JP5029857B1 - Acid oil-in-water emulsified food - Google Patents
Acid oil-in-water emulsified food Download PDFInfo
- Publication number
- JP5029857B1 JP5029857B1 JP2012504979A JP2012504979A JP5029857B1 JP 5029857 B1 JP5029857 B1 JP 5029857B1 JP 2012504979 A JP2012504979 A JP 2012504979A JP 2012504979 A JP2012504979 A JP 2012504979A JP 5029857 B1 JP5029857 B1 JP 5029857B1
- Authority
- JP
- Japan
- Prior art keywords
- oil
- water emulsified
- egg white
- temperature
- emulsified food
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 235000013305 food Nutrition 0.000 title claims abstract description 96
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 93
- 239000002253 acid Substances 0.000 title abstract description 8
- 102000002322 Egg Proteins Human genes 0.000 claims abstract description 107
- 108010000912 Egg Proteins Proteins 0.000 claims abstract description 107
- 230000002378 acidificating effect Effects 0.000 claims abstract description 87
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 claims abstract description 82
- 235000014103 egg white Nutrition 0.000 claims abstract description 64
- 210000000969 egg white Anatomy 0.000 claims abstract description 64
- 210000002969 egg yolk Anatomy 0.000 claims abstract description 38
- 235000013345 egg yolk Nutrition 0.000 claims abstract description 37
- 239000007787 solid Substances 0.000 claims abstract description 19
- 238000005259 measurement Methods 0.000 claims abstract description 12
- 239000008157 edible vegetable oil Substances 0.000 claims abstract description 11
- 239000003921 oil Substances 0.000 claims description 36
- 239000002562 thickening agent Substances 0.000 claims description 23
- 230000008859 change Effects 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 17
- 239000003925 fat Substances 0.000 claims description 15
- 238000003860 storage Methods 0.000 abstract description 23
- 238000005336 cracking Methods 0.000 abstract description 10
- 235000010746 mayonnaise Nutrition 0.000 abstract description 6
- 239000008268 mayonnaise Substances 0.000 abstract description 6
- 239000003795 chemical substances by application Substances 0.000 abstract description 5
- 235000014593 oils and fats Nutrition 0.000 abstract description 4
- 235000019198 oils Nutrition 0.000 description 33
- 102000004169 proteins and genes Human genes 0.000 description 19
- 108090000623 proteins and genes Proteins 0.000 description 19
- 238000000926 separation method Methods 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 16
- 230000000694 effects Effects 0.000 description 14
- 230000002265 prevention Effects 0.000 description 11
- 229920002472 Starch Polymers 0.000 description 8
- 238000004925 denaturation Methods 0.000 description 7
- 230000036425 denaturation Effects 0.000 description 7
- 235000019698 starch Nutrition 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 6
- 238000007710 freezing Methods 0.000 description 6
- 230000008014 freezing Effects 0.000 description 6
- -1 glycerin fatty acid ester Chemical class 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000008107 starch Substances 0.000 description 6
- 239000000052 vinegar Substances 0.000 description 6
- 235000021419 vinegar Nutrition 0.000 description 6
- 239000008346 aqueous phase Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 241000219198 Brassica Species 0.000 description 4
- 235000003351 Brassica cretica Nutrition 0.000 description 4
- 235000003343 Brassica rupestris Nutrition 0.000 description 4
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- PXEDJBXQKAGXNJ-QTNFYWBSSA-L disodium L-glutamate Chemical compound [Na+].[Na+].[O-]C(=O)[C@@H](N)CCC([O-])=O PXEDJBXQKAGXNJ-QTNFYWBSSA-L 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 235000013923 monosodium glutamate Nutrition 0.000 description 4
- 235000010460 mustard Nutrition 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 229940073490 sodium glutamate Drugs 0.000 description 4
- 239000000230 xanthan gum Substances 0.000 description 4
- 229920001285 xanthan gum Polymers 0.000 description 4
- 235000010493 xanthan gum Nutrition 0.000 description 4
- 229940082509 xanthan gum Drugs 0.000 description 4
- 102100037611 Lysophospholipase Human genes 0.000 description 3
- 108010058864 Phospholipases A2 Proteins 0.000 description 3
- 235000019484 Rapeseed oil Nutrition 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000007764 o/w emulsion Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- RYCNUMLMNKHWPZ-SNVBAGLBSA-N 1-acetyl-sn-glycero-3-phosphocholine Chemical compound CC(=O)OC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C RYCNUMLMNKHWPZ-SNVBAGLBSA-N 0.000 description 2
- 239000004278 EU approved seasoning Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 235000019485 Safflower oil Nutrition 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 150000004665 fatty acids Chemical group 0.000 description 2
- 235000011194 food seasoning agent Nutrition 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 2
- 238000003505 heat denaturation Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 230000004845 protein aggregation Effects 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 235000005713 safflower oil Nutrition 0.000 description 2
- 239000003813 safflower oil Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- 235000002566 Capsicum Nutrition 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 102100031415 Hepatic triacylglycerol lipase Human genes 0.000 description 1
- 108010013563 Lipoprotein Lipase Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 239000004368 Modified starch Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 235000016761 Piper aduncum Nutrition 0.000 description 1
- 235000017804 Piper guineense Nutrition 0.000 description 1
- 244000203593 Piper nigrum Species 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 240000004584 Tamarindus indica Species 0.000 description 1
- 235000004298 Tamarindus indica Nutrition 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 235000013605 boiled eggs Nutrition 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000008344 egg yolk phospholipid Substances 0.000 description 1
- 229940068998 egg yolk phospholipid Drugs 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 150000004667 medium chain fatty acids Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 239000000419 plant extract Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 235000013599 spices Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229940100445 wheat starch Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23D—EDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
- A23D7/00—Edible oil or fat compositions containing an aqueous phase, e.g. margarines
- A23D7/01—Other fatty acid esters, e.g. phosphatides
- A23D7/011—Compositions other than spreads
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23D—EDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
- A23D7/00—Edible oil or fat compositions containing an aqueous phase, e.g. margarines
- A23D7/005—Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by ingredients other than fatty acid triglycerides
- A23D7/0053—Compositions other than spreads
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L15/00—Egg products; Preparation or treatment thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/60—Salad dressings; Mayonnaise; Ketchup
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Seasonings (AREA)
- Edible Oils And Fats (AREA)
Abstract
マヨネーズあるいはマヨネーズ様の半固体状乳化ドレッシング等として使用される酸性水中油型乳化食品が、食用油脂を5〜75質量%、変性卵白を固形分換算で0.3〜5質量%、リゾ化卵黄及び増粘剤を含有し、粘度(25℃)が50〜800Pa・sである。酸性水中油型乳化食品は、該酸性水中油型乳化食品を昇温速度2.5℃/分で25℃から75℃まで昇温させた場合の、測定周波数1Hzにおける温度25℃、75℃の複素粘性率(Pa・s)をそれぞれη* 25、η* 75とし、複素粘性率が最低となる温度(Tmin)での複素粘性率をη* minとしたときに、次式(1)、(2)を満たす。
TS1={(lnη* min−lnη* 25)/(Tmin−25)}×1000=−8〜−2 (1)
TS2={(lnη* 75−lnη* min)/(75−Tmin)}×1000=0〜15 (2)
この酸性水中油型乳化食品は、低温だけでなく高温における保存安定性が向上し、物流での搬送、保管期間中に亀裂が入ることが防止される。
【選択図】図1Acidified oil-in-water emulsified foods used as mayonnaise or mayonnaise-like semi-solid emulsified dressing, etc., edible oils and fats 5 to 75% by mass, denatured egg white 0.3 to 5% by mass, lysed egg yolk It contains a sticking agent and has a viscosity (25 ° C.) of 50 to 800 Pa · s. Acidic oil-in-water emulsified food is a complex viscosity with a temperature of 25 ° C and 75 ° C at a measurement frequency of 1 Hz when the acid oil-in-water emulsified food is heated from 25 ° C to 75 ° C at a temperature increase rate of 2.5 ° C / min. When the modulus (Pa · s) is η * 25 and η * 75 , respectively, and the complex viscosity at the temperature (T min ) at which the complex viscosity is lowest is η * min , the following equations (1) and ( Satisfy 2).
TS1 = {(lnη * min -lnη * 25) / (T min -25)} × 1000 = -8~-2 (1)
TS2 = {(lnη * 75 -lnη * min) / (75-T min)} × 1000 = 0~15 (2)
This acidic oil-in-water emulsified food has improved storage stability not only at a low temperature but also at a high temperature, and is prevented from cracking during transportation and storage in logistics.
[Selection] Figure 1
Description
本発明は、一時的に冷凍状態になったり40℃程度の高温状態になったりするなどの過酷な保管条件におかれた場合においても保存安定性に優れ、物流での搬送、保管適性に優れた酸性水中油型乳化食品に関する。 The present invention is excellent in storage stability even under severe storage conditions such as being temporarily frozen or in a high temperature state of about 40 ° C., and excellent in transport and storage in logistics. It relates to an acid oil-in-water emulsified food.
酸性水中油型乳化食品の代表的なものとして、マヨネーズや半固体状乳化ドレッシングがある。 Typical examples of acidic oil-in-water emulsified foods include mayonnaise and semi-solid emulsified dressings.
マヨネーズや半固体状乳化ドレッシングは、食用油脂と食酢等の酸剤とを乳化したものであり、乳化剤の主要材料としては、卵黄、全卵などが使用されている。これらは、乳化した油の油滴によりコクのある食味が好まれており、家庭などで保管して必要時に使用できるように容器詰めして市販されている。 Mayonnaise and semi-solid emulsified dressings are obtained by emulsifying edible oils and fats and acid agents such as vinegar, and egg yolk, whole eggs and the like are used as the main material of the emulsifier. These are favored for their rich taste due to the oil droplets of emulsified oil, and are marketed in containers so that they can be stored at home and used when needed.
一方、油相原料を低減させたマヨネーズ様酸性水中油型乳化食品において、4℃程度の低温保存中の亀裂の発生を防止する方法として、卵白及びホスフォリパーゼA処理卵黄(所謂リゾ化卵黄)を特定の割合で配合することにより保存安定性を向上させることが提案されている(特許文献1)。 On the other hand, in the mayonnaise-like acidic oil-in-water emulsified food with reduced oil phase raw material, egg white and phospholipase A-treated egg yolk (so-called lysified egg yolk) can be used as a method for preventing cracking during low-temperature storage at about 4 ° C. It has been proposed to improve storage stability by blending at a specific ratio (Patent Document 1).
しかしながら、特許文献1のマヨネーズ様酸性水中油型乳化食品は、リゾ化卵黄を使用することにより低温での亀裂防止効果は向上したものの、40℃程度の高温での亀裂防止効果は十分でなく、夏季の食品倉庫などの一時的に高温となる条件下で保管された際に亀裂や油分離が発生する場合があった。また、冷蔵保管された際に、冷蔵庫の冷気吹き出し口付近などで一時的に冷凍状態となる条件下におかれた場合に、乳化物に亀裂が発生する場合があり、過酷な保管条件における一層の亀裂防止や油分離の防止が望まれていた。 However, although the mayonnaise-like acidic oil-in-water emulsified food of Patent Document 1 has improved crack prevention effect at low temperature by using lysed egg yolk, crack prevention effect at high temperature of about 40 ° C is not sufficient, Cracks and oil separation may occur when stored under conditions of temporarily high temperatures, such as during food storage in summer. In addition, when stored under refrigeration conditions, cracks may occur in the emulsion when placed in a condition where it is temporarily frozen near the cold air outlet of the refrigerator. It has been desired to prevent cracking and oil separation.
本発明は、マヨネーズあるいはマヨネーズ様の半固体状乳化ドレッシングといった酸性水中油型食品が、一時的に冷凍状態になったり40℃程度の高温状態になるなどの過酷な保管条件におかれた場合に、保管期間中に酸性水中油型乳化食品に亀裂が入ったり油分離が生じたりすることを防止することを目的とする。 The present invention can be used when acidic oil-in-water foods such as mayonnaise or mayonnaise-like semi-solid emulsified dressing are subjected to harsh storage conditions such as being temporarily frozen or at a high temperature of about 40 ° C. It is intended to prevent the acidic oil-in-water emulsified food from cracking or causing oil separation during the storage period.
本発明者は、酸性水中油型乳化食品に、変性卵白、リゾ化卵黄及び増粘剤を含有させた酸性水中油型乳化食品では、酸性水中油型乳化食品の複素粘性率と温度に特定の関係をもたせることにより、一時的に冷凍状態になる低温下や40℃程度の高温下においても亀裂防止効果が得られること、この複素粘性率と温度との関係には、卵白の変性状態が大きく影響することを見出した。 In the acidic oil-in-water emulsified food containing the modified egg white, lysed egg yolk and thickener in the acidic oil-in-water emulsified food, the present inventor is specific to the complex viscosity and temperature of the acidic oil-in-water emulsified food. By providing a relationship, cracking prevention effects can be obtained even at low temperatures that are temporarily frozen or at temperatures as high as 40 ° C. The relationship between this complex viscosity and temperature is largely due to the denatured state of egg white. I found out that it affected.
即ち、本発明は、食用油脂を5〜75質量%、変性卵白を固形分換算で0.3〜5質量%、リゾ化卵黄及び増粘剤を含有し、粘度(25℃)が50〜800Pa・sである酸性水中油型乳化食品であって、該酸性水中油型乳化食品を昇温速度2.5℃/分で25℃から75℃まで昇温させた場合の、測定周波数1Hzにおける温度25℃、75℃の複素粘性率(Pa・s)をそれぞれη* 25、η* 75とし、複素粘性率が最低となる温度(Tmin)での複素粘性率をη* minとしたときに、次式(1)、(2)
TS1={(lnη* min−lnη* 25)/(Tmin−25)}×1000 (1)
TS2={(lnη* 75−lnη* min)/(75−Tmin)}×1000 (2)
で算出される第1の複素粘性率の対数値の温度変化率(TS1:Thermo-Sensitivity1)、第2の複素粘性率の温度変化率(TS2:Thermo-Sensitivity 2)が、
TS1=−8〜−2
TS2=0〜15
である酸性水中油型乳化食品を提供する。特に、変性卵白として、食用油脂、リゾ化卵黄及び増粘剤と混合される前に予めpH2以下もしくはpH11以上で変性されたもの、pH5以下、温度50〜120℃で加熱変性されたもの、又はpH9以上、温度60〜120℃で加熱変性されたものを使用する態様を提供する。That is, the present invention contains edible oil and fat in an amount of 5 to 75% by mass, denatured egg white in terms of solid content of 0.3 to 5% by mass, lysed egg yolk and a thickener, and has a viscosity (25 ° C.) of 50 to 800 Pa · s. An acidic oil-in-water emulsified food, wherein the acidic oil-in-water emulsified food is heated from 25 ° C. to 75 ° C. at a heating rate of 2.5 ° C./min, at a measurement frequency of 1 Hz, 25 ° C., 75 ° C. When the complex viscosity at ℃ (Pa · s) is η * 25 and η * 75 , respectively, and the complex viscosity at the temperature (T min ) at which the complex viscosity is lowest is η * min , 1), (2)
TS1 = {(lnη * min -lnη * 25) / (T min -25)} × 1000 (1)
TS2 = {(lnη * 75 -lnη * min) / (75-T min)} × 1000 (2)
The temperature change rate (TS1: Thermo-Sensitivity 1) of the logarithmic value of the first complex viscosity calculated in step 2 and the temperature change rate (TS2: Thermo-Sensitivity 2) of the second complex viscosity are
TS1 = −8 to −2
TS2 = 0-15
An acidic oil-in-water emulsified food is provided. In particular, as denatured egg white, before being mixed with edible fats and oils, lysed egg yolk and thickener, previously denatured at pH 2 or less or pH 11 or more, denatured by heating at pH 5 or less, temperature 50 to 120 ° C., or Provided is an embodiment using a material that has been heat-denatured at a pH of 9 or more and a temperature of 60 to 120 ° C.
本発明の酸性水中油型乳化食品は、該食品の温度と複素粘性率とに特定の関係が付与されているので、一時的に冷凍状態になったり40℃程度の高温状態になるなどの過酷な保管条件におかれた場合においても保存安定性に優れ、保管期間中に該食品に亀裂が入ったり、油分離が生じたりすることを防止できる。 Since the acidic oil-in-water emulsified food of the present invention has a specific relationship between the temperature and the complex viscosity of the food, it is severely frozen such as temporarily frozen or at a high temperature of about 40 ° C. Even when stored under various storage conditions, the storage stability is excellent, and it is possible to prevent the food from cracking or oil separation during the storage period.
以下、図面を参照しつつ、本発明を詳細に説明する。なお、本発明において、格別に断らない限り、「部」は「質量部」を意味し、「%」は「質量%」を意味する。 Hereinafter, the present invention will be described in detail with reference to the drawings. In the present invention, “parts” means “parts by mass” and “%” means “mass%” unless otherwise specified.
本発明の酸性水中油型乳化食品は、食用油脂、変性卵白、リゾ化卵黄及び増粘剤を含有し、食用油脂が油滴として水相中に略均一に分散して水中油型の乳化状態となっているものである。 The acidic oil-in-water emulsified food of the present invention contains edible oil / fat, modified egg white, lysed egg yolk and a thickener, and the edible oil / fat is dispersed substantially uniformly in the aqueous phase as oil droplets, resulting in an oil-in-water emulsified state It is what has become.
本発明の酸性水中油型乳化食品においては、食用油脂の含有量は、5〜75%、好ましくは5〜60%、より好ましくは10〜40%であり、この食用油脂が油滴として水相中に略均一に分散していることにより、コクのある食味が得られる。食用油脂の含有量が低すぎるとコクのある乳化食品が得られ難く、反対に高すぎると、40℃程度の高温での保管時に油分離が生じやすくなる。 In the acidic oil-in-water emulsified food of the present invention, the content of edible fat is 5 to 75%, preferably 5 to 60%, more preferably 10 to 40%. A rich taste can be obtained by being uniformly dispersed therein. If the content of edible fats and oils is too low, it is difficult to obtain a rich emulsified food. On the other hand, if it is too high, oil separation tends to occur during storage at a high temperature of about 40 ° C.
食用油脂としては、例えば、菜種油、コーン油、綿実油、サフラワー油、オリーブ油、紅花油、大豆油、パーム油等の植物油の精製油、並びにMCT(中鎖脂肪酸トリグリセリド)、ジグリセリド等の化学的若しくは酵素的処理を施したもの等を使用することができ、これらの1種又は2種以上を組み合わせて用いることができる。 Examples of edible oils and fats include rapeseed oil, corn oil, cottonseed oil, safflower oil, olive oil, safflower oil, soybean oil, palm oil and other refined oils of oil, and MCT (medium chain fatty acid triglyceride), The thing etc. which performed the enzymatic process can be used, These 1 type (s) or 2 or more types can be used in combination.
一方、本発明の酸性水中油型乳化食品において、水相には、食酢、クエン酸等の有機酸あるいはレモン果汁等の柑橘果汁等の酸剤が含有される。酸剤により水相のpHを通常4.6以下、好ましくはpH3.5〜4.5の酸性に調整する。 On the other hand, in the acidic oil-in-water emulsified food of the present invention, the aqueous phase contains an organic acid such as vinegar and citric acid or an acid agent such as citrus juice such as lemon juice. The pH of the aqueous phase is adjusted to an acidity of usually 4.6 or less, preferably pH 3.5 to 4.5 with an acid agent.
また、リゾ化卵黄は、本発明の酸性水中油型乳化食品を−15℃程度の冷凍下や40℃程度の高温下で保存したときの亀裂防止効果や油分離抑制効果を向上させるために使用する。リゾ化卵黄は、卵黄の主成分である卵黄リポ蛋白質(卵黄リン脂質、卵黄油及びコレステロールなどの卵黄脂質と卵黄蛋白との複合体)の構成リン脂質を、ホスフォスリパーゼA1又はホスフォリパーゼA2を用いて、リン脂質の1位あるいは2位の脂肪酸残基を加水分解してリゾリン脂質としたものをいう。リゾ化卵黄における脂肪酸残基の加水分解の程度としては、リゾホスファチジルコリンとホスファチジルコリンの合計量に対するリゾホスファチジルコリンの割合(即ち、リゾ化率)がイアトロスキャン法(TLC−FID法)で分析した場合の値で10〜80%が好ましく、20〜70%がより好ましい。 In addition, lysed egg yolk is used to improve the crack prevention effect and oil separation suppression effect when the acidic oil-in-water emulsified food of the present invention is stored under freezing at about −15 ° C. or at a high temperature of about 40 ° C. To do. The lysed egg yolk is composed of a phospholipid of a yolk lipoprotein (a complex of egg yolk lipid and egg yolk protein such as egg yolk phospholipid, egg yolk oil and cholesterol), which is the main component of egg yolk, with phospholipase A1 or phospholipase A2. Is used to hydrolyze the 1- or 2-position fatty acid residue of phospholipid to obtain lysophospholipid. As the degree of hydrolysis of fatty acid residues in lysed egg yolk, the ratio of lysophosphatidylcholine to the total amount of lysophosphatidylcholine and phosphatidylcholine (ie, lysation rate) was analyzed by the iatroscan method (TLC-FID method). The value is preferably 10 to 80%, more preferably 20 to 70%.
リゾ化卵黄の含有量は固形分換算で、酸性水中油型乳化食品の0.1〜10%とすることが好ましく、より好ましくは0.5〜8%、さらに好ましくは2〜6%である。リゾ化卵黄の含有量が少なすぎると、冷凍(−15℃程度)及び高温(40℃程度)での亀裂防止効果や油分離抑制効果が得られにくくなり、反対に多すぎると亀裂を生じやすくなるので好ましくない。 The content of lysed egg yolk is preferably 0.1 to 10%, more preferably 0.5 to 8%, and further preferably 2 to 6% of the acidic oil-in-water emulsion food in terms of solid content. If the content of lysed egg yolk is too small, crack prevention and oil separation suppression effects at freezing (about -15 ° C) and high temperatures (about 40 ° C) will be difficult to obtain. This is not preferable.
なお、本発明の酸性水中油型乳化食品には、上述のリゾ化卵黄に加えて、原料コストを低減するためにリゾ化処理をしていない卵黄を含有させてもよい。また、リゾ化卵黄に加えて、レシチン、リゾレシチン、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、オクテニルコハク酸化澱粉等の乳化剤を併用してもよい。 In addition to the above-mentioned lysed egg yolk, the acidic oil-in-water emulsified food of the present invention may contain egg yolk that has not been lysed in order to reduce raw material costs. In addition to lysed egg yolk, an emulsifier such as lecithin, lysolecithin, glycerin fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, and octenyl succinylated starch may be used in combination.
本発明において増粘剤は、酸性水中油型乳化食品を−15℃程度の冷凍下や40℃程度の高温で保存したときの亀裂防止効果や油分離抑制効果を向上させるために使用する。 In the present invention, the thickener is used for improving the effect of preventing cracking and the effect of suppressing oil separation when the acidic oil-in-water type emulsified food is stored under freezing at about −15 ° C. or at a high temperature of about 40 ° C.
増粘剤としては、馬鈴薯澱粉、コーンスターチ、タピオカ澱粉、小麦澱粉、米澱粉等の澱粉、これらの澱粉にα化、架橋等の処理を施した化工澱粉、及び湿熱処理を施した澱粉等の澱粉類、キサンタンガム、タマリンド等のガム質、並びにペクチン等の1種又は2種以上を組み合わせて用いることができる。 As the thickener, starch such as potato starch, corn starch, tapioca starch, wheat starch, rice starch, modified starch obtained by subjecting these starches to α-formation, crosslinking, etc., and starch such as starch subjected to wet heat treatment , Xanthan gum, gum quality such as tamarind, and one or more of pectin can be used in combination.
酸性水中油型乳化食品における増粘剤の含有量は、変性卵白の含有量や、使用する増粘剤の種類にもよるが、上述の亀裂防止効果や油分離抑制効果が得られやすい点から0.05%以上とすることが好ましく、0.1〜15%がより好ましく、0.1〜5%がさらに好ましく、特に0.1〜3%が好ましい。増粘剤の含有量が多すぎると、特に15%を超える場合は、酸性水中油型乳化食品の食感が低下することがあるので好ましくない。 The content of the thickener in the acidic oil-in-water emulsified food depends on the content of the modified egg white and the type of the thickener used, but the above-mentioned crack prevention effect and oil separation suppression effect can be easily obtained. It is preferably 0.05% or more, more preferably 0.1 to 15%, further preferably 0.1 to 5%, and particularly preferably 0.1 to 3%. When the content of the thickener is too large, particularly when it exceeds 15%, the texture of the acidic oil-in-water emulsified food may be lowered, which is not preferable.
本発明の酸性水中油型乳化食品は、変性卵白を固形分換算で0.3〜5%含有し、酸性水中油型乳化食品自体の温度と複素粘性率に次の関係をもたせることを特徴としている。
即ち、酸性水中油型乳化食品を昇温速度2.5℃/分で25℃から75℃まで昇温させた場合の、測定周波数1Hzにおける温度25℃、75℃の複素粘性率(Pa・s)をそれぞれη* 25、η* 75とし、複素粘性率が最低となる温度(Tmin)での複素粘性率をη* minとしたときに、次式(1)、(2)
TS1={(lnη* min−lnη* 25)/(Tmin−25)}×1000 (1)
TS2={(lnη* 75−lnη* min)/(75−Tmin)}×1000 (2)
で算出される第1の複素粘性率の温度変化率(TS1)、第2の複素粘性率の温度変化率(TS2)を、
TS1=−8〜−2
TS2=0〜15
とする。The acidic oil-in-water emulsified food of the present invention is characterized in that it contains 0.3 to 5% of modified egg white in terms of solid content and has the following relationship between the temperature and complex viscosity of the acidic oil-in-water emulsified food itself.
That is, when the acidic oil-in-water type emulsified food is heated from 25 ° C. to 75 ° C. at a heating rate of 2.5 ° C./min, the complex viscosity (Pa · s) at a measurement frequency of 1 Hz is 25 ° C. and 75 ° C. When η * 25 and η * 75 respectively and the complex viscosity at the temperature (T min ) at which the complex viscosity is lowest is η * min , the following equations (1) and (2)
TS1 = {(lnη * min -lnη * 25) / (T min -25)} × 1000 (1)
TS2 = {(lnη * 75 -lnη * min) / (75-T min)} × 1000 (2)
The temperature change rate (TS1) of the first complex viscosity calculated in step (2), and the temperature change rate (TS2) of the second complex viscosity,
TS1 = −8 to −2
TS2 = 0-15
And
ここで、複素粘性率の測定は、レオメータを用いて行うことができる。レオメータとしては、例えば、商品名「ARES−RFS」・「AR−2000」・「AR−G2」(ティー・エイ・インスツルメント社製)、「RS600」(サーモ・ハーケ社製)、「MCR−501」・「MCR−301」(アントン・パール社製)等の高精度レオメータを用いることが好ましい。 Here, the complex viscosity can be measured using a rheometer. Examples of the rheometer include “ARES-RFS”, “AR-2000”, “AR-G2” (manufactured by TA Instruments), “RS600” (manufactured by Thermo Harke), “MCR”. It is preferable to use a high-precision rheometer such as “−501” and “MCR-301” (manufactured by Anton Paar).
本発明の酸性水中油型乳化食品に、上述の第1の複素粘性率の温度変化率TS1及び第2の複素粘性率の温度変化率TS2の関係を持たせるには、卵白の変性程度を種々調整すればよい。 In order to give the acidic oil-in-water emulsified food of the present invention the relationship between the temperature change rate TS1 of the first complex viscosity and the temperature change rate TS2 of the second complex viscosity, the degree of modification of egg white can be varied. Adjust it.
図1は、第1の複素粘性率の温度変化率(TS1)と第2の複素粘性率の温度変化率(TS2)の算出に使用する、温度と複素粘性率(昇温速度2.5℃/分、測定周波数1Hz)との関係を、卵白の変性状態を異ならせた種々の酸性水中油型乳化食品について示したものである。図中、横軸は25℃から75℃までの温度を示し、縦軸は種々の酸性水中油型食品の複素粘性率の対数値を示している。 Figure 1 shows the temperature and complex viscosity (temperature increase rate 2.5 ° C / min) used to calculate the temperature change rate (TS1) of the first complex viscosity and the temperature change rate (TS2) of the second complex viscosity. The relationship with the measurement frequency of 1 Hz) is shown for various acidic oil-in-water emulsified foods with different egg white denaturation states. In the figure, the horizontal axis indicates the temperature from 25 ° C. to 75 ° C., and the vertical axis indicates the logarithmic value of the complex viscosity of various acidic oil-in-water foods.
ここで、酸性水中油型乳化食品の組成は、本発明の一つのモデル組成として、精製植物油(菜種油)を30%、リゾ化卵黄を6%、酸剤として食酢(酸度4%)を15%、卵白(固形分12%)を15%、キサンタンガムを0.5%含有するものである。また、卵白の変性条件は、次の6通りに変えている。 Here, the composition of the acid oil-in-water emulsified food is 30% refined vegetable oil (rapeseed oil), 6% lysed egg yolk, and 15% vinegar (acidity 4%) as an acid agent, as one model composition of the present invention. It contains 15% egg white (12% solids) and 0.5% xanthan gum. In addition, the denaturation conditions of egg white are changed in the following six ways.
卵白変性条件
(1)タンパク質濃度10%、pH1.5(加熱なし)
(2)タンパク質濃度6%、pH3、90℃で20分間
(3)タンパク質濃度10%、pH12(加熱なし)
(4)タンパク質濃度10%、pH9、90℃で15分間
(5)タンパク質濃度10%、pH8、55℃で10分間
(6)タンパク質濃度10%、pH8、90℃で30分間Egg white denaturing conditions
(1) Protein concentration 10%, pH 1.5 (no heating)
(2) Protein concentration 6%, pH 3, 90 ° C for 20 minutes
(3) Protein concentration 10%, pH 12 (no heating)
(4) Protein concentration 10%, pH 9, 15 minutes at 90 ° C
(5) Protein concentration 10%, pH 8, 10 minutes at 55 ° C
(6) Protein concentration 10%, pH 8, 30 minutes at 90 ° C
これらの変性条件のうち、(1)と(3)は卵白が熱変性を受けていないが、それぞれ酸変性、アルカリ変性されていることを示し、(5)は、卵白がほとんど変性していないことを意味する。なお、(5)は、タンパク質濃度10%、pH8〜9、55〜60℃、3〜10分の熱処理が行われている市販の殺菌卵白に対応する。また、(6)は、卵白が凝集変性しているかたゆで卵の凝固卵白のように変性が進んでいることを意味する。(6)の変性卵白を用いた酸性水中油型乳化食品では、加熱により凝固した卵白をタンパク質濃度6%となるように加水し、擂り潰して用いた。 Of these denaturing conditions, (1) and (3) indicate that the egg white has not undergone heat denaturation, but is acid-denatured and alkali-denatured, respectively, and (5) indicates that the egg white is hardly denatured. Means that. Note that (5) corresponds to commercially available sterilized egg white that has been subjected to a heat treatment of 10% protein concentration, pH 8-9, 55-60 ° C., 3-10 minutes. Further, (6) means that the degeneration is progressing like the coagulated egg white of the boiled egg while the egg white is coagulated and denatured. In the acidic oil-in-water emulsified food using the modified egg white of (6), the egg white solidified by heating was added to a protein concentration of 6% and crushed and used.
図1からわかるように、酸性水中油型乳化食品の温度と複素粘性率の対数値の関係をグラフにプロットした場合に、酸性水中油型乳化食品の動的粘性特性としては、卵白の変性状態によって、次の(a)、(b)、(c)の3通りが存在することがわかる。 As can be seen from FIG. 1, when the relationship between the temperature of the acidic oil-in-water emulsified food and the logarithmic value of the complex viscosity is plotted on a graph, the dynamic viscosity characteristics of the acidic oil-in-water emulsified food are as follows: It can be seen that the following three types (a), (b), and (c) exist.
(a)複素粘性率が、25℃から60℃付近までは徐々に低下するが、60℃付近から75℃の間では温度上昇に伴って大きく増加するもの(卵白変性条件(5))。
この動的粘性特性は、卵白が変性されていないか、あるいは変性の程度が低い場合に生じる。(a) The complex viscosity gradually decreases from 25 ° C. to about 60 ° C., but greatly increases with increasing temperature between about 60 ° C. and 75 ° C. (egg white denaturation condition (5)).
This dynamic viscosity characteristic occurs when the egg white is not denatured or the degree of denaturation is low.
(b)複素粘性率が、25℃から60℃付近までは徐々に低下し、60℃付近から75℃の間では温度上昇に伴ってわずかに増加するか、略一定のもの(卵白変性条件(1)〜(4))。
卵白のタンパク質は変性時のタンパク質濃度、pH、温度、処理時間等により種々の構造の変性状態をとるが、酸性水中油型乳化食品の(b)の動的粘性特性は、卵白が完全に変性して凝集している場合には生じない。(b) The complex viscosity gradually decreases from 25 ° C. to around 60 ° C., increases slightly between 60 ° C. and 75 ° C. as the temperature rises, or is almost constant (eg, egg white denaturing conditions ( 1) to (4)).
The protein of egg white takes a denatured state of various structures depending on the protein concentration, pH, temperature, treatment time, etc. at the time of denaturation, but the dynamic viscosity characteristics of (b) of acidic oil-in-water emulsified food are completely denatured by egg white. It does not occur when it is agglomerated.
(c) 複素粘性率が、25℃から75℃にかけて略一定のもの(卵白変性条件(6))。
この動的粘性特性は、卵白が完全に変性して凝集している場合に生じる。(c) The complex viscosity is substantially constant from 25 ° C. to 75 ° C. (egg white denaturation condition (6)).
This dynamic viscosity characteristic occurs when the egg white is completely denatured and agglomerated.
卵白の変性状態によって酸性水中油型乳化食品の動的粘性特性が(a)、(b)、(c)の3通りに異なることは、上述のモデル組成に限らず、食用油脂5〜75質量%を含有し、粘度(25℃)が50〜800Pa・sである種々の酸性水中油型乳化食品において見られる。本発明の酸性水中油型乳化食品は、この(a)、(b)、(c)の動的粘性特性のうち、(b)の動的粘性特性を有するものであり、より具体的には、温度25℃、75℃の複素粘性率(Pa・s)をそれぞれη* 25、η* 75とし、複素粘性率が最低となる温度(Tmin)での複素粘性率をη* minとしたときに、
TS1={(lnη* min−lnη* 25)/(Tmin−25)}×1000)
=−8〜−2
TS2={(lnη* 75−lnη* min)/(75−Tmin)}×1000)
=0〜15
という特性を有する。The fact that the dynamic viscosity characteristics of acidic oil-in-water emulsified foods differ depending on the modified state of egg white in three ways: (a), (b), (c) % And is found in various acidic oil-in-water emulsified foods having a viscosity (25 ° C.) of 50 to 800 Pa · s. The acidic oil-in-water emulsified food of the present invention has the dynamic viscosity characteristics of (b) among the dynamic viscosity characteristics of (a), (b), and (c), and more specifically, The complex viscosity (Pa · s) at 25 ° C and 75 ° C is η * 25 and η * 75 , respectively, and the complex viscosity at the temperature ( Tmin ) at which the complex viscosity is lowest is η * min . sometimes,
TS1 = {(lnη * min− lnη * 25 ) / (T min− 25)} × 1000)
= -8 to -2
TS2 = {(lnη * 75 -lnη * min) / (75-T min)} × 1000)
= 0 to 15
It has the characteristic.
この(b)の動的粘性特性では、25℃から複素粘性率が最低の値となる60℃付近までは、温度に対する複素粘性率の変化が(a)の動的粘性特性と同様で徐々に低下し、TS1=−8〜−2である。一方、(c)の動的粘性特性では複素粘性率が略一定である。したがって、(b)の動的粘性特性を発現させる卵白は、(a)の動的粘性特性を発現させる略未変性の卵白と同様に、25℃から60℃付近までの加熱により酸性水中油型乳化食品の流動性を増加させる性質を有していると考えられる。 In the dynamic viscosity characteristic of (b), from 25 ° C. to around 60 ° C. at which the complex viscosity is the lowest, the change of the complex viscosity with respect to temperature is the same as the dynamic viscosity characteristic of (a) and gradually Decrease, TS1 = −8 to −2. On the other hand, the complex viscosity is substantially constant in the dynamic viscosity characteristics of (c). Therefore, the egg white that expresses the dynamic viscosity characteristic of (b) is an acidic oil-in-water type by heating from 25 ° C. to around 60 ° C. as in the case of the substantially unmodified egg white that expresses the dynamic viscosity characteristic of (a). It is thought to have the property of increasing the fluidity of the emulsified food.
また、25℃から複素粘性率が最低の値となる60℃付近までの間で、卵白が凝集結合している(c)の動的粘性特性では、複素粘性率は略一定であるのに対し、(b)の動的粘性特性では上述のように複素粘性率が徐々に低下するから、(b)の動的粘性特性を発現させる卵白の変性状態は、卵白のタンパク質が強固な結合をしておらず、60℃までの加熱で酸性水中油型乳化食品中の何らかの結合が解離していると考えられる。つまり、(b)の動的粘性特性を示す酸性水中油型乳化食品では、卵白のタンパク質同士やタンパク質と乳化粒子又は増粘剤とがゆるやかに結合しており、その結合は、60℃までの加熱で解離し、酸性水中油型乳化食品の流動性を増加させる程度のものであると推察される。言い換えれば、概略60℃よりも低温側、例えば40℃前後の温度では、卵白のタンパク質同士、あるいは卵白のタンパク質と乳化粒子又は増粘剤とがゆるやかに結合していると推察される。 In addition, in the dynamic viscosity characteristic of (c) where egg white is cohesively bound between 25 ° C and around 60 ° C where the complex viscosity is the lowest value, the complex viscosity is substantially constant. In the dynamic viscosity characteristic of (b), the complex viscosity gradually decreases as described above. Therefore, in the denatured state of the egg white that expresses the dynamic viscosity characteristic of (b), the protein of the egg white is strongly bound. It is considered that some bonds in the acidic oil-in-water emulsified food are dissociated by heating up to 60 ° C. That is, in the acidic oil-in-water emulsified food (b) showing the dynamic viscosity characteristics, the protein of egg whites and the protein and the emulsified particles or thickener are loosely bound, and the binding is up to 60 ° C. It is presumed that it is dissociated by heating and increases the fluidity of the acidic oil-in-water emulsified food. In other words, it is inferred that egg white proteins or egg white proteins and emulsified particles or thickeners are loosely bound to each other at a temperature lower than about 60 ° C., for example, at a temperature around 40 ° C.
さらに、この(b)の動的粘性特性では、60℃を超える温度において、(c)の動的粘性特性と同様に、複素粘性率が略一定であり、TS2=0〜15である。一方、(a)の動的粘性特性では、複素粘性率が温度上昇に伴って大きく増加する。したがって、(b)の動的粘性特性を発現させる卵白は、(c)の動的粘性特性を発現させる凝集変性した卵白と同様に、60℃を超える温度において酸性水中油型乳化食品に動的粘性率を増加させず、卵白タンパク質の安定性が高いため、酸性水中油型乳化食品の保存安定性を高める性質を有していると推察される。 Furthermore, in the dynamic viscosity characteristic of (b), the complex viscosity is substantially constant at a temperature exceeding 60 ° C., as in the case of the dynamic viscosity characteristic of (c), and TS2 = 0 to 15. On the other hand, in the dynamic viscosity characteristics of (a), the complex viscosity increases greatly with increasing temperature. Therefore, the egg white that develops the dynamic viscosity characteristic of (b) is dynamically applied to the acidic oil-in-water emulsified food at a temperature exceeding 60 ° C., similar to the coagulated and modified egg white that expresses the dynamic viscosity characteristic of (c). Since the viscosity of the egg white protein is high without increasing the viscosity, it is presumed that it has the property of enhancing the storage stability of the acidic oil-in-water emulsion food.
一方、(a)の動的粘性特性を発現させる卵白は、略未変性であり、60℃を超える温度では変性して凝集が進むため、卵白タンパク質の安定性が低く酸性水中油型食品の保存安定性が低いと推察される。 On the other hand, the egg white that expresses the dynamic viscosity characteristic of (a) is substantially undenatured, and denatures and agglomerates at a temperature exceeding 60 ° C., so that the stability of egg white protein is low and preservation of acidic oil-in-water foods Presumably low stability.
このように、使用する卵白の変性状態によって酸性水中油型乳化食品の動的粘性特性が(a)、(b)、(c)の3通りに区分されるところ、本発明者は、(b)の動的粘性特性を有する酸性水中油型乳化食品は、一時的に−15℃程度の冷凍状態になる低温下や40℃程度の高温下における保存安定性に優れ、保管期間中に該食品に亀裂が入ったり、油分離したりすることを防止でき、さらに一時的に冷凍状態で保管された場合であっても保存安定性に優れ、解凍後に該食品に亀裂が入ることを防止できるとの知見を得た。したがって、本発明の酸性水中油型乳化食品は、概略60℃よりも低温側、例えば40℃前後の温度では、卵白タンパク質同士、あるいは卵白タンパク質と乳化粒子又は増粘剤とがゆるやかに結合する機能を有し、60℃を超える温度では卵白タンパク質の安定性が高い機能を有することにより、
TS1=−8〜−2
TS2=0〜15
を満たすことを特徴としている。As described above, the dynamic viscosity characteristics of the acidic oil-in-water emulsified food are classified into three types (a), (b), and (c) according to the modified state of the egg white used. The acidic oil-in-water emulsified food product having the dynamic viscosity characteristics of) is excellent in storage stability at a low temperature that is temporarily frozen at about −15 ° C. or at a high temperature of about 40 ° C., and is stored during the storage period. Can be prevented from cracking or oil separation, and even when temporarily stored in a frozen state, it has excellent storage stability and can prevent cracking of the food after thawing. I got the knowledge. Therefore, the acidic oil-in-water emulsified food of the present invention has a function of loosely binding egg white proteins or egg white proteins to emulsified particles or thickeners at a temperature lower than about 60 ° C., for example, at a temperature around 40 ° C. By having a function that the stability of egg white protein is high at a temperature exceeding 60 ° C,
TS1 = -8 to -2
TS2 = 0-15
It is characterized by satisfying.
本発明において、TS1=−8〜−2 を規定するのは、変性して凝集した卵白を含有することにより(c)の動的粘性特性を示す酸性水中油型乳化食品を排除する趣旨である。また、TS2=0〜15 を規定するのは、変性されていないか、あるいは変性の程度が低い卵白を含有することにより(a)の動的粘性特性を示す酸性水中油型乳化食品を排除する趣旨である。特に、本発明の酸性水中油型乳化食品においては、高温における保存安定性に優れる点で、TS2=0〜10 であることが好ましい。 In the present invention, TS1 = −8 to −2 is defined to exclude acidic oil-in-water emulsified foods having the dynamic viscosity characteristics of (c) by containing denatured and agglomerated egg white. . Also, TS2 = 0 to 15 is specified to exclude acidic oil-in-water type emulsified foods having the dynamic viscosity characteristics of (a) by containing egg white that is not denatured or has a low degree of denaturation. It is the purpose. In particular, in the acidic oil-in-water emulsified food of the present invention, it is preferable that TS2 = 0 to 10 in terms of excellent storage stability at high temperatures.
なお、(b)の動的粘性特性を有する酸性水中油型乳化食品が、優れた亀裂防止効果を有する理由は必ずしも明確ではないが、(b)の動的粘性特性をもたらす状態の卵白は、加熱によりタンパク質が凝集する作用が殆ど又は完全に不活性であり、かつ乳化粒子等とゆるやかに結合することが、長期間での低温ないし高温での乳化安定性に寄与していると考えられる。 Although the reason why the acidic oil-in-water emulsified food having the dynamic viscosity characteristic of (b) has an excellent crack prevention effect is not necessarily clear, the egg white in a state that brings about the dynamic viscosity characteristic of (b) It is considered that the action of protein aggregation by heating is almost or completely inactive, and that it slowly binds to emulsified particles and the like contributes to the stability of emulsification at low or high temperatures over a long period of time.
これに対し、(a)の動的粘性特性をもたらす卵白は、安定性が低く、(c)の動的粘性特性をもたらす卵白は、安定性は高いものの、乳化粒子等とゆるやかに結合する機能を有さないことから、冷凍後、解凍した際の酸性水中油型乳化食品の亀裂防止効果が充分に得られにくいと考えられる。 On the other hand, the egg white that provides the dynamic viscosity characteristics of (a) has low stability, and the egg white that provides the dynamic viscosity characteristics of (c) has high stability, but functions to loosely bind to emulsified particles and the like. Therefore, it is considered that the effect of preventing cracking of the acidic oil-in-water emulsified food when thawed after freezing is not sufficiently obtained.
また、卵白の変性状態と、卵白を含有する酸性水中油型乳化食品の(a)、(b)又は(c)の動的粘性特性と、長期間での低温ないし高温での保存安定性との関係は、実施例に示すように、上述のモデル組成の酸性水中油型乳化食品だけでなく、食用油脂5〜75%とリゾ化卵黄及び増粘剤を含有し、さらに変性卵白を固形分換算で0.3〜5%含有し、粘度50〜800Pa・sの範囲にある酸性水中油型乳化食品において成立する。 Furthermore, the modified state of egg white, the dynamic viscosity characteristics of (a), (b) or (c) of the acidic oil-in-water emulsified food containing egg white, and the storage stability at low or high temperatures over a long period of time As shown in the examples, not only the acidic oil-in-water emulsified food of the above-mentioned model composition, but also edible fats and oils 5 to 75%, lysed egg yolk and thickener, It is established in acidic oil-in-water emulsified foods containing 0.3 to 5% in terms of viscosity and having a viscosity in the range of 50 to 800 Pa · s.
そこで、本発明が使用する変性卵白は、変性卵白を固形分換算で0.3〜5%、食用油脂を5〜75%、リゾ化卵黄及び増粘剤を含有し、粘度(25℃)が50〜800Pa・sである酸性水中油型乳化食品を、昇温速度2.5℃/分で25℃から75℃まで昇温させて測定周波数1Hzで複素粘性率を測定した場合において、温度25℃、75℃の複素粘性率(Pa・s)をそれぞれη* 25、η* 75とし、複素粘性率が最低となる温度(Tmin)での複素粘性率をη* minとしたときに、次式
TS1={(lnη* min−lnη* 25)/(Tmin−25)}×1000 (1)
TS2={(lnη* 75−lnη* min)/(75−Tmin)}×1000 (2)
で算出される第1の複素粘性率の温度変化率(TS1)、第2の複素粘性率の温度変化率(TS2)が、
TS1=−8〜−2
TS2=0〜15
を満たすものであり、より具体的には、変性卵白を用いて前述のモデル組成の酸性水中油型乳化食品を調製し、上述のように複素粘性率を測定した場合に、TS1=−8〜−2、TS2=0〜15を満たす変性卵白である。Therefore, the modified egg white used in the present invention contains 0.3 to 5% of the modified egg white in terms of solid content, 5 to 75% of edible oil and fat, lysed egg yolk and a thickener, and has a viscosity (25 ° C) of 50 to 50%. When an acidic oil-in-water emulsified food of 800 Pa · s is heated from 25 ° C to 75 ° C at a heating rate of 2.5 ° C / min and measured for complex viscosity at a measurement frequency of 1 Hz, the temperatures are 25 ° C and 75 ° C. When the complex viscosity (Pa · s) is η * 25 and η * 75 , respectively, and the complex viscosity at the temperature (T min ) at which the complex viscosity is lowest is η * min , the following formula TS1 = {(Lnη * min− lnη * 25 ) / (T min− 25)} × 1000 (1)
TS2 = {(lnη * 75 -lnη * min) / (75-T min)} × 1000 (2)
The temperature change rate (TS1) of the first complex viscosity calculated in step (TS1) and the temperature change rate (TS2) of the second complex viscosity are
TS1 = -8 to -2
TS2 = 0-15
More specifically, when an acidic oil-in-water emulsified food of the above-mentioned model composition is prepared using modified egg white and the complex viscosity is measured as described above, TS1 = −8 to -2, modified egg white satisfying TS2 = 0-15.
ここで、変性卵白の含有量が固形分換算で0.3%未満であると、酸性水中油型乳化食品に(b)の動的粘性特性をもたらすことが難しく、卵白の含有量が固形分換算で5%を超えると、酸性水中油型乳化食品が乳化しにくくなるので好ましくない。変性卵白の含有量は、亀裂防止効果が得られやすい点から、固形分換算で1%以上、生卵白換算で10%以上とすることが好ましい。 Here, when the content of the modified egg white is less than 0.3% in terms of solid content, it is difficult to bring the dynamic viscosity characteristics of (b) to the acidic oil-in-water emulsified food, and the content of egg white is in terms of solid content. If it exceeds 5%, the acidic oil-in-water emulsified food becomes difficult to emulsify, which is not preferable. The content of the modified egg white is preferably 1% or more in terms of solid content and 10% or more in terms of raw egg white from the viewpoint that a crack prevention effect is easily obtained.
また、本発明において、加熱によりタンパク質が凝集する作用が殆ど又は完全に不活性であり、かつ乳化粒子等とゆるやかに結合する状態に卵白を変性させる方法としては、凝集をさせずに変性させることができる点から、卵白タンパク質の等電点から離れたpHで変性させることが好ましい。 In the present invention, the method of denaturing egg white to a state in which the action of protein aggregation by heating is almost or completely inactive and loosely binds to emulsified particles or the like is to denature without aggregation. It is preferable to denature with pH away from the isoelectric point of egg white protein.
卵白のより具体的な変性状態としては、卵白が食用油脂、リゾ化卵黄及び増粘剤と混合される前に予め、(i)卵白をpH2以下で変性したもの、(ii)卵白をpH11以上で変性したもの、(iii)卵白をpH5以下、温度50〜120℃で加熱変性したもの、好ましくはそのような加熱変性を5〜50分行ったもの、より好ましくはpH4以下、温度80〜100℃、10〜40分で加熱変性したもの、(iv)卵白をpH9以上、温度60〜120℃で加熱変性したもの、好ましくはそのような加熱変性を5〜50分行ったもの、より好ましくはpH10以上、温度80〜100℃、10〜40分で加熱変性したものをあげることができる。なお、卵白を食用油脂、リゾ化卵黄、増粘剤等と混合した状態で、上述の(i)〜(iv)と同様のpHや温度で変性させても、酸性水中油型乳化食品に(b)の動的粘性特性を付与することができず、亀裂防止効果や油分分離防止効果を十分に得ることができない。 As a more specific modified state of the egg white, before the egg white is mixed with edible oils and fats, lysed egg yolk and thickener, (i) the egg white is denatured at pH 2 or less, (ii) the egg white is pH 11 or more (Iii) Egg white that has been heat-denatured at a pH of 5 or less and a temperature of 50 to 120 ° C., preferably one that has been subjected to such heat denaturation for 5 to 50 minutes, more preferably a pH of 4 or less, and a temperature of 80 to 100 ° C, heat-denatured for 10-40 minutes, (iv) egg white pH 9 or higher, temperature-denatured at 60-120 ° C, preferably such heat-denatured for 5-50 minutes, more preferably Examples thereof include those denatured by heating at a pH of 10 or more, a temperature of 80 to 100 ° C., and 10 to 40 minutes. Even if the egg white is mixed with edible oils, lysed egg yolks, thickeners, etc., even if it is denatured at the same pH or temperature as in the above (i) to (iv), it is converted into an acidic oil-in-water emulsified food ( The dynamic viscosity characteristic of b) cannot be imparted, and the crack prevention effect and oil separation prevention effect cannot be sufficiently obtained.
本発明の酸性水中油型乳化食品は、マヨネーズあるいはマヨネーズ様食品と同程度の粘度を有し、25℃で50〜800Pa・s、好ましくは70〜500Pa・sである。これにより、長期間の低温ないし高温での亀裂防止効果を一層得やすくなる。ここで、上記酸性水中油型乳化食品全体の粘度は、品温25℃のものをBH型粘度計で測定した1分後の示度により算出した値であり、粘度の値により以下のBH型粘度計の設定条件に分けられる。つまり、粘度が500Pa・s以下のものは、ローターNo.6、回転数2rpm、粘度が500Pa・sを超えるものは、Tバースピンドルを用いて、TバーD、回転数2rpm、上昇速度20mm/分の条件で測定する。粘度は、油脂や増粘剤の種類や含有量により調整する。 The acidic oil-in-water emulsified food of the present invention has a viscosity comparable to that of mayonnaise or mayonnaise-like food, and is 50 to 800 Pa · s, preferably 70 to 500 Pa · s at 25 ° C. This makes it easier to obtain a long-term low temperature to high temperature crack prevention effect. Here, the viscosity of the whole of the acidic oil-in-water type emulsified food is a value calculated from the reading after 1 minute when the product temperature is 25 ° C. measured with a BH type viscometer. It is divided into the setting conditions of the viscometer. That is, when the viscosity is 500 Pa · s or less, the rotor No. 6 has a rotation speed of 2 rpm, and when the viscosity exceeds 500 Pa · s, using a T-bar spindle, the T-bar D, the rotation speed of 2 rpm, the ascending speed of 20 mm / Measure in minutes. Viscosity is adjusted by the type and content of fats and oils and thickeners.
本発明の酸性水中油型乳化食品は、本発明の効果を損なわない範囲で酸性水中油型乳化食品に通常用いられている各種原料を適宜選択し配合させることができる。例えば、澱粉分解物、デキストリンアルコール、オリゴ糖、オリゴ糖アルコール等の糖類、乳酸などの酸味材、グルタミン酸ナトリウム、食塩、砂糖などの各種調味料、動植物のエキス類、からし粉、胡椒等の香辛料、並びに各種蛋白質やこれらの分解物等が挙げられる。 In the acidic oil-in-water emulsified food of the present invention, various raw materials usually used in acidic oil-in-water emulsified foods can be appropriately selected and blended as long as the effects of the present invention are not impaired. For example, starch decomposition products, sugars such as dextrin alcohol, oligosaccharide, oligosaccharide alcohol, sour materials such as lactic acid, various seasonings such as sodium glutamate, salt, sugar, spices such as animal and plant extracts, mustard powder, pepper And various proteins and degradation products thereof.
本発明の酸性水中油型乳化食品の製造方法としては、マヨネーズの常法に則り製造すればよい。例えば、リゾ化卵黄、増粘剤及び卵白等を均一にした水相原料と、食用油脂等を含む油相原料をミキサー等で粗乳化し、次にコロイドミル等で仕上げ乳化をした後、チューブ容器やガラス容器等に充填密封する。 What is necessary is just to manufacture according to the conventional method of mayonnaise as a manufacturing method of the acidic oil-in-water type emulsion foodstuff of this invention. For example, an aqueous phase raw material with uniform lysed egg yolk, thickener and egg white and an oil phase raw material containing edible fats and oils are coarsely emulsified with a mixer, etc., and then final emulsified with a colloid mill etc. Fill and seal containers and glass containers.
以下、実施例に基づいて本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described based on examples.
実施例1〜9、比較例1、2
(1)変性卵白の製造
表1に示す実施例1、2、3の変性条件の変性卵白を次のようにして製造した。
卵白を清水と混合することによりタンパク質濃度10%の卵白水溶液を調製し、これを撹拌しながら塩酸溶液を添加してpH1.5に調整することにより実施例1の変性卵白を得た。同様にして、タンパク質濃度10%の卵白水溶液に水酸化ナトリウム水溶液を添加してpH12に調整することにより実施例3の変性卵白を得た。また、タンパク質濃度6%の卵白水溶液を調製し、この卵白水溶液を1kgずつ容量1kgのナイロンポリエチレン袋に充填密封して90℃で20分加熱し、直ちに冷水によって冷却することにより、実施例2の変性卵白を得た。以下、これに準じて実施例4〜9、及び比較例1、2の変性条件の卵白を得た。なお、比較例2では、タンパク質濃度10%の卵白水溶液の加熱により凝固した卵白をタンパク質濃度6%となるように加水し、擂り潰したものを変性卵白とした。Examples 1 to 9, Comparative Examples 1 and 2
(1) Production of modified egg white Modified egg white under the modified conditions of Examples 1, 2, and 3 shown in Table 1 was produced as follows.
An egg white aqueous solution having a protein concentration of 10% was prepared by mixing the egg white with fresh water, and a hydrochloric acid solution was added while stirring the mixture to adjust the pH to 1.5, whereby the modified egg white of Example 1 was obtained. Similarly, a modified egg white of Example 3 was obtained by adding an aqueous sodium hydroxide solution to an egg white aqueous solution having a protein concentration of 10% to adjust to pH 12. Further, an egg white aqueous solution having a protein concentration of 6% was prepared, and the egg white aqueous solution was filled and sealed in a 1 kg capacity nylon polyethylene bag, heated at 90 ° C. for 20 minutes, and immediately cooled with cold water to obtain the aqueous solution of Example 2. Denatured egg white was obtained. Hereinafter, egg whites under the modified conditions of Examples 4 to 9 and Comparative Examples 1 and 2 were obtained according to this. In Comparative Example 2, the egg white coagulated by heating an egg white aqueous solution having a protein concentration of 10% was added with a protein concentration of 6% and crushed to obtain a denatured egg white.
(2)酸性水中油型乳化食品の製造
生卵黄をホスフォリパーゼA2で処理してリゾ化率30%のリゾ化卵黄(固形分50%)を得た。表1の配合において、上述のリゾ化卵黄、(1)で製造した変性卵白、食酢、キサンタンガム、調味料(食塩、からし粉及びグルタミン酸ナトリウム)及び清水をミキサーで均一に撹拌して水相を調製し、さらに菜種油を注加して粗乳化させた。得られた粗乳化物をコロイドミルで仕上げ乳化を行った後、300mL容量のチューブに充填・密封することにより実施例1〜9、比較例1、2の酸性水中油型乳化食品を製造した。(2) Production of acidic oil-in-water emulsified food Raw egg yolk was treated with phospholipase A2 to obtain a lysed egg yolk (solid content 50%) having a lysification rate of 30%. In the composition of Table 1, the above-mentioned lysed egg yolk, modified egg white produced in (1), vinegar, xanthan gum, seasonings (salt, mustard powder and sodium glutamate) and fresh water are uniformly stirred with a mixer to obtain an aqueous phase. The rapeseed oil was further poured and coarsely emulsified. The resulting crude emulsion was subjected to final emulsification with a colloid mill, and then filled into a 300 mL capacity tube and sealed to produce acidic oil-in-water emulsion foods of Examples 1 to 9 and Comparative Examples 1 and 2.
(3)評価
(3-1)動的粘性特性の測定
各実施例及び比較例の酸性水中油型乳化食品の動的粘性特性を次の測定条件で測定し、温度と複素粘性率の関係を求めた。(3) Evaluation (3-1) Measurement of dynamic viscosity characteristics The dynamic viscosity characteristics of the acidic oil-in-water type emulsified foods of each example and comparative example were measured under the following measurement conditions, and the relationship between temperature and complex viscosity was determined. Asked.
<測定条件>
・測定装置:レオメータAR-G2(ティー・エイ・インスツルメントジャパン(株))
・ジオメトリー:Φ40mm パラレルプレート、アルミニウム製
・ギャップ:1400μm
・測定モード:温度変化測定(Temperature ramp)
・初期温度設定:25.0℃(開始から3分間平衡化後、測定)
・昇温設定:25.0℃から75.0℃に昇温
・昇温速度:2.5℃/分
・動的歪み(固定):0.01(1%)
・振幅周波数(固定):6.283rad/s(1Hz)
・試料量:約2g
・評価値:η*(Pa・s):複素粘性率<Measurement conditions>
・ Measuring device: Rheometer AR-G2 (TA Instruments Japan Co., Ltd.)
・ Geometry: Φ40mm parallel plate, made of aluminum ・ Gap: 1400μm
・ Measurement mode: Temperature change measurement (Temperature ramp)
-Initial temperature setting: 25.0 ° C (measured after equilibration for 3 minutes from the start)
・ Temperature setting: Temperature rise from 25.0 ℃ to 75.0 ℃ ・ Temperature increase rate: 2.5 ℃ / min ・ Dynamic strain (fixed): 0.01 (1%)
・ Amplitude frequency (fixed): 6.283 rad / s (1 Hz)
・ Sample size: Approximately 2g
・ Evaluation value: η * (Pa · s): Complex viscosity
各実施例及び比較例のそれぞれについて、複素粘性率η*が最低のときの値(η* min)、及びそのときの温度(Tmin)を求めた。また、温度25℃、75℃の複素粘性率(Pa・s)η* 25、η* 75を求め、次式(1)、(2)により第1の複素粘性率の温度変化率(TS1:Thermo-Sensitivity 1)と第2の複素粘性率の温度変化率(TS2:Thermo-Sensitivity 2)を算出した。
TS1={(lnη* min−lnη* 25)/(Tmin−25)}×1000 (1)
TS2={(lnη* 75−lnη* min)/(75−Tmin)}×1000 (2)
この結果を表1に示す。For each of the examples and comparative examples, the value (η * min ) when the complex viscosity η * was the lowest and the temperature ( Tmin ) at that time were determined. Also, the complex viscosity (Pa · s) η * 25 and η * 75 at temperatures of 25 ° C and 75 ° C are obtained, and the temperature change rate of the first complex viscosity (TS1: Thermo-Sensitivity 1) and the temperature change rate (TS2: Thermo-Sensitivity 2) of the second complex viscosity were calculated.
TS1 = {(lnη * min -lnη * 25) / (T min -25)} × 1000 (1)
TS2 = {(lnη * 75 -lnη * min) / (75-T min)} × 1000 (2)
The results are shown in Table 1.
(3-2)粘度
各実施例及び比較例の酸性水中油型乳化食品について、BH型粘度計を用い、回転数:2rpm、ローター:No.6、品温:20℃の測定条件で、2回転後の示度から粘度を換算した。結果を表1に示す。(3-2) Viscosity For the acidic oil-in-water emulsified foods of each Example and Comparative Example, using a BH viscometer, the measurement was performed at 2 rpm, rotor: No. 6, product temperature: 20 ° C., 2 The viscosity was converted from the reading after rotation. The results are shown in Table 1.
(3-3)長期保存試験
各実施例及び比較例の酸性水中油型乳化食品を40℃で2週間保管し、長期保管後の亀裂や油分離の有無を目視観察し、次の基準で評価した。
○:亀裂または油の分離が観察されなかった。
×:亀裂または油の分離が観察された。
結果を表1に示す。(3-3) Long-term storage test The acidic oil-in-water emulsified foods of each Example and Comparative Example are stored at 40 ° C for 2 weeks, visually observed for cracks and oil separation after long-term storage, and evaluated according to the following criteria: did.
○: No crack or oil separation was observed.
X: Cracks or oil separation was observed.
The results are shown in Table 1.
(3-4)冷凍・解凍試験
各実施例及び比較例の酸性水中油型乳化食品を−15℃で10日間保管し、常温に戻した後の亀裂や油分離の有無を目視観察し、次の基準で評価した。
○:亀裂または油の分離が観察されなかった。
×:亀裂または油の分離が観察された。
結果を表1に示す。(3-4) Freezing / thawing test Acidic oil-in-water type emulsified foods of each Example and Comparative Example were stored at -15 ° C for 10 days, and visually observed for cracks and oil separation after returning to room temperature. Evaluation based on the criteria.
○: No crack or oil separation was observed.
X: Cracks or oil separation was observed.
The results are shown in Table 1.
表1の結果から、第1の複素粘性率の温度変化率TS1及び第2の複素粘性率の温度変化率TS2が本発明の要件を満たさない比較例の酸性水中油型乳化食品は、長期保管により亀裂が生じたのに対し、実施例の酸性水中油型乳化食品は、長期保管した場合にも亀裂や油分離が生じず、また冷凍後に解凍しても亀裂や油分離が生じていない。したがって、実施例の酸性水中油型乳化食品は、物流での長期保管適性や搬送適性を備えていることがわかる。
From the results in Table 1, the acidic oil-in-water emulsified food of the comparative example in which the temperature change rate TS1 of the first complex viscosity and the temperature change rate TS2 of the second complex viscosity do not satisfy the requirements of the present invention is stored for a long time. On the other hand, the acidic oil-in-water emulsified foods of the examples did not cause cracks or oil separation even when stored for a long time, and did not crack or oil even when thawed after freezing. Therefore, it can be seen that the acidic oil-in-water type emulsified foods of Examples have long-term storage suitability and transportability in physical distribution.
比較例3、4
特開2001-252041号の実施例1と同様にして、ホスフォリパーゼA2処理卵黄(固形分50%)6%、生卵白(固形分12%)15%、食酢15%、精製水30%、食塩2.5%、キサンタンガム0.5%、からし粉0.5%、グルタミン酸ナトリウム0.5%から比較例3の酸性水中油型乳化食品を製造し、また、キサンタンガムを添加しない以外は比較例3と同様にして比較例4の酸性水中油型乳化食品を製造した。
これらの酸性水中油型乳化食品を40℃で2週間保管したところ、亀裂が確認された。Comparative Examples 3 and 4
In the same manner as in Example 1 of JP-A-2001-252041, phospholipase A2 treated egg yolk (solid content 50%) 6%, raw egg white (solid content 12%) 15%, vinegar 15%, purified water 30%, Comparative Example 3 was produced in the same manner as Comparative Example 3 except that the acidic oil-in-water emulsified food of Comparative Example 3 was produced from salt 2.5%, xanthan gum 0.5%, mustard powder 0.5%, and sodium glutamate 0.5%. 4 acidic oil-in-water emulsified foods were produced.
When these acidic oil-in-water emulsified foods were stored at 40 ° C. for 2 weeks, cracks were confirmed.
比較例5
生卵黄(固形分50%)8%、実施例4の卵白と同じ条件で調製した卵白(固形分12%)6%、食酢15%、精製水30%、食塩2.5%、からし粉0.5%、グルタミン酸ナトリウム0.5%から比較例5の酸性水中油型乳化食品を製造した。この酸性水中油型乳化食品を40℃で2週間保管したところ、油分離が確認された。Comparative Example 5
8% raw egg yolk (solid content 50%), 6% egg white (12% solid content) prepared under the same conditions as the egg white of Example 4, 15% vinegar, 30% purified water, 2.5% salt, 0.5% mustard powder The acidic oil-in-water emulsified food of Comparative Example 5 was produced from 0.5% sodium glutamate. When this acidic oil-in-water emulsified food was stored at 40 ° C. for 2 weeks, oil separation was confirmed.
Claims (6)
TS1={(lnη* min−lnη* 25)/(Tmin−25)}×1000 (1)
TS2={(lnη* 75−lnη* min)/(75−Tmin)}×1000 (2)
で算出される第1の複素粘性率の温度変化率(TS1)、第2の複素粘性率の温度変化率(TS2)が、
TS1=−8〜−2
TS2=0〜15
が満たされる酸性水中油型乳化食品。Acidic oil-in-water type containing 5 to 75 mass% edible fat and oil, 0.3 to 5 mass% denatured egg white in terms of solid content, lysed egg yolk and thickener, and having a viscosity (25 ° C) of 50 to 800 Pa · s When the acidic oil-in-water emulsified food is heated from 25 ° C. to 75 ° C. at a heating rate of 2.5 ° C./min, a complex viscosity of 25 ° C. and 75 ° C. at a measurement frequency of 1 Hz ( Where Pa · s) is η * 25 and η * 75 respectively, and the complex viscosity at the temperature (T min ) at which the complex viscosity is lowest is η * min , the following formula TS1 = {(lnη * min −lnη * 25 ) / (T min −25)} × 1000 (1)
TS2 = {(lnη * 75 -lnη * min) / (75-T min)} × 1000 (2)
The temperature change rate (TS1) of the first complex viscosity calculated in step (TS1) and the temperature change rate (TS2) of the second complex viscosity are
TS1 = -8 to -2
TS2 = 0-15
Is an acidic oil-in-water emulsified food.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/075478 WO2013065185A1 (en) | 2011-11-04 | 2011-11-04 | Acidic oil-in-water emulsified food |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5029857B1 true JP5029857B1 (en) | 2012-09-19 |
JPWO2013065185A1 JPWO2013065185A1 (en) | 2015-04-02 |
Family
ID=47016584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012504979A Active JP5029857B1 (en) | 2011-11-04 | 2011-11-04 | Acid oil-in-water emulsified food |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5029857B1 (en) |
WO (1) | WO2013065185A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6289933B2 (en) * | 2014-02-20 | 2018-03-07 | キユーピー株式会社 | Acid oil-in-water emulsified seasoning |
JP6957626B2 (en) * | 2017-08-02 | 2021-11-02 | キユーピー株式会社 | Emulsified food in flexible container |
JP6571259B1 (en) * | 2018-06-29 | 2019-09-04 | キユーピー株式会社 | Emulsified food in plastic containers |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5823764A (en) * | 1981-08-04 | 1983-02-12 | Q P Corp | Preparation of oil-in-water type emulsified food |
JPS615761A (en) * | 1984-06-20 | 1986-01-11 | Kunoole Shokuhin Kk | Preparation of composition for o/w-type emulsion food |
JP2001252041A (en) * | 2000-03-13 | 2001-09-18 | Q P Corp | Mayonnaise-like food |
-
2011
- 2011-11-04 WO PCT/JP2011/075478 patent/WO2013065185A1/en active Application Filing
- 2011-11-04 JP JP2012504979A patent/JP5029857B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5823764A (en) * | 1981-08-04 | 1983-02-12 | Q P Corp | Preparation of oil-in-water type emulsified food |
JPS615761A (en) * | 1984-06-20 | 1986-01-11 | Kunoole Shokuhin Kk | Preparation of composition for o/w-type emulsion food |
JP2001252041A (en) * | 2000-03-13 | 2001-09-18 | Q P Corp | Mayonnaise-like food |
Also Published As
Publication number | Publication date |
---|---|
WO2013065185A1 (en) | 2013-05-10 |
JPWO2013065185A1 (en) | 2015-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5029856B1 (en) | Acid oil-in-water emulsified food | |
JP6514110B2 (en) | Acidic oil-in-water type emulsified seasoning | |
JP4861374B2 (en) | Acid oil-in-water emulsified food | |
JP5029857B1 (en) | Acid oil-in-water emulsified food | |
JP2009268383A (en) | Processed liquid albumen, method for producing the same, and processed food and oil and fat retaining material mixed with the processed liquid albumen | |
JP5854994B2 (en) | Acid oil-in-water emulsified food | |
JP6198468B2 (en) | Oil-in-water emulsified seasoning | |
JP6198469B2 (en) | Oil-in-water emulsified seasoning | |
JP4183360B2 (en) | Mayonnaise food | |
JP5644211B2 (en) | Acid oil-in-water emulsified food | |
JP2014045763A (en) | Salad including an acidic o/w-type emulsified food | |
JP4972077B2 (en) | Acid oil-in-water emulsified food and method for producing the same | |
JP6227260B2 (en) | Acid resistant cream | |
JP4493508B2 (en) | Oil composition for batter | |
JP2012010622A (en) | Acidic oil-in-water type emulsion food | |
JP2014045764A (en) | Cooked bread using an acidic o/w-type emulsified food | |
JP5616686B2 (en) | Acid oil-in-water emulsified composition | |
JP4382882B2 (en) | Seasoning for frozen food | |
JP4457858B2 (en) | Emulsified cooking sauce and method for producing the same | |
JP2014045765A (en) | Salad including an acidic o/w-type emulsified food | |
JP2014045762A (en) | Cooked bread using an acidic o/w-type emulsified food | |
JP2010154819A (en) | Acidic oil-in-water emulsified food and method for producing the same | |
WO2004056187A1 (en) | Edible emulsion for hot food products | |
JPH0731415A (en) | Mayonnaise-like food | |
JP2023163679A (en) | Dressing production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120530 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120612 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5029857 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150706 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |