JP5030928B2 - Outdoor structure and method for estimating deterioration of outdoor structure components - Google Patents

Outdoor structure and method for estimating deterioration of outdoor structure components Download PDF

Info

Publication number
JP5030928B2
JP5030928B2 JP2008308008A JP2008308008A JP5030928B2 JP 5030928 B2 JP5030928 B2 JP 5030928B2 JP 2008308008 A JP2008308008 A JP 2008308008A JP 2008308008 A JP2008308008 A JP 2008308008A JP 5030928 B2 JP5030928 B2 JP 5030928B2
Authority
JP
Japan
Prior art keywords
corrosion sensor
deterioration
corrosion
outdoor structure
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008308008A
Other languages
Japanese (ja)
Other versions
JP2010133748A (en
Inventor
晋作 土橋
千幸人 塚原
一弘 竹田
靖 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008308008A priority Critical patent/JP5030928B2/en
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to PCT/JP2009/066641 priority patent/WO2010064481A1/en
Priority to EP09830249A priority patent/EP2354780A1/en
Priority to US13/122,206 priority patent/US20110175633A1/en
Priority to BRPI0917685A priority patent/BRPI0917685A2/en
Priority to CN2009801328434A priority patent/CN102132142A/en
Priority to CA2734388A priority patent/CA2734388A1/en
Priority to KR1020117003655A priority patent/KR101189409B1/en
Priority to AU2009323495A priority patent/AU2009323495B2/en
Publication of JP2010133748A publication Critical patent/JP2010133748A/en
Application granted granted Critical
Publication of JP5030928B2 publication Critical patent/JP5030928B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は、塩害の経時変化を常に監視しつつ、塩害を未然に防ぐことができる屋外構造物に関する。   The present invention relates to an outdoor structure that can prevent salt damage in advance while constantly monitoring changes in salt damage over time.

例えば風車等の屋外構造物は、海上や沿岸で設置するので、風車の内部に設けたトランス、制御盤等が塩害により腐食することが懸念されている。
そのため、装置内部の材質、塗装に即した塩害予測が必要となってきている。
For example, since outdoor structures such as windmills are installed on the sea or on the coast, there is a concern that transformers, control panels, and the like provided inside the windmill may be corroded by salt damage.
For this reason, it is necessary to predict salt damage according to the material inside the device and the coating.

その評価方法としてJISZ2371「塩水噴霧試験方法」及びJISK5621「複合サイクル試験」等が確立されている(非特許文献1、2)。   As evaluation methods thereof, JISZ2371 “salt spray test method”, JISK5621 “combined cycle test” and the like have been established (Non-patent Documents 1 and 2).

また、近年塩害腐食量を予測するセンサとして腐食センサの提案がある(特許文献2)。   In recent years, a corrosion sensor has been proposed as a sensor for predicting the amount of salt corrosion (Patent Document 2).

この腐食センサについて説明すると、二つの異種金属(基板と導電部)を互いに絶縁部で絶縁した状態とし、両者の端部を環境へ露出すると、その環境に応じて両金属間を水膜が連結するので腐食電流が流れる。この電流は卑な金属の腐食速度に対応するので、その腐食センサと用いられている。   Explaining this corrosion sensor: When two dissimilar metals (substrate and conductive part) are insulated from each other by insulating parts, and both ends are exposed to the environment, a water film is connected between the two metals according to the environment. Corrosion current flows. Since this current corresponds to the corrosion rate of a base metal, it is used with the corrosion sensor.

このセンサは、「大気腐食モニタ」(Atmospheric Corrosion Monitor)あるいはACM型腐食センサと称されている。
このセンサの一例を図6及び図7−1、7−2に示す。これらの図面に示すように、ACM型腐食センサ(以下、「腐食センサ」という。)110は、厚さ0.8mmの炭素鋼板を64mm×64mmに切り出し、基板111とした。この上に、厚膜IC用精密スクリーン印刷機を用いて絶縁ペースト(厚さ30〜35μm)の絶縁部112を塗布し、硬化させた。
続いて、導電ペースト(厚さ30〜40μm、フィラー:Ag)を、基板111との絶緑が保たれるように、絶縁部112のパターン上に積層印刷し、硬化させて導電部113とし、腐食センサを構成している(非特許文献3)。
そして、図7−2に示すように、湿度や海塩(塩化物イオン等)等の水膜114により、導電部113と基板111とが短絡して、Fe−Agのガルバニック対の腐食電流を電流計115で計測している。なお、116a、116bは端子である。
This sensor is called “Atmospheric Corrosion Monitor” or ACM type corrosion sensor.
An example of this sensor is shown in FIGS. 6, 7-1 and 7-2. As shown in these drawings, an ACM-type corrosion sensor (hereinafter referred to as “corrosion sensor”) 110 was formed as a substrate 111 by cutting a carbon steel plate having a thickness of 0.8 mm into 64 mm × 64 mm. On top of this, an insulating portion 112 of an insulating paste (thickness 30 to 35 μm) was applied and cured using a precision screen printer for thick film ICs.
Subsequently, a conductive paste (thickness 30 to 40 μm, filler: Ag) is laminated and printed on the pattern of the insulating portion 112 so as to maintain the greenness with the substrate 111, and cured to form the conductive portion 113. A corrosion sensor is configured (Non-patent Document 3).
Then, as shown in FIG. 7-2, the conductive portion 113 and the substrate 111 are short-circuited by the water film 114 such as humidity and sea salt (chloride ions or the like), and the corrosion current of the Fe-Ag galvanic pair is reduced. It is measured by an ammeter 115. Reference numerals 116a and 116b are terminals.

また、前記ACM型腐食センサを用いた、太陽光発電システム部材の塩害腐食量予測法が提案され、湿度と測定電流値及び海塩付着量との関係図より、付着海塩量を推定することが提案されている(非特許文献4)。   In addition, a method for predicting the amount of salt damage corrosion of solar power generation system members using the ACM type corrosion sensor is proposed, and the amount of attached sea salt is estimated from the relationship diagram between humidity, measured current value, and amount of sea salt attached. Has been proposed (Non-Patent Document 4).

特開2008−157647号公報JP 2008-157647 A JISZ2371JISZ2371 JISK5621JISK5621 http://www.nims.go.jp/mdss/corrosion/ACM/ACM1.htmhttp://www.nims.go.jp/mdss/corrosion/ACM/ACM1.htm 松下電工技法(Nov.2002) p79−85Matsushita Electric Works (Nov. 2002) p79-85

しかしながら、JISZ2371規格及びJISK5621規格試験においては、試験環境が実際の環境と一致していないので、試験精度が悪いという問題がある。   However, in the JISZ2371 standard test and the JISK5621 standard test, there is a problem that the test accuracy is poor because the test environment does not match the actual environment.

また、ACM型腐食センサを用いて、腐食電流から腐食の度合いを推定することはできるものの、屋外構成体を構成する各構成部材のほとんどの素材は、塗装が施されているので、その個々の塗装の塗膜の状況(塗膜の種類や塗膜の厚さ等)に応じた腐食の程度を適宜判断することができない、という問題がある。   Although the degree of corrosion can be estimated from the corrosion current using an ACM type corrosion sensor, most of the materials of each component constituting the outdoor component are painted, so the individual There is a problem that the degree of corrosion cannot be determined as appropriate according to the state of the coating film (the type of coating film, the thickness of the coating film, etc.).

すなわち、屋外構造体である例えば風車等においては、内部の発熱を防止するために、外気を導入しており、その外気に海塩が同伴される場合を考慮した現場の環境に応じた部材や部品のメンテナンスの時期を的確に把握することが切望されている。   That is, in an outdoor structure such as a windmill or the like, outside air is introduced to prevent internal heat generation, and members according to the environment of the site considering the case where sea salt is accompanied by the outside air. It is eager to accurately grasp the timing of parts maintenance.

本発明は、前記問題に鑑み、設置環境に応じた腐食の度合いを的確に判断することができる屋外構造物及び屋外構造物構成部材の劣化推定方法を提供することを課題とする。   This invention makes it a subject to provide the degradation estimation method of the outdoor structure which can determine the degree of corrosion according to an installation environment exactly, and an outdoor structure structural member in view of the said problem.

上述した課題を解決するための本発明の第1の発明は、外気環境に晒される構造物の外表面の少なくとも一箇所以上に、腐食電流を検知する腐食センサを備えてなり、前記腐食センサの基板が、構造物の各構成部材と同一の素材からなると共に、腐食センサの基板の表面に絶縁部を介して設けられる複数の導電部を覆うと共に、前記構造物の表面に亙って、前記構成部材に塗布した塗膜と同一の塗膜を塗布してなることを特徴とする屋外構造物にある。   According to a first aspect of the present invention for solving the above-mentioned problems, a corrosion sensor for detecting a corrosion current is provided at least at one or more locations on the outer surface of a structure exposed to the outside air environment. The substrate is made of the same material as each constituent member of the structure, covers a plurality of conductive portions provided on the surface of the substrate of the corrosion sensor via an insulating portion, and extends over the surface of the structure, It exists in the outdoor structure characterized by apply | coating the same coating film as the coating film apply | coated to the structural member.

第2の発明は、第1の発明において、前記腐食センサに、紫外線ランプから紫外線を照射してなることを特徴とする屋外構造物にある。   According to a second invention, there is provided an outdoor structure according to the first invention, wherein the corrosion sensor is irradiated with ultraviolet rays from an ultraviolet lamp.

第3の発明は、第1の発明において、前記腐食センサが、構造物の外表面に水平状態に設置されたすり鉢状の窪み部に設置され、前記塗膜が、複数の導電部を覆うと共にすり鉢状表面と構造物表面とに亙って塗布してなることを特徴とする屋外構造物にある。   According to a third invention, in the first invention, the corrosion sensor is installed in a mortar-shaped depression portion installed horizontally on the outer surface of the structure, and the coating film covers a plurality of conductive portions. An outdoor structure characterized by being applied over a mortar-shaped surface and a structure surface.

第4の発明は、第1乃至3のいずれか一つにおいて、前記屋外構造物が風力発電装置であることを特徴とする屋外構造物にある。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the outdoor structure is a wind power generator.

第5の発明は、外気環境に晒される構造物の外表面の少なくとも一箇所以上に、腐食電流を検知する腐食センサを備えてなり、前記腐食センサの基板が、構造物の各構成部材と同一の素材からなると共に、腐食センサの基板の表面に絶縁部を介して設けられる複数の導電部を覆うと共に、前記構造物の表面に亙って、前記構成部材に塗布した塗膜と同一の塗膜を塗布し、経時変化の劣化により各構成部材の劣化度合いを推定することを特徴とする屋外構造物構成部材の劣化推定方法にある。   5th invention is equipped with the corrosion sensor which detects a corrosion current in at least 1 or more places of the outer surface of the structure exposed to external air environment, and the board | substrate of the said corrosion sensor is the same as each structural member of a structure And covering a plurality of conductive parts provided on the surface of the substrate of the corrosion sensor via an insulating part, and covering the surface of the structure with the same coating as the coating applied to the constituent members. An outdoor structure constituent member deterioration estimation method is characterized in that a film is applied and the degree of deterioration of each constituent member is estimated based on deterioration over time.

第6の発明は、第5の発明において、劣化加速試験により劣化を事前に推定することを特徴とする屋外構造物構成部材の劣化推定方法にある。   According to a sixth aspect of the present invention, in the fifth aspect of the invention, there is provided a deterioration estimation method for an outdoor structure constituent member, wherein deterioration is estimated in advance by a deterioration acceleration test.

本発明によれば、海塩、雨水等の腐食性因子の作用による経時変化により、各構成材料に塗布したのと同一の塗膜に亀裂等が発生し、劣化部が形成され、雨水が浸入し、腐食電流が流れ、これにより各構成部材の塗膜の劣化度合いを判断することができる。この結果、屋外構造物の構成部材の個々の材料に応じた素材、塗料の評価を個別に行うことができる。   According to the present invention, due to changes over time due to the action of corrosive factors such as sea salt and rainwater, cracks and the like occur in the same coating film applied to each constituent material, a deteriorated part is formed, and rainwater enters. However, a corrosion current flows, and thereby the degree of deterioration of the coating film of each constituent member can be determined. As a result, it is possible to individually evaluate the materials and paints corresponding to the individual materials of the constituent members of the outdoor structure.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

本発明による実施例1に係る屋外構造物について、図面を参照して説明する。
図1−1は、実施例1に係る腐食センサの概略図である。図1−2は、腐食時における概略図である。図2は、実施例1に係る腐食センサの平面図である。図3は、屋外構造物の一例である風力発電装置の概略図である。
これらの図面に示すように、本実施例に係る腐食センサ11Aは、その基板12が、構造物である例えば風力発電装置100の各構成部材(例えば発電機104)の材料と同一の材料13A…からなると共に、腐食センサ11の基板12の表面に絶縁部14を介して設けられる複数の導電部15を覆うと共に、前記風力発電装置100のタワー102の外表面102aに亙って、前記構成部材(例えば発電機104)に塗布した塗膜16Aと同一の塗膜16Aを塗布してなるものである。
An outdoor structure according to Embodiment 1 of the present invention will be described with reference to the drawings.
1-1 is a schematic diagram of a corrosion sensor according to Example 1. FIG. FIG. 1-2 is a schematic view during corrosion. FIG. 2 is a plan view of the corrosion sensor according to the first embodiment. FIG. 3 is a schematic view of a wind turbine generator that is an example of an outdoor structure.
As shown in these drawings, the corrosion sensor 11A according to the present embodiment has the same material 13A as the material of each component (for example, the generator 104) of the wind power generator 100 whose substrate 12 is a structure. And covering the plurality of conductive portions 15 provided on the surface of the substrate 12 of the corrosion sensor 11 via the insulating portion 14 and over the outer surface 102a of the tower 102 of the wind turbine generator 100, A coating film 16A identical to the coating film 16A applied to (for example, the generator 104) is applied.

ここで、図3に示す風力発電装置100について説明する。図3に示すように、風力発電装置100は、例えば地上部101に設置されたタワー102と、タワー102の上端に設けられたナセル103とを備えている。ナセル103は、ヨー方向に旋回可能であり、図示しないナセル旋回機構によって所望の方向に向けられる。ナセル103には、発電機104と増速機105とが搭載されている。発電機104のロータは、増速機105を介して風車ロータ106の主軸107に接合されている。風車ロータ106は、主軸107に接続されたハブ108と、ハブ108に取り付けられた翼109とを備えている。
ここで、本実施例においては、発電機104の材料を13A、その塗膜を16Aとし、増速機105の材料を13B、その塗膜を16Bとしている。
Here, the wind power generator 100 shown in FIG. 3 will be described. As shown in FIG. 3, the wind power generator 100 includes a tower 102 installed on the ground portion 101, for example, and a nacelle 103 provided on the upper end of the tower 102. The nacelle 103 can turn in the yaw direction and is directed in a desired direction by a nacelle turning mechanism (not shown). The nacelle 103 is equipped with a generator 104 and a speed increaser 105. The rotor of the generator 104 is joined to the main shaft 107 of the wind turbine rotor 106 via the speed increaser 105. The windmill rotor 106 includes a hub 108 connected to the main shaft 107 and blades 109 attached to the hub 108.
Here, in this embodiment, the material of the generator 104 is 13A, the coating film is 16A, the material of the speed increaser 105 is 13B, and the coating film is 16B.

具体的な設置は、図3に示すように、腐食センサ11A−1は、タワー102の表面に設置され、その表面を覆うように、例えば発電機の塗膜16Aを塗布している。
また、腐食センサ11A−2は、タワー102の表面に設置され、その表面を覆うように、例えば増速機の塗膜16Bを塗布している。
Specifically, as shown in FIG. 3, the corrosion sensor 11 </ b> A- 1 is installed on the surface of the tower 102 and, for example, a coating film 16 </ b> A of a generator is applied so as to cover the surface.
Moreover, corrosion sensor 11A-2 is installed in the surface of the tower 102, and coats the coating film 16B of a gear box, for example so that the surface may be covered.

そして、外気に晒された結果、海塩、雨水等の腐食性因子19の作用による経時変化により、塗膜16A又は16Bに亀裂等が発生し、劣化部20が形成される。この劣化部20から、雨水が浸入して導電部15と基板12とが短絡して、腐食電流が流れ、電流計18の計測により劣化を判断することができる。符号17a、17bは端子を図示する。   As a result of exposure to the outside air, cracks or the like occur in the coating film 16A or 16B due to the change over time due to the action of the corrosive factor 19 such as sea salt, rainwater, etc., and the deteriorated portion 20 is formed. From this deteriorated portion 20, rainwater enters, the conductive portion 15 and the substrate 12 are short-circuited, a corrosion current flows, and deterioration can be determined by measurement by the ammeter 18. Reference numerals 17a and 17b denote terminals.

このように、腐食電流が検知されるまでの期間において、構造体である風力発電装置100の構成部材の個々の材料に応じた素材、塗料の評価を個別に行うことができる。よって、各構成部材に対応した塗膜16A、16B…を塗布したセンサを準備することにより、各構成部材の各塗膜16A、16B…の劣化の度合いを判断することができる。
その結果、構造物の建築計画や、そのメンテナンス作業の計画を構築することができる。
In this way, during the period until the corrosion current is detected, the evaluation of the materials and paints corresponding to the individual materials of the constituent members of the wind power generator 100 that is the structure can be performed individually. Therefore, it is possible to determine the degree of deterioration of each coating film 16A, 16B,... Of each constituent member by preparing a sensor coated with the coating films 16A, 16B,.
As a result, a construction plan for the structure and a plan for the maintenance work can be constructed.

また、本発明の屋外構造物構成部材の劣化推定方法は、前記腐食センサ11Aを用いて、前記材料13Aに塗布した塗膜16Aと同一の塗膜16Aを塗布し、経時変化の劣化により各構成部材の劣化度合いを推定するものである。
この推定結果により、構造物の建築計画や、そのメンテナンス作業の計画を構築することができる。
In addition, the deterioration estimation method of the outdoor structure constituent member of the present invention applies the coating film 16A identical to the coating film 16A applied to the material 13A using the corrosion sensor 11A, and each component is deteriorated by deterioration over time. The degree of deterioration of the member is estimated.
Based on this estimation result, it is possible to construct a construction plan for the structure and a plan for its maintenance work.

本発明による実施例2について、図面を参照して説明する。図4は、実施例2に係る腐食センサの概略図である。図4に示すように、本実施例に係る腐食センサ11Bは、塗膜16Aが塗布された表面に、紫外線照射部20からの紫外線を照射して、加速試験を行うものである。   A second embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a schematic diagram of a corrosion sensor according to the second embodiment. As shown in FIG. 4, the corrosion sensor 11 </ b> B according to the present example performs an acceleration test by irradiating the surface coated with the coating film 16 </ b> A with ultraviolet rays from the ultraviolet irradiation unit 20.

一般に塗料は紫外線を照射すると、樹脂の有機結合のネットワークが遮断され、劣化が加速することとなる。これにより、塗膜の劣化の度合いを判断することができる。   In general, when a paint is irradiated with ultraviolet rays, the organic bond network of the resin is cut off and the deterioration is accelerated. Thereby, the degree of deterioration of the coating film can be determined.

これは通常の塗料の劣化加速試験は、海塩等の外因がない環境での紫外線の暴露試験であるのに対し、本発明による劣化加速試験は、その外部構造物が設置された現場において、実環境に応じた劣化加速試験を行うことができるので、より精度の高い判断を行うことができることとなる。   This is because the normal accelerated coating deterioration test is an ultraviolet light exposure test in an environment where there is no external cause such as sea salt, whereas the accelerated deterioration test according to the present invention is performed at the site where the external structure is installed. Since the deterioration acceleration test according to the actual environment can be performed, more accurate judgment can be performed.

図5は他の劣化加速試験の一例であり、構造物の水平部分に設置されたすり鉢体31のすり鉢状部32に設置され、前記塗膜16Aが、複数の導電部15を覆うと共にすり鉢状部32の表面と構造物表面とに亙って塗布してなるものである。   FIG. 5 shows an example of another deterioration acceleration test, which is installed in a mortar-shaped portion 32 of a mortar body 31 installed in a horizontal portion of a structure, and the coating film 16A covers a plurality of conductive portions 15 and forms a mortar shape. It is applied over the surface of the portion 32 and the surface of the structure.

この結果、すり鉢状の窪み部近傍には常に腐食性因子19が溜まった状態(特に海塩成分のNaイオン、Mgイオン等が濃縮された状態となる。)となるので、塗膜16Aに対してより腐食が進行することとなる。   As a result, the corrosive factor 19 is always accumulated in the vicinity of the mortar-shaped depression (particularly, the sea salt components such as Na ions and Mg ions are concentrated), so that the coating film 16A is in contact. Corrosion will progress further.

これにより、塗膜16Aの劣化が加速することとなる。
よって、各構成部材に対応した塗膜16A、16B…を塗布したセンサを準備することにより、各構成部材の各塗膜16A、16B…の劣化の度合いを判断することができる。
Thereby, deterioration of the coating film 16A is accelerated.
Therefore, it is possible to determine the degree of deterioration of each coating film 16A, 16B,... Of each constituent member by preparing a sensor coated with the coating films 16A, 16B,.

以上は、本発明の屋外構造物として、例えば風力発電装置を用いて説明したが、本発明はこれに限定されるものではなく、海岸等の塩害対策が必要な例えば橋梁設備や太陽電池設備等にも適用することができる。さらに、車両、船舶等の移動体の塩害対策に適用することもできる。   The above has been described by using, for example, a wind power generator as the outdoor structure of the present invention, but the present invention is not limited to this, and bridge facilities, solar cell facilities, etc. that require countermeasures against salt damage on the coast, etc. It can also be applied to. Furthermore, it can also be applied to salt damage countermeasures for moving bodies such as vehicles and ships.

以上のように、本発明に係る屋外構造物は、各構成部材の材料に塗布した塗膜と同一の塗膜を塗布し、その経時変化の劣化により各構成部材の劣化度合いを推定することができ、例えば風力発電装置の構成部材の劣化の判断に用いて適している。   As described above, the outdoor structure according to the present invention can apply the same coating film as the coating applied to the material of each constituent member, and estimate the degree of deterioration of each constituent member based on the deterioration over time. For example, it is suitable for use in determining deterioration of components of the wind power generator.

実施例1に係る腐食センサの概略図である。1 is a schematic view of a corrosion sensor according to Example 1. FIG. 腐食時における概略図である。It is the schematic at the time of corrosion. 実施例1に係る腐食センサの平面図である。1 is a plan view of a corrosion sensor according to Example 1. FIG. 屋外構造物の一例である風力発電装置の概略図である。It is the schematic of the wind power generator which is an example of an outdoor structure. 実施例2に係る腐食センサの概略図である。6 is a schematic view of a corrosion sensor according to Example 2. FIG. 実施例2に係る他の腐食センサの概略図である。6 is a schematic view of another corrosion sensor according to Embodiment 2. FIG. 従来技術に係る腐食センサの平面図である。It is a top view of the corrosion sensor which concerns on a prior art. 従来技術に係る腐食センサの概略図である。It is the schematic of the corrosion sensor which concerns on a prior art. 従来技術の腐食時における概略図である。It is the schematic at the time of the corrosion of a prior art.

符号の説明Explanation of symbols

11A、11A−1、11A−2、11B 腐食センサ
12 基板
13A、13B 材料
14 絶縁部
15 導電部
16A、16B 塗膜
19 腐食性因子
11A, 11A-1, 11A-2, 11B Corrosion sensor 12 Substrate 13A, 13B Material 14 Insulating part 15 Conductive part 16A, 16B Coating 19 Corrosive factor

Claims (6)

外気環境に晒される構造物の外表面の少なくとも一箇所以上に、腐食電流を検知する腐食センサを備えてなり、
前記腐食センサの基板が、構造物の各構成部材と同一の素材からなると共に、
腐食センサの基板の表面に絶縁部を介して設けられる複数の導電部を覆うと共に、前記構造物の表面に亙って、前記構成部材に塗布した塗膜と同一の塗膜を塗布してなることを特徴とする屋外構造物。
At least one location on the outer surface of the structure exposed to the outside air environment is equipped with a corrosion sensor that detects the corrosion current,
The substrate of the corrosion sensor is made of the same material as each component of the structure,
A plurality of conductive portions provided on the surface of the corrosion sensor substrate via insulating portions are covered, and the same coating film as that applied to the component member is applied over the surface of the structure. An outdoor structure characterized by that.
請求項1において、
前記腐食センサに、紫外線ランプから紫外線を照射してなることを特徴とする屋外構造物。
In claim 1,
An outdoor structure, wherein the corrosion sensor is irradiated with ultraviolet rays from an ultraviolet lamp.
請求項1において、
前記腐食センサが、構造物の外表面に水平状態に設置されたすり鉢状の窪み部に設置され、
前記塗膜が、複数の導電部を覆うと共にすり鉢状表面と構造物表面とに亙って塗布してなることを特徴とする屋外構造物。
In claim 1,
The corrosion sensor is installed in a mortar-shaped depression placed horizontally on the outer surface of the structure,
An outdoor structure characterized in that the coating film covers a plurality of conductive parts and is applied over a mortar surface and a structure surface.
請求項1乃至3のいずれか一つにおいて、
前記屋外構造物が風力発電装置であることを特徴とする屋外構造物。
In any one of Claims 1 thru | or 3,
The outdoor structure is a wind power generator.
外気環境に晒される構造物の外表面の少なくとも一箇所以上に、腐食電流を検知する腐食センサを備えてなり、
前記腐食センサの基板が、構造物の各構成部材と同一の素材からなると共に、
腐食センサの基板の表面に絶縁部を介して設けられる複数の導電部を覆うと共に、前記構造物の表面に亙って、前記構成部材に塗布した塗膜と同一の塗膜を塗布し、経時変化の劣化により各構成部材の劣化度合いを推定することを特徴とする屋外構造物構成部材の劣化推定方法。
At least one location on the outer surface of the structure exposed to the outside air environment is equipped with a corrosion sensor that detects the corrosion current,
The substrate of the corrosion sensor is made of the same material as each component of the structure,
A plurality of conductive parts provided on the surface of the substrate of the corrosion sensor via insulating parts are covered, and the same coating film as that applied to the component member is applied over the surface of the structure. A deterioration estimation method for an outdoor structure component member, wherein the deterioration degree of each component member is estimated based on deterioration of change.
請求項5において、
劣化加速試験により劣化を事前に推定することを特徴とする屋外構造物構成部材の劣化推定方法。
In claim 5,
A deterioration estimation method for an outdoor structure constituent member, wherein deterioration is estimated in advance by a deterioration acceleration test.
JP2008308008A 2008-12-02 2008-12-02 Outdoor structure and method for estimating deterioration of outdoor structure components Expired - Fee Related JP5030928B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2008308008A JP5030928B2 (en) 2008-12-02 2008-12-02 Outdoor structure and method for estimating deterioration of outdoor structure components
EP09830249A EP2354780A1 (en) 2008-12-02 2009-09-25 Outdoor structure and method of estimating deterioration of component member of outdoor structure
US13/122,206 US20110175633A1 (en) 2008-12-02 2009-09-25 Outdoor structure and method of estimating deterioration of constituent member of outdoor structure
BRPI0917685A BRPI0917685A2 (en) 2008-12-02 2009-09-25 external structure, and methods for estimating deterioration of a constituent element of an external structure, and for monitoring the life of a constituent element of an external structure.
PCT/JP2009/066641 WO2010064481A1 (en) 2008-12-02 2009-09-25 Outdoor structure and method of estimating deterioration of component member of outdoor structure
CN2009801328434A CN102132142A (en) 2008-12-02 2009-09-25 Outdoor structure and method of estimating deterioration of component member of outdoor structure
CA2734388A CA2734388A1 (en) 2008-12-02 2009-09-25 Outdoor structure and method of estimating deterioration of constituent member of outdoor structure
KR1020117003655A KR101189409B1 (en) 2008-12-02 2009-09-25 Outdoor structure and method of estimating deterioration of component member of outdoor structure
AU2009323495A AU2009323495B2 (en) 2008-12-02 2009-09-25 Outdoor structure and method of estimating deterioration of component member of outdoor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008308008A JP5030928B2 (en) 2008-12-02 2008-12-02 Outdoor structure and method for estimating deterioration of outdoor structure components

Publications (2)

Publication Number Publication Date
JP2010133748A JP2010133748A (en) 2010-06-17
JP5030928B2 true JP5030928B2 (en) 2012-09-19

Family

ID=42345190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008308008A Expired - Fee Related JP5030928B2 (en) 2008-12-02 2008-12-02 Outdoor structure and method for estimating deterioration of outdoor structure components

Country Status (1)

Country Link
JP (1) JP5030928B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083254A (en) * 2010-10-13 2012-04-26 Idemitsu Kosan Co Ltd Deterioration degree evaluation method for lubricant
JP5331155B2 (en) * 2011-04-28 2013-10-30 三菱重工業株式会社 Battery system
JP2018071986A (en) * 2016-10-24 2018-05-10 太平洋セメント株式会社 Management member, steel structure, degradation detection method and degradation estimation method
JP2019200142A (en) 2018-05-16 2019-11-21 マツダ株式会社 Moisture sensor and corrosion test method using the same
JP2019200141A (en) 2018-05-16 2019-11-21 マツダ株式会社 Moisture sensor and corrosion test method using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454244A (en) * 1987-08-25 1989-03-01 Honda Motor Co Ltd Sensor for measuring corrosion capacity of corrosive environment
JPH07113740A (en) * 1993-10-18 1995-05-02 Hitachi Ltd Corrosion monitoring card and corrosion monitoring method
US6809506B2 (en) * 2001-03-26 2004-10-26 The United States Of America As Represented By The Secretary Of The Navy Corrosion sensor loudspeaker for active noise control
JP2005214766A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Corrosion detection device
JP4447448B2 (en) * 2004-12-27 2010-04-07 新日鐵住金ステンレス株式会社 Corrosion diagnosis method

Also Published As

Publication number Publication date
JP2010133748A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP5030929B2 (en) Method for monitoring the life of components of outdoor structures
JP5030928B2 (en) Outdoor structure and method for estimating deterioration of outdoor structure components
KR101189409B1 (en) Outdoor structure and method of estimating deterioration of component member of outdoor structure
US20110012628A1 (en) Corrosion detecting apparatus and outdoor structure
TWI778111B (en) Supporting system for offshore wind turbine and protectin method thereof and catholic protection system and use thereof for protecting the supporting system
US9429264B2 (en) Wear indicator system for offshore corrosion protection covering systems
EP2497946A1 (en) Method and arrangement for detecting a blade pitch angle misalignment of a rotor blade system of a wind turbine
CN111164303B (en) Use of new material in wind turbine components and devices and method thereof
JP2011021988A (en) Corrosion detector and outdoor structure
JP5101473B2 (en) Outdoor structure
JP6864067B2 (en) Wind turbine coating monitoring system and its operation method
JP2011021951A (en) Corrosive-environment monitoring device and method
JP2011033470A (en) Corrosion detection device, outdoor structure, and corrosion countermeasure method of the same
JP2005016417A (en) Wind state observation device for horizontal axis wind turbine and performance evaluation method of horizontal axis wind turbine
Plagemann et al. Corrosion protection of offshore wind energy constructions in Germany: Challenges and approaches
JP2011137760A (en) Outdoor structure
JP2011137759A (en) Outdoor structure
WO2020170830A1 (en) Corrosion prevention device
US11168665B2 (en) Wind turbine working platform
TWI636245B (en) System and method for monitoring metal collision
CN106442285A (en) Corrosion testing method for anti-corrosion protection capability of exposed part of lower surface of aircraft
US8115359B2 (en) Modular life extension kit for a wind turbine generator support frame
JP2017146243A (en) Structure accretion detection device and steel tower corrosion management system
Recker State of the art: Corrosion protection for offshore wind turbines
Imamura et al. Performance Evaluation of a WTGS in Complex Terrain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees