate the electron transporting layer 113 is low.

さらに、本発明においては、第2の層122において、単に電子移動度の遅い物質を適用するのではなく、電子輸送性を有する有機化合物に電子をトラップする機能を有する有機化合物を添加している点が重要である。このような構成とすることで、単に第1の層121への電子注入を制御するだけではなく、その制御された電子注入量が経時的に変化するのを抑制することができる。また、第1の層121における第2の有機化合物が電子輸送性であり、かつ第1の層121には発光物質である第1の有機化合物が添加されているため、第1の層121における正孔の量に関しても経時的に変化しにくい。以上のことから本発明の発光素子は、発光素子において経時的にキャリアバランスが悪化して再結合確率が低下していく現象を防ぐことができるため、輝度の経時劣化を抑制することができる。したがって、素子寿命の向上に繋がる。   Furthermore, in the present invention, in the second layer 122, an organic compound having a function of trapping electrons is added to an organic compound having an electron transporting property instead of simply applying a substance having a low electron mobility. The point is important. With such a configuration, it is possible not only to control the electron injection into the first layer 121 but also to prevent the controlled electron injection amount from changing with time. In addition, since the second organic compound in the first layer 121 has an electron transporting property and the first organic compound that is a light-emitting substance is added to the first layer 121, The amount of holes is also difficult to change over time. As described above, the light-emitting element of the present invention can prevent a phenomenon in which the carrier balance deteriorates with time and the recombination probability decreases in the light-emitting element, so that deterioration of luminance with time can be suppressed. Therefore, it leads to improvement of element lifetime.

なお、以上の説明においては、第1の層と第2の層の組み合わせ、具体的には第2の有機化合物、第3の有機化合物及び第4の有機化合物の組み合わせにより、発光素子において経時的にキャリアバランスが悪化して再結合確率が低下していく現象を防ぐことができ、その結果輝度の経時劣化を抑制することができる長所を発現することについて、正孔輸送層112及び電子輸送層113の存在する場合を例にして述べたが、この長所については正孔輸送層112及び電子輸送層113の存否にかかわりなく発現するものであり、そのことは以上の説明から自ずと理解できるところである。   Note that in the above description, the combination of the first layer and the second layer, specifically, the combination of the second organic compound, the third organic compound, and the fourth organic compound, the time course of the light emitting element. The positive hole transport layer 112 and the electron transport layer are capable of preventing the phenomenon in which the carrier balance is deteriorated and the recombination probability is decreased, and as a result, the luminance can be prevented from being deteriorated over time. Although the case where 113 exists is described as an example, this advantage is manifested regardless of the presence or absence of the hole transport layer 112 and the electron transport layer 113, which can be naturally understood from the above description. .

発光は、第1の電極102または第2の電極104のいずれか一方または両方を通って外部に取り出される。従って、第1の電極102または第2の電極104のいずれか一方または両方は、透光性を有する電極である。第1の電極102のみが透光性を有する電極である場合、図1(A)に示すように、発光は第1の電極102を通って基板側から取り出される。また、第2の電極104のみが透光性を有する電極である場合、図1(B)に示すように、発光は第2の電極104を通って基板と逆側から取り出される。第1の電極102および第2の電極104がいずれも透光性を有する電極である場合、図1(C)に示すように、発光は第1の電極102および第2の電極104を通って、基板側および基板と逆側の両方から取り出される。   Light emission is extracted outside through one or both of the first electrode 102 and the second electrode 104. Therefore, one or both of the first electrode 102 and the second electrode 104 is a light-transmitting electrode. In the case where only the first electrode 102 is a light-transmitting electrode, light emission is extracted from the substrate side through the first electrode 102 as illustrated in FIG. In the case where only the second electrode 104 is a light-transmitting electrode, light emission is extracted from the side opposite to the substrate through the second electrode 104 as illustrated in FIG. In the case where each of the first electrode 102 and the second electrode 104 is a light-transmitting electrode, light emission passes through the first electrode 102 and the second electrode 104 as illustrated in FIG. , Taken out from both the substrate side and the opposite side of the substrate.

なお、第1の電極102と第2の電極104との間に設けられる層の構成は、上記のものには限定されない。発光領域と金属とが近接することによって生じる消光を防ぐように、第1の電極102および第2の電極104から離れた部位に正孔と電子とが再結合する発光領域を設けた構成であり、発光層が第1の層121と第2の層122とを有する構成であれば、上記以外のものでもよい。
つまり、EL層の積層構造については特に限定されず、電子輸送性の高い物質、正孔輸送性の高い物質、電子注入性の高い物質、正孔注入性の高い物質、またはバイポーラ性(電子及び正孔の輸送性の高い物質)の物質等から成る層を、本発明の発光層と自由に組み合わせて構成すればよい。
Note that the structure of the layers provided between the first electrode 102 and the second electrode 104 is not limited to the above. In order to prevent quenching caused by the proximity of the light emitting region and the metal, a light emitting region in which holes and electrons are recombined is provided at a site away from the first electrode 102 and the second electrode 104. As long as the light emitting layer includes the first layer 121 and the second layer 122, other than the above may be used.
In other words, there is no particular limitation on the stacked structure of the EL layer, and a substance having a high electron transporting property, a substance having a high hole transporting property, a substance having a high electron injecting property, a substance having a high hole injecting property, or a bipolar property (electron and A layer made of a substance having a high hole-transport property may be freely combined with the light-emitting layer of the present invention.

図2に示す発光素子は、基板301上に、陰極として機能する第2の電極304、EL層303、陽極として機能する第1の電極302とが順に積層された構成となっている。EL層303は、正孔輸送層312、発光層311、電子輸送層313を有し、発光層311は第1の層321と第2の層322を有する。第1の層321は、第2の層322よりも陽極として機能する第1の電極側に設けられている。   The light-emitting element illustrated in FIG. 2 has a structure in which a second electrode 304 functioning as a cathode, an EL layer 303, and a first electrode 302 functioning as an anode are sequentially stacked over a substrate 301. The EL layer 303 includes a hole transport layer 312, a light emitting layer 311, and an electron transport layer 313, and the light emitting layer 311 includes a first layer 321 and a second layer 322. The first layer 321 is provided closer to the first electrode functioning as an anode than the second layer 322.

本実施の形態においては、ガラス、プラスチックなどからなる基板上に発光素子を作製している。一基板上にこのような発光素子を複数作製することで、パッシブ型の発光装置を作製することができる。また、ガラス、プラスチックなどからなる基板上に、例えば、薄膜トランジスタ(TFT)を形成し、TFTと電気的に接続された電極上に発光素子を作製してもよい。これにより、TFTによって発光素子の駆動を制御するアクティブマトリクス型の発光装置を作製できる。   In this embodiment mode, a light-emitting element is manufactured over a substrate made of glass, plastic, or the like. A passive light-emitting device can be manufactured by manufacturing a plurality of such light-emitting elements over one substrate. Alternatively, for example, a thin film transistor (TFT) may be formed over a substrate made of glass, plastic, or the like, and a light-emitting element may be formed over an electrode electrically connected to the TFT. Thus, an active matrix light-emitting device in which driving of the light-emitting element is controlled by the TFT can be manufactured.

なお、TFTの構造は、特に限定されない。スタガ型のTFTでもよいし、逆スタガ型のTFTでもよい。また、TFT基板に形成される駆動用回路についても、N型およびP型のTFTからなるものでもよいし、若しくはN型のTFTまたはP型のTFTのいずれか一方からのみなるものであってもよい。また、TFTに用いられる半導体膜の結晶性についても特に限定されない。非晶質半導体膜を用いてもよいし、結晶性半導体膜を用いてもよい。   Note that the structure of the TFT is not particularly limited. A staggered TFT or an inverted staggered TFT may be used. Also, the driving circuit formed on the TFT substrate may be composed of N-type and P-type TFTs, or may be composed of only one of N-type TFTs and P-type TFTs. Good. Further, the crystallinity of a semiconductor film used for the TFT is not particularly limited. An amorphous semiconductor film or a crystalline semiconductor film may be used.

本実施の形態の発光素子は、発光層と正孔輸送層との界面または発光層と電子輸送層との界面に発光領域が形成されているのではなく、発光層の中央付近に発光領域が形成されている。そのため、正孔輸送層や電子輸送層に発光領域が近接することによる、正孔輸送層や電子輸送層の劣化の影響を受けることがない。また、キャリアバランスの経時的な変化(特に電子注入量の経時的変化)を抑制することができる。したがって、劣化しにくく、寿命の長い発光素子を得ることができる。   In the light-emitting element of this embodiment, a light-emitting region is not formed at the interface between the light-emitting layer and the hole-transport layer or the interface between the light-emitting layer and the electron-transport layer. Is formed. Therefore, the hole transport layer and the electron transport layer are not affected by the deterioration of the hole transport layer and the electron transport layer due to the proximity of the light emitting region to the hole transport layer and the electron transport layer. In addition, a change in carrier balance with time (especially a change with time in electron injection amount) can be suppressed. Therefore, a light-emitting element that does not easily deteriorate and has a long lifetime can be obtained.

また、本発明の発光素子は、第1の有機化合物の発光色と第3の有機化合物の発光色は同系色であるため、第1の有機化合物だけでなく、第3の有機化合物が発光しても、色純度の良い発光を得ることができる。
なお、本実施の形態は、他の実施の形態と適宜組み合わせることが可能である。
In the light-emitting element of the present invention, since the emission color of the first organic compound and the emission color of the third organic compound are similar colors, not only the first organic compound but also the third organic compound emits light. However, light emission with good color purity can be obtained.
Note that this embodiment can be combined with any of the other embodiments as appropriate.

(実施の形態2)
本実施の形態は、本発明に係る複数の発光ユニットを積層した構成の発光素子(以下、積層型素子という)の態様について、図3を参照して説明する。この発光素子は、第1の電極と第2の電極との間に、複数の発光ユニットを有する積層型発光素子である。発光ユニットとしては、実施の形態1で示したEL層103と同様な構成を用いることができる。つまり、実施の形態1で示した発光素子は、1つの発光ユニットを有する発光素子であり、本実施の形態では、複数の発光ユニットを有する発光素子について説明する。
(Embodiment 2)
In this embodiment mode, a mode of a light-emitting element having a structure in which a plurality of light-emitting units according to the present invention is stacked (hereinafter referred to as a stacked element) will be described with reference to FIG. This light-emitting element is a stacked light-emitting element having a plurality of light-emitting units between a first electrode and a second electrode. As the light-emitting unit, a structure similar to that of the EL layer 103 described in Embodiment 1 can be used. That is, the light-emitting element described in Embodiment 1 is a light-emitting element having one light-emitting unit, and in this embodiment, a light-emitting element having a plurality of light-emitting units will be described.

図3において、第1の電極501と第2の電極502との間には、第1の発光ユニット511と第2の発光ユニット512が積層されており、第1の発光ユニット511と第2の発光ユニット512との間には電荷発生層513が設けられている。第1の電極501と第2の電極502は実施の形態1と同様なものを適用することができる。また、第1の発光ユニット511と第2の発光ユニット512は同じ構成であっても異なる構成であってもよく、その構成は実施の形態1と同様なものを適用することができる。   In FIG. 3, a first light-emitting unit 511 and a second light-emitting unit 512 are stacked between the first electrode 501 and the second electrode 502, and the first light-emitting unit 511 and the second light-emitting unit 512 are stacked. A charge generation layer 513 is provided between the light emitting units 512. The first electrode 501 and the second electrode 502 can be similar to those in Embodiment 1. In addition, the first light-emitting unit 511 and the second light-emitting unit 512 may have the same configuration or different configurations, and the same configuration as that in Embodiment 1 can be applied.

電荷発生層513には、有機化合物と金属酸化物の複合材料が含まれている。この有機化合物と金属酸化物の複合材料は、実施の形態1で示した複合材料であり、有機化合物とバナジウム酸化物やモリブデン酸化物やタングステン酸化物等の金属酸化物を含む。有機化合物としては、芳香族アミン化合物、カルバゾール誘導体、芳香族炭化水素、高分子化合物(オリゴマー、デンドリマー、ポリマー等)など、種々の化合物を用いることができる。なお、有機化合物としては、正孔輸送性有機化合物として正孔移動度が10-6cm2/Vs以上であるものを適用することが好ましい。但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。有機化合物と金属酸化物の複合材料は、キャリア注入性、キャリア輸送性に優れているため、低電圧駆動、低電流駆動を実現することができる。 The charge generation layer 513 includes a composite material of an organic compound and a metal oxide. This composite material of an organic compound and a metal oxide is the composite material described in Embodiment 1, and includes an organic compound and a metal oxide such as vanadium oxide, molybdenum oxide, or tungsten oxide. As the organic compound, various compounds such as an aromatic amine compound, a carbazole derivative, an aromatic hydrocarbon, and a high molecular compound (oligomer, dendrimer, polymer, etc.) can be used. As the organic compound, it is preferable to use a hole transporting organic compound having a hole mobility of 10 −6 cm 2 / Vs or more. Note that other than these substances, any substance that has a property of transporting more holes than electrons may be used. Since the composite material of an organic compound and a metal oxide is excellent in carrier injecting property and carrier transporting property, low voltage driving and low current driving can be realized.

なお、電荷発生層513は、有機化合物と金属酸化物の複合材料を含む層と他の材料により構成される層を組み合わせて形成してもよい。例えば、有機化合物と金属酸化物の複合材料を含む層と、電子供与性物質の中から選ばれた一の化合物と電子輸送性の高い化合物とを含む層とを組み合わせて形成してもよい。また、有機化合物と金属酸化物の複合材料を含む層と、透明導電膜とを組み合わせて形成してもよい。   Note that the charge generation layer 513 may be formed by combining a layer including a composite material of an organic compound and a metal oxide with a layer formed using another material. For example, a layer including a composite material of an organic compound and a metal oxide may be combined with a layer including one compound selected from electron donating substances and a compound having a high electron transporting property. Alternatively, a layer including a composite material of an organic compound and a metal oxide may be combined with a transparent conductive film.

いずれにしても、第1の発光ユニット511と第2の発光ユニット512に挟まれる電荷発生層513は、第1の電極501と第2の電極502に電圧を印加したときに、一方の発光ユニットに電子を注入し、他方の発光ユニットに正孔を注入するものであれば良い。例えば、図3において、第1の電極の電位の方が第2の電極の電位よりも高くなるように電圧を印加した場合、電荷発生層513は、第1の発光ユニット511に電子を注入し、第2の発光ユニット512に正孔を注入するものであればよい。   In any case, when the voltage is applied to the first electrode 501 and the second electrode 502, the charge generation layer 513 sandwiched between the first light emitting unit 511 and the second light emitting unit 512 has one light emitting unit. Any device may be used as long as it injects electrons into the other light emitting unit and injects holes into the other light emitting unit. For example, in FIG. 3, when a voltage is applied so that the potential of the first electrode is higher than the potential of the second electrode, the charge generation layer 513 injects electrons into the first light-emitting unit 511. Any device that injects holes into the second light emitting unit 512 may be used.

本実施の形態では、2つの発光ユニットを有する発光素子について説明したが、3つ以上の発光ユニットを積層した発光素子についても、同様に適用することが可能である。本実施の形態に係る発光素子のように、一対の電極間に複数の発光ユニットを電荷発生層で仕切って配置することで、電流密度を低く保ったまま、高輝度領域での長寿命素子を実現できる。また、照明を応用例とした場合は、電極材料の抵抗による電圧降下を小さくできるので、大面積での均一発光が可能となる。また、低電圧駆動が可能で消費電力が低い発光装置を実現することができる。   Although the light-emitting element having two light-emitting units has been described in this embodiment mode, the present invention can be similarly applied to a light-emitting element in which three or more light-emitting units are stacked. Like the light-emitting element according to the present embodiment, a plurality of light-emitting units are partitioned and arranged between a pair of electrodes by a charge generation layer, so that a long-life element in a high-luminance region can be obtained while maintaining a low current density. realizable. Further, when illumination is used as an application example, the voltage drop due to the resistance of the electrode material can be reduced, so that uniform light emission over a large area is possible. In addition, a light-emitting device that can be driven at a low voltage and has low power consumption can be realized.

また、それぞれの発光ユニットの発光色を異なるものにすることで、発光素子全体として、所望の色の発光を得ることができる。例えば2つの発光ユニットを有する発光素子において、第1の発光ユニットの発光色と第2の発光ユニットの発光色を補色の関係になるようにすることで、発光素子全体として白色発光する発光素子を得ることも可能である。 なお、補色とは、混合すると無彩色になる色同士の関係をいう。つまり、補色の関係にある色を発光する物質から得られた光を混合すると、白色発光を得ることができる。また、3つの発光ユニットを有する発光素子の場合でも同様であり、例えば、第1の発光ユニットの発光色が赤色であり、第2の発光ユニットの発光色が緑色であり、第3の発光ユニットの発光色が青色である場合、発光素子全体としては、白色発光を得ることができる。
また、本実施の形態においても他の実施の形態と適宜組み合わせることが可能である。
Further, by making the light emission colors of the respective light emitting units different, light emission of a desired color can be obtained as the whole light emitting element. For example, in a light-emitting element having two light-emitting units, a light-emitting element that emits white light as a whole of the light-emitting element can be obtained by making the light-emitting color of the first light-emitting unit and the light-emitting color of the second light-emitting unit complementary. It is also possible to obtain. The complementary color refers to a relationship between colors that become achromatic when mixed. That is, white light emission can be obtained by mixing light obtained from substances that emit light of complementary colors. The same applies to a light-emitting element having three light-emitting units. For example, the first light-emitting unit has a red light emission color, the second light-emitting unit has a green light emission color, and the third light-emitting unit has a third light-emitting unit. When the emission color of is blue, the entire light emitting element can emit white light.
Further, this embodiment can be combined with any of the other embodiments as appropriate.

(実施の形態3)
本実施の形態では、本発明の発光素子を有する発光装置について説明する。
本実施の形態では、画素部に本発明の発光素子を有する発光装置について図4を用いて説明する。なお、図4(A)は、発光装置を示す上面図、図4(B)は図4(A)をA−A’およびB−B’で切断した断面図である。点線で示された601は駆動回路部(ソース側駆動回路)、602は画素部、603は駆動回路部(ゲート側駆動回路)である。また、604は封止基板、605はシール材であり、シール材605で囲まれた内側は、空間607になっている。
(Embodiment 3)
In this embodiment mode, a light-emitting device having the light-emitting element of the present invention will be described.
In this embodiment mode, a light-emitting device having the light-emitting element of the present invention in a pixel portion will be described with reference to FIGS. 4A is a top view illustrating the light-emitting device, and FIG. 4B is a cross-sectional view taken along lines AA ′ and BB ′ in FIG. 4A. Reference numeral 601 indicated by a dotted line denotes a driving circuit portion (source side driving circuit), 602 denotes a pixel portion, and 603 denotes a driving circuit portion (gate side driving circuit). Reference numeral 604 denotes a sealing substrate, reference numeral 605 denotes a sealing material, and the inside surrounded by the sealing material 605 is a space 607.

なお、引き回し配線608はソース側駆動回路601及びゲート側駆動回路603に入力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリントサーキット)609からビデオ信号、クロック信号、スタート信号、リセット信号等を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基板(PWB)が取り付けられていても良い。本明細書における発光装置には、発光装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものとする。   Note that the routing wiring 608 is a wiring for transmitting a signal input to the source side driving circuit 601 and the gate side driving circuit 603, and a video signal, a clock signal, an FPC (flexible printed circuit) 609 serving as an external input terminal, Receives start signal, reset signal, etc. Although only the FPC is shown here, a printed wiring board (PWB) may be attached to the FPC. The light-emitting device in this specification includes not only a light-emitting device body but also a state in which an FPC or a PWB is attached thereto.

次に、断面構造について図4(B)を用いて説明する。素子基板610上には駆動回路部及び画素部が形成されているが、ここでは、駆動回路部であるソース側駆動回路601と、画素部602中の一つの画素が示されている。
なお、ソース側駆動回路601はNチャネル型TFT623とPチャネル型TFT624とを組み合わせたCMOS回路が形成される。また、駆動回路は、種々のCMOS回路、PMOS回路もしくはNMOS回路で形成しても良い。また、本実施の形態では、基板上に駆動回路を形成したドライバ一体型を示すが、必ずしもその必要はなく、駆動回路を基板上ではなく外部に形成することもできる。
Next, a cross-sectional structure is described with reference to FIG. A driver circuit portion and a pixel portion are formed over the element substrate 610. Here, a source-side driver circuit 601 that is a driver circuit portion and one pixel in the pixel portion 602 are illustrated.
Note that the source side driver circuit 601 is a CMOS circuit in which an N-channel TFT 623 and a P-channel TFT 624 are combined. The drive circuit may be formed of various CMOS circuits, PMOS circuits, or NMOS circuits. In this embodiment mode, a driver integrated type in which a driver circuit is formed over a substrate is shown; however, this is not necessarily required, and the driver circuit can be formed outside the substrate.

また、画素部602はスイッチング用TFT611と、電流制御用TFT612とそのドレインに電気的に接続された第1の電極613とを含む複数の画素により形成される。なお、第1の電極613の端部を覆って絶縁物614が形成されている。ここでは、ポジ型の感光性アクリル樹脂膜を用いることにより形成する。   The pixel portion 602 is formed by a plurality of pixels including a switching TFT 611, a current control TFT 612, and a first electrode 613 electrically connected to the drain thereof. Note that an insulator 614 is formed so as to cover an end portion of the first electrode 613. Here, a positive photosensitive acrylic resin film is used.

また、被覆性を良好なものとするため、絶縁物614の上端部または下端部に曲率を有する曲面が形成されるようにする。例えば、絶縁物614の材料としてポジ型の感光性アクリルを用いた場合、絶縁物614の上端部のみに曲率半径(0.2μm〜3μm)を有する曲面を持たせることが好ましい。また、絶縁物614として、光の照射によってエッチャントに不溶解性となるネガ型、或いは光の照射によってエッチャントに溶解性となるポジ型のいずれも使用することができる。   In order to improve the coverage, a curved surface having a curvature is formed at the upper end or the lower end of the insulator 614. For example, when positive photosensitive acrylic is used as a material for the insulator 614, it is preferable that only the upper end portion of the insulator 614 has a curved surface with a curvature radius (0.2 μm to 3 μm). As the insulator 614, either a negative type that becomes insoluble in an etchant by light irradiation or a positive type that becomes soluble in an etchant by light irradiation can be used.

第1の電極613上には、EL層616、および第2の電極617がそれぞれ形成されている。ここで、第1の電極613に用いる材料としては、さまざまな金属、合金、電気伝導性化合物、およびこれらの混合物を用いることができる。第1の電極を陽極として用いる場合には、その中でも、仕事関数の大きい(仕事関数4.0eV以上)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。   An EL layer 616 and a second electrode 617 are formed over the first electrode 613. Here, as a material used for the first electrode 613, various metals, alloys, electrically conductive compounds, and mixtures thereof can be used. In the case of using the first electrode as the anode, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a high work function (work function of 4.0 eV or more).

例えば、珪素を含有した酸化インジウム−酸化スズ膜、酸化インジウム−酸化亜鉛膜、窒化チタン膜、クロム膜、タングステン膜、Zn膜、Pt膜などの単層膜の他、窒化チタンとアルミニウムを主成分とする膜との積層、窒化チタン膜とアルミニウムを主成分とする膜と窒化チタン膜との3層構造等の積層膜を用いることができる。なお、積層構造とすると、配線としての抵抗も低く、良好なオーミックコンタクトがとれ、さらに陽極として機能させることができる。   For example, in addition to single layer films such as indium oxide-tin oxide film, indium oxide-zinc oxide film, titanium nitride film, chromium film, tungsten film, Zn film, and Pt film containing silicon, titanium nitride and aluminum are the main components. A laminated film having a three-layer structure of a titanium nitride film, a film containing aluminum as a main component, and a titanium nitride film can be used. Note that with a stacked structure, resistance as a wiring is low, good ohmic contact can be obtained, and a function as an anode can be obtained.

また、EL層616は、蒸着マスクを用いた蒸着法、インクジェット法、スピンコート法等の種々の方法によって形成される。EL層616は、実施の形態1及び実施の形態2で示した発光層を有している。また、EL層616を構成する他の材料としては、低分子化合物、または高分子化合物(オリゴマー、デンドリマーを含む)であっても良い。また、EL層に用いる材料としては、有機化合物だけでなく、無機化合物を用いてもよい。   The EL layer 616 is formed by various methods such as an evaporation method using an evaporation mask, an inkjet method, and a spin coating method. The EL layer 616 includes the light-emitting layer described in Embodiments 1 and 2. Further, as another material forming the EL layer 616, a low molecular compound or a high molecular compound (including an oligomer and a dendrimer) may be used. Further, as a material used for the EL layer, not only an organic compound but also an inorganic compound may be used.

また、第2の電極617に用いる材料としては、さまざまな金属、合金、電気伝導性化合物、およびこれらの混合物を用いることができる。第2の電極を陰極として用いる場合には、その中でも、仕事関数の小さい(仕事関数3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。例えば、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(MgAg、AlLi)等が挙げられる。   In addition, as a material used for the second electrode 617, various metals, alloys, electrically conductive compounds, and mixtures thereof can be used. In the case where the second electrode is used as a cathode, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a low work function (work function of 3.8 eV or less). For example, elements belonging to Group 1 or Group 2 of the periodic table of elements, that is, alkali metals such as lithium (Li) and cesium (Cs), and alkalis such as magnesium (Mg), calcium (Ca), and strontium (Sr) An earth metal, and an alloy (MgAg, AlLi) containing these are mentioned.

なお、EL層616で生じた光を第2の電極617を透過させる場合には、第2の電極617として、膜厚を薄くした金属薄膜と、透明導電膜(酸化インジウム−酸化スズ(ITO)、珪素若しくは酸化珪素を含有した酸化インジウム−酸化スズ、酸化インジウム−酸化亜鉛(IZO)、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)等)との積層を用いることも可能である。   Note that in the case where light generated in the EL layer 616 is transmitted through the second electrode 617, a thin metal film and a transparent conductive film (indium oxide-tin oxide (ITO)) are used as the second electrode 617. Alternatively, a stack of indium oxide-tin oxide containing silicon or silicon oxide, indium oxide-zinc oxide (IZO), indium oxide containing tungsten oxide and zinc oxide (IWZO), or the like can be used.

また、シール材605で封止基板604を素子基板610と貼り合わせることにより、素子基板610、封止基板604、およびシール材605で囲まれた空間607に発光素子618が備えられた構造になっている。なお、空間607には、充填材が充填されており、不活性気体(窒素やアルゴン等)が充填される場合の他、シール材605が充填される場合もある。   Further, the sealing substrate 604 is attached to the element substrate 610 with the sealant 605, whereby the light-emitting element 618 is provided in the space 607 surrounded by the element substrate 610, the sealing substrate 604, and the sealant 605. ing. Note that the space 607 is filled with a filler, and may be filled with a sealing material 605 in addition to an inert gas (such as nitrogen or argon).

さらに、シール材605にはエポキシ系樹脂を用いるのが好ましい。また、これらの材料はできるだけ水分や酸素を透過しない材料であることが望ましい。また、封止基板604に用いる材料としてガラス基板や石英基板の他、FRP(Fiberglass-Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル等からなるプラスチック基板を用いることができる。   Further, an epoxy resin is preferably used for the sealant 605. Moreover, it is desirable that these materials are materials that do not transmit moisture and oxygen as much as possible. In addition to a glass substrate and a quartz substrate, a plastic substrate made of FRP (Fiberglass-Reinforced Plastics), PVF (polyvinyl fluoride), polyester, acrylic, or the like can be used as a material for the sealing substrate 604.

以上のようにして、本発明の発光素子を有する発光装置を得ることができる。
その発光装置は、実施の形態1及び実施の形態2で示した発光素子を有する。そのため、寿命の長い本発明の発光素子を含むことによって、寿命の長い発光装置を得ることができる。また、色純度に優れた発光装置を得ることができる。
As described above, a light-emitting device having the light-emitting element of the present invention can be obtained.
The light-emitting device includes the light-emitting element described in any of Embodiments 1 and 2. Therefore, a light-emitting device with a long lifetime can be obtained by including the light-emitting element of the present invention with a long lifetime. In addition, a light emitting device with excellent color purity can be obtained.

以上のように、本実施の形態では、トランジスタによって発光素子の駆動を制御するアクティブ型の発光装置について説明したが、この他、トランジスタ等の駆動用の素子を特に設けずに発光素子を駆動させるパッシブ型の発光装置であってもよい。図5には本発明を適用して作製したパッシブ型の発光装置の斜視図を示す。   As described above, in this embodiment mode, an active light-emitting device that controls driving of a light-emitting element using a transistor has been described. In addition to this, a light-emitting element is driven without particularly providing a driving element such as a transistor. A passive light emitting device may be used. FIG. 5 is a perspective view of a passive light emitting device manufactured by applying the present invention.

図5において、基板951上には、電極952と電極956との間にはEL層955が設けられている。電極952の端部は絶縁層953で覆われている。そして、絶縁層953上には隔壁層954が設けられている。隔壁層954の側壁は、基板面に近くなるに伴って、一方の側壁と他方の側壁との間隔が狭くなっていくような傾斜を有する。つまり、隔壁層954の短辺方向の断面は、台形状であり、底辺(絶縁層953の面方向と同様の方向を向き、絶縁層953と接する辺)の方が上辺(絶縁層953の面方向と同様の方向を向き、絶縁層953と接しない辺)よりも短い。このように、隔壁層954を設けることで、静電気等に起因した発光素子の不良を防ぐことが出来る。また、パッシブ型の発光装置においても、寿命の長い本発明の発光素子を含むことによって、寿命の長い発光装置を得ることができる。また、色純度に優れた発光装置を得ることができる。   In FIG. 5, an EL layer 955 is provided over the substrate 951 between the electrode 952 and the electrode 956. An end portion of the electrode 952 is covered with an insulating layer 953. A partition layer 954 is provided over the insulating layer 953. The side wall of the partition wall layer 954 has an inclination such that the distance between one side wall and the other side wall becomes narrower as it approaches the substrate surface. That is, the cross section in the short side direction of the partition wall layer 954 has a trapezoidal shape, and the bottom side (the side facing the insulating layer 953 in the same direction as the surface direction of the insulating layer 953) is the top side (the surface of the insulating layer 953). The direction is the same as the direction and is shorter than the side not in contact with the insulating layer 953. In this manner, by providing the partition layer 954, defects in the light-emitting element due to static electricity or the like can be prevented. In addition, even in a passive light-emitting device, a light-emitting device with a long lifetime can be obtained by including the light-emitting element of the present invention with a long lifetime. In addition, a light emitting device with excellent color purity can be obtained.

(実施の形態4)
本実施の形態では、実施の形態3に示す発光装置をその一部に含む本発明の電子機器について説明する。本発明の電子機器は、実施の形態1及び実施の形態2で示した発光素子を有する、寿命の長い表示部を有する。また、色純度に優れた発光素子を有するため、色再現性に優れた表示部を得ることができる。
(Embodiment 4)
In this embodiment mode, electronic devices of the present invention which include the light-emitting device described in Embodiment Mode 3 as a part thereof will be described. An electronic device of the present invention includes a display portion with a long lifetime which includes the light-emitting element described in Embodiments 1 and 2. In addition, since the light-emitting element with excellent color purity is included, a display portion with excellent color reproducibility can be obtained.

本発明の発光装置を用いて作製された電子機器として、ビデオカメラ、デジタルカメラ、ゴーグル型ディスプレイ、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディオコンポ等)、コンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話、携帯型ゲーム機または電子書籍等)、記録媒体を備えた画像再生装置(具体的にはDigital Versatile Disc(DVD)等の記録媒体を再生し、その画像を表示しうる表示装置を備えた装置)などが挙げられる。これらの電子機器の具体例を図6に示す。   As an electronic device manufactured using the light emitting device of the present invention, a video camera, a digital camera, a goggle type display, a navigation system, a sound reproducing device (car audio, audio component, etc.), a computer, a game device, a portable information terminal (mobile) Display device capable of playing back a recording medium such as a computer, a mobile phone, a portable game machine, or an electronic book), and a recording medium (specifically, a digital versatile disc (DVD)) and displaying the image And the like). Specific examples of these electronic devices are shown in FIGS.

図6(A)は本発明に係るテレビ装置であり、筐体9101、支持台9102、表示部9103、スピーカー部9104、ビデオ入力端子9105等を含む。このテレビ装置において、表示部9103は、実施の形態1及び実施の形態2で説明したものと同様の発光素子をマトリクス状に配列して構成されている。当該発光素子は、寿命が長いという特徴を有している。その発光素子で構成される表示部9103も同様の特徴を有するため、このテレビ装置は寿命が長いという特徴を有している。つまり、長時間の使用に耐えうるテレビ装置を提供することができる。また、色純度に優れた発光素子を有するため、色再現性に優れた表示部を有するテレビ装置を得ることができる。   FIG. 6A illustrates a television device according to the present invention, which includes a housing 9101, a supporting base 9102, a display portion 9103, a speaker portion 9104, a video input terminal 9105, and the like. In this television device, the display portion 9103 is formed by arranging light-emitting elements similar to those described in Embodiments 1 and 2 in a matrix. The light-emitting element has a feature of long life. Since the display portion 9103 including the light-emitting elements has similar features, this television set has a feature of long life. That is, a television device that can withstand long-time use can be provided. In addition, since the light-emitting element with excellent color purity is included, a television device having a display portion with excellent color reproducibility can be obtained.

図6(B)は本発明に係るコンピュータであり、本体9201、筐体9202、表示部9203、キーボード9204、外部接続ポート9205、ポインティングマウス9206等を含む。このコンピュータにおいて、表示部9203は、実施の形態1及び実施の形態2で説明したものと同様の発光素子をマトリクス状に配列して構成されている。当該発光素子は、寿命が長いという特徴を有している。その発光素子で構成される表示部9203も同様の特徴を有するため、このコンピュータは寿命が長いという特徴を有している。つまり、長時間の使用に耐えうるコンピュータを提供することができる。また、色純度に優れた発光素子を有するため、色再現性に優れた表示部を有するコンピュータを得ることができる。   FIG. 6B illustrates a computer according to the present invention, which includes a main body 9201, a housing 9202, a display portion 9203, a keyboard 9204, an external connection port 9205, a pointing mouse 9206, and the like. In this computer, the display portion 9203 is formed by arranging light-emitting elements similar to those described in Embodiments 1 and 2 in a matrix. The light-emitting element has a feature of long life. Since the display portion 9203 which includes the light-emitting elements has similar features, this computer has a feature that its life is long. That is, a computer that can withstand long-term use can be provided. In addition, since the light-emitting element with excellent color purity is included, a computer having a display portion with excellent color reproducibility can be obtained.

図6(C)は本発明に係る携帯電話であり、本体9401、筐体9402、表示部9403、音声入力部9404、音声出力部9405、操作キー9406、外部接続ポート9407、アンテナ9408等を含む。この携帯電話において、表示部9403は、実施の形態1及び実施の形態2で説明したものと同様の発光素子をマトリクス状に配列して構成されている。当該発光素子は、寿命が長いという特徴を有している。その発光素子で構成される表示部9403も同様の特徴を有するため、この携帯電話は寿命が長いという特徴を有している。つまり、長時間の使用に耐えうる携帯電話を提供することができる。また、色純度に優れた発光素子を有するため、色再現性に優れた表示部を有する携帯電話を得ることができる。   6C illustrates a cellular phone according to the present invention, which includes a main body 9401, a housing 9402, a display portion 9403, an audio input portion 9404, an audio output portion 9405, operation keys 9406, an external connection port 9407, an antenna 9408, and the like. . In this cellular phone, the display portion 9403 is formed by arranging light-emitting elements similar to those described in Embodiments 1 and 2 in a matrix. The light-emitting element has a feature of long life. Since the display portion 9403 which includes the light-emitting elements has similar features, this mobile phone has a feature that its lifetime is long. That is, a mobile phone that can withstand long-term use can be provided. In addition, since the light-emitting element with excellent color purity is included, a mobile phone having a display portion with excellent color reproducibility can be obtained.

図6(D)は本発明に係るカメラであり、本体9501、表示部9502、筐体9503、外部接続ポート9504、リモコン受信部9505、受像部9506、バッテリー9507、音声入力部9508、操作キー9509、接眼部9510等を含む。このカメラにおいて、表示部9502は、実施の形態1及び実施の形態2で説明したものと同様の発光素子をマトリクス状に配列して構成されている。当該発光素子は、寿命が長いという特徴を有している。その発光素子で構成される表示部9502も同様の特徴を有するため、このカメラは寿命が長いという特徴を有している。つまり、長時間の使用に耐えうるカメラを提供することができる。また、色純度に優れた発光素子を有するため、色再現性に優れた表示部を有するカメラを得ることができる。   6D illustrates a camera according to the present invention, which includes a main body 9501, a display portion 9502, a housing 9503, an external connection port 9504, a remote control receiving portion 9505, an image receiving portion 9506, a battery 9507, an audio input portion 9508, and operation keys 9509. , An eyepiece 9510 and the like. In this camera, the display portion 9502 includes light-emitting elements similar to those described in Embodiments 1 and 2, arranged in a matrix. The light-emitting element has a feature of long life. Since the display portion 9502 which includes the light-emitting elements has similar features, this camera has a feature that its life is long. That is, a camera that can withstand long-term use can be provided. In addition, since the light-emitting element with excellent color purity is included, a camera having a display portion with excellent color reproducibility can be obtained.

以上の様に、本発明の発光装置の適用範囲は極めて広く、この発光装置をあらゆる分野の電子機器に適用することが可能である。本発明の発光装置を用いることにより、長時間の使用に耐えうる、寿命の長い表示部を有する電子機器を提供することが可能となる。また、色再現性に優れた表示部を有する電子機器を得ることができる。   As described above, the applicable range of the light-emitting device of the present invention is so wide that the light-emitting device can be applied to electronic devices in various fields. By using the light-emitting device of the present invention, an electronic device having a display portion with a long lifetime that can withstand long-time use can be provided. In addition, an electronic device having a display portion with excellent color reproducibility can be obtained.

また、本発明の発光装置は、照明装置として用いることもできる。本発明の発光素子を照明装置として用いる一態様を、図7を用いて説明する。
図7は、本発明の発光装置をバックライトとして用いた液晶表示装置の一例である。図7に示した液晶表示装置は、筐体901、液晶層902、バックライト903、筐体904を有し、液晶層902は、ドライバIC905と接続されている。また、バックライト903には、本発明の発光装置が用いられており、端子906により、電流が供給されている。
The light-emitting device of the present invention can also be used as a lighting device. One mode in which the light-emitting element of the present invention is used as a lighting device will be described with reference to FIGS.
FIG. 7 illustrates an example of a liquid crystal display device using the light-emitting device of the present invention as a backlight. The liquid crystal display device illustrated in FIG. 7 includes a housing 901, a liquid crystal layer 902, a backlight 903, and a housing 904, and the liquid crystal layer 902 is connected to a driver IC 905. The backlight 903 uses the light-emitting device of the present invention, and a current is supplied from a terminal 906.

本発明の発光装置を液晶表示装置のバックライトとして用いることにより、寿命の長いバックライトが得られる。また、本発明の発光装置は、面発光の照明装置であり大面積化も可能であるため、バックライトの大面積化が可能であり、液晶表示装置の大面積化も可能になる。さらに、本発明の発光装置は薄型で低消費電力であるため、表示装置の薄型化、低消費電力化も可能となる。   By using the light emitting device of the present invention as a backlight of a liquid crystal display device, a backlight having a long lifetime can be obtained. Further, the light-emitting device of the present invention is a surface-emitting illumination device and can have a large area, so that the backlight can have a large area and a liquid crystal display device can have a large area. Further, since the light-emitting device of the present invention is thin and has low power consumption, the display device can be thinned and the power consumption can be reduced.

図8は、本発明を適用した発光装置を、照明装置である電気スタンドとして用いた例である。図8に示す電気スタンドは、筐体2001と、光源2002を有し、光源2002として、本発明の発光装置が用いられている。本発明の発光装置は長寿命であるため、電気スタンドも長寿命となる。   FIG. 8 illustrates an example in which the light-emitting device to which the present invention is applied is used as a table lamp which is a lighting device. A table lamp illustrated in FIG. 8 includes a housing 2001 and a light source 2002, and the light-emitting device of the present invention is used as the light source 2002. Since the light emitting device of the present invention has a long life, the desk lamp also has a long life.

図9は、本発明を適用した発光装置を、室内の照明装置3001として用いた例である。本発明の発光装置は大面積化も可能であるため、大面積の照明装置として用いることができる。また、本発明の発光装置は、長寿命であるため、長寿命の照明装置として用いることが可能となる。このように、本発明を適用した発光装置を、室内の照明装置3001として用いた部屋に、図6(A)で説明したような、本発明に係るテレビ装置3002を設置して公共放送や映画を鑑賞することができる。このような場合、両装置は長寿命であるので、照明装置やテレビ装置の買い換え回数を減らすことができ、環境への負荷を低減することができる。   FIG. 9 illustrates an example in which the light-emitting device to which the present invention is applied is used as an indoor lighting device 3001. Since the light-emitting device of the present invention can have a large area, it can be used as a large-area lighting device. In addition, since the light-emitting device of the present invention has a long lifetime, it can be used as a long-life lighting device. In this manner, in the room where the light-emitting device to which the present invention is applied is used as an indoor lighting device 3001, the television device 3002 according to the present invention as described with reference to FIG. Can be appreciated. In such a case, since both devices have a long life, the number of replacements of the lighting device and the television device can be reduced, and the load on the environment can be reduced.

本実施例では、本発明の発光素子について具体的に図10を用いて説明する。本実施例で用いる有機化合物の構造式を以下に示す。   In this example, a light-emitting element of the present invention will be specifically described with reference to FIG. Structural formulas of organic compounds used in this example are shown below.

Figure 0005031445
Figure 0005031445

(発光素子1)
まず、ガラス基板2101上に、酸化珪素を含む酸化インジウム−酸化スズをスパッタリング法にて成膜し、第1の電極2102を形成した。なお、その膜厚は110nmとし、電極面積は2mm×2mmとした。
(Light emitting element 1)
First, indium oxide-tin oxide containing silicon oxide was formed over the glass substrate 2101 by a sputtering method, so that the first electrode 2102 was formed. The film thickness was 110 nm and the electrode area was 2 mm × 2 mm.

次に、第1の電極2102が形成された面が下方となるように、第1の電極2102が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、10-4Pa程度まで減圧した後、第1の電極2102上に、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)と酸化モリブデン(VI)とを共蒸着することにより、複合材料を含む層2103を形成した。その膜厚は50nmとし、NPBと酸化モリブデン(VI)の比率は、重量比で4:1=(NPB:酸化モリブデン)となるように調節した。なお、共蒸着法とは、一つの処理室内で複数の蒸発源を用いて同時に蒸着を行う蒸着法である。
続いて、抵抗加熱を用いた蒸着法により、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)を10nmの膜厚となるように成膜し、正孔輸送層2104を形成した。
Next, the substrate on which the first electrode 2102 is formed is fixed to a substrate holder provided in the vacuum evaporation apparatus so that the surface on which the first electrode 2102 is formed is downward, and is approximately 10 −4 Pa. After that, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB) and molybdenum oxide (VI) are co-evaporated on the first electrode 2102. Thus, a layer 2103 containing a composite material was formed. The film thickness was 50 nm, and the weight ratio of NPB and molybdenum oxide (VI) was adjusted to 4: 1 = (NPB: molybdenum oxide). Note that the co-evaporation method is an evaporation method in which evaporation is performed simultaneously using a plurality of evaporation sources in one processing chamber.
Subsequently, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB) was formed to a thickness of 10 nm by an evaporation method using resistance heating. Then, a hole transport layer 2104 was formed.

次に、正孔輸送層2104上に、発光層2105を形成した。まず、正孔輸送層2104上に、第1の有機化合物である9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:CzPA)と、第2の有機化合物であるN−(9,10−ジフェニル−2−アントリル)−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCAPA)とを共蒸着することにより、第1の発光層2121を30nmの膜厚で形成した。ここで、CzPAと2PCAPAとの重量比は、1:0.05(=CzPA:2PCAPA)となるように調節した。   Next, a light-emitting layer 2105 was formed over the hole-transport layer 2104. First, 9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: CzPA) which is the first organic compound and the second organic compound are formed over the hole-transport layer 2104. By co-evaporating certain N- (9,10-diphenyl-2-anthryl) -N, 9-diphenyl-9H-carbazol-3-amine (abbreviation: 2PCAPA), the first light-emitting layer 2121 is formed to a thickness of 30 nm. It was formed with a film thickness. Here, the weight ratio of CzPA to 2PCAPA was adjusted to be 1: 0.05 (= CzPA: 2PCAPA).

さらに、第1の層2121上に、第4の有機化合物であるトリス(8−キノリノラト)アルミニウム(III)(略称:Alq)と、第3の有機化合物であるN,N’−ジフェニルキナクリドン(略称:DPQd)とを共蒸着することにより、第2の層2122を10nmの膜厚で形成した。ここで、AlqとDPQdとの重量比は、1:0.005(=Alq:DPQd)となるように調節した。   Further, over the first layer 2121, the fourth organic compound, tris (8-quinolinolato) aluminum (III) (abbreviation: Alq), and the third organic compound, N, N′-diphenylquinacridone (abbreviation) : DPQd) was co-evaporated to form the second layer 2122 with a thickness of 10 nm. Here, the weight ratio of Alq to DPQd was adjusted to be 1: 0.005 (= Alq: DPQd).

続いて、抵抗加熱による蒸着法を用いて、発光層2105上にバソフェナントロリン(略称:BPhen)を30nmの膜厚となるように成膜し、電子輸送層2106を形成し、その後電子輸送層2106上に、フッ化リチウム(LiF)を1nmの膜厚となるように成膜することにより、電子注入層2107を形成した。
最後に、抵抗加熱による蒸着法を用い、アルミニウムを200nmの膜厚となるように成膜することにより、第2の電極2108を形成し、発光素子1を作製した。
Subsequently, using a vapor deposition method using resistance heating, bathophenanthroline (abbreviation: BPhen) is formed to a thickness of 30 nm over the light-emitting layer 2105 to form an electron transport layer 2106, and then the electron transport layer 2106. An electron injection layer 2107 was formed by depositing lithium fluoride (LiF) to a thickness of 1 nm on the top.
Lastly, a second electrode 2108 was formed by depositing aluminum so as to have a thickness of 200 nm using a resistance heating vapor deposition method, whereby the light-emitting element 1 was manufactured.

(比較発光素子2)
まず、ガラス基板上に、酸化珪素を含む酸化インジウム−酸化スズをスパッタリング法にて成膜し、第1の電極を形成した。なお、その膜厚は110nmとし、電極面積は2mm×2mmとした。
(Comparative light emitting element 2)
First, indium oxide-tin oxide containing silicon oxide was formed over a glass substrate by a sputtering method to form a first electrode. The film thickness was 110 nm and the electrode area was 2 mm × 2 mm.

次に、第1の電極が形成された面が下方となるように、第1の電極が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、10-4Pa程度まで減圧した後、第1の電極上に、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)と酸化モリブデン(VI)とを共蒸着することにより、複合材料を含む層を形成した。その膜厚は50nmとし、NPBと酸化モリブデン(VI)の比率は、重量比で4:1=(NPB:酸化モリブデン)となるように調節した。
その後、抵抗加熱を用いた蒸着法により、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)を10nmの膜厚となるように成膜し、正孔輸送層を形成した。
Next, the substrate on which the first electrode is formed is fixed to a substrate holder provided in the vacuum evaporation apparatus so that the surface on which the first electrode is formed is downward, and the pressure is reduced to about 10 −4 Pa. Then, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB) and molybdenum oxide (VI) are co-evaporated on the first electrode, A layer containing the composite material was formed. The film thickness was 50 nm, and the weight ratio of NPB and molybdenum oxide (VI) was adjusted to 4: 1 = (NPB: molybdenum oxide).
Then, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB) was formed to a thickness of 10 nm by an evaporation method using resistance heating, A hole transport layer was formed.

次に、正孔輸送層上に、発光層を形成した。9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:CzPA)とN−(9,10−ジフェニル−2−アントリル)−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCAPA)とを共蒸着することにより、発光層を40nmの膜厚で形成した。ここで、CzPAと2PCAPAとの重量比は、1:0.05(=CzPA:2PCAPA)となるように調節した。   Next, a light emitting layer was formed on the hole transport layer. 9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: CzPA) and N- (9,10-diphenyl-2-anthryl) -N, 9-diphenyl-9H-carbazole- By co-evaporation with 3-amine (abbreviation: 2PCAPA), a light-emitting layer was formed with a thickness of 40 nm. Here, the weight ratio of CzPA to 2PCAPA was adjusted to be 1: 0.05 (= CzPA: 2PCAPA).

その後抵抗加熱による蒸着法を用いて、発光層上にバソフェナントロリン(略称:BPhen)を30nmの膜厚となるように成膜し、電子輸送層を形成した。
その電子輸送層上に、フッ化リチウム(LiF)を1nmの膜厚となるように成膜することにより、電子注入層を形成した。
最後に、抵抗加熱による蒸着法を用い、アルミニウムを200nmの膜厚となるように成膜することにより、第2の電極を形成し、比較発光素子2を作製した。
Thereafter, using a vapor deposition method using resistance heating, bathophenanthroline (abbreviation: BPhen) was formed to a thickness of 30 nm on the light emitting layer to form an electron transport layer.
On the electron transport layer, lithium fluoride (LiF) was formed to a thickness of 1 nm, thereby forming an electron injection layer.
Finally, a second electrode was formed by using a vapor deposition method using resistance heating to form a film of aluminum with a thickness of 200 nm, and a comparative light-emitting element 2 was manufactured.

発光素子1の電流密度−輝度特性を図11に示す。また、電圧−輝度特性を図12に示す。また、輝度−電流効率特性を図13に示す。また、1mAの電流を流したときの発光スペクトルを図14に示す。
発光素子1は、輝度3000cd/m2のときのCIE色度座標は(x=0.29、y=0.62)であり、緑色の発光を示した。また、輝度3000cd/m2のときの電流効率は10.7cd/Aであり、電圧は5.8V、電流密度は、29.4mA/cm2であった。
FIG. 11 shows current density-luminance characteristics of the light-emitting element 1. Further, voltage-luminance characteristics are shown in FIG. Further, FIG. 13 shows luminance-current efficiency characteristics. Further, FIG. 14 shows an emission spectrum when a current of 1 mA is passed.
The light-emitting element 1 had a CIE chromaticity coordinate (x = 0.29, y = 0.62) at a luminance of 3000 cd / m 2 and emitted green light. The current efficiency at a luminance of 3000 cd / m 2 was 10.7 cd / A, the voltage was 5.8 V, and the current density was 29.4 mA / cm 2 .

また、発光素子1に関し、初期輝度を3000cd/m2として、定電流駆動による連続点灯試験を行ったところ、640時間後でも初期輝度の89%の輝度を保っており、長寿命な発光素子であることがわかった。一方、比較発光素子2に関し、同様に初期輝度を3000cd/m2とした連続点灯試験を行ったところ、640時間後では輝度が初期輝度の76%にまで低下しており、発光素子1よりも寿命が短かった。
よって、本発明を適用することにより、長寿命な発光素子が得られることがわかった。
Further, regarding the light-emitting element 1, a continuous lighting test by constant current driving was performed at an initial luminance of 3000 cd / m 2. As a result, the light-emitting element maintained a luminance of 89% of the initial luminance even after 640 hours. I found out. On the other hand, regarding the comparative light-emitting element 2, when a continuous lighting test was similarly performed with an initial luminance of 3000 cd / m 2 , the luminance decreased to 76% of the initial luminance after 640 hours, which was higher than that of the light-emitting element 1. Life was short.
Therefore, it was found that by applying the present invention, a light-emitting element having a long lifetime can be obtained.

(発光素子3)
本実施例2では、本発明の発光素子について図10を用いて具体的に説明する。
まず、ガラス基板2101上に、酸化珪素を含む酸化インジウム−酸化スズをスパッタリング法にて成膜し、第1の電極2102を形成した。なお、その膜厚は110nmとし、電極面積は2mm×2mmとした。
(Light emitting element 3)
In Example 2, a light-emitting element of the present invention will be specifically described with reference to FIG.
First, indium oxide-tin oxide containing silicon oxide was formed over the glass substrate 2101 by a sputtering method, so that the first electrode 2102 was formed. The film thickness was 110 nm and the electrode area was 2 mm × 2 mm.

次に、第1の電極2102が形成された面が下方となるように、第1の電極2102が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、10-4Pa程度まで減圧した後、第1の電極2102上に、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)と酸化モリブデン(VI)とを共蒸着することにより、複合材料を含む層2103を形成した。その膜厚は50nmとし、NPBと酸化モリブデン(VI)の比率は、重量比で4:1=(NPB:酸化モリブデン)となるように調節した。
その後、抵抗加熱を用いた蒸着法により、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)を10nmの膜厚となるように成膜し、正孔輸送層2104を形成した。
Next, the substrate on which the first electrode 2102 is formed is fixed to a substrate holder provided in the vacuum evaporation apparatus so that the surface on which the first electrode 2102 is formed is downward, and is approximately 10 −4 Pa. After that, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB) and molybdenum oxide (VI) are co-evaporated on the first electrode 2102. Thus, a layer 2103 containing a composite material was formed. The film thickness was 50 nm, and the weight ratio of NPB and molybdenum oxide (VI) was adjusted to 4: 1 = (NPB: molybdenum oxide).
Then, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB) was formed to a thickness of 10 nm by an evaporation method using resistance heating, A hole transport layer 2104 was formed.

次に、正孔輸送層2104上に、発光層2105を形成した。まず、正孔輸送層2104上に、第2の有機化合物である9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:CzPA)と、第1の有機化合物であるN−(9,10−ジフェニル−2−アントリル)−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCAPA)とを共蒸着することにより、第1の発光層2121を30nmの膜厚で形成した。ここで、CzPAと2PCAPAとの重量比は、1:0.05(=CzPA:2PCAPA)となるように調節した。   Next, a light-emitting layer 2105 was formed over the hole-transport layer 2104. First, 9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: CzPA), which is a second organic compound, and the first organic compound are formed over the hole-transport layer 2104. By co-evaporating certain N- (9,10-diphenyl-2-anthryl) -N, 9-diphenyl-9H-carbazol-3-amine (abbreviation: 2PCAPA), the first light-emitting layer 2121 is formed to a thickness of 30 nm. It was formed with a film thickness. Here, the weight ratio of CzPA to 2PCAPA was adjusted to be 1: 0.05 (= CzPA: 2PCAPA).

さらに、第1の層2121上に、第4の有機化合物であるトリス(8−キノリノラト)アルミニウム(III)(略称:Alq)と、第3の有機化合物であるN,N’−ジフェニルキナクリドン(略称:DPQd)とを共蒸着することにより、第2の層2122を10nmの膜厚で形成した。ここで、AlqとDPQdとの重量比は、1:0.005(=Alq:DPQd)となるように調節した。   Further, over the first layer 2121, the fourth organic compound, tris (8-quinolinolato) aluminum (III) (abbreviation: Alq), and the third organic compound, N, N′-diphenylquinacridone (abbreviation) : DPQd) was co-evaporated to form the second layer 2122 with a thickness of 10 nm. Here, the weight ratio of Alq to DPQd was adjusted to be 1: 0.005 (= Alq: DPQd).

その後抵抗加熱による蒸着法を用いて、発光層2105上にAlqを30nmの膜厚となるように成膜し、電子輸送層2106を形成した。
さらに、電子輸送層2106上に、フッ化リチウム(LiF)を1nmの膜厚となるように成膜することにより、電子注入層2107を形成した。
最後に、抵抗加熱による蒸着法を用い、アルミニウムを200nmの膜厚となるように成膜することにより、第2の電極2108を形成し、発光素子3を作製した。
Thereafter, Alq was deposited to a thickness of 30 nm on the light-emitting layer 2105 by an evaporation method using resistance heating, whereby an electron-transporting layer 2106 was formed.
Further, an electron injection layer 2107 was formed on the electron transport layer 2106 by depositing lithium fluoride (LiF) to a thickness of 1 nm.
Lastly, a second electrode 2108 was formed by using a vapor deposition method using resistance heating to form aluminum with a thickness of 200 nm, whereby the light-emitting element 3 was manufactured.

(比較発光素子4)
まず、ガラス基板上に、酸化珪素を含む酸化インジウム−酸化スズをスパッタリング法にて成膜し、第1の電極を形成した。なお、その膜厚は110nmとし、電極面積は2mm×2mmとした。
続いて、第1の電極が形成された面が下方となるように、第1の電極が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、10-4Pa程度まで減圧した後、第1の電極上に、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)と酸化モリブデン(VI)とを共蒸着することにより、複合材料を含む層を形成した。その膜厚は50nmとし、NPBと酸化モリブデン(VI)の比率は、重量比で4:1=(NPB:酸化モリブデン)となるように調節した。
(Comparative light emitting element 4)
First, indium oxide-tin oxide containing silicon oxide was formed over a glass substrate by a sputtering method to form a first electrode. The film thickness was 110 nm and the electrode area was 2 mm × 2 mm.
Subsequently, the substrate on which the first electrode is formed is fixed to a substrate holder provided in the vacuum evaporation apparatus so that the surface on which the first electrode is formed is downward, and the pressure is reduced to about 10 −4 Pa. Then, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB) and molybdenum oxide (VI) are co-evaporated on the first electrode, A layer containing the composite material was formed. The film thickness was 50 nm, and the weight ratio of NPB and molybdenum oxide (VI) was adjusted to 4: 1 = (NPB: molybdenum oxide).

次に、抵抗加熱を用いた蒸着法により、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)を10nmの膜厚となるように成膜し、正孔輸送層を形成した。
続いて、正孔輸送層上に、発光層を形成した。9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:CzPA)とN−(9,10−ジフェニル−2−アントリル)−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCAPA)とを共蒸着することにより、発光層を40nmの膜厚で形成した。ここで、CzPAと2PCAPAとの重量比は、1:0.05(=CzPA:2PCAPA)となるように調節した。
Next, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB) was formed to a thickness of 10 nm by an evaporation method using resistance heating. A hole transport layer was formed.
Subsequently, a light emitting layer was formed on the hole transport layer. 9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: CzPA) and N- (9,10-diphenyl-2-anthryl) -N, 9-diphenyl-9H-carbazole- By co-evaporation with 3-amine (abbreviation: 2PCAPA), a light-emitting layer was formed with a thickness of 40 nm. Here, the weight ratio of CzPA to 2PCAPA was adjusted to be 1: 0.05 (= CzPA: 2PCAPA).

その後抵抗加熱による蒸着法を用いて、発光層上にAlqを30nmの膜厚となるように成膜し、電子輸送層を形成した。
さらに、電子輸送層上に、フッ化リチウム(LiF)を1nmの膜厚となるように成膜することにより、電子注入層を形成した。
最後に、抵抗加熱による蒸着法を用い、アルミニウムを200nmの膜厚となるように成膜することにより、第2の電極を形成し、比較発光素子4を作製した。
Then, using an evaporation method by resistance heating, Alq was deposited on the light emitting layer so as to have a thickness of 30 nm to form an electron transporting layer.
Furthermore, an electron injection layer was formed by depositing lithium fluoride (LiF) on the electron transport layer so as to have a thickness of 1 nm.
Finally, a second electrode was formed by depositing aluminum so as to have a thickness of 200 nm using a resistance heating vapor deposition method, and the comparative light-emitting element 4 was manufactured.

発光素子3の電流密度−輝度特性を図15に示す。また、電圧−輝度特性を図16に示す。また、輝度−電流効率特性を図17に示す。また、1mAの電流を流したときの発光スペクトルを図18に示す。
発光素子3は、輝度3000cd/m2のときのCIE色度座標は(x=0.29、y=0.62)であり、緑色の発光を示した。また、輝度3000cd/m2のときの電流効率は11.0cd/Aであり、電圧は8.0V、電流密度は、28.3mA/cm2であった。
FIG. 15 shows current density-luminance characteristics of the light-emitting element 3. Further, voltage-luminance characteristics are shown in FIG. Further, FIG. 17 shows luminance-current efficiency characteristics. FIG. 18 shows an emission spectrum when a current of 1 mA is passed.
The light-emitting element 3 had a CIE chromaticity coordinate (x = 0.29, y = 0.62) at a luminance of 3000 cd / m 2 and emitted green light. The current efficiency at a luminance of 3000 cd / m 2 was 11.0 cd / A, the voltage was 8.0 V, and the current density was 28.3 mA / cm 2 .

また、発光素子3に関し、初期輝度を3000cd/m2として、定電流駆動による連続点灯試験を行ったところ、640時間後でも初期輝度の90%の輝度を保っており、長寿命な発光素子であることがわかった。一方、比較発光素子4に関し、同様に初期輝度を3000cd/m2とした連続点灯試験を行ったところ、470時間後には初期輝度の88%にまで輝度が低下しており、発光素子3よりも寿命が短かった。
よって、本発明を適用することにより、長寿命な発光素子が得られることがわかった。
Further, regarding the light-emitting element 3, a continuous lighting test by constant current driving was performed at an initial luminance of 3000 cd / m 2 , and 90% of the initial luminance was maintained even after 640 hours. I found out. On the other hand, the comparative light-emitting element 4 was similarly subjected to a continuous lighting test with an initial luminance of 3000 cd / m 2. As a result, the luminance decreased to 88% of the initial luminance after 470 hours. Life was short.
Therefore, it was found that by applying the present invention, a light-emitting element having a long lifetime can be obtained.

本実施例では、実施例1および実施例2で作製した発光素子1および発光素子3における第2の層に用いた、トリス(8−キノリノラト)アルミニウム(III)(略称:Alq)と、N,N’−ジフェニルキナクリドン(略称:DPQd)の還元反応特性について、サイクリックボルタンメトリ(CV)測定によって調べた。また、その測定から、AlqおよびDPQdのLUMO準位を求めた。なお測定には、電気化学アナライザー(ビー・エー・エス(株)製、型番:ALSモデル600A)を用いた。   In this example, tris (8-quinolinolato) aluminum (III) (abbreviation: Alq) used for the second layer in the light-emitting element 1 and the light-emitting element 3 manufactured in Example 1 and Example 2, N, The reduction characteristics of N′-diphenylquinacridone (abbreviation: DPQd) were examined by cyclic voltammetry (CV) measurement. From the measurement, the LUMO levels of Alq and DPQd were obtained. For the measurement, an electrochemical analyzer (manufactured by BAS Co., Ltd., model number: ALS model 600A) was used.

CV測定における溶液は、溶媒として脱水ジメチルホルムアミド(DMF)((株)アルドリッチ製、99.8%、カタログ番号;22705−6)を用い、支持電解質である過塩素酸テトラ−n−ブチルアンモニウム(n−Bu4NClO4)((株)東京化成製、カタログ番号;T0836)を100mmol/Lの濃度となるように溶解させ、さらに測定対象を1mmol/Lの濃度となるように溶解させて調製した。また、作用電極としては白金電極(ビー・エー・エス(株)製、PTE白金電極)を、補助電極としては白金電極(ビー・エー・エス(株)製、VC−3用Ptカウンター電極(5cm))を、参照電極としてはAg/Ag+電極(ビー・エー・エス(株)製、RE5非水溶媒系参照電極)をそれぞれ用いた。なお、測定は室温(20〜25℃)で行った。 As a solution in CV measurement, dehydrated dimethylformamide (DMF) (manufactured by Aldrich, 99.8%, catalog number: 22705-6) was used as a solvent, and tetra-n-butylammonium perchlorate (supporting electrolyte) ( n-Bu 4 NClO 4 ) (manufactured by Tokyo Chemical Industry Co., Ltd., catalog number; T0836) is dissolved to a concentration of 100 mmol / L, and the measurement target is further dissolved to a concentration of 1 mmol / L. did. In addition, as a working electrode, a platinum electrode (manufactured by BAS Co., Ltd., PTE platinum electrode), and as an auxiliary electrode, a platinum electrode (manufactured by BAS Inc., Pt counter electrode for VC-3 ( 5 cm)), and an Ag / Ag + electrode (manufactured by BAS Co., Ltd., RE5 non-aqueous solvent system reference electrode) was used as a reference electrode. In addition, the measurement was performed at room temperature (20-25 degreeC).

(参照電極の真空準位に対するポテンシャルエネルギーの算出)
まず、本実施例3で用いる参照電極(Ag/Ag+電極)の真空準位に対するポテンシャルエネルギー(eV)を算出した。つまり、Ag/Ag+電極のフェルミ準位を算出した。メタノール中におけるフェロセンの酸化還元電位は、標準水素電極に対して+0.610[V vs. SHE]であることが知られている(参考文献;Christian R.Goldsmith et al., J.Am.Chem.Soc., Vol.124, No.1,83-96, 2002)。一方、本実施例3で用いる参照電極を用いて、メタノール中におけるフェロセンの酸化還元電位を求めたところ、+0.20V[vs.Ag/Ag+]であった。したがって、本実施例3で用いる参照電極のポテンシャルエネルギーは、標準水素電極に対して0.41[eV]低くなっていることがわかった。
(Calculation of potential energy for the vacuum level of the reference electrode)
First, the potential energy (eV) with respect to the vacuum level of the reference electrode (Ag / Ag + electrode) used in Example 3 was calculated. That is, the Fermi level of the Ag / Ag + electrode was calculated. The redox potential of ferrocene in methanol is +0.610 [V vs. SHE] (reference: Christian R. Goldsmith et al., J. Am. Chem. Soc., Vol. 124, No. 1, 83-96, 2002). On the other hand, when the oxidation-reduction potential of ferrocene in methanol was determined using the reference electrode used in Example 3, it was +0.20 V [vs. Ag / Ag + ]. Therefore, it was found that the potential energy of the reference electrode used in Example 3 was 0.41 [eV] lower than that of the standard hydrogen electrode.

ここで、標準水素電極の真空準位からのポテンシャルエネルギーは−4.44eVであることが知られている(参考文献;大西敏博・小山珠美著、高分子EL材料(共立出版)、p.64−67)。以上のことから、本実施例3で用いる参照電極の真空準位に対するポテンシャルエネルギーは、−4.44−0.41=−4.85[eV]であると算出できた。   Here, it is known that the potential energy from the vacuum level of the standard hydrogen electrode is −4.44 eV (reference: Toshihiro Onishi, Tamami Koyama, polymer EL material (Kyoritsu Shuppan), p. 64). -67). From the above, the potential energy with respect to the vacuum level of the reference electrode used in Example 3 was calculated to be −4.44−0.41 = −4.85 [eV].

(測定例1;Alq)
本測定例1では、Alqの還元反応特性について、サイクリックボルタンメトリ(CV)測定によって調べた。スキャン速度は0.1V/secとした。測定結果を図19に示す。なお、還元反応特性の測定は、参照電極に対する作用電極の電位を−0.69Vから−2.40Vまで走査した後、−2.40Vから−0.69Vまで走査することにより行った。
(Measurement Example 1; Alq)
In this measurement example 1, the reduction reaction characteristics of Alq were examined by cyclic voltammetry (CV) measurement. The scan speed was 0.1 V / sec. The measurement results are shown in FIG. The reduction reaction characteristics were measured by scanning the potential of the working electrode with respect to the reference electrode from −0.69 V to −2.40 V and then from −2.40 V to −0.69 V.

図19に示すように、還元ピーク電位Epcは−2.20V、酸化ピーク電位Epaは−2.12Vと読み取ることができる。したがって、半波電位(EpcとEpaの中間の電位)は−2.16Vと算出できる。このことは、Alqは−2.16[V vs.Ag/Ag+]の電気エネルギーにより還元されることを示しており、このエネルギーはLUMO準位に相当する。ここで、上述した通り、本実施例3で用いる参照電極の真空準位に対するポテンシャルエネルギーは、−4.85[eV]であるため、AlqのLUMO準位は、−4.85−(−2.16)=−2.69[eV]であることがわかった。 As shown in FIG. 19, the reduction peak potential E pc can be read as −2.20V, and the oxidation peak potential E pa as −2.12V. Therefore, the half-wave potential (potential between E pc and E pa ) can be calculated as -2.16V. This means that Alq is -2.16 [V vs. Ag / Ag + ] is reduced by the electric energy, and this energy corresponds to the LUMO level. Here, as described above, since the potential energy with respect to the vacuum level of the reference electrode used in Example 3 is −4.85 [eV], the LUMO level of Alq is −4.85 − (− 2 .16) =-2.69 [eV].

(測定例2;DPQd)
本測定例2では、DPQdの還元反応特性について、サイクリックボルタンメトリ(CV)測定によって調べた。スキャン速度は0.1V/secとした。測定結果を図20に示す。なお、還元反応特性の測定は、参照電極に対する作用電極の電位を−0.40Vから−2.10Vまで走査した後、−2.10Vから−0.40Vまで走査することにより行った。また、DPQdは溶解性が悪く、1mmol/Lの濃度となるように溶液を調製しようとしても溶け残りが生じたため、溶け残りが沈殿した状態で上澄み液を採取し、測定に使用した。
(Measurement Example 2: DPQd)
In this measurement example 2, the reduction reaction characteristics of DPQd were examined by cyclic voltammetry (CV) measurement. The scan speed was 0.1 V / sec. The measurement results are shown in FIG. The reduction reaction characteristic was measured by scanning the potential of the working electrode with respect to the reference electrode from −0.40 V to −2.10 V and then from −2.10 V to −0.40 V. Further, DPQd was poor in solubility, and undissolved residue was generated even when an attempt was made to prepare a solution at a concentration of 1 mmol / L. Therefore, the supernatant was collected with the undissolved residue precipitated and used for measurement.

図20に示すように、還元ピーク電位Epcは−1.69V、酸化ピーク電位Epaは−1.63Vと読み取ることができる。したがって、半波電位(EpcとEpaの中間の電位)は−1.66Vと算出できる。このことは、DPQdは−1.66[V vs.Ag/Ag+]の電気エネルギーにより還元されることを示しており、このエネルギーはLUMO準位に相当する。ここで、上述した通り、本実施例3で用いる参照電極の真空準位に対するポテンシャルエネルギーは、−4.85[eV]であるため、DPQdのLUMO準位は、−4.85−(−1.66)=−3.19[eV]であることがわかった。 As shown in FIG. 20, the reduction peak potential E pc can be read as −1.69 V, and the oxidation peak potential E pa as −1.63 V. Therefore, the half-wave potential (potential between E pc and E pa ) can be calculated as −1.66V. This means that DPQd is −1.66 [V vs. Ag / Ag + ] is reduced by the electric energy, and this energy corresponds to the LUMO level. Here, as described above, since the potential energy with respect to the vacuum level of the reference electrode used in Example 3 is −4.85 [eV], the LUMO level of DPQd is −4.85 − (− 1. .66) = − 3.19 [eV].

なお、上述のようにして求めたAlqとDPQdのLUMO準位を比較すると、DPQdのLUMO準位はAlqよりも0.50[eV]も低いことがわかる。このことは、DPQdをAlq中に添加することにより、DPQdが電子トラップとして作用することを意味する。したがって、本発明の発光素子の第2の層において、第3の有機化合物としてDPQdを、第4の有機化合物としてAlqを用いた実施例1および実施例2の素子構造は、本発明に好適な構造である。
When the LUMO levels of Alq and DPQd obtained as described above are compared, it can be seen that the LUMO level of DPQd is 0.50 [eV] lower than Alq. This means that DPQd acts as an electron trap by adding DPQd into Alq. Therefore, the device structures of Examples 1 and 2 in which DPQd is used as the third organic compound and Alq is used as the fourth organic compound in the second layer of the light emitting device of the present invention are suitable for the present invention. Structure.

本発明の発光素子を説明する図。4A and 4B illustrate a light-emitting element of the present invention. 本発明の発光素子を説明する図。4A and 4B illustrate a light-emitting element of the present invention. 本発明の発光素子を説明する図。4A and 4B illustrate a light-emitting element of the present invention. 本発明の発光装置を説明する図。4A and 4B illustrate a light-emitting device of the present invention. 本発明の発光装置を説明する図。4A and 4B illustrate a light-emitting device of the present invention. 本発明の電子機器を説明する図。8A and 8B each illustrate an electronic device of the invention. 本発明の電子機器を説明する図。8A and 8B each illustrate an electronic device of the invention. 本発明の照明装置を説明する図。The figure explaining the illuminating device of this invention. 本発明の照明装置を説明する図。The figure explaining the illuminating device of this invention. 実施例の発光素子を説明する図。3A and 3B illustrate a light-emitting element of an example. 実施例1で作製した発光素子の電流密度−輝度特性を示す図。FIG. 6 shows current density-luminance characteristics of the light-emitting element manufactured in Example 1. 実施例1で作製した発光素子の電圧−輝度特性を示す図。FIG. 6 shows voltage-luminance characteristics of the light-emitting element manufactured in Example 1. 実施例1で作製した発光素子の輝度−電流効率特性を示す図。FIG. 11 shows luminance-current efficiency characteristics of the light-emitting element manufactured in Example 1. 実施例1で作製した発光素子の発光スペクトルを示す図。FIG. 6 shows an emission spectrum of the light-emitting element manufactured in Example 1. 実施例2で作製した発光素子の電流密度−輝度特性を示す図。FIG. 6 shows current density-luminance characteristics of the light-emitting element manufactured in Example 2. 実施例2で作製した発光素子の電圧−輝度特性を示す図。FIG. 11 shows voltage-luminance characteristics of the light-emitting element manufactured in Example 2. 実施例2で作製した発光素子の輝度−電流効率特性を示す図。FIG. 11 shows luminance-current efficiency characteristics of the light-emitting element manufactured in Example 2. 実施例2で作製した発光素子の発光スペクトルを示す図。FIG. 6 shows an emission spectrum of the light-emitting element manufactured in Example 2. Alqの還元反応特性を示す図。The figure which shows the reduction-reaction characteristic of Alq. DPQdの還元反応特性を示す図。The figure which shows the reductive reaction characteristic of DPQd. 本発明の発光素子を説明する図。4A and 4B illustrate a light-emitting element of the present invention.

符号の説明Explanation of symbols

101 基板
102 第1の電極
103 EL層
104 第2の電極
111 発光層
112 正孔輸送層
113 電子輸送層
121 第1の層
122 第2の層
301 基板
302 第1の電極
303 EL層
304 第2の電極
311 発光層
312 正孔輸送層
313 電子輸送層
321 第1の層
322 第2の層
501 第1の電極
502 第2の電極
511 第1の発光ユニット
512 第2の発光ユニット
513 電荷発生層
601 ソース側駆動回路
602 画素部
603 ゲート側駆動回路
604 封止基板
605 シール材
607 空間
608 引き回し配線
609 FPC(フレキシブルプリントサーキット)
610 素子基板
611 スイッチング用TFT
612 電流制御用TFT
613 第1の電極
614 絶縁物
616 EL層
617 第2の電極
618 発光素子
623 Nチャネル型TFT
624 Pチャネル型TFT
901 筐体
902 液晶層
903 バックライト
904 筐体
905 ドライバIC
906 端子
951 基板
952 電極
953 絶縁層
954 隔壁層
955 EL層
956 電極
2001 筐体
2002 光源
2101 ガラス基板
2102 第1の電極
2103 複合材料を含む層
2104 正孔輸送層
2105 発光層
2106 電子輸送層
2107 電子注入層
2108 第2の電極
2121 第1の発光層
2122 第2の発光層
3001 照明装置
3002 テレビ装置
9101 筐体
9102 支持台
9103 表示部
9104 スピーカー部
9105 ビデオ入力端子
9201 本体
9202 筐体
9203 表示部
9204 キーボード
9205 外部接続ポート
9206 ポインティングマウス
9401 本体
9402 筐体
9403 表示部
9404 音声入力部
9405 音声出力部
9406 操作キー
9407 外部接続ポート
9408 アンテナ
9501 本体
9502 表示部
9503 筐体
9504 外部接続ポート
9505 リモコン受信部
9506 受像部
9507 バッテリー
9508 音声入力部
9509 操作キー
9510 接眼部
101 substrate 102 first electrode 103 EL layer 104 second electrode 111 light emitting layer 112 hole transport layer 113 electron transport layer 121 first layer 122 second layer 301 substrate 302 first electrode 303 EL layer 304 second Electrode 311 Light-emitting layer 312 Hole transport layer 313 Electron transport layer 321 First layer 322 Second layer 501 First electrode 502 Second electrode 511 First light-emitting unit 512 Second light-emitting unit 513 Charge generation layer 601 Source side driving circuit 602 Pixel portion 603 Gate side driving circuit 604 Sealing substrate 605 Sealing material 607 Space 608 Lead wiring 609 FPC (flexible printed circuit)
610 Element substrate 611 TFT for switching
612 Current control TFT
613 First electrode 614 Insulator 616 EL layer 617 Second electrode 618 Light emitting element 623 N-channel TFT
624 P-channel TFT
901 Case 902 Liquid crystal layer 903 Backlight 904 Case 905 Driver IC
906 Terminal 951 Substrate 952 Electrode 953 Insulating layer 954 Partition layer 955 EL layer 956 Electrode 2001 Housing 2002 Light source 2101 Glass substrate 2102 First electrode 2103 Layer 2 containing composite material Hole transport layer 2105 Light emitting layer 2106 Electron transport layer 2107 Electron Injection layer 2108 Second electrode 2121 First light-emitting layer 2122 Second light-emitting layer 3001 Lighting device 3002 Television device 9101 Case 9102 Support base 9103 Display portion 9104 Speaker portion 9105 Video input terminal 9201 Main body 9202 Case 9203 Display portion 9204 Keyboard 9205 External connection port 9206 Pointing mouse 9401 Main body 9402 Case 9403 Display unit 9404 Audio input unit 9405 Audio output unit 9406 Operation key 9407 External connection port 9408 Antenna 95 01 Main body 9502 Display unit 9503 Case 9504 External connection port 9505 Remote control receiving unit 9506 Image receiving unit 9507 Battery 9508 Audio input unit 9509 Operation key 9510 Eyepiece unit

Claims (7)

陽極と陰極との間に、発光層を有し、
前記発光層は、第1の層と第2の層とを有し、
前記第1の層は、第1の有機化合物と、第2の有機化合物とを有し、
前記第2の層は、第3の有機化合物と、第4の有機化合物とを有し、
前記第1の層は、前記第2の層に接し、前記第2の層と前記陽極との間に設けられており、
前記第1の有機化合物は発光性を有し、
前記第2の有機化合物は電子輸送性を有し、
前記第3の有機化合物は発光性及び電子トラップ性を有し、
前記第4の有機化合物は電子輸送性を有することを特徴とする発光素子。
Between the anode and cathode, has a light emitting layer,
The light emitting layer has a first layer and a second layer,
The first layer has a first organic compound and a second organic compound,
The second layer has a third organic compound and a fourth organic compound,
The first layer is in contact with the second layer and is provided between the second layer and the anode;
The first organic compound has a light-emitting property;
The second organic compound has an electron transport property,
The third organic compound has a light emitting property and an electron trapping property,
The light-emitting element, wherein the fourth organic compound has an electron transporting property.
陽極と陰極との間に、発光層を有し、
前記発光層は、第1の層と第2の層とを有し、
前記第1の層は、第1の有機化合物と、第2の有機化合物とを有し、
前記第2の層は、第3の有機化合物と、第4の有機化合物とを有し、
前記第1の層は、前記第2の層に接し、前記第2の層と前記陽極との間に設けられており、
前記第1の有機化合物は発光性を有し、
前記第2の有機化合物は電子輸送性を有し、
前記第3の有機化合物は発光性及び第4の有機化合物の最低空軌道準位より0.3eV以上低い最低空軌道準位を有し、
前記第4の有機化合物は電子輸送性を有することを特徴とする発光素子。
Between the anode and cathode, has a light emitting layer,
The light emitting layer has a first layer and a second layer,
The first layer has a first organic compound and a second organic compound,
The second layer has a third organic compound and a fourth organic compound,
The first layer is in contact with the second layer and is provided between the second layer and the anode;
The first organic compound has a light-emitting property;
The second organic compound has an electron transport property,
The third organic compound has a light emitting property and a lowest unoccupied orbital level lower by 0.3 eV or more than the lowest unoccupied orbital level of the fourth organic compound,
The light-emitting element, wherein the fourth organic compound has an electron transporting property.
請求項1又は請求項2において、
前記陽極と前記発光層との間に正孔輸送層を有し、
前記陰極と前記発光層との間に電子輸送層を有することを特徴とする発光素子。
In claim 1 or claim 2,
Having a hole transport layer between the anode and the light emitting layer;
A light emitting element comprising an electron transport layer between the cathode and the light emitting layer.
請求項1ないし請求項3のいずれか1項において、
前記第1の有機化合物の発光色と、前記第3の有機化合物の発光色とは、同じ色系統であることを特徴とする発光素子。
In any one of Claims 1 thru | or 3,
The light emitting element characterized in that the emission color of the first organic compound and the emission color of the third organic compound are the same color system.
請求項1ないし請求項4のいずれか1項において、
前記第1の有機化合物の発光スペクトルのピーク値と、前記第3の有機化合物の発光スペクトルのピーク値の差は30nm以内であることを特徴とする発光素子。
In any one of Claims 1 thru | or 4,
The difference between the peak value of the emission spectrum of the first organic compound and the peak value of the emission spectrum of the third organic compound is within 30 nm.
請求項1ないし請求項5のいずれか1項に記載の発光素子を有する発光装置。   A light-emitting device comprising the light-emitting element according to claim 1. 請求項1ないし請求項5のいずれか1項に記載の発光素子を有する照明装置。   An illuminating device comprising the light emitting element according to any one of claims 1 to 5.
JP2007142822A 2006-06-02 2007-05-30 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE Active JP5031445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142822A JP5031445B2 (en) 2006-06-02 2007-05-30 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006155159 2006-06-02
JP2006155159 2006-06-02
JP2007142822A JP5031445B2 (en) 2006-06-02 2007-05-30 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012135859A Division JP5443545B2 (en) 2006-06-02 2012-06-15 Light emitting element, light emitting module, lighting device, electronic device

Publications (3)

Publication Number Publication Date
JP2008010410A JP2008010410A (en) 2008-01-17
JP2008010410A5 JP2008010410A5 (en) 2010-07-08
JP5031445B2 true JP5031445B2 (en) 2012-09-19

Family

ID=39068401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142822A Active JP5031445B2 (en) 2006-06-02 2007-05-30 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE

Country Status (1)

Country Link
JP (1) JP5031445B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205584B2 (en) * 2006-09-06 2013-06-05 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device and display device
KR101115154B1 (en) 2008-05-23 2012-02-24 주식회사 엘지화학 Organic light emitting diode and method for fabricating the same
GB0906554D0 (en) * 2009-04-16 2009-05-20 Cambridge Display Tech Ltd Organic electroluminescent device
JPWO2016072246A1 (en) * 2014-11-04 2017-08-17 コニカミノルタ株式会社 Organic electroluminescence device
WO2017025843A1 (en) * 2015-08-07 2017-02-16 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting apparatus, electronic device, display apparatus, and illumination apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068057A (en) * 1998-06-12 2000-03-03 Idemitsu Kosan Co Ltd Organic electroluminescent element
JP2005038763A (en) * 2003-07-17 2005-02-10 Nippon Seiki Co Ltd Organic el panel
JP4916137B2 (en) * 2004-07-29 2012-04-11 三洋電機株式会社 Organic electroluminescence device

Also Published As

Publication number Publication date
JP2008010410A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
US11631826B2 (en) Light-emitting element, light-emitting device, and electronic device
JP7397135B2 (en) Light emitting elements, light emitting devices and electronic equipment
EP1876659B1 (en) Light-emitting element, ligth-emitting device, and electronic device
KR101488756B1 (en) Light-emitting device, and electronic device
JP5031445B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120627

R150 Certificate of patent or registration of utility model

Ref document number: 5031445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250