JP5029059B2 - Internal combustion engine control system - Google Patents

Internal combustion engine control system Download PDF

Info

Publication number
JP5029059B2
JP5029059B2 JP2007041187A JP2007041187A JP5029059B2 JP 5029059 B2 JP5029059 B2 JP 5029059B2 JP 2007041187 A JP2007041187 A JP 2007041187A JP 2007041187 A JP2007041187 A JP 2007041187A JP 5029059 B2 JP5029059 B2 JP 5029059B2
Authority
JP
Japan
Prior art keywords
compression ratio
internal combustion
combustion engine
ultra
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007041187A
Other languages
Japanese (ja)
Other versions
JP2008202541A (en
Inventor
晃司 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007041187A priority Critical patent/JP5029059B2/en
Publication of JP2008202541A publication Critical patent/JP2008202541A/en
Application granted granted Critical
Publication of JP5029059B2 publication Critical patent/JP5029059B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、可変圧縮比機構を備えた内燃機関の制御技術に関する。   The present invention relates to a control technique for an internal combustion engine having a variable compression ratio mechanism.

従来、可変圧縮比機構を備えた内燃機関の始動時に、圧縮比を低減させる技術が知られている(例えば、特許文献1を参照)。
特開2004−197745号公報 特開2006−52682号公報
2. Description of the Related Art Conventionally, a technique for reducing a compression ratio when starting an internal combustion engine equipped with a variable compression ratio mechanism is known (see, for example, Patent Document 1).
JP 2004-197745 A JP 2006-52682 A

ところで、内燃機関から大気中へ放出される排気エミッションを低減させることを考慮すると、内燃機関の始動期間中に排気温度を可及的に高めて触媒の早期活性を図ることが有効である。   By the way, in consideration of reducing the exhaust emission discharged from the internal combustion engine into the atmosphere, it is effective to increase the exhaust temperature as much as possible during the start-up period of the internal combustion engine to achieve early activation of the catalyst.

これに対し、内燃機関の始動期間中に該内燃機関の圧縮比を低下させることにより、排気温度の上昇を図る方法が考えられる。しかしながら、内燃機関の始動期間中に圧縮比が大幅に低くされると、混合気の燃焼安定性が低下してトルクの低下や機関回転速度の過剰な失速等が誘発される。   On the other hand, a method for increasing the exhaust gas temperature by reducing the compression ratio of the internal combustion engine during the start-up period of the internal combustion engine can be considered. However, if the compression ratio is significantly reduced during the start-up period of the internal combustion engine, the combustion stability of the air-fuel mixture is reduced, leading to a reduction in torque, excessive stalling of the engine speed, and the like.

本発明は、上記したような実情に鑑みてなされたものであり、その目的は、可変圧縮比機構を備えた内燃機関の制御システムにおいて、始動期間中の排気温度を好適に高めて触媒の早期活性を図る技術の提供にある。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to improve the exhaust gas temperature during the start-up period in an internal combustion engine control system equipped with a variable compression ratio mechanism, thereby improving the catalyst early. It is in the provision of technology to promote activity.

本発明は、上記した課題を解決するために、可変圧縮比機構を備えた内燃機関の始動期間中において、該内燃機関の慣性エネルギが十分に高いことを条件に圧縮比の可及的な低下を図るようにした。   In order to solve the above problems, the present invention reduces the compression ratio as much as possible under the condition that the inertial energy of the internal combustion engine is sufficiently high during the start-up period of the internal combustion engine provided with the variable compression ratio mechanism. I tried to plan.

詳細には、本発明にかかる内燃機関の制御システムは、内燃機関の圧縮比を変更する可変圧縮比機構と、内燃機関の始動期間中に該内燃機関の慣性エネルギを取得する取得手段と、前記取得手段により取得される慣性エネルギが所定値を超えている時に圧縮比を規定値より低下させる超低圧縮比処理を実行する制御手段と、を備えることを特徴とする。   Specifically, an internal combustion engine control system according to the present invention includes a variable compression ratio mechanism that changes a compression ratio of the internal combustion engine, an acquisition unit that acquires inertial energy of the internal combustion engine during a startup period of the internal combustion engine, Control means for executing an ultra-low compression ratio process for lowering the compression ratio below a specified value when the inertial energy acquired by the acquisition means exceeds a predetermined value.

尚、ここでいう「規定値」とは、始動期間中の燃焼安定性を損ない最低の圧縮比に相当する値である。また、ここでいう「始動期間」とは、クランキング開始から機関回転数が目標アイドル回転数に収束するまでの期間を含む概念である。   Here, the “specified value” is a value corresponding to the lowest compression ratio that impairs the combustion stability during the start-up period. Further, the “starting period” here is a concept including a period from the start of cranking to the convergence of the engine speed to the target idle speed.

本発明にかかる内燃機関の制御システムは、内燃機関の始動期間中において該内燃機関の慣性エネルギが所定値より高い時に限り超低圧縮比処理を実行する。超低圧縮比処理の実行により内燃機関の圧縮比が規定値より低下すると、混合気の燃焼が緩慢になる。その結果、排気温度が上昇する。排気温度が上昇すると、内燃機関の排気通路に配置された触媒が早期に活性する。   The control system for an internal combustion engine according to the present invention executes the ultra-low compression ratio processing only when the inertial energy of the internal combustion engine is higher than a predetermined value during the startup period of the internal combustion engine. When the compression ratio of the internal combustion engine falls below a specified value due to the execution of the ultra-low compression ratio process, the combustion of the air-fuel mixture becomes slow. As a result, the exhaust temperature rises. When the exhaust temperature rises, the catalyst disposed in the exhaust passage of the internal combustion engine is activated early.

ところで、内燃機関の圧縮比が規定値より低下すると、混合気の燃焼安定性が低下してトルクの大幅な低下や機関回転速度の過剰な失速等を伴う可能性がある。しかしながら、本発明の内燃機関の制御システムは、内燃機関の慣性エネルギが十分に高い時に限り超低
圧縮比処理を行うため、トルクの低下や機関回転速度の失速を抑制することができる。
By the way, if the compression ratio of the internal combustion engine falls below a specified value, the combustion stability of the air-fuel mixture may be lowered, resulting in a significant reduction in torque and excessive stalling of the engine speed. However, since the control system for an internal combustion engine according to the present invention performs the ultra-low compression ratio processing only when the inertial energy of the internal combustion engine is sufficiently high, it is possible to suppress a reduction in torque and a stall in the engine speed.

従って、本発明にかかる内燃機関の制御システムによれば、内燃機関の始動期間中にトルクの大幅な低下や機関回転速度の過剰な失速を伴うことなく、排気温度を上昇させることができる。その結果、触媒の早期活性が図られる。   Therefore, according to the control system for an internal combustion engine according to the present invention, the exhaust temperature can be raised during the start-up period of the internal combustion engine without being accompanied by a significant decrease in torque or excessive stall of the engine speed. As a result, early activation of the catalyst is achieved.

本発明にかかる内燃機関の制御システムにおいて、所定値は、内燃機関の回転速度が目標アイドル回転速度に収束している時の慣性エネルギ(以下、「基準慣性エネルギ」と称する)以上の大きさに設定されるようにしてもよい。   In the control system for an internal combustion engine according to the present invention, the predetermined value is greater than an inertia energy (hereinafter referred to as “reference inertia energy”) when the rotation speed of the internal combustion engine converges to a target idle rotation speed. It may be set.

この場合、超圧縮比制御は、内燃機関の慣性エネルギが基準慣性エネルギを上回っている時に実行されることになる。その結果、超圧縮比制御の実行により内燃機関の燃焼安定性が低下しても、機関回転数が目標アイドル回転数を下回り難くなる。   In this case, the super compression ratio control is executed when the inertial energy of the internal combustion engine exceeds the reference inertial energy. As a result, even if the combustion stability of the internal combustion engine is reduced due to the execution of the super compression ratio control, the engine speed is difficult to fall below the target idle speed.

尚、可変圧縮比機構は、制御手段からの指示を受けた時点から指示通りの動作を完了する時点までに応答遅れを生じる。制御手段が可変圧縮比機構の応答遅れを考慮せずに超低圧縮比処理を行うと、慣性エネルギが所定値以下の時に内燃機関の圧縮比が規定値を下回る事態が発生し得る。   The variable compression ratio mechanism has a response delay from the time when the instruction from the control means is received to the time when the operation as instructed is completed. If the control means performs the ultra-low compression ratio process without taking into account the response delay of the variable compression ratio mechanism, a situation may occur where the compression ratio of the internal combustion engine falls below a specified value when the inertia energy is equal to or less than a predetermined value.

例えば、超低圧縮比処理の実行を終了させる場合に、慣性エネルギが所定値以下になった時点で制御手段から可変圧縮比機構に対する指示(内燃機関の圧縮比を規定値以上の圧縮比に復帰させるための指示)が行われると、慣性エネルギが所定値以下になった後に圧縮比が規定値未満となる期間が生じる。   For example, when terminating the execution of the ultra-low compression ratio process, when the inertial energy becomes a predetermined value or less, an instruction from the control means to the variable compression ratio mechanism (returns the compression ratio of the internal combustion engine to a compression ratio greater than a specified value). When the instruction is performed), a period in which the compression ratio becomes less than the specified value occurs after the inertial energy becomes a predetermined value or less.

これに対し、本発明にかかる内燃機関の制御システムは、可変圧縮比機構の応答遅れの長さを推定する推定手段を更に備え、制御手段が前記推定手段の推定値に応じて超低圧縮比処理の実行時期を変更してもよい。尚、ここでいう「実行時期」は、制御手段が可変圧縮比機構に対する指示を行う時期である。   In contrast, the control system for an internal combustion engine according to the present invention further includes estimation means for estimating the length of the response delay of the variable compression ratio mechanism, and the control means determines the ultra-low compression ratio according to the estimated value of the estimation means. You may change the execution time of a process. The “execution time” here is a time when the control means gives an instruction to the variable compression ratio mechanism.

かかる構成によれば、超低圧縮比処理が終了される場合に、慣性エネルギが所定値以下となった後に圧縮比が規定値未満となる期間が生じなくなる。   According to such a configuration, when the ultra-low compression ratio process is terminated, a period in which the compression ratio becomes less than the specified value after the inertial energy becomes equal to or less than the predetermined value does not occur.

可変圧縮比機構の応答遅れの長さは、以下のような方法により推定されてもよい。   The length of the response delay of the variable compression ratio mechanism may be estimated by the following method.

可変圧縮比機構が油圧により駆動される機構である場合は、推定手段は、油温が低くなるほど応答遅れが長くなるとともに、油温が高くなるほど応答遅れが短くなると推定する。   When the variable compression ratio mechanism is a mechanism driven by hydraulic pressure, the estimation means estimates that the response delay becomes longer as the oil temperature becomes lower and the response delay becomes shorter as the oil temperature becomes higher.

可変圧縮比機構が電力により駆動される機構である場合は、推定手段は、バッテリ電圧が低くなるほど応答遅れが長くなるとともに、バッテリ電圧が高くなるほど応答遅れが短くなると推定する。   When the variable compression ratio mechanism is a mechanism driven by electric power, the estimation means estimates that the response delay becomes longer as the battery voltage becomes lower and the response delay becomes shorter as the battery voltage becomes higher.

また、本発明にかかる内燃機関の制御システムにおいて、制御手段は、推定手段の推定値に応じて超低圧縮比処理の実行時期を変更する代わりに、推定手段の推定値に応じて超低圧縮比処理実行時の目標圧縮比を変更するようにしてもよい。   Further, in the control system for an internal combustion engine according to the present invention, the control means does not change the execution time of the ultra-low compression ratio process according to the estimated value of the estimating means, but instead of the ultra-low compression according to the estimated value of the estimating means. You may make it change the target compression ratio at the time of ratio processing execution.

可変圧縮比機構の応答遅れは、該可変圧縮比機構の作動量が多くなるほど長くなる。このため、超低圧縮比処理実行時の目標圧縮比が高くなるほど、可変圧縮比機構の作動量が少なくなるとともに応答遅れが短くなる。よって、油温やバッテリ電圧等から定まる可変圧縮比機構の応答遅れの長さに応じて超低圧縮比処理実行時の目標圧縮比が変更されると
、超低圧縮比処理の実行時期が変更された場合と同様の効果を得ることができる。
The response delay of the variable compression ratio mechanism becomes longer as the operation amount of the variable compression ratio mechanism increases. For this reason, the higher the target compression ratio at the time of executing the ultra-low compression ratio processing, the smaller the operation amount of the variable compression ratio mechanism and the shorter the response delay. Therefore, if the target compression ratio at the time of executing the ultra-low compression ratio process is changed according to the response delay length of the variable compression ratio mechanism determined from the oil temperature, battery voltage, etc., the execution timing of the ultra-low compression ratio process is changed. The same effect as that obtained can be obtained.

尚、本発明にかかる内燃機関の制御システムは、推定手段の代わりに、油温或いはバッテリ電圧を検出する検出手段を備え、制御手段が検出手段の検出値に応じて超低圧縮比処理の実行時期或いは超低圧縮比処理実行時の目標圧縮比を変更してもよい。   The control system for an internal combustion engine according to the present invention includes a detection means for detecting the oil temperature or the battery voltage instead of the estimation means, and the control means executes the ultra-low compression ratio process according to the detection value of the detection means. You may change the target compression ratio at the time of execution of time or an ultra-low compression ratio process.

本発明によれば、可変圧縮比機構を備えた内燃機関において、始動期間中の排気温度を好適に高めることができる。その結果、触媒の早期活性が図られる。   According to the present invention, in an internal combustion engine provided with a variable compression ratio mechanism, the exhaust temperature during the starting period can be suitably increased. As a result, early activation of the catalyst is achieved.

以下、本発明の具体的な実施形態について図面に基づいて説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

<実施例1>
先ず、本発明の第1の実施例について図1〜図13に基づいて説明する。図1は、本発明にかかる内燃機関の制御システムの概略構成を示す図である。
<Example 1>
First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine control system according to the present invention.

図1に示す内燃機関1は、複数の気筒2を有する4ストロークサイクルの火花点火式の内燃機関(ガソリンエンジン)である。内燃機関1の気筒2は、吸気ポート3を介して吸気通路30に接続されるとともに、排気ポート4を介して排気通路40に接続されている。   An internal combustion engine 1 shown in FIG. 1 is a four-stroke cycle spark ignition type internal combustion engine (gasoline engine) having a plurality of cylinders 2. The cylinder 2 of the internal combustion engine 1 is connected to the intake passage 30 through the intake port 3 and is connected to the exhaust passage 40 through the exhaust port 4.

吸気ポート3には、気筒2内へ向かって燃料を噴射する燃料噴射弁5が設けられている。吸気通路30には、該吸気通路30内を流通する空気量を制御するスロットル弁6が設けられている。スロットル弁6より上流の吸気通路30には、該吸気通路30を流れる空気量を測定するエアフローメータ8が設けられている。   The intake port 3 is provided with a fuel injection valve 5 that injects fuel into the cylinder 2. The intake passage 30 is provided with a throttle valve 6 that controls the amount of air flowing through the intake passage 30. An air flow meter 8 that measures the amount of air flowing through the intake passage 30 is provided in the intake passage 30 upstream of the throttle valve 6.

一方、排気通路40には、排気浄化装置9が配置されている。排気浄化装置9は、三元触媒や吸蔵還元型NOx触媒等を具備し、所定の活性温度域にある時に排気を浄化する。   On the other hand, an exhaust purification device 9 is disposed in the exhaust passage 40. The exhaust purification device 9 includes a three-way catalyst, an NOx storage reduction catalyst, and the like, and purifies exhaust when it is in a predetermined activation temperature range.

また、内燃機関1には、気筒2内に臨む吸気ポート3の開口端を開閉する吸気弁10と、気筒2内に臨む排気ポート4の開口端を開閉する排気弁11が設けられている。これら吸気弁10と排気弁11は、吸気側カムシャフト12と排気側カムシャフト13によりそれぞれ開閉駆動される。   Further, the internal combustion engine 1 is provided with an intake valve 10 that opens and closes an open end of the intake port 3 facing the cylinder 2 and an exhaust valve 11 that opens and closes an open end of the exhaust port 4 facing the cylinder 2. The intake valve 10 and the exhaust valve 11 are driven to open and close by an intake camshaft 12 and an exhaust camshaft 13, respectively.

気筒2の上部には、該気筒2内の混合気に点火する点火プラグ14が配置されている。また、気筒2内にはピストン15が摺動自在に挿入されている。ピストン15はコネクティングロッド16を介してクランクシャフト17と接続されている。   A spark plug 14 for igniting the air-fuel mixture in the cylinder 2 is disposed at the upper part of the cylinder 2. A piston 15 is slidably inserted into the cylinder 2. The piston 15 is connected to the crankshaft 17 via a connecting rod 16.

クランクシャフト17の近傍には、該クランクシャフト17の回転角度を検出するクランクポジションセンサ18が配置されている。更に、内燃機関1には、該内燃機関1を循環する冷却水の温度を測定する水温センサ19が取り付けられている。   A crank position sensor 18 that detects a rotation angle of the crankshaft 17 is disposed in the vicinity of the crankshaft 17. Furthermore, a water temperature sensor 19 for measuring the temperature of the cooling water circulating through the internal combustion engine 1 is attached to the internal combustion engine 1.

また、吸気側カムシャフト12には、クランクシャフト17に対する該吸気側カムシャフト12の回転位相を変更する可変動弁機構120が取り付けられている。   A variable valve mechanism 120 that changes the rotational phase of the intake camshaft 12 relative to the crankshaft 17 is attached to the intake camshaft 12.

このように構成された内燃機関1には、ECU20が併設されている。ECU20は、CPU、ROM、RAM等を備えた電子制御ユニットである。このECU20は、前述したエアフローメータ8、クランクポジションセンサ18、及び水温センサ19等の各種センサと電気的に接続され、各種センサの測定値を入力可能になっている。   The internal combustion engine 1 configured as described above is provided with an ECU 20. The ECU 20 is an electronic control unit that includes a CPU, a ROM, a RAM, and the like. The ECU 20 is electrically connected to various sensors such as the air flow meter 8, the crank position sensor 18, and the water temperature sensor 19 described above, and can input measurement values of the various sensors.

ECU20は、前記した各種センサの測定値に基づいて燃料噴射弁5、スロットル弁6、点火プラグ14、及び可変動弁機構120を電気的に制御する。例えば、ECU20は、内燃機関1の始動期間中に排気温度を上昇させる昇温制御を行う。   The ECU 20 electrically controls the fuel injection valve 5, the throttle valve 6, the spark plug 14, and the variable valve mechanism 120 based on the measurement values of the various sensors described above. For example, the ECU 20 performs temperature increase control for increasing the exhaust gas temperature during the startup period of the internal combustion engine 1.

以下、本実施例における昇温制御について述べる。   Hereinafter, the temperature rise control in this embodiment will be described.

内燃機関1が冷間始動される場合等は、排気浄化装置9の温度が活性温度域に達していない。このため、内燃機関1の始動時および/または始動直後は、該内燃機関1の排気エミッションが排気浄化装置9で浄化されることなく大気中へ放出される。   For example, when the internal combustion engine 1 is cold started, the temperature of the exhaust purification device 9 does not reach the activation temperature range. For this reason, at the start of the internal combustion engine 1 and / or immediately after the start, the exhaust emission of the internal combustion engine 1 is released into the atmosphere without being purified by the exhaust purification device 9.

よって、内燃機関1の始動時および/または始動直後の排気エミッションを低減させるためには、排気浄化装置9の早期活性が有効である。排気浄化装置9を早期に活性させる方法としては、内燃機関1の圧縮比を低下させる方法が考えられる。   Therefore, early activation of the exhaust purification device 9 is effective for reducing the exhaust emission at the start of the internal combustion engine 1 and / or immediately after the start. As a method of activating the exhaust purification device 9 at an early stage, a method of reducing the compression ratio of the internal combustion engine 1 can be considered.

内燃機関1の圧縮比が低下した場合は、混合気の燃焼速度が低下する。混合気の燃焼速度が低下すると、内燃機関1から排出される排気の温度が上昇する。排気温度が上昇すると、排気から排気浄化装置9へ伝達される熱量が増加するため、排気浄化装置9の昇温が促進される。   When the compression ratio of the internal combustion engine 1 decreases, the combustion speed of the air-fuel mixture decreases. When the combustion speed of the air-fuel mixture decreases, the temperature of the exhaust discharged from the internal combustion engine 1 increases. When the exhaust gas temperature rises, the amount of heat transferred from the exhaust gas to the exhaust gas purification device 9 increases, so that the temperature rise of the exhaust gas purification device 9 is promoted.

但し、内燃機関1の始動期間中に圧縮比が大幅に低下すると、混合気の燃焼安定性が損なわれ、トルクの低下や機関回転速度の過剰な失速等を招く虞がある。   However, if the compression ratio is significantly reduced during the start-up period of the internal combustion engine 1, the combustion stability of the air-fuel mixture is impaired, and there is a risk of causing a reduction in torque, excessive stalling of the engine speed, and the like.

図2は、圧縮比の変化に対するトルク変動の大きさと排気温度の変化を示す図である。内燃機関1の排気温度は、圧縮比が低くなるにつれて上昇してピーク値Temaxに達する。排気温度がピーク値Temaxに達した後は、圧縮比の低下に伴って排気温度が低下する。   FIG. 2 is a diagram showing the magnitude of torque fluctuation and the change in exhaust temperature with respect to the change in compression ratio. The exhaust temperature of the internal combustion engine 1 increases as the compression ratio becomes lower, and reaches a peak value Temax. After the exhaust temperature reaches the peak value Temax, the exhaust temperature decreases as the compression ratio decreases.

排気温度がピーク値Temaxに達する時の圧縮比(以下、「ピーク時圧縮比」と称する)CRtrgは、トルク変動の大きさが許容限界値より大きくなる領域(トルク変動悪化領域)に属する。   The compression ratio CRtrg when the exhaust temperature reaches the peak value Temax (hereinafter referred to as “peak compression ratio”) CRtrg belongs to a region where the magnitude of torque fluctuation is greater than the allowable limit value (torque fluctuation deterioration area).

従って、内燃機関1の始動期間中に該内燃機関1の圧縮比がピーク時圧縮比CRtrgまで低下させられると、トルクの大幅な低下によりトルク変動の大きさが許容限界値を超えるとともに、機関回転速度の大幅な失速により機関回転変動も過大になる虞がある。   Accordingly, if the compression ratio of the internal combustion engine 1 is reduced to the peak compression ratio CRtrg during the start-up period of the internal combustion engine 1, the magnitude of torque fluctuation exceeds the allowable limit value due to a significant decrease in torque, and the engine speed There is a risk that engine speed fluctuations become excessive due to a significant stall of speed.

これに対し、混合気の燃焼安定性が損なわれない範囲内に圧縮比を制限する方法が考えられる。例えば、図2においてトルク変動値が許容限界値と同等になる圧縮比(規定値)CRminを始動期間中の圧縮比に設定する方法が考えられる。   On the other hand, a method of limiting the compression ratio within a range where the combustion stability of the air-fuel mixture is not impaired can be considered. For example, in FIG. 2, a method is conceivable in which the compression ratio (specified value) CRmin at which the torque fluctuation value is equal to the allowable limit value is set to the compression ratio during the start period.

しかしながら、始動期間中の圧縮比が前記圧縮比CRminに制限されると、排気温度の上昇量が少なくなるため、排気浄化装置9を早期に活性させることは困難となる。   However, if the compression ratio during the start-up period is limited to the compression ratio CRmin, the amount of increase in the exhaust temperature decreases, so that it is difficult to activate the exhaust purification device 9 at an early stage.

そこで、ECU20は、内燃機関1の始動期間中において該内燃機関1の慣性エネルギが十分に大きい時に限り、圧縮比をピーク時圧縮比CRtrgまで低下させる処理(超低圧縮比処理)を行うようにした。   Therefore, the ECU 20 performs a process of reducing the compression ratio to the peak compression ratio CRtrg (ultra-low compression ratio process) only when the inertial energy of the internal combustion engine 1 is sufficiently large during the startup period of the internal combustion engine 1. did.

図3は、内燃機関1の始動期間中における慣性エネルギEeの推移を示す図である。図3において、内燃機関1の始動開始から初爆発生までの期間(クランキング期間)は、慣性エネルギEeが非常に小さい。このため、クランキング期間中の圧縮比は、前記規定値
CRminに制限されることが好ましい。
FIG. 3 is a diagram showing a transition of the inertial energy Ee during the start-up period of the internal combustion engine 1. In FIG. 3, the inertia energy Ee is very small during the period (cranking period) from the start of the internal combustion engine 1 to the occurrence of the first explosion. For this reason, it is preferable that the compression ratio during the cranking period is limited to the specified value CRmin.

初爆発生後の連爆期間は、慣性エネルギEeが徐々に上昇する。但し、連爆期間中は混合気の着火性及び燃焼安定性が低い。このため、連爆期間中の圧縮比も前記規定値CRminに制限されることが好適である。   In the continuous explosion period after the first explosion, the inertial energy Ee gradually increases. However, the ignitability and combustion stability of the air-fuel mixture are low during the continuous explosion period. For this reason, it is preferable that the compression ratio during the continuous explosion period is also limited to the specified value CRmin.

内燃機関1が完爆した直後は、慣性エネルギEeが過大となり、機関回転数が目標アイドル回転数(この場合は、ファーストアイドル回転数の目標値)を超えて過上昇する期間(吹き上がり期間)が生じる。このため、内燃機関1の完爆直後の吹き上がり期間に超低圧縮比処理が行われると、超低圧縮比処理に起因したトルクの低下や機関回転速度の失速は余剰の慣性エネルギによって相殺される。   Immediately after the complete explosion of the internal combustion engine 1, the inertial energy Ee becomes excessive, and the engine speed exceeds the target idle speed (in this case, the target value of the first idle speed) and excessively increases (blow-up period). Occurs. For this reason, when the ultra-low compression ratio process is performed during the blow-up period immediately after the complete explosion of the internal combustion engine 1, torque reduction and engine speed stall due to the ultra-low compression ratio process are offset by surplus inertia energy. The

従って、内燃機関1が完爆した直後の慣性エネルギEeが過大となる時(吹き上がり期間)に超低圧縮比処理が実行されても前述したような不具合を発生することなく、排気温度を上昇させることができる。更に、超低圧縮比処理の実行により機関回転数の過上昇が軽減されるため、機関回転数の過上昇による振動や騒音の増加を低減することもできる。   Therefore, even if the ultra-low compression ratio process is executed when the inertial energy Ee immediately after the complete explosion of the internal combustion engine 1 is excessive (blow-up period), the exhaust temperature is raised without causing the above-described problems. Can be made. Furthermore, since the excessive increase in the engine speed is reduced by executing the ultra-low compression ratio process, it is possible to reduce the increase in vibration and noise due to the excessive increase in the engine speed.

内燃機関1が完爆した時期を判別する方法としては、内燃機関1の慣性エネルギEeが所定値を超えたことを条件に内燃機関1が完爆したと判定する方法を例示することができる。その際の所定値としては、機関回転数が目標アイドル回転数に収束している時の慣性エネルギ(基準慣性エネルギ)Ebaseを用いることができる。基準慣性エネルギEbaseは、予め実験的に求めておくようにしてもよい。   As a method for determining the time when the internal combustion engine 1 has completely exploded, a method for determining that the internal combustion engine 1 has completed the complete explosion on condition that the inertial energy Ee of the internal combustion engine 1 has exceeded a predetermined value can be exemplified. As the predetermined value at that time, inertia energy (reference inertia energy) Ebase when the engine speed has converged to the target idle speed can be used. The reference inertia energy Ebase may be obtained experimentally in advance.

また、内燃機関1の圧縮比を変更する方法としては、燃焼室容積(ピストン15が上死点に位置する時の気筒2内の容積)とピストン15が下死点に位置する時の気筒2内の容積との比(機械圧縮比)を変更する方法、或いは燃焼室容積と吸気弁10が閉弁した時の気筒2内の容積との比(有効圧縮比)を変更する方法を例示することができる。   As a method of changing the compression ratio of the internal combustion engine 1, the combustion chamber volume (the volume in the cylinder 2 when the piston 15 is located at the top dead center) and the cylinder 2 when the piston 15 is located at the bottom dead center. A method of changing the ratio (mechanical compression ratio) to the internal volume or a method of changing the ratio (effective compression ratio) of the combustion chamber volume and the volume in the cylinder 2 when the intake valve 10 is closed is exemplified. be able to.

機械圧縮比を変更する方法としては、クランクケースとシリンダブロックとの相対位置を変更する機構や、コネクティングロッドの長さを変更する機構等を利用する方法を例示することができる。   Examples of the method for changing the mechanical compression ratio include a method using a mechanism for changing the relative position between the crankcase and the cylinder block, a mechanism for changing the length of the connecting rod, and the like.

有効圧縮比を変更する方法としては、可変動弁機構を利用して吸気弁10の閉弁時期を変更する方法を例示することができる。   As a method of changing the effective compression ratio, a method of changing the valve closing timing of the intake valve 10 using a variable valve mechanism can be exemplified.

本発明の内燃機関の制御システムは、機械圧縮比を変更する方法と有効圧縮比を変更する方法との何れの方法も利用可能であるが、以下では可変動弁機構120を利用して有効圧縮比を変更する例について述べる。この場合、可変動弁機構120は、本発明にかかる可変圧縮比機構に相当する。   The control system for an internal combustion engine of the present invention can use either the method of changing the mechanical compression ratio or the method of changing the effective compression ratio, but in the following, the effective compression using the variable valve mechanism 120 will be described. An example of changing the ratio will be described. In this case, the variable valve mechanism 120 corresponds to a variable compression ratio mechanism according to the present invention.

図4は、可変動弁機構120を利用して有効圧縮比を低下させる方法を模式化した図である。図4中の一点破線は圧縮比がピーク時圧縮比CRtrgに設定される時の吸気弁10の開弁期間を示し、図4中の破線は圧縮比が規定値CRminに設定される時の吸気弁10の開弁期間を示す。   FIG. 4 is a diagram schematically illustrating a method for reducing the effective compression ratio using the variable valve mechanism 120. 4 indicates the valve opening period of the intake valve 10 when the compression ratio is set to the peak compression ratio CRtrg, and the broken line in FIG. 4 indicates the intake air when the compression ratio is set to the specified value CRmin. The valve opening period of the valve 10 is shown.

吸気弁10の閉弁時期(IVC)が遅角された場合は、吸気弁10が閉弁した時の気筒2内の容積が減少する。その結果、内燃機関1の有効圧縮比が低下する。従って、ECU20は、内燃機関1の圧縮比をピーク時圧縮比CRtrgに低下させる場合は、圧縮比が規定値CRminに設定される場合より吸気弁10の閉弁時期(IVC)を遅角させればよい。   When the valve closing timing (IVC) of the intake valve 10 is retarded, the volume in the cylinder 2 when the intake valve 10 is closed decreases. As a result, the effective compression ratio of the internal combustion engine 1 is reduced. Therefore, the ECU 20 can retard the closing timing (IVC) of the intake valve 10 when the compression ratio of the internal combustion engine 1 is reduced to the peak compression ratio CRtrg than when the compression ratio is set to the specified value CRmin. That's fine.

ところで、可変動弁機構120は、ECU20の指示を入力した時点から指示通りの動作を完了する時点までに応答遅れを生じる。ECU20が可変動弁機構120の応答遅れを考慮せずに超低圧縮比処理を行うと、慣性エネルギEeが基準慣性エネルギEbase以下の時に圧縮比が規定値CRmin未満となる事態が発生し得る。   By the way, the variable valve mechanism 120 causes a response delay from the time when the instruction of the ECU 20 is input to the time when the operation as instructed is completed. When the ECU 20 performs the ultra-low compression ratio process without considering the response delay of the variable valve mechanism 120, a situation may occur in which the compression ratio becomes less than the specified value CRmin when the inertia energy Ee is equal to or less than the reference inertia energy Ebase.

例えば、ECU20が超低圧縮比処理を終了させる際に、慣性エネルギEeが基準慣性エネルギEbase以下に低下したことをトリガにしてECU20から可変動弁機構120へ指示信号が出力されると、慣性エネルギEeが基準慣性エネルギEbase以下になった後に圧縮比が規定値CRmin未満となる期間が生じる。   For example, when the ECU 20 ends the ultra-low compression ratio process, if an instruction signal is output from the ECU 20 to the variable valve mechanism 120 triggered by a decrease in the inertia energy Ee below the reference inertia energy Ebase, the inertia energy After Ee becomes equal to or less than the reference inertia energy Ebase, a period in which the compression ratio is less than the specified value CRmin occurs.

これに対し、本実施例の昇温制御では、可変動弁機構120の応答遅れの長さに応じて、超低圧縮比処理の実行終了時期(すなわち、有効圧縮比をピーク時圧縮比CRtrgから規定値CRminへ変更させる指示信号がECU20から出力される時期)が変更されるようにした。   On the other hand, in the temperature increase control of this embodiment, the execution end time of the ultra-low compression ratio process (that is, the effective compression ratio is calculated from the peak compression ratio CRtrg according to the length of the response delay of the variable valve mechanism 120. The timing at which the instruction signal for changing to the specified value CRmin is output from the ECU 20) is changed.

具体的には、図5に示すように、超低圧縮比処理の実行終了時期は、慣性エネルギEeが判定基準値Ecr以下となった時期(図5中のt1)に定められる。判定基準値Ecr値は基準慣性エネルギEbaseに所定量αを加算した値(=Ebase+α)であり、前記所定量αは可変動弁機構120の応答遅れの長さに応じて増減される。   Specifically, as shown in FIG. 5, the execution end time of the ultra-low compression ratio process is set to a time (t1 in FIG. 5) when the inertial energy Ee becomes equal to or less than the determination reference value Ecr. The determination reference value Ecr value is a value obtained by adding a predetermined amount α to the reference inertia energy Ebase (= Ebase + α), and the predetermined amount α is increased or decreased according to the length of response delay of the variable valve mechanism 120.

可変動弁機構120の応答遅れは、例えば、以下のような方法により推定される。   The response delay of the variable valve mechanism 120 is estimated by the following method, for example.

可変動弁機構120が油圧により駆動される機構である場合は、該可変動弁機構120の応答遅れは、図6に示すように、油温が低くなるほど長くなるとともに、油温が高くなるほど短くなる。   When the variable valve mechanism 120 is a mechanism driven by hydraulic pressure, the response delay of the variable valve mechanism 120 becomes longer as the oil temperature becomes lower and shorter as the oil temperature becomes higher as shown in FIG. Become.

可変動弁機構120が電動モータにより駆動される機構である場合は、該可変動弁機構120の応答遅れは、図7に示すように、バッテリ電圧が低くなるほど長くなるとともに、バッテリ電圧が高くなるほど短くなる。   When the variable valve mechanism 120 is a mechanism driven by an electric motor, the response delay of the variable valve mechanism 120 becomes longer as the battery voltage becomes lower and the battery voltage becomes higher as shown in FIG. Shorter.

よって、所定量αは、図6或いは図7に基づいて推定された応答遅れの長さが長くなるほど大きな値になるとともに、前記応答遅れの長さが短くなるほど小さな値になる(図8を参照)。これは、可変動弁機構120の応答遅れが長くなるほど前記判定基準値Ecrが大きな値になるとともに、可変動弁機構120の応答遅れが短くなるほど前記判定基準値Ecrが小さな値になることを意味する。   Therefore, the predetermined amount α becomes larger as the response delay length estimated based on FIG. 6 or FIG. 7 becomes longer, and becomes smaller as the response delay length becomes shorter (see FIG. 8). ). This means that the determination reference value Ecr becomes larger as the response delay of the variable valve mechanism 120 becomes longer, and the determination reference value Ecr becomes smaller as the response delay of the variable valve mechanism 120 becomes shorter. To do.

その結果、超低圧縮比処理の実行終了時期は、可変動弁機構120の応答遅れが長くなるほど早い時期になるとともに、可変動弁機構120の応答遅れが短くなるほど遅い時期になる。   As a result, the execution end time of the ultra-low compression ratio processing becomes earlier as the response delay of the variable valve mechanism 120 becomes longer, and becomes later as the response delay of the variable valve mechanism 120 becomes shorter.

このように超低圧縮比処理の実行終了時期が調整されると、慣性エネルギEeが基準慣性エネルギEbaseより低くなる前に内燃機関1の圧縮比が規定値CRmin以上へ復帰可能となる。   When the execution end timing of the ultra-low compression ratio process is adjusted in this way, the compression ratio of the internal combustion engine 1 can be returned to the specified value CRmin or more before the inertial energy Ee becomes lower than the reference inertial energy Ebase.

尚、所定量αは、図9又は図10に示すように、油温或いはバッテリ電圧をパラメータとして定められてもよい。すなわち、所定量αは、油温或いはバッテリ電圧が低くなるほど大きな値にされるとともに、油温或いはバッテリ電圧が高くなるほど小さな値にされてもよい。   Note that the predetermined amount α may be determined using the oil temperature or the battery voltage as a parameter, as shown in FIG. 9 or FIG. That is, the predetermined amount α may be set to a larger value as the oil temperature or the battery voltage becomes lower, and may be set to a smaller value as the oil temperature or the battery voltage becomes higher.

次に、本実施例における昇温制御の実行手順について図11のフローチャートに沿って説明する。図11は、本実施例における昇温制御ルーチンを示すフローチャートである。昇温制御ルーチンは、予めECU20のROMに記憶されており、ECU20によって周期的に実行される。   Next, the execution procedure of the temperature increase control in the present embodiment will be described along the flowchart of FIG. FIG. 11 is a flowchart showing a temperature increase control routine in the present embodiment. The temperature increase control routine is stored in advance in the ROM of the ECU 20 and is periodically executed by the ECU 20.

昇温制御ルーチンでは、ECU20は先ずS101において内燃機関1の始動期間中であるか否かを判別する。この判別方法としては、例えば、内燃機関1の始動開始時(クランキング開始時)に“0”がセットされ、内燃機関1の始動完了時に“1”へ書き換えられるフラグを利用する方法を例示することができる。   In the temperature increase control routine, the ECU 20 first determines in S101 whether or not the internal combustion engine 1 is in the starting period. As this determination method, for example, a method of using a flag that is set to “0” at the start of start of the internal combustion engine 1 (at the start of cranking) and rewritten to “1” when the start of the internal combustion engine 1 is completed is exemplified. be able to.

前記S101において否定判定された場合は、ECU20は、本ルーチンの実行を終了する。一方、前記S101において肯定判定された場合は、ECU20は、S102へ進む。   If a negative determination is made in S101, the ECU 20 ends the execution of this routine. On the other hand, if an affirmative determination is made in S101, the ECU 20 proceeds to S102.

S102では、ECU20は、目標アイドル回転数を演算する。具体的には、ECU20は、水温センサ19の測定値(冷却水温度thw)と図12に示すマップとに基づいて目標アイドル回転数を演算する。図12において、目標アイドル回転数は、冷却水温度thwが所定温度thw1以上となる領域(暖機完了領域)では一定値に固定される。一方、冷却水温度thwが前記所定温度thw1未満となる領域(暖機運転領域)では、冷却水温度thwが低くなるほど目標アイドル回転数が高く設定される。尚、所定温度thw1は、内燃機関1の暖機が完了したとみなすことができる冷却水温度である。   In S102, the ECU 20 calculates a target idle speed. Specifically, the ECU 20 calculates the target idle speed based on the measured value (cooling water temperature thw) of the water temperature sensor 19 and the map shown in FIG. In FIG. 12, the target idle speed is fixed at a constant value in a region where the coolant temperature thw is equal to or higher than a predetermined temperature thw1 (warm-up completion region). On the other hand, in the region where the coolant temperature thw is lower than the predetermined temperature thw1 (warm-up operation region), the target idle speed is set higher as the coolant temperature thw is lower. The predetermined temperature thw1 is a cooling water temperature at which it can be considered that the internal combustion engine 1 has been warmed up.

ここで図11に戻り、ECU20は、S103では、前記S102で求められた目標アイドル回転数に基づいて基準慣性エネルギEbaseを演算する。目標アイドル回転数と基準慣性エネルギEbaseとの関係は、予め実験的に求めておくようにしてもよい。   Here, returning to FIG. 11, in S103, the ECU 20 calculates a reference inertia energy Ebase based on the target idle speed determined in S102. The relationship between the target idle speed and the reference inertia energy Ebase may be experimentally obtained in advance.

S104では、ECU20は、ピーク時圧縮比CRtrgを演算する。ピーク時圧縮比CRtrgは、気筒2内の温度に応じて変化するため、気筒2内の温度をパラメータとして演算されてもよい。その際、気筒2内の温度は冷却水温度thwと相関するため、ECU20は、冷却水温度thwとピーク時圧縮比CRtrgとの関係を定めたマップ(例えば、図13を参照)に基づいてピーク時圧縮比CRtrgを演算してもよい。   In S104, the ECU 20 calculates a peak compression ratio CRtrg. Since the peak compression ratio CRtrg changes according to the temperature in the cylinder 2, it may be calculated using the temperature in the cylinder 2 as a parameter. At this time, since the temperature in the cylinder 2 correlates with the coolant temperature thw, the ECU 20 peaks based on a map (for example, see FIG. 13) that defines the relationship between the coolant temperature thw and the peak compression ratio CRtrg. The hour compression ratio CRtrg may be calculated.

S105では、ECU20は、現在の内燃機関1の慣性エネルギEeを演算する。慣性エネルギEeは、以下の式に基づいて算出することができる。
F=1/2*I*ω
In S105, the ECU 20 calculates the current inertial energy Ee of the internal combustion engine 1. The inertial energy Ee can be calculated based on the following equation.
F = 1/2 * I * ω

上記の式において、Iは内燃機関1の可動部の慣性質量であり、ωはクランクシャフト17の角速度である。   In the above formula, I is the inertial mass of the movable part of the internal combustion engine 1, and ω is the angular velocity of the crankshaft 17.

S106では、ECU20は、前記S103で求められた基準慣性エネルギEbaseと前記S105で求められた慣性エネルギEeとを比較する。すなわち、ECU20は、前記慣性エネルギEeが前記基準慣性エネルギEbaseより大きいか否かを判別する。   In S106, the ECU 20 compares the reference inertia energy Ebase obtained in S103 with the inertia energy Ee obtained in S105. That is, the ECU 20 determines whether or not the inertia energy Ee is larger than the reference inertia energy Ebase.

前記S106において否定判定された場合(Ee≦Ebase)は、ECU20は、前記S105へ戻る。前記S106において肯定判定された場合(Ee>Ebase)は、ECU20は、S107へ進む。   If a negative determination is made in S106 (Ee ≦ Ebase), the ECU 20 returns to S105. If an affirmative determination is made in S106 (Ee> Ebase), the ECU 20 proceeds to S107.

S107では、ECU20は、超低圧縮比処理の実行を開始する。すなわち、ECU20は、内燃機関1の有効圧縮比が前記S104で決定されたピーク時圧縮比CRtrgまで低下するように可変動弁機構120の制御を開始する。   In S107, the ECU 20 starts executing the ultra-low compression ratio process. That is, the ECU 20 starts control of the variable valve mechanism 120 so that the effective compression ratio of the internal combustion engine 1 is reduced to the peak compression ratio CRtrg determined in S104.

尚、本ルーチンでは、超低圧縮比処理の実行開始時期は、可変動弁機構120の応答遅れを考慮せずに決定されている。これは、可変動弁機構120の応答遅れを考慮して超低圧縮比処理実行開始時期が決定されると、内燃機関1が完爆する前に超低圧縮比処理が開始され、それにより内燃機関1が完爆し難くなる可能性があるからである。   In this routine, the execution start timing of the ultra-low compression ratio process is determined without considering the response delay of the variable valve mechanism 120. This is because, when the start timing of the ultra-low compression ratio process is determined in consideration of the response delay of the variable valve mechanism 120, the ultra-low compression ratio process is started before the internal combustion engine 1 is completely detonated. This is because there is a possibility that the engine 1 is difficult to complete.

S108では、ECU20は、前述した図6〜図10の何れかのマップを用いて判定基準値Ecrを演算する。   In S108, the ECU 20 calculates the determination reference value Ecr using any one of the maps shown in FIGS.

S109では、ECU20は、現時点における内燃機関1の慣性エネルギEeを再度演算する。   In S109, the ECU 20 calculates the inertial energy Ee of the internal combustion engine 1 at the current time again.

S110では、ECU20は、前記S108で求められた判定基準値Ecrと前記S109で求められた慣性エネルギEeとを比較する。すなわち、ECU20は、前記慣性エネルギEeが前記判定基準値Ecr以下に低下したか否かを判別する。   In S110, the ECU 20 compares the determination reference value Ecr obtained in S108 with the inertial energy Ee obtained in S109. That is, the ECU 20 determines whether or not the inertial energy Ee has decreased below the determination reference value Ecr.

前記S110において否定判定された場合は、ECU20は、前記S109以降の処理を再度実行する。一方、前記S110において肯定判定された場合は、ECU20は、S111へ進む。   If a negative determination is made in S110, the ECU 20 executes the processes after S109 again. On the other hand, when a positive determination is made in S110, the ECU 20 proceeds to S111.

S111では、ECU20は、超低圧縮比処理の実行を終了する。すなわち、ECU20は、内燃機関1の有効圧縮比を規定値CRminまで上昇させるべく、可変動弁機構120に対する指示信号を出力する。   In S111, the ECU 20 ends the execution of the ultra-low compression ratio process. That is, the ECU 20 outputs an instruction signal to the variable valve mechanism 120 in order to increase the effective compression ratio of the internal combustion engine 1 to the specified value CRmin.

この場合、内燃機関1の慣性エネルギEeが基準慣性エネルギEbase以下へ低下する前に、可変動弁機構120が動作し始めることになる。その結果、内燃機関1の慣性エネルギEeが基準慣性エネルギEbase以下へ低下する以前に、内燃機関1の有効圧縮比が規定値CRminに復帰する。   In this case, the variable valve mechanism 120 starts to operate before the inertial energy Ee of the internal combustion engine 1 drops below the reference inertial energy Ebase. As a result, before the inertial energy Ee of the internal combustion engine 1 drops below the reference inertial energy Ebase, the effective compression ratio of the internal combustion engine 1 returns to the specified value CRmin.

以上述べたようにECU20が図11の昇温制御ルーチンを実行すると、本発明にかかる取得手段、制御手段、及び推定手段が実現される。   As described above, when the ECU 20 executes the temperature increase control routine of FIG. 11, the acquisition means, control means, and estimation means according to the present invention are realized.

従って、本実施例の内燃機関の制御システムによれば、内燃機関1の始動期間中においてトルクの大幅な低下や機関回転速度の過剰な失速を伴うことなく、排気温度を上昇させることができる。その結果、排気浄化装置9を早期に活性させることが可能となる。また、超低圧縮比処理の実行により排気温度が高められると、排気中の未燃燃料成分と酸素が排気浄化装置9に依存することなく反応することも期待できる。   Therefore, according to the control system for the internal combustion engine of the present embodiment, the exhaust temperature can be raised during the start-up period of the internal combustion engine 1 without being accompanied by a significant decrease in torque or excessive stall of the engine speed. As a result, the exhaust purification device 9 can be activated early. Further, when the exhaust gas temperature is increased by executing the ultra-low compression ratio process, it can be expected that the unburned fuel component and oxygen in the exhaust gas react without depending on the exhaust gas purification device 9.

<実施例2>
次に、本発明の第2の実施例について図14〜図15に基づいて説明する。ここでは、前述した第1の実施例と異なる構成について説明し、同様の構成については説明を省略する。
<Example 2>
Next, a second embodiment of the present invention will be described with reference to FIGS. Here, a configuration different from that of the first embodiment will be described, and description of the same configuration will be omitted.

前述した第1の実施例では可変動弁機構120の応答遅れの長さに応じて超低圧縮比処理の実行時期を変更する例について述べたが、本実施例では可変動弁機構120の応答遅れの長さに応じて超低圧縮比処理実行時の目標圧縮比を変更する例について述べる。   In the first embodiment described above, an example in which the execution timing of the ultra-low compression ratio process is changed according to the length of the response delay of the variable valve mechanism 120 has been described, but in this embodiment, the response of the variable valve mechanism 120 is described. An example of changing the target compression ratio at the time of executing the ultra-low compression ratio processing according to the length of the delay will be described.

可変動弁機構120の応答遅れは、該可変動弁機構120の作動量が多くなるほど長くなる。このため、超低圧縮比処理実行時の目標圧縮比が高くなるほど可変動弁機構120の作動量が減少するとともに応答遅れが短くなる。   The response delay of the variable valve mechanism 120 becomes longer as the operation amount of the variable valve mechanism 120 increases. For this reason, as the target compression ratio at the time of executing the ultra-low compression ratio processing becomes higher, the operation amount of the variable valve mechanism 120 decreases and the response delay becomes shorter.

そこで、ECU20は、油温やバッテリ電圧等から定まる可変動弁機構120の応答遅れが長くなるほど、超低圧縮比処理実行時の目標圧縮比を高くする。このように超低圧縮比処理実行時の目標圧縮比が定められると、油温やバッテリ電圧等に起因した応答遅れの増減が可変動弁機構120の作動量の増減により相殺される。   Therefore, the ECU 20 increases the target compression ratio at the time of executing the ultra-low compression ratio process as the response delay of the variable valve mechanism 120 determined from the oil temperature, the battery voltage, or the like becomes longer. When the target compression ratio at the time of executing the ultra-low compression ratio processing is determined in this way, the increase or decrease in response delay due to the oil temperature, the battery voltage, or the like is offset by the increase or decrease in the operation amount of the variable valve mechanism 120.

以下、超低圧縮比処理実行時の目標圧縮比を決定する方法について述べる。   Hereinafter, a method for determining the target compression ratio at the time of executing the ultra-low compression ratio processing will be described.

前述した第1の実施例では、超低圧縮比処理実行時の目標圧縮比は、ピーク時圧縮比CRtrgに固定される。これに対し、本実施例では、ピーク時圧縮比CRtrgから所定量βを加算した値(=CRtrg+β)が超低圧縮比処理実行時の目標圧縮比として設定される。 In the first embodiment described above, the target compression ratio at the time of executing the ultra-low compression ratio process is fixed to the peak compression ratio CRtrg. On the other hand, in this embodiment, a value (= CRtrg + β) obtained by adding a predetermined amount β to the peak compression ratio CRtrg is set as the target compression ratio when the ultra-low compression ratio process is executed.

前記した所定量βは、図14又は図15に示すように、油温又はバッテリ電圧が低くなるほど大きくされるとともに、油温又はバッテリ電圧が高くなるほど小さくされる。   As shown in FIG. 14 or FIG. 15, the predetermined amount β is increased as the oil temperature or the battery voltage is decreased, and is decreased as the oil temperature or the battery voltage is increased.

このように所定量βが定められると、油温やバッテリ電圧が低くなるほど目標圧縮比が高くなるとともに可変動弁機構120の作動量が少なくなる。その結果、油温やバッテリ電圧等に起因した応答遅れの増減が作動量の増減により相殺される。   When the predetermined amount β is determined in this way, the target compression ratio increases and the operation amount of the variable valve mechanism 120 decreases as the oil temperature or the battery voltage decreases. As a result, the increase / decrease in response delay due to the oil temperature, battery voltage, etc. is offset by the increase / decrease in operating amount.

本発明にかかる内燃機関の制御システムの概略構成を示す図である。It is a figure showing a schematic structure of a control system of an internal-combustion engine concerning the present invention. 内燃機関の圧縮比の変化に対するトルク変動と排気温度の変化を示す図である。It is a figure which shows the torque fluctuation with respect to the change of the compression ratio of an internal combustion engine, and the change of exhaust temperature. 内燃機関の始動期間における慣性エネルギの推移を示す図である。It is a figure which shows transition of the inertia energy in the starting period of an internal combustion engine. 可変動弁機構を利用して内燃機関の圧縮比を変更する方法を示す図である。It is a figure which shows the method of changing the compression ratio of an internal combustion engine using a variable valve mechanism. 超低圧縮比処理の実行終了時期を示す図である。It is a figure which shows the execution completion time of an ultra-low compression ratio process. 可変動弁機構の応答遅れの長さと油温との関係を示す図である。It is a figure which shows the relationship between the length of the response delay of a variable valve mechanism, and oil temperature. 可変動弁機構の応答遅れの長さとバッテリ電圧との関係を示す図である。It is a figure which shows the relationship between the length of the response delay of a variable valve mechanism, and a battery voltage. 所定量αと可変動弁機構の応答遅れの長さとの関係を示す図である。It is a figure which shows the relationship between predetermined amount (alpha) and the length of the response delay of a variable valve mechanism. 所定量αと油温との関係を示す図である。It is a figure which shows the relationship between predetermined amount (alpha) and oil temperature. 所定量αとバッテリ電圧との関係を示す図である。It is a figure which shows the relationship between predetermined amount (alpha) and a battery voltage. 実施例1における昇温制御ルーチンを示すフローチャートである。3 is a flowchart illustrating a temperature increase control routine in the first embodiment. 目標アイドル回転数と冷却水温度との関係を示す図である。It is a figure which shows the relationship between target idle speed and cooling water temperature. ピーク時圧縮比と冷却水温度との関係を示す図である。It is a figure which shows the relationship between the peak time compression ratio and cooling water temperature. 所定量βと油温との関係を示す図である。It is a figure which shows the relationship between predetermined amount (beta) and oil temperature. 所定量βとバッテリ電圧との関係を示す図である。It is a figure which shows the relationship between predetermined amount (beta) and a battery voltage.

符号の説明Explanation of symbols

1・・・・・内燃機関
2・・・・・気筒
3・・・・・吸気ポート
4・・・・・排気ポート
5・・・・・燃料噴射弁
6・・・・・スロットル弁
8・・・・・エアフローメータ
9・・・・・排気浄化装置
14・・・・点火プラグ
15・・・・ピストン
16・・・・コネクティングロッド
17・・・・クランクシャフト
18・・・・クランクポジションセンサ
19・・・・水温センサ
20・・・・ECU
30・・・・吸気通路
40・・・・排気通路
120・・・可変動弁機構
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Cylinder 3 ... Intake port 4 ... Exhaust port 5 ... Fuel injection valve 6 ... Throttle valve 8.・ ・ ・ ・ Air flow meter 9 ・ Exhaust gas purification device 14 ・ ・ ・ ・ Spark plug 15 ・ ・ ・ ・ Piston 16 ・ ・ ・ ・ Connecting rod 17 ・ ・ ・ ・ Crank shaft 18 ・ ・ ・ ・ Crank position sensor 19 .... Water temperature sensor 20 .... ECU
30 ... Air intake passage 40 ... Air exhaust passage 120 ... Variable valve mechanism

Claims (5)

内燃機関の圧縮比を変更する可変圧縮比機構と、
内燃機関の始動期間中に該内燃機関の慣性エネルギを取得する取得手段と、
前記取得手段により取得される慣性エネルギが所定値を超えている時に、前記可変圧縮比機構を利用して内燃機関の圧縮比を規定値より低下させる超低圧縮比処理を行う制御手段と、
前記可変圧縮比機構の応答遅れの長さを推定する推定手段と、
を備え、
前記制御手段は、前記超低圧縮比処理の実行開始時期は変更せずに、前記超低圧縮比処理の実行終了時期を前記推定手段の推定値に応じて変更することを特徴とする内燃機関の制御システム。
A variable compression ratio mechanism for changing the compression ratio of the internal combustion engine;
Acquisition means for acquiring inertial energy of the internal combustion engine during a start-up period of the internal combustion engine;
Control means for performing an ultra-low compression ratio process for reducing the compression ratio of the internal combustion engine from a specified value using the variable compression ratio mechanism when the inertial energy acquired by the acquisition means exceeds a predetermined value;
Estimating means for estimating a response delay length of the variable compression ratio mechanism;
With
The control means changes the execution end time of the ultra-low compression ratio process according to the estimated value of the estimation means without changing the execution start time of the ultra-low compression ratio process. Control system.
内燃機関の圧縮比を変更する可変圧縮比機構と、
内燃機関の始動期間中に該内燃機関の慣性エネルギを取得する取得手段と、
前記取得手段により取得される慣性エネルギが所定値を超えている時に、前記可変圧縮比機構を利用して内燃機関の圧縮比を規定値より低下させる超低圧縮比処理を行う制御手段と、
前記可変圧縮比機構の応答遅れの長さを推定する推定手段と、
を備え、
前記制御手段は、前記推定手段の推定値に応じて前記超圧縮比処理の実行時における目標圧縮比を変更することを特徴とする内燃機関の制御システム。
A variable compression ratio mechanism for changing the compression ratio of the internal combustion engine;
Acquisition means for acquiring inertial energy of the internal combustion engine during a start-up period of the internal combustion engine;
Control means for performing an ultra-low compression ratio process for reducing the compression ratio of the internal combustion engine from a specified value using the variable compression ratio mechanism when the inertial energy acquired by the acquisition means exceeds a predetermined value;
Estimating means for estimating a response delay length of the variable compression ratio mechanism;
With
The control system for an internal combustion engine, wherein the control means changes a target compression ratio at the time of execution of the super compression ratio process according to an estimated value of the estimation means.
請求項1において、前記制御手段は、前記推定手段の推定値が長くなるほど、前記超低圧縮比処理の実行終了時期を早めることを特徴とする内燃機関の制御システム。   2. The control system for an internal combustion engine according to claim 1, wherein the control means advances the execution end timing of the ultra-low compression ratio process as the estimated value of the estimation means becomes longer. 請求項2において、前記制御手段は、前記推定手段の推定値が長くなるほど、前記超低圧縮比処理の実行時における目標圧縮比を高くすることを特徴とする内燃機関の制御システム。 According to claim 2, wherein, the higher the estimated value of the estimated means is long, the control system of an internal combustion engine characterized by high to Rukoto the target compression ratio at the time of execution of the ultra-low compression ratio operation. 請求項1乃至4の何れか1項において、前記所定値は、前記内燃機関の回転速度が目標アイドル回転速度に収束している時の慣性エネルギと同等以上の値であることを特徴とす
る内燃機関の制御システム。
5. The internal combustion engine according to claim 1, wherein the predetermined value is equal to or greater than an inertial energy when the rotational speed of the internal combustion engine converges to a target idle rotational speed. Engine control system.
JP2007041187A 2007-02-21 2007-02-21 Internal combustion engine control system Expired - Fee Related JP5029059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007041187A JP5029059B2 (en) 2007-02-21 2007-02-21 Internal combustion engine control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007041187A JP5029059B2 (en) 2007-02-21 2007-02-21 Internal combustion engine control system

Publications (2)

Publication Number Publication Date
JP2008202541A JP2008202541A (en) 2008-09-04
JP5029059B2 true JP5029059B2 (en) 2012-09-19

Family

ID=39780292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007041187A Expired - Fee Related JP5029059B2 (en) 2007-02-21 2007-02-21 Internal combustion engine control system

Country Status (1)

Country Link
JP (1) JP5029059B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138799A (en) * 2008-12-11 2010-06-24 Mitsubishi Electric Corp Fuel injection control device for internal combustion engine
JP6386702B2 (en) * 2013-06-28 2018-09-05 日産自動車株式会社 Cooling device for internal combustion engine and cooling method for internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159630A (en) * 1986-12-19 1988-07-02 Mazda Motor Corp Variable-compression ratio engine
JP2005030253A (en) * 2003-07-09 2005-02-03 Nissan Motor Co Ltd Control device of internal combustion engine with variable compression ratio mechanism

Also Published As

Publication number Publication date
JP2008202541A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
US8297256B2 (en) Ignition control system for internal combustion engines
US9133811B2 (en) Method and apparatus for controlling start-up of internal combustion engine
US9249740B2 (en) Control device for internal combustion engine
JP6094599B2 (en) Control device and control method for internal combustion engine
JP2008208784A (en) Control system for internal combustion engine
JP2009228588A (en) Control device for variable valve train
EP1728993A2 (en) Valve timing control
JP5071440B2 (en) Internal combustion engine control system
JP5029059B2 (en) Internal combustion engine control system
JP2005146908A (en) Vibration dampening control device of internal combustion engine
JP4353252B2 (en) Internal combustion engine control system
JP4061280B2 (en) Control unit for gasoline engine with variable nozzle mechanism turbocharger
JP4835589B2 (en) Ignition control system for internal combustion engine
JP3991925B2 (en) Engine control device
JP2008267294A (en) Control system of internal combustion engine
JP2008232066A (en) Ignition control system for internal combustion engine
JP3722083B2 (en) Powertrain control device
JP3991940B2 (en) Engine control device
JP5018660B2 (en) Internal combustion engine start control system
JP2006132399A (en) Control device and control method for an engine with supercharger
JP4415803B2 (en) Control device for internal combustion engine
JP4178988B2 (en) Start-up control device for compression ignition internal combustion engine
JP2010248965A (en) Starting control system of internal combustion engine
JP4609566B2 (en) Ignition control system for internal combustion engine
JP4760733B2 (en) Internal combustion engine control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R151 Written notification of patent or utility model registration

Ref document number: 5029059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees