JP5028918B2 - Sealing device for rotating objects - Google Patents

Sealing device for rotating objects Download PDF

Info

Publication number
JP5028918B2
JP5028918B2 JP2006244949A JP2006244949A JP5028918B2 JP 5028918 B2 JP5028918 B2 JP 5028918B2 JP 2006244949 A JP2006244949 A JP 2006244949A JP 2006244949 A JP2006244949 A JP 2006244949A JP 5028918 B2 JP5028918 B2 JP 5028918B2
Authority
JP
Japan
Prior art keywords
rotating object
sealing device
brush seal
circular outer
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006244949A
Other languages
Japanese (ja)
Other versions
JP2008064260A (en
Inventor
崇博 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006244949A priority Critical patent/JP5028918B2/en
Publication of JP2008064260A publication Critical patent/JP2008064260A/en
Application granted granted Critical
Publication of JP5028918B2 publication Critical patent/JP5028918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3284Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings characterised by their structure; Selection of materials
    • F16J15/3288Filamentary structures, e.g. brush seals

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Sealing Devices (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

この発明は、蒸気タービンの回転軸などの回転物体がケーシングなどの静止物体を貫通する部位などに設けられる回転物体用シール装置に関するものである。   The present invention relates to a rotating object sealing device provided at a part where a rotating object such as a rotating shaft of a steam turbine penetrates a stationary object such as a casing.

例えば蒸気タービンでは、蒸気タービンの回転軸などの回転物体がケーシングなどの静止物体を貫通する部位には、この部位から蒸気タービンの作動流体である蒸気が漏れ出るのを抑制するために、一般にラビリンスシールと呼ばれている複数の非接触式のシールフィンを用いた回転物体用シール装置が用いられている(例えば、特許文献1参照。)。また、前記シールフィンに替えて、多数本の線状体の束を回転物体の円形状外面部に対して円弧状の壁状に配列してなるブラシシールが採用された回転物体用シール装置が用いられているものもある(例えば、特許文献2参照。)。
特開2002−357103号公報 (第4−7頁、第1,2図) 特開2003−14130号公報 (第2,3頁、第9−14図)
For example, in a steam turbine, a portion where a rotating object such as a rotating shaft of a steam turbine penetrates a stationary object such as a casing generally has a labyrinth in order to prevent the steam, which is the working fluid of the steam turbine, from leaking from this portion. A rotating object sealing device using a plurality of non-contact type sealing fins called a seal is used (for example, see Patent Document 1). Further, there is provided a sealing device for a rotating object in which a brush seal formed by arranging a bundle of a large number of linear bodies in an arcuate wall shape with respect to a circular outer surface portion of the rotating object is used instead of the seal fin. Some are used (see, for example, Patent Document 2).
JP 2002-357103 A (page 4-7, FIGS. 1 and 2) JP 2003-14130 A (pages 2, 3 and 9-14)

前述した従来技術によるラビリンスシール方式による回転物体用シール装置では、蒸気などの作動流体に対するシール性能を高めるためには、シールフィンの先端部とこの先端部が相対する静止物体側の部材との間の相互間隙を狭くすることが望ましい。しかし、回転物体がその回転に伴って振動を発生する場合には、この振動の発生時であってもシールフィン先端部が相対する静止物体側の部材と接触しないようにするために、止むを得ず前記相互間隙の間隙長を広くせざるをえない。この結果、ラビリンスシール方式の回転物体用シール装置を採用した場合には、そのシール性能の向上には限界がある。また、前述した異なる従来技術であるブラシシール方式の回転物体用シール装置は、作動流体のシールを行うのが多数本の線状体の束であり、この線状体は多くの場合に0.10mm〜0.20mm程度前後の太さを持つものである。したがって、ブラシシール方式の回転物体用シール装置では、線状体の先端部が相対する回転物体と接触した場合でも線状体が容易に変形するので、この線状体の先端部の相対する部位の回転物体との間の相互位置関係を、近接状態または接触状態にすることができることで、そのシール性能をラビリンスシール方式の場合よりも向上させることができる。   In the sealing device for rotating objects using the labyrinth seal method according to the prior art described above, in order to improve the sealing performance against working fluid such as steam, the tip of the seal fin and the member on the stationary object side to which the tip is opposed are arranged. It is desirable to narrow the mutual gap. However, if the rotating object generates vibration along with its rotation, stop the tip of the seal fin so that it does not come into contact with the opposite stationary object member even when this vibration occurs. Inevitably, the gap length of the mutual gap must be increased. As a result, when a labyrinth seal-type sealing device for rotating objects is employed, there is a limit to the improvement of the sealing performance. In addition, the brush seal type rotating object sealing device, which is a different prior art described above, seals the working fluid with a bundle of a large number of linear bodies. It has a thickness of about 10 mm to about 0.20 mm. Therefore, in the brush seal type rotating object sealing device, the linear body easily deforms even when the tip of the linear body comes into contact with the opposing rotating object. Since the mutual positional relationship between the rotating object and the rotating object can be brought into a close state or a contact state, the sealing performance can be improved as compared with the case of the labyrinth sealing method.

しかしながら、このような従来技術のブラシシール方式の回転物体用シール装置では、線状体の先端部の相対する部位の回転物体との間の相互位置関係が近接状態とされ、線状体の先端部の相対する部位の回転物体との間に僅かな間隙が設けられるように設定されたものであっても、回転物体にその回転に伴って振動が発生する場合には、線状体の先端部が相対する部位の回転物体と接触する頻度が増大する。これにより、回転物体用シール装置には線状体の摩耗・脱落によるシール性能の低下やブラシシールの寿命問題などの発生を招き、また、回転物体には、線状体の先端部と相対する部位に耐摩耗性処理を施すことが必要となることで、そのことによる製造原価の増大の問題が発生する。さらに、ブラシシール方式の回転物体用シール装置ではその線状体の曲げ剛性値が、ラビリンスシール方式のシールフィンの曲げ剛性値よりも極めて小さいために、作動流体により回転物体用シール装置に加えられる圧力により線状体が低圧側に曲げられる変形量が増大することで、ブラシシールが全体的に低圧側に押し曲げられ、シール性能の大きな低下が発生する虞がある。したがって、この発明の目的は、シール性能を確保しながら線状体と回転物体との接触頻度の低減が可能なブラシシール方式の回転物体用シール装置を提供することにある。   However, in such a prior art brush seal type sealing device for a rotating object, the mutual positional relationship with the rotating object at the opposite portion of the tip of the linear body is brought into a close state, and the tip of the linear body If the rotating object vibrates as it rotates, even if it is set so that a slight gap is provided between the rotating parts at the opposite parts of the part, the tip of the linear object The frequency with which the part comes into contact with the rotating object at the opposite part increases. As a result, the sealing device for the rotating object causes a decrease in sealing performance due to wear and drop of the linear body and the life problem of the brush seal, and the rotating object faces the tip of the linear body. Since it is necessary to perform abrasion resistance treatment on the part, there arises a problem of increase in manufacturing cost due to this. Further, in the brush seal type rotating object sealing device, the bending rigidity value of the linear body is extremely smaller than the bending rigidity value of the labyrinth seal type sealing fin, and therefore, it is added to the rotating object sealing device by the working fluid. As the amount of deformation by which the linear body is bent to the low pressure side due to the pressure increases, the brush seal is entirely pushed and bent to the low pressure side, and there is a possibility that the seal performance is greatly deteriorated. Accordingly, it is an object of the present invention to provide a brush seal type rotating object sealing device that can reduce the contact frequency between a linear body and a rotating object while ensuring sealing performance.

この発明では前述の目的は、
1)円形状の外面形状を持つ円形状外面部を有する回転物体とこの回転物体の前記円形状外面部と相対する内周面を有する静止物体との相互間に形成される間隙部を作動流体が通流することを抑制するために前記静止物体に配設されるシール装置において、剛性を有する多数本の線条体の束が前記回転物体の円形状外面部に対して円弧状の壁状に配列されるように前記静止物体に配設され、両側面部に高圧側、低圧側の空間を形成するブラシシールと、前記ブラシシールの低圧側の側面部に相対して設けられる背板体と、を有し、前記背板体は、前記ブラシシールの低圧側の側面部との間に、前記作動流体が前記高圧側から前記ブラシシールの内周面先端部と前記回転物体の円形状外面部との間隙を介して低圧側に漏れ出たものである漏れ流体を通流させる漏れ流体通路を形成するとともに、前記漏れ流体通路の終端部分に形成されて、この漏れ流体通路を通流した前記漏れ流体を前記低圧側の圧力を持つ空間に排出するための貫通孔を有し、前記ブラシシールの低圧側の側面部に加わる静圧を、前記線条体の先端部に近い部位よりも前記貫通孔に近い部位ほど小さい値としたことで前記線条体を前記低圧側へ拡大する力を働かせ、該拡大力と前記線条体の反力とをバランスさせることにより、前記ブラシシールの前記内周面先端部と前記回転物体の前記円形状外面部との前記間隙の間隙長を形成したこと、または、
2)前記1項に記載の回転物体用シール装置において、前記背板体は、前記漏れ流体通路の終端部分に円弧状に形成され、前記貫通孔に連通する凹溝を有すること、さらにまたは、
3)前記1項または2項に記載の回転物体用シール装置において、前記背板よりも下流の前記回転物体の周面部に、前記背板体の内周面と前記回転物体の円形状外面部の表面との間の間隙を通過する漏れ流体に対する流体抵抗となる流体抵抗体を備えることにより達成される。





In the present invention, the aforementioned object is
1) A working fluid is formed in a gap formed between a rotating object having a circular outer surface portion having a circular outer surface shape and a stationary object having an inner peripheral surface opposite to the circular outer surface portion of the rotating object. In the sealing device disposed on the stationary object in order to suppress the flow of the air, a bundle of a large number of rigid strips is formed in an arcuate wall shape with respect to the circular outer surface portion of the rotating object. A brush seal disposed on the stationary object to form a high-pressure side and a low-pressure side space on both side surface parts, and a back plate body provided opposite to the low-pressure side surface part of the brush seal; The back plate body is between the low pressure side surface portion of the brush seal and the working fluid from the high pressure side from the inner peripheral surface tip portion of the brush seal and the circular outer surface of the rotating object. Leakage flow that leaks out to the low-pressure side through the gap A leakage fluid passage through which the fluid flows, and a penetration formed in a terminal portion of the leakage fluid passage for discharging the leakage fluid flowing through the leakage fluid passage to a space having a pressure on the low pressure side The streak body has a hole, and the static pressure applied to the side surface portion on the low pressure side of the brush seal is set to a smaller value in a part closer to the through hole than a part close to the tip part of the linear body. By applying a force that expands toward the low-pressure side, and balancing the expansion force and the reaction force of the linear body, the tip of the inner peripheral surface of the brush seal and the circular outer surface of the rotating object Forming a gap length of the gap , or
2) In the rotating object sealing device according to 1 above, the back plate body is formed in an arc shape at a terminal portion of the leakage fluid passage and has a concave groove communicating with the through hole.
3) In the rotating object sealing device according to the item 1 or 2, the inner peripheral surface of the back plate body and the circular outer surface portion of the rotating object are provided on the peripheral surface portion of the rotating object downstream of the back plate. This is achieved by providing a fluid resistance that provides fluid resistance to leaking fluid passing through a gap between the surface and the surface.





この発明による回転物体用シール装置では、前記課題を解決するための手段の項で述べた構成とすることで、次記の効果を得られる。
(イ)前記課題を解決するための手段の項の第(1)項による構成とすることで、全体として長方形の断面を持つ円環状をなすブラシシールの低圧側の圧力が印加される低圧側の側面部と背板体との間に漏れ流体通流路が形成され、この漏れ流体通流路にブラシシールの内周側から外周側に向かう漏れ流体が通流するようにされる。漏れ流体通流路が持つ流体抵抗要素によってこの漏れ流体に生じる差圧がそのままブラシシールの低圧側の側面部に印加されることで、ブラシシールにブラシシールの内周側を拡げるように拡大力が作用することになる。この拡大力の作用によってブラシシールの線状体の先端部と回転物体の円形状外面部の表面との間に所定の間隙長を持つ間隙が形成されることで、装置の運転時においての線状体と円形状外面部との相互接触が防止されて、線状体の摩耗・脱落によるブラシシールのシール性能の低下とそれに伴うブラシシールの寿命問題などの防止が可能になる。また同時に、回転物体の円形状外面部の表面に施す耐摩耗性処理の不要化,あるいはその耐摩耗性度合いの軽減を図ることも可能になる。
In the sealing device for a rotating object according to the present invention, the following effects can be obtained by adopting the configuration described in the section for solving the problems.
(A) The low pressure side to which the pressure on the low pressure side of the circularly shaped brush seal having a rectangular cross section is applied by adopting the configuration according to item (1) of the means for solving the above problems A leakage fluid passage is formed between the side surface portion and the back plate body, and the leakage fluid from the inner peripheral side to the outer peripheral side of the brush seal flows through the leakage fluid passage. The differential pressure generated in the leaked fluid by the fluid resistance element of the leaking fluid flow path is applied to the low pressure side of the brush seal as it is, so that the brush seal can expand the inner circumference of the brush seal. Will act. By the action of this expanding force, a gap having a predetermined gap length is formed between the tip of the linear body of the brush seal and the surface of the circular outer surface of the rotating object. The mutual contact between the rod-shaped body and the circular outer surface portion is prevented, and it becomes possible to prevent the deterioration of the seal performance of the brush seal due to the wear and dropout of the linear body and the accompanying brush seal life problem. At the same time, it is possible to eliminate the need for wear resistance treatment applied to the surface of the circular outer surface portion of the rotating object, or to reduce the degree of wear resistance.

また、ブラシシールの両側面と直交する方向には、前記低圧側の側面部と,高圧側の圧力が印加される高圧側の側面部のそれぞれに印加される静圧の差圧が印加されることで、高圧側の側面部のみに高圧の静圧が印加される従来例の場合よりも印加される圧力値が低減される。これに加えて、低圧側の側面部に印加される前記差圧の値はブラシシールの線状体の先端部に近づくにしたがってその値が小さくなるという分布を呈する利点がある。これ等のことが総合されて、高圧側の圧力によってブラシシールの線状体が低圧側の側面部の側に曲げられる変形を受けることによるその変形量が低減されることで、ブラシシールのシール性能を実質的に保持することも可能になる。また、
(ロ)前記課題を解決するための手段の項の第(2)項による構成とすることで、漏れ流体通流路に面する部位に形成された凹溝は全体としては円環状に形成されることによって、漏れ流体通流路内を通流する漏れ流体の円形状外面部の円周方向に関する流れ方が一様化され、このことにより、漏れ流体に生じる圧力損失、この圧力損失に起因する漏れ流体の静圧値の全低下量、この静圧値の全低下量により定まる線状体の基部に印加される漏れ流体の静圧値とこの静圧値が直接的に関与する前記拡大力も一様化される。そうして、拡大力が円形状外面部の円周方向に関して一様化されることで、線状体の先端部と円形状外面部の表面との間の間隙の前記間隙長の一様化が可能になる。さらにまた、
(ハ)前記課題を解決するための手段の項の第(3)項による構成とすることで、回転物体の円形状外面部とシール装置とのシール部分から漏れ出た漏れ流体から分流されて、背板体の内周面と前記円形状外面部の表面との間の間隙から流れ出る一方の漏れ流体の流れが流体抵抗体により邪魔されることでその流量が低減される。この結果、前記シール部分から漏れ出た漏れ流体から分流されて、前記漏れ流体通流路を通流する他方の漏れ流体の流量が増大されることで、他方の漏れ流体に生じる圧力損失を増大させる。この圧力損失の増大は前記(ロ)項で述べた関係から前記拡大力を増大させることになるので、この発明の回転物体用シール装置によって得られる効果の増大が可能になる。
Further, in the direction orthogonal to the both side surfaces of the brush seal, a differential pressure between the static pressure applied to the low-pressure side surface portion and the high-pressure side surface portion to which the high-pressure side pressure is applied is applied. Thus, the applied pressure value is reduced as compared with the conventional example in which a high static pressure is applied only to the side portion on the high pressure side. In addition to this, there is an advantage that the value of the differential pressure applied to the side surface portion on the low pressure side has a distribution that the value becomes smaller as it approaches the tip end portion of the linear body of the brush seal. By combining these things, the amount of deformation due to the deformation of the linear body of the brush seal being bent toward the side of the low pressure side by the pressure on the high pressure side is reduced, so that the seal of the brush seal is reduced. It is also possible to substantially maintain the performance. Also,
(B) By adopting the configuration according to item (2) of the means for solving the above problems, the concave groove formed in the portion facing the leakage fluid passage is formed in an annular shape as a whole. Therefore, the flow direction in the circumferential direction of the circular outer surface of the leaking fluid flowing through the leaking fluid passage is made uniform, and this causes the pressure loss that occurs in the leaking fluid and the pressure loss due to this pressure loss. The total decrease amount of the static pressure value of the leaking fluid, the static pressure value of the leak fluid applied to the base of the linear body determined by the total decrease amount of the static pressure value, and the expansion in which the static pressure value is directly involved The force is also equalized. Thus, since the expansion force is made uniform in the circumferential direction of the circular outer surface portion, the gap length of the gap between the tip of the linear body and the surface of the circular outer surface portion is made uniform. Is possible. Furthermore,
(C) By adopting the configuration according to item (3) of the means for solving the above-mentioned problem, the fluid is diverted from the leaked fluid leaking from the seal portion between the circular outer surface portion of the rotating object and the seal device. The flow rate of the leaked fluid is reduced by the flow of the one leakage fluid flowing out from the gap between the inner peripheral surface of the back plate body and the surface of the circular outer surface portion by the fluid resistor. As a result, the flow rate of the other leakage fluid that is diverted from the leakage fluid that has leaked from the seal portion and flows through the leakage fluid passage increases, thereby increasing the pressure loss that occurs in the other leakage fluid. Let This increase in pressure loss increases the expansion force from the relationship described in the item (b), so that the effect obtained by the rotating object sealing device of the present invention can be increased.

以下この発明を実施するための最良の形態を図面を参照して詳細に説明する。
『実施の形態1』図1はこの発明の実施の形態の一例による回転物体用シール装置を関連する部材と共に示すその要部の側面断面図であり、図2は図1におけるA−A断面図である。図3は図1,図2に示した回転物体用シール装置のブラシシールに作動流体によって与えられる静圧を模式的に説明する説明図であり、(a)は図1におけるブラシシールの高圧側の側面部に与えられる静圧を示し、(b)は図1におけるブラシシールの低圧側の側面部に与えられる静圧を示し、(c)は図1におけるブラシシールの高圧側の側面部に与えられる静圧と低圧側の側面部に与えられる静圧との差圧を示す。図1,図2において、1は、この発明による回転物体用シール装置であり、7は、例えば回転軸などの回転物体であり、8は回転物体用シール装置1が装着される例えばケーシングなどの静止物体である。回転物体用シール装置1が配設される部位の回転物体7には、円形状の外面形状をした円形状外面部71が形成され、この円形状の外面は回転物体7の回転中心位置(不図示)に対して同心とされている。
The best mode for carrying out the present invention will be described below in detail with reference to the drawings.
Embodiment 1 FIG. 1 is a side cross-sectional view of a main part of a rotating object sealing device according to an embodiment of the present invention, together with related members, and FIG. 2 is a cross-sectional view taken along line AA in FIG. It is. FIG. 3 is an explanatory view for schematically explaining the static pressure applied by the working fluid to the brush seal of the rotating object sealing device shown in FIGS. 1 and 2, and (a) is a high pressure side of the brush seal in FIG. (B) shows the static pressure applied to the low pressure side surface of the brush seal in FIG. 1, and (c) shows the high pressure side surface of the brush seal in FIG. The pressure difference between the static pressure applied and the static pressure applied to the low pressure side surface portion is shown. 1 and 2, 1 is a rotating object sealing device according to the present invention, 7 is a rotating object such as a rotating shaft, and 8 is a casing or the like on which the rotating object sealing device 1 is mounted. It is a stationary object. A circular outer surface portion 71 having a circular outer surface shape is formed on the rotating object 7 at a portion where the sealing device 1 for the rotating object is disposed. Concentric with respect to FIG.

図2において、回転物体7の紙面における下側に描かれている円弧状の矢印は、この事例の場合の回転物体7の回転方向を示している。静止物体8は円形状外面部71と相対されると共に円形状外面部71と同心の円形状の内周面81を有し、この内周面81には回転物体用シール装置1を装着する部位に、例えば凹溝82が円環状に形成されている。静止物体8の内周面81と回転物体7の円形状外面部71との間の間隙部9(後記間隙部9Aと後記間隙部9Bを総称する場合には、このように称する。)は間隔寸法Lを有している。この間隙部9には、回転物体7と静止物体8とを備える装置が例えば蒸気タービンである場合には、蒸気タービンの運転中にはその作動流体である蒸気が満たされることになる。そうして、間隙部9が回転物体用シール装置1により仕切られることで回転物体用シール装置1の両側面の間には差圧が生じ、例えば、図1の紙面に向かって回転物体用シール装置1の左側となる間隙部9Aは相対的に高圧となり、図1の紙面に向かって回転物体用シール装置1の右側となる間隙部9Bは相対的に低圧となる。   In FIG. 2, an arc-shaped arrow drawn on the lower side of the rotating object 7 in the drawing indicates the rotation direction of the rotating object 7 in this case. The stationary object 8 has a circular inner peripheral surface 81 which is opposed to the circular outer surface portion 71 and concentric with the circular outer surface portion 71, and the inner peripheral surface 81 is attached with the rotating object sealing device 1. For example, the concave groove 82 is formed in an annular shape. A gap 9 between the inner peripheral surface 81 of the stationary object 8 and the circular outer surface 71 of the rotating object 7 (referred to in this way when the gap 9A and the gap 9B described later are collectively referred to). It has a dimension L. When the device including the rotating object 7 and the stationary object 8 is a steam turbine, for example, the gap 9 is filled with steam as a working fluid during the operation of the steam turbine. Thus, the gap 9 is partitioned by the rotating object sealing device 1, whereby a differential pressure is generated between both side surfaces of the rotating object sealing device 1. For example, the rotating object seal is directed toward the paper surface of FIG. 1. The gap portion 9A on the left side of the device 1 has a relatively high pressure, and the gap portion 9B on the right side of the rotating object sealing device 1 has a relatively low pressure toward the paper surface of FIG.

回転物体用シール装置1は、多数本の直線状の線状体3の束を回転物体7の円形状外面部71に対して円弧状の壁状に配列することで,全体としては長方形の断面を持つ円環状の外形を持つブラシシール2と、このブラシシール2を支持して静止物体8の凹溝82に装着するための円環状に形成された支持部4とを備える。全体としてのブラシシール2は間隙部9Aに面していて作動流体である蒸気の相対的に高圧な圧力が印加される高圧側の側面部である側面21と、作動流体である蒸気の相対的に低圧な圧力が印加される間隙部9Bに支持部4の後記背板体5を介して面している低圧側の側面部である側面22とを持つが、これ等の側面21,側面22は形状・寸法が同一である。ブラシシール2に用いられる線状体3は、例えば、前記『特許文献2』において第9図,第10図などを用いて説明されているブラシシール109で採用されている剛毛101と同等品である。この線状体3は、図2に示されているように、回転物体7の径方向に対して傾斜させて配設されている。ただし、この発明の回転物体用シール装置1では、円形状外面部71の表面と対向することになる線状体3の先端部3aは、回転物体7が回転していない場合には、円形状外面部71の表面とほぼ接触している状態になるように設定されている。   The rotating object sealing device 1 has a rectangular cross section as a whole by arranging a bundle of a large number of linear linear bodies 3 in an arcuate wall shape with respect to the circular outer surface portion 71 of the rotating object 7. A brush seal 2 having an annular outer shape, and a support portion 4 formed in an annular shape for supporting the brush seal 2 and mounting the brush seal 2 in the concave groove 82 of the stationary object 8. The brush seal 2 as a whole faces the gap portion 9A and has a side surface 21 which is a side surface on the high pressure side to which a relatively high pressure of steam as a working fluid is applied, and a relative relationship between steam as a working fluid. And a side surface 22 which is a side surface on the low pressure side facing the back plate body 5 of the support portion 4 to the gap portion 9B to which a low pressure is applied. Have the same shape and dimensions. The linear body 3 used for the brush seal 2 is, for example, a product equivalent to the bristles 101 employed in the brush seal 109 described with reference to FIGS. 9 and 10 in the “Patent Document 2”. is there. As shown in FIG. 2, the linear body 3 is disposed to be inclined with respect to the radial direction of the rotating object 7. However, in the rotating object sealing device 1 of the present invention, the tip 3a of the linear body 3 that faces the surface of the circular outer surface 71 is circular when the rotating object 7 is not rotating. It is set so as to be in a state of being substantially in contact with the surface of the outer surface portion 71.

支持部4はブラシシール2の側面21の外周部分に当接される保持体41と、ブラシシール2の側面22の外周部分に当接される支持面51を持つ背板体5とを有する。背板体5はこの発明の回転物体用シール装置1に特徴的な部材であり、前記支持面51と、この支持面51に対して寸法Dの段差を設けて形成された段差面52と、この段差面52の支持面51側の終端部分に形成された貫通孔55とを持つ。背板体5はその内周端面5aと円形状外面部71の表面との間に、狭い間隙Gが形成されるように設定されている。また、貫通孔55は、例えば、円周上にほぼ等間隔で形成された円形の貫通孔であり、この貫通孔55を通流する後記漏れ流体92の中心位置と回転物体7の円形状外面部71との間の間隔寸法L55は、この事例の場合には前記間隔寸法Lよりも小さい値に設定されている。背板体5が前記のように形成されていることによって、ブラシシール2の側面22と段差面52との間には、回転物体7の軸長方向寸法が寸法Dの円環状の空間が形成されるが、この空間は漏れ流体92を通流させる漏れ流体通流路53であり、この漏れ流体通流路53は貫通孔55に連通されていることになる。なお、静止物体8,回転物体用シール装置1は組立・分解作業上の必要から、例えば、上下2分割などの複数に分割される構造とされている。 The support portion 4 includes a holding body 41 that is in contact with the outer peripheral portion of the side surface 21 of the brush seal 2 and a back plate body 5 having a support surface 51 that is in contact with the outer peripheral portion of the side surface 22 of the brush seal 2. The back plate 5 is a member characteristic of the rotating object sealing device 1 of the present invention, and includes the support surface 51 and a step surface 52 formed by providing a step having a dimension D with respect to the support surface 51. The stepped surface 52 has a through hole 55 formed at a terminal portion on the support surface 51 side. The back plate 5 is set so that a narrow gap G 5 is formed between the inner peripheral end face 5 a and the surface of the circular outer surface 71. The through-hole 55 is, for example, a circular through-hole formed on the circumference at almost equal intervals. The center position of a later-described leaking fluid 92 that flows through the through-hole 55 and the circular outer surface of the rotating object 7. The spacing dimension L 55 between the section 71 is set to a value smaller than the spacing dimension L in this case. By forming the back plate 5 as described above, an annular space having the dimension D in the axial length direction of the rotating object 7 is formed between the side surface 22 and the step surface 52 of the brush seal 2. However, this space is a leakage fluid passage 53 through which the leakage fluid 92 flows, and the leakage fluid passage 53 is communicated with the through hole 55. Note that the stationary object 8 and the rotating object sealing device 1 have a structure that is divided into a plurality of parts such as upper and lower parts, for example, because of the necessity for assembly and disassembly.

図1,図2に示すこの発明の実施の形態の一例による回転物体用シール装置1を前述の構成を持つようにしたことによって得られる特徴を、回転物体用シール装置1と,回転物体7および静止物体8とでなる装置が蒸気タービンであるとして説明する。まず、蒸気タービンに蒸気の供給が開始されてはいるが蒸気タービンがまだ停止状態にある場合には、間隙部9Aの蒸気圧Pが間隙部9Bの蒸気圧Pよりも高くなって、間隙部9Aと間隙部9Bとの間に差圧が生じたとしても、この差圧によって線状体3の先端部3aと円形状外面部71の表面との間からの漏れ流体(漏れ蒸気でもあるが、説明の都合上このように記載する。)91は実質的には発生しないとしてよい。その理由は、前述したように回転物体用シール装置1のブラシシール2の線状体3の先端部3aが円形状外面部71の表面とほぼ接触していることで、漏れ流体91の通流に対する抵抗が大きいためである。 The features obtained by providing the rotating object sealing device 1 according to an example of the embodiment of the present invention shown in FIGS. 1 and 2 with the above-described configuration are the rotating object sealing device 1, the rotating object 7, and The description will be made on the assumption that the apparatus including the stationary object 8 is a steam turbine. First, when the supply of steam to the steam turbine is is started in still stopped steam turbine, the vapor pressure P A of the gap portion 9A becomes higher than the vapor pressure P B of the gap portion 9B, Even if a differential pressure is generated between the gap portion 9A and the gap portion 9B, a leakage fluid (even a leaked steam) from between the front end portion 3a of the linear body 3 and the surface of the circular outer surface portion 71 is caused by this differential pressure. However, it is described in this way for convenience of explanation.) 91 may not substantially occur. The reason for this is that, as described above, the tip 3a of the linear body 3 of the brush seal 2 of the sealing device 1 for rotating objects is substantially in contact with the surface of the circular outer surface 71, so that the leakage fluid 91 flows. This is because the resistance to is large.

蒸気タービンが停止状態から回転状態に移行した場合には、回転物体7にその回転に伴って機械的振動が発生することは避けがたいために、この回転物体7の機械的振動によって、線状体3の先端部3aと回転物体7の円形状外面部71の表面とが衝突し合うことによって、線状体3の先端部3aと回転物体7の円形状外面部71の表面との間に若干の間隙が形成されることになる。そうすると、この間隙を通過して間隙部9Aから間隙部9Bに向かう漏れ流体91が生じる(図1を参照)。この漏れ流体91は、ブラシシール2の側面22に到達すると、漏れ流体通流路53→貫通孔55の流路を通流して間隙部9Bに達する漏れ流体92(図1に矢印付き実線で示す。)と、背板体5の内周端面5aと円形状外面部71の表面との間の間隙Gを通流して間隙部9Bに至る漏れ流体93(図1に矢印付き点線で示す。)とに分流される。 When the steam turbine shifts from the stopped state to the rotating state, it is unavoidable that the rotating object 7 is subjected to the mechanical vibration accompanying the rotation. The tip 3 a of the body 3 and the surface of the circular outer surface 71 of the rotating object 7 collide with each other, so that the tip 3 a of the linear body 3 and the surface of the circular outer surface 71 of the rotating object 7 are between each other. A slight gap will be formed. As a result, a leaking fluid 91 that passes through the gap and travels from the gap 9A toward the gap 9B is generated (see FIG. 1). When the leakage fluid 91 reaches the side surface 22 of the brush seal 2, the leakage fluid 92 (shown by a solid line with an arrow in FIG. 1) flows through the leakage fluid passage 53 → the through hole 55 and reaches the gap 9B. . a), indicated by an arrow with a dotted line in the leakage fluid 93 (FIG. 1 extending the gap G 5 to passing flowed gap portion 9B between the inner peripheral edge surface 5a and the surface of the circular outer surface portion 71 of the back plate member 5. ).

この内の漏れ流体92は、この発明の背板体5の持つ前記構成によって得られることができるようになった漏れ流体であり、漏れ流体通流路53内をブラシシール2の側面22に沿って、ブラシシール2の側面22に位置する線状体3の先端部3aを起点,貫通孔55を終点として通流する流れである。なお、この漏れ流体92は図1においては紙面に向かって上向きに通流するとして描いてあるが、回転物体用シール装置1と,回転物体7および静止物体8とでなる装置を全体的に見た場合には、漏れ流体92は回転物体7の回転中心位置(図示せず)を中心として、漏れ流体通流路53内を放射状に通流する流れである。そうして、ブラシシール2の側面21には前記したように間隙部9Aに満たされる作動流体である蒸気の相対的に高圧な圧力(静圧)Pが印加される。間隔寸法Lの間隙部9Aに満たされる蒸気の圧力は、この間隙部内では一様であるとしてよいので、これを表したのが図3(a)である。 The leaking fluid 92 is a leaking fluid that can be obtained by the above-described configuration of the back plate 5 of the present invention, and the inside of the leaking fluid passage 53 extends along the side surface 22 of the brush seal 2. The flow is such that the leading end 3a of the linear body 3 located on the side surface 22 of the brush seal 2 is the starting point and the through hole 55 is the ending point. Although this leakage fluid 92 is drawn in FIG. 1 as flowing upward toward the plane of the drawing, the entire apparatus including the rotating object sealing device 1, the rotating object 7 and the stationary object 8 is viewed. In this case, the leakage fluid 92 is a flow that flows radially through the leakage fluid passage 53 around the rotation center position (not shown) of the rotating object 7. Then, the side surface 21 of the brush seal 2 a relatively high pressure (static pressure) P A steam as a working fluid is filled in the gap portion 9A as described above is applied. The vapor pressure filled in the gap portion 9A having the interval dimension L may be uniform in the gap portion, and this is shown in FIG.

圧力はスカラー量であるが、図3(a)の矢印は側面21に印加される圧力(静圧)Pが間隙部9A内では一様な値を持つことを表したものである。漏れ流体91は間隙部9A内では図3(a)に示したPの圧力(静圧)値を持つが、線状体3の先端部3aと回転物体7の円形状外面部71の表面との間の間隙を通流する際に、ブラシシール2や円形状外面部71との摩擦あるいは渦流損などの流体抵抗要素によって圧力損失が生じるので、ブラシシール2の側面22に位置する線状体3の先端部3aに到達した漏れ流体91の静圧値P20は、間隙部9A内での静圧値よりも低下している。漏れ流体通流路53内を通流する漏れ流体92の静圧値は、側面22の線状体3の先端部3aの位置ではこの部位を通流する漏れ流体91の静圧値P20と同一である。 The pressure is a scalar quantity, the arrows in FIG. 3 (a) are those pressure (static pressure) P A applied to the side surface 21 is expressed to have a uniform value within the gap 9A. Although leakage fluid 91 in the gap portion 9A having a pressure (static pressure) values of P A shown in FIG. 3 (a), the surface of the circular outer surface portion 71 of the tip portion 3a of the linear body 3 rotating object 7 Pressure flow is caused by fluid resistance elements such as friction with the brush seal 2 and the circular outer surface portion 71 or eddy current loss when flowing through the gap between them and the linear shape located on the side surface 22 of the brush seal 2. static pressure P 20 of the leakage fluid 91 reaching the distal end portion 3a of the body 3 is lower than static pressure in the gap 9A. Static pressure of the leakage fluid 92 flowing through the leakage fluid flow path 53 is in the position of the distal end portion 3a of the linear body 3 sides 22 and static pressure P 20 of the leakage fluid 91 flowing through the site Are the same.

漏れ流体92は漏れ流体通流路53内を通流する際に、ブラシシール2や背板体5との摩擦あるいは渦流損などの流体抵抗要素によって圧力損失が生じるので、漏れ流体92の静圧値は貫通孔55に近づくに従って低下する。漏れ流体92の平均流速が漏れ流体通流路53内でほぼ均等であると大胆に仮定すると、この漏れ流体92が通流するのにしたがってその静圧値が低下して行く割合はリニアであることになる。そうして、漏れ流体92の静圧値の低下は漏れ流体92が貫通孔55に流れ込むことになる間隔寸法L55の位置まで継続し、間隔寸法L55に到達した漏れ流体92の静圧は静圧値P21となる。そうして、円形状外面部71から見て間隔寸法L55よりも遠い部位の漏れ流体通流路53内では、漏れ流体92の静圧値は間隔寸法L55における静圧値P21と同等の関係になる。これ等のことを表したのが図3(b)である。また、漏れ流体通流路53内を通流する漏れ流体92が持つ静圧値は、ブラシシール2の側面22が漏れ流体通流路53を構成していることで、そのままブラシシール2の側面22に印加される。図3(b)の矢印は図3(a)の場合と同様に、側面22の各部に印加される圧力(静圧)を示している。 When the leakage fluid 92 flows through the leakage fluid passage 53, pressure loss occurs due to fluid resistance elements such as friction with the brush seal 2 and the back plate 5 or eddy current loss. The value decreases as it approaches the through hole 55. Assuming that the average flow velocity of the leaking fluid 92 is almost uniform in the leaking fluid passage 53, the rate at which the static pressure value decreases as the leaking fluid 92 flows is linear. It will be. Then, decrease in the static pressure of the leakage fluid 92 continues to the position of the space dimension L 55 that will leak fluid 92 flows into the through hole 55, the static pressure of the leakage fluid 92 reaching the distance dimension L 55 the static pressure P 21. Then, the circular outer surface portion 71 from the look inside leaked fluid flow path 53 of the distant sites than the interval dimension L 55, equal to the static pressure P 21 in the static pressure is the spacing dimension L 55 of the leakage fluid 92 It becomes a relationship. These are shown in FIG. 3B. Further, the static pressure value of the leakage fluid 92 flowing through the leakage fluid passage 53 is such that the side surface 22 of the brush seal 2 constitutes the leakage fluid passage 53 so that the side surface of the brush seal 2 remains as it is. 22 is applied. The arrow in FIG. 3B indicates the pressure (static pressure) applied to each part of the side surface 22 as in the case of FIG.

また、図3(b)は漏れ流体92の静圧値が、線状体3の先端部3aの位置では間隙部9A内での静圧値Pよりも低下した静圧値P20であり、漏れ流体92が貫通孔55に流入する間隔寸法L55の位置では静圧値P21を持つことを示している。さらに、図3(b)は漏れ流体92の線状体3の先端部3aの位置から間隔寸法L55の位置までの間の圧力損失に起因する静圧値の低下割合がリニアであり、この圧力損失に起因する静圧値の全低下量がΔPになることを示している。ブラシシール2には、前述したように側面21と側面22のそれぞれに、図3(a)に示した静圧と図3(b)に示した静圧が同時に印加されることで、ブラシシール2の側面21,側面22と直交する方向に関しては、全体としてはこれ等の静圧の差圧が印加されることになる。図3(c)はブラシシール2に印加されるこの差圧を示しており、この差圧によりブラシシール2が加圧される加圧方向は、間隙部9A内の静圧値Pによりブラシシール2が加圧される場合の加圧方向と同一であることを示している。また、図3(c)では、ブラシシール2の側面21,側面22と直交する方向に受ける差圧は、線状体3の先端部3aの位置ではΔP20(ΔP20=P−P20)であり、間隔寸法L55の位置以遠ではΔP21(ΔP21=P−P21)であることを示している。 3 (b) is static pressure of the leakage fluid 92, the position of the distal end portion 3a of the linear body 3 be static pressure P 20 which is lower than static pressure P A in the gap portion 9A , leak fluid 92 indicates that it has a static pressure P 21 is at the position of the space dimension L 55 flowing into the through-hole 55. Further, FIG. 3 (b) is a rate of decrease in static pressure is linear due to the pressure loss between the position of the distal end portion 3a of the linear body 3 leakage fluid 92 to the position of the spacing dimension L 55, this It shows that the total amount of decrease in static pressure due to the pressure loss becomes [Delta] P 2. As described above, the static pressure shown in FIG. 3 (a) and the static pressure shown in FIG. 3 (b) are simultaneously applied to the side surface 21 and the side surface 22 to the brush seal 2 as described above. As for the direction orthogonal to the side surface 21 and the side surface 22 of the two, the differential pressure between these static pressures is applied as a whole. FIG. 3 (c) shows a differential pressure applied to the brush seal 2, the pressing direction of the brush seal 2 is pressurized by this pressure difference, the brush by static pressure P A in the gap portion 9A It shows that the direction of pressurization when the seal 2 is pressurized is the same. Further, FIG. 3 (c), the side surface 21 of the brush seal 2, the differential pressure receiving in a direction perpendicular to the side surface 22, in the position of the distal end portion 3a of the linear body 3 ΔP 20 (ΔP 20 = P A -P 20 ), And ΔP 21 (ΔP 21 = P A −P 21 ) is indicated beyond the position of the interval dimension L 55 .

前記の図3(b)に示した静圧がブラシシール2の側面22に印加されることにより、例えば、ブラシシール2の線状体3の先端部3aには静圧値P20の静圧が、また、ブラシシール2の支持部4で支持される線状体3の基部には静圧値P21の静圧がそれぞれ印加される。この図3(b)に示した静圧は、全体としては円環状の外形を持つブラシシール2の内周部分から外周の近傍部分の間に広く印加されることになる。ブラシシール2がその外周の近傍部分で支持部4によって支持されていて固定されていることと、前記したように回転物体用シール装置1では静圧値P20>静圧値P21の関係にあることによって、ブラシシール2の内周部分だけに限定しても静圧値P20と静圧値P21の差圧であるΔPによって、その内周径が拡大される方向に働くなど、拡大力Fを図2に白抜きの矢印で示したように受けることになる。 When the static pressure shown in FIG. 3B is applied to the side surface 22 of the brush seal 2, for example, the static pressure having a static pressure value P 20 is applied to the tip 3 a of the linear body 3 of the brush seal 2. However, a static pressure having a static pressure value P 21 is applied to the base of the linear body 3 supported by the support 4 of the brush seal 2. The static pressure shown in FIG. 3B is widely applied between the inner peripheral portion of the brush seal 2 having an annular outer shape as a whole and the vicinity of the outer periphery. The brush seal 2 is supported and fixed by the support portion 4 in the vicinity of the outer periphery of the brush seal 2 and, as described above, in the rotating object sealing device 1, the relationship of static pressure value P 20 > static pressure value P 21 is satisfied. by some, by [Delta] P 2 is a differential pressure only static be limited to pressure value P 20 and static pressure P 21 the inner peripheral portion of the brush seal 2 and acts in a direction in which the inner circumferential diameter is enlarged, The expansion force F is received as shown by the white arrow in FIG.

この拡大力Fを受けたブラシシール2は、傾斜させて配設されている線状体3がその剛性値に応じて撓むことで、線状体3の先端部3aを連ねたブラシシール2の内周径が拡大する。ブラシシール2の内周径が拡大することは、ブラシシール2の線状体3の先端部3aと円形状外面部71の表面との間の間隙長を増大させることになるので、漏れ流体91の通流に対する抵抗が減少して漏れ流体91の流量が増大し、これに伴って漏れ流体92の流量も増大する。流体の圧力損失を取り扱う分野ではよく知られているように、同一流路における流体の圧力損失値は流体の流速のほぼ2乗に比例する関係にある。したがって、漏れ流体通流路53内の圧力損失に起因する漏れ流体92に生ずる静圧値の全低下量に対応する差圧ΔPの値は、漏れ流体通流路53内の漏れ流体92の流速、すなわち、漏れ流体92の流量のほぼ2乗に比例することになる。 The brush seal 2 that has received the expanding force F is bent by the linear body 3 disposed in an inclined manner in accordance with the rigidity value thereof, so that the brush seal 2 in which the tip portions 3a of the linear body 3 are connected. The inner diameter of the is increased. Since the increase in the inner peripheral diameter of the brush seal 2 increases the gap length between the tip 3a of the linear body 3 of the brush seal 2 and the surface of the circular outer surface 71, the leakage fluid 91 , The flow rate of the leaking fluid 91 increases, and the flow rate of the leaking fluid 92 increases accordingly. As is well known in the field of dealing with fluid pressure loss, the pressure loss value of fluid in the same flow path is in a relationship proportional to approximately the square of the fluid flow velocity. Therefore, the value of the differential pressure ΔP 2 corresponding to the total amount of decrease in the static pressure value generated in the leakage fluid 92 due to the pressure loss in the leakage fluid passage 53 is the value of the leakage fluid 92 in the leakage fluid passage 53. It is proportional to the flow velocity, that is, approximately the square of the flow rate of the leaking fluid 92.

このため、漏れ流体92の流量の増大は、差圧ΔPの増大,ひいては拡大力Fの増大をもたらし、この結果、漏れ流体92の流量のさらなる増大をもたらすことになる。しかし、線状体3に撓みが生じた場合には、その形状・寸法および物性値などから定まる剛性値に従って線状体3に反力が生じるので、線状体3の先端部3aと円形状外面部71の表面との間の間隙長は、最終的には、この反力が拡大力Fとバランスすることになるある値の間隙長に落ち着くことになる。図1では線状体3の先端部3aと円形状外面部71の表面との間の最終的な間隙長を間隙長Gで示し、図1〜図3では間隙長Gとなった場合の回転物体用シール装置1の状態を示している。そうして、この間隙長Gの値が前述した関係から定まるものであることから、間隙長Gの値は、回転物体用シール装置1と,回転物体7および静止物体8とでなる蒸気タービンの仕様が既知で有る場合には、線状体3を含むブラシシール2の仕様、支持部4とりわけ背板体5の形状・寸法を定めることにより予め決定することができる。 For this reason, an increase in the flow rate of the leaking fluid 92 results in an increase in the differential pressure ΔP 2 , and thus an increase in the expansion force F, resulting in a further increase in the flow rate of the leaking fluid 92. However, when the linear body 3 is bent, a reaction force is generated in the linear body 3 in accordance with a rigidity value determined from the shape, dimensions, physical properties, and the like. The gap length between the outer surface portion 71 and the surface of the outer surface portion 71 finally settles to a certain gap length at which this reaction force balances with the expansion force F. In FIG. 1, the final gap length between the tip 3a of the linear body 3 and the surface of the circular outer surface 71 is indicated by a gap length G. In FIGS. The state of the object sealing device 1 is shown. Then, since the value of the gap length G is determined from the above-described relationship, the value of the gap length G is the value of the steam turbine including the rotating object sealing device 1, the rotating object 7, and the stationary object 8. When the specification is known, it can be determined in advance by determining the specification of the brush seal 2 including the linear body 3 and the shape and dimensions of the support portion 4, particularly the back plate body 5.

このために、この発明の回転物体用シール装置1と,回転物体7および静止物体8とでなる蒸気タービンの場合には、蒸気タービンが停止状態にある場合にブラシシール2の線状体3の先端部3aが円形状外面部71の表面とほぼ接触しているものであっても、蒸気タービンの定常運転時には、この発明の特徴である前記拡大力Fの作用により、線状体3の先端部3aと円形状外面部71の表面との間に所定の間隙長Gを持つ間隙が形成できることになる。こうしたことにより、定常運転時の回転物体用シール装置1では線状体3と円形状外面部71の表面との間の相互接触が生じないために、線状体3の摩耗・脱落によるシール性能の低下と、それに伴うブラシシールの寿命問題などが発生せず、また、回転物体7は、線状体3の先端部3aと相対する円形状外面部71の表面に施す耐摩耗性処理を不要化,あるいはその耐摩耗性度合いの軽減を図ることができることになる。   For this reason, in the case of the steam turbine composed of the rotating object sealing device 1 of the present invention and the rotating object 7 and the stationary object 8, the linear body 3 of the brush seal 2 is formed when the steam turbine is stopped. Even when the tip portion 3a is substantially in contact with the surface of the circular outer surface portion 71, during the steady operation of the steam turbine, the tip of the linear body 3 is caused by the action of the expanding force F, which is a feature of the present invention. A gap having a predetermined gap length G can be formed between the portion 3 a and the surface of the circular outer surface portion 71. As a result, in the sealing device 1 for a rotating object during steady operation, mutual contact between the linear body 3 and the surface of the circular outer surface portion 71 does not occur. And the problem of the life of the brush seal associated therewith does not occur, and the rotating object 7 does not require the wear resistance treatment applied to the surface of the circular outer surface portion 71 facing the tip portion 3a of the linear body 3 It is possible to reduce the degree of wear resistance.

前記『特許文献2』の第9図を用いて説明された従来例の場合には、ブラシシール109の側面と直交する方向にはP1(この発明の回転物体用シール装置1の間隙部9Aの蒸気圧Pに相当)のみが印加されることになっており、この発明の回転物体用シール装置1の場合のブラシシール2の側面22に印加される図3(b)に示した静圧は存在していない。しかし、この発明のブラシシール2の場合には前記したように、側面22には図3(b)に示した静圧が印加されることで、ブラシシール2の側面21,側面22と直交する方向には、図3(c)に示した差圧が印加されることになり、その値は蒸気圧P単体の場合よりも小さくなる。そうして、ブラシシール2の線状体3の基部付近に加わる差圧はΔP21であるが、ブラシシール2の線状体3の先端部3aに加わる差圧はΔP21よりも小さいΔP20である。ブラシシール2の線状体3の側面21,側面22と直交する方向の変形量は、線状体3が支持部4で支持されていて,線状体3の基部で固定されていることから、材料力学の知見を用いると、断面形状・寸法が長さ方向に関して均一である片持梁において、分布荷重を受ける場合に生じる撓み量として把握することができる。 In the case of the conventional example described with reference to FIG. 9 of the above-mentioned “Patent Document 2”, P1 (in the gap portion 9A of the rotating object sealing device 1 of the present invention in the direction orthogonal to the side surface of the brush seal 109). only equivalent) to the vapor pressure P a has become to be applied, the static pressure shown in Figure 3 is applied to the side surface 22 of the brush seal 2 in the case of a rotating object seal device 1 of the present invention (b) Does not exist. However, in the case of the brush seal 2 of the present invention, as described above, the static pressure shown in FIG. 3B is applied to the side surface 22 so that the side surface 21 and the side surface 22 of the brush seal 2 are orthogonal to each other. the direction will be the differential pressure shown in FIG. 3 (c) is applied, the value is smaller than that of the vapor pressure P a alone. Thus, the differential pressure applied to the vicinity of the base portion of the linear body 3 of the brush seal 2 is ΔP 21 , but the differential pressure applied to the tip 3 a of the linear body 3 of the brush seal 2 is ΔP 20 which is smaller than ΔP 21. It is. The deformation amount of the brush seal 2 in the direction orthogonal to the side surface 21 and the side surface 22 of the linear body 3 is that the linear body 3 is supported by the support portion 4 and is fixed at the base portion of the linear body 3. If the knowledge of material mechanics is used, it can be grasped as the amount of deflection that occurs when a distributed load is applied to a cantilever beam having a uniform cross-sectional shape / dimension in the length direction.

そうして、片持梁の先端部の撓み量を小さくするには,分布荷重による全荷重により片持梁の固定点に与えられるモーメントを小さくすればよいことになり、したがって、全荷重の値を一定とした条件下で片持梁の先端部の撓み量を小さくするには,固定点から離れた部位に加わる荷重の値を小さくすればよいことになる。図3(c)に示された差圧値の分布は、前記した片持梁の先端部の撓み量を小さくする条件と合致していることが分かる。すなわち、前述したことを纏めると、この発明の回転物体用シール装置1では、ブラシシール2の線状体3の側面21,側面22と直交する方向に加わるのは蒸気圧P単体よりも小さい値の図3(c)に示したような差圧であり、しかも、この差圧の分布が線状体3の先端部3aに近い部位ほど小さい値になっている。したがって、回転物体用シール装置1では、作動流体である蒸気により回転物体用シール装置1に加えられる相対的に高圧な圧力(静圧)Pにより線状体3が背板体5側に曲げられる変形量が、前記『特許文献2』の第9図を用いて説明された従来例の場合よりも低減される。 Thus, in order to reduce the amount of deflection of the tip of the cantilever, it is only necessary to reduce the moment applied to the fixed point of the cantilever by the total load due to the distributed load. In order to reduce the amount of deflection of the tip of the cantilever beam under a constant condition, it is necessary to reduce the value of the load applied to the part away from the fixed point. It can be seen that the distribution of the differential pressure value shown in FIG. 3C matches the condition for reducing the amount of bending of the tip of the cantilever. That is, summarized the foregoing, the rotating object seal device 1 of the present invention, the linear member 3 side 21 of the brush seal 2, less than the vapor pressure P A alone join the direction perpendicular to the side surface 22 The differential pressure is a value as shown in FIG. 3C, and the distribution of the differential pressure is smaller at a portion closer to the tip 3 a of the linear body 3. Thus, the rotating object seal device 1, the linear body 3 by a relatively high pressure (static pressure) P A applied to a rotating object seal device 1 bending the back plate member 5 by vapor as a working fluid The amount of deformation to be performed is reduced as compared with the case of the conventional example described with reference to FIG. 9 of “Patent Document 2”.

そうして、この発明の回転物体用シール装置1では、線状体3が背板体5側に曲げられる変形量が前記のように従来例の場合よりも低減されることで、ブラシシール2のシール性能を実質的に保持することができようになると共に、前記拡大力Fの作用によって線状体3の先端部3aと円形状外面部71の表面との間に所定の間隙長Gを持つ間隙が形成されることで、線状体3の摩耗・脱落によるシール性能の低下やブラシシールの寿命問題などが解消され、また、円形状外面部71の表面に施す耐摩耗性処理を不要,少なくとも軽減できることになるとの、大きな効果を得ることができることになる。   Thus, in the rotating object sealing device 1 of the present invention, the amount of deformation by which the linear body 3 is bent toward the back plate body 5 is reduced as compared with the case of the conventional example as described above. The sealing performance can be substantially maintained, and a predetermined gap length G is provided between the tip portion 3a of the linear body 3 and the surface of the circular outer surface portion 71 by the action of the expanding force F. By forming the gap, the degradation of the sealing performance due to wear and drop of the linear body 3 and the life problem of the brush seal are eliminated, and the wear resistance treatment applied to the surface of the circular outer surface portion 71 is unnecessary. , At least, it will be possible to obtain a great effect that it can be reduced.

『実施の形態2』図4はこの発明の実施の形態の異なる例による回転物体用シール装置を関連する部材と共に示すその要部の側面断面図である。なお、以下の説明においては、図1,図2に示したこの発明の実施の形態の一例の回転物体用シール装置および関連する部材と同一部分には同じ符号を付し、その説明を省略する。また、以後の説明に用いる図中には、図1,図2で付した符号については極力代表的な符号のみを記すようにしている。図4において、1Aは、図1,図2に示したこの発明による回転物体用シール装置1に対して、支持部4に替えて支持部4Aを用いるようにした回転物体用シール装置である。支持部4Aは図1に示した支持部4に対し、背板体5に替えて凹溝58を持つ背板体5Aを用いるようにしている。背板体5Aが持つ凹溝58は、段差面52の支持面51側の終端部分の漏れ流体通流路53に面する部位に設けられて円弧状に形成されており、貫通孔55はこの凹溝58に連通させて形成されている。なお、回転物体用シール装置1Aは組立・分解作業上の必要から、例えば、上下2分割などの複数に分割される構造とされているので、凹溝58は全体としては円環状に形成されていることになる。   [Embodiment 2] FIG. 4 is a side sectional view of an essential part of a rotating object sealing device according to a different example of an embodiment of the present invention, together with related members. In the following description, the same parts as those of the rotating object sealing device and related members of the embodiment of the present invention shown in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted. . Also, in the drawings used for the following description, only representative symbols are used as much as possible for the symbols given in FIGS. In FIG. 4, 1A is a rotating object sealing device in which a supporting portion 4A is used in place of the supporting portion 4 in the rotating object sealing device 1 according to the present invention shown in FIGS. The support portion 4A uses a back plate body 5A having a concave groove 58 instead of the back plate body 5 with respect to the support portion 4 shown in FIG. The concave groove 58 of the back plate body 5A is provided in a portion facing the leakage fluid flow path 53 at the terminal portion of the step surface 52 on the support surface 51 side, and is formed in an arc shape. It is formed in communication with the concave groove 58. Since the rotating object sealing device 1A is required to be assembled and disassembled, for example, the rotating object sealing device 1A is divided into a plurality of parts, for example, an upper part and a lower part. Therefore, the groove 58 is formed in an annular shape as a whole. Will be.

図4に示したこの発明の実施の形態の異なる例による回転物体用シール装置1Aについて、前記回転物体用シール装置1についての説明内容を基にして説明する。図4に示すこの発明の実施の形態の異なる例による回転物体用シール装置1Aでは前述の構成としたので、図1,図2に示したこの発明の実施の形態の一例の回転物体用シール装置1と対比すると、漏れ流体92の漏れ流体通流路53内の通流状態に特徴がある。すなわち、凹溝58が漏れ流体通流路53に面して前記のように形成されていることで、回転物体用シール装置1Aの場合の漏れ流体92は、漏れ流体通流路53→凹溝58→貫通孔55の経路で通流して間隙部9Bに達する流れになる。この場合の漏れ流体92の漏れ流体通流路53内における通流状態は、ブラシシール2の側面22に位置する線状体3の先端部3aを起点として、凹溝58に向けて漏れ流体通流路53内を回転物体7の回転中心位置(図示せず)を中心として放射状に通流する。図4に例示した場合には、この漏れ流体92は間隔寸法L55の位置付近を中心として凹溝58に流れ込み、以降、凹溝58内を通流して貫通孔55に至り、貫通孔55内を通流して間隙部9Bに達することになる。 A rotating object sealing device 1A according to a different example of the embodiment of the present invention shown in FIG. 4 will be described based on the description of the rotating object sealing device 1. Since the rotating object sealing apparatus 1A according to the different embodiment of the present invention shown in FIG. 4 has the above-described configuration, the rotating object sealing apparatus according to the embodiment of the present invention shown in FIGS. When compared with 1, the flow state of the leak fluid 92 in the leak fluid passage 53 is characteristic. That is, since the concave groove 58 is formed as described above so as to face the leakage fluid flow path 53, the leakage fluid 92 in the case of the rotating object sealing device 1A is the leakage fluid flow path 53 → the concave groove. 58 → flow through the path of the through hole 55 and reach the gap 9B. In this case, the flow state of the leakage fluid 92 in the leakage fluid passage 53 is such that the leakage fluid flow toward the concave groove 58 starts from the tip 3 a of the linear body 3 located on the side surface 22 of the brush seal 2. The flow passes through the flow path 53 radially about the rotation center position (not shown) of the rotating object 7. In the case illustrated in FIG. 4, the leakage fluid 92 flows into the concave groove 58 around the position of the distance dimension L 55 , and then flows through the concave groove 58 to the through hole 55. It will flow through and reach the gap 9B.

回転物体用シール装置1Aでは、凹溝58が全体としては円環状に形成されていることによって、線状体3の先端部3aからブラシシール2の側面22に沿って放射状に凹溝58に流れ込むまでの漏れ流体92の円形状外面部71の円周方向に関する流れ方は、凹溝58を持たない前記この発明の回転物体用シール装置1の場合よりも一様化される。このことにより、漏れ流体92の線状体3の先端部3aの位置から間隔寸法L55の位置までの間の圧力損失に起因する静圧値の全低下量ΔP、したがって漏れ流体92が間隔寸法L55の位置で持つ静圧値P21も、回転物体用シール装置1の場合よりも一様化される。そうして、この発明の回転物体用シール装置1に対する説明の中で既に述べたように、この静圧値P21は、ブラシシール2の側面22に位置する線状体3の先端部3aで漏れ流体92が持つ静圧値P20と共に、拡大力Fの生成に関して直接的に寄与する要素であるので、拡大力Fの値が円形状外面部71の円周方向に関して一様化されることになる。すなわち、この発明の回転物体用シール装置1Aは、拡大力Fの値が一様化されることで、回転物体7の回転中心軸線(図示せず)上から見た場合に、線状体3の先端部3aと円形状外面部71の表面との間の間隙長Gを、この発明の回転物体用シール装置1の場合よりも一様化することができるという利点を得ることができる。 In the rotating object sealing device 1 </ b> A, the concave groove 58 is formed in an annular shape as a whole, so that it flows radially from the distal end portion 3 a of the linear body 3 into the concave groove 58 along the side surface 22 of the brush seal 2. The flow direction of the leakage fluid 92 in the circumferential direction of the circular outer surface portion 71 is made more uniform than in the case of the rotating object sealing device 1 of the present invention having no concave groove 58. Thus, the total decrease amount [Delta] P 2 of static pressure due to the pressure loss, thus leaking fluid 92 the spacing between the position of the distal end portion 3a of the linear body 3 leakage fluid 92 to the position of the spacing dimension L 55 The static pressure value P 21 at the position of the dimension L 55 is also made more uniform than in the case of the rotating object sealing device 1. Then, as already described in the description of the rotating object sealing device 1 of the present invention, the static pressure value P 21 is applied to the tip 3 a of the linear body 3 located on the side surface 22 of the brush seal 2. Along with the static pressure value P 20 of the leaking fluid 92, it is an element that directly contributes to the generation of the expansion force F, so that the value of the expansion force F is made uniform in the circumferential direction of the circular outer surface portion 71. become. In other words, the rotating object sealing device 1A according to the present invention has a uniform expansion member F value so that the linear object 3 can be seen when viewed from the rotation center axis (not shown) of the rotating object 7. It is possible to obtain an advantage that the gap length G between the front end portion 3a and the surface of the circular outer surface portion 71 can be made more uniform than in the rotating object sealing device 1 of the present invention.

『実施の形態3』図5はこの発明の実施の形態のさらに異なる例による回転物体用シール装置を関連する部材と共に示すその要部の側面断面図である。図5において、1Bは、図1,図2に示したこの発明による回転物体用シール装置1に対して、流体抵抗体6を回転物体7に追加して備えるようにした回転物体用シール装置である。流体抵抗体6は、例えば、前記『特許文献1』において第1図を用いて説明されているシールフィン24と同様の構造を持つ部材であり、背板体5の内周端面と円形状外面部71の表面との間の間隙Gに対面させて設けられる。このフィン状の流体抵抗体6は、例えば、回転物体7の円形状外面部71に形成された円環状の凹溝76に装着される。なお、流体抵抗体6は、組立・分解作業上の必要から、例えば、上下2分割に分割される構造とされる。 [Embodiment 3] FIG. 5 is a side sectional view of a main part of a rotating object sealing device according to still another embodiment of the present invention together with related members. In FIG. 5, reference numeral 1B denotes a rotating object sealing device in which a fluid resistor 6 is added to the rotating object 7 in addition to the rotating object sealing device 1 according to the present invention shown in FIGS. is there. The fluid resistor 6 is a member having the same structure as the seal fin 24 described with reference to FIG. 1 in “Patent Document 1”, for example, the inner peripheral end surface of the back plate body 5 and the circular outer surface. provided so as to face the gap G 5 between the surface of the part 71. The fin-like fluid resistor 6 is attached to, for example, an annular groove 76 formed in the circular outer surface 71 of the rotating object 7. Note that the fluid resistor 6 has a structure that is divided into, for example, an upper part and a lower part from the necessity for assembly and disassembly work.

図5に示したこの発明の実施の形態のさらに異なる例による回転物体用シール装置1Bについて、前記回転物体用シール装置1についての説明内容を基にして説明する。図5に示すこの発明の実施の形態のさらに異なる例による回転物体用シール装置1Bでは前述の構成としたので、間隙部9Aから間隙部9Bに向かって流れる漏れ流体91から分流されて、前記間隙Gから間隙部9Bに流れ出る漏れ流体93(図5に矢印付き点線で示す。)は、その流れを流体抵抗体6により邪魔されることで、この発明による回転物体用シール装置1の場合よりもその流量が低減される。この結果、これも漏れ流体91から分流される漏れ流体92(漏れ流体通流路53→貫通孔55の流路を通流する。)の流量が回転物体用シール装置1の場合よりも増大される。『実施の形態1』の項で説明したように、漏れ流体92の増大は漏れ流体92の静圧値の全低下量ΔPを増大させ、また、この全低下量ΔPの増大は拡大力Fを増大させることになるので、回転物体用シール装置1Bでは、回転物体用シール装置1によって得られる効果が増大されることになる。 A rotating object sealing device 1B according to still another example of the embodiment of the present invention shown in FIG. 5 will be described based on the description of the rotating object sealing device 1. Since the rotating object sealing device 1B according to still another example of the embodiment of the present invention shown in FIG. 5 has the above-described configuration, it is diverted from the leakage fluid 91 flowing from the gap portion 9A toward the gap portion 9B, and the gap leakage fluid 93 flowing out of the G 5 the gap 9B (in FIG. 5 indicated by an arrow with a dotted line.) is the flow that is disturbed by the fluid resistor 6, than in the case of a rotating object seal device 1 according to the invention The flow rate is also reduced. As a result, the flow rate of the leakage fluid 92 (which flows through the leakage fluid passage 53 → the passage of the through hole 55), which is also diverted from the leakage fluid 91, is increased as compared with the rotating object sealing device 1. The As described in the section "the first embodiment", increased leakage fluid 92 increases the total decrease amount [Delta] P 2 of static pressure leakage fluid 92, also increasing the total decrease amount [Delta] P 2 is an enlarged force Since F is increased, the effect obtained by the rotating object sealing device 1B is increased in the rotating object sealing device 1B.

『実施の形態3』の項における前述の説明では、流体抵抗体6と組み合わされる回転物体用シール装置は回転物体用シール装置1であるとしてきたが、これに限定されるものではなく、例えば、回転物体用シール装置1Aであってもよい。   In the above description of “Embodiment 3”, the rotating object sealing device combined with the fluid resistor 6 is the rotating object sealing device 1, but is not limited to this. For example, It may be a rotating object sealing device 1A.

この発明の実施の形態の一例による回転物体用シール装置を関連する部材と共に示すその要部の側面断面図である。It is side surface sectional drawing of the principal part which shows the sealing apparatus for rotating objects by an example of embodiment of this invention with a related member. 図1におけるA−A断面図である。It is AA sectional drawing in FIG. 図1,図2に示した回転物体用シール装置のブラシシールに作動流体によって与えられる静圧を模式的に説明する説明図であり、(a)は図1におけるブラシシールの高圧側の側面部に与えられる静圧を示し、(b)は図1におけるブラシシールの低圧側の側面部に与えられる静圧を示し、(c)は図1におけるブラシシールの高圧側の側面部に与えられる静圧と低圧側の側面部に与えられる静圧との差圧を示す。FIG. 3 is an explanatory diagram for schematically explaining a static pressure applied by a working fluid to the brush seal of the rotating object sealing device shown in FIGS. 1 and 2, and (a) is a side portion of the brush seal on the high pressure side in FIG. 1. (B) shows the static pressure applied to the low pressure side surface portion of the brush seal in FIG. 1, and (c) shows the static pressure applied to the high pressure side surface portion of the brush seal in FIG. The pressure difference between the pressure and the static pressure applied to the low-pressure side surface portion is shown. この発明の実施の形態の異なる例による回転物体用シール装置を関連する部材と共に示すその要部の側面断面図である。It is side surface sectional drawing of the principal part which shows the sealing apparatus for rotating objects by a different example of embodiment of this invention with a related member. この発明の実施の形態のさらに異なる例による回転物体用シール装置を関連する部材と共に示すその要部の側面断面図である。It is side surface sectional drawing of the principal part which shows the sealing apparatus for rotating objects by the further different example of embodiment of this invention with a related member.

符号の説明Explanation of symbols

1 回転物体用シール装置
2 ブラシシール
21 側面
22 側面
3 線状体
4 支持部
41 保持体
5 背板体
51 支持面
52 段差面
55 貫通孔
7 回転物体(回転軸)
71 円形状外面部
8 静止物体(ケーシング)
DESCRIPTION OF SYMBOLS 1 Sealing device for rotating objects 2 Brush seal 21 Side surface 22 Side surface 3 Linear body 4 Support part 41 Holding body 5 Back plate body 51 Support surface 52 Step surface 55 Through-hole 7 Rotating object (rotating shaft)
71 Circular outer surface 8 Stationary object (casing)

Claims (3)

円形状の外面形状を持つ円形状外面部を有する回転物体とこの回転物体の前記円形状外面部と相対する内周面を有する静止物体との相互間に形成される間隙部を作動流体が通流することを抑制するために前記静止物体に配設されるシール装置において、
剛性を有する多数本の線条体の束が前記回転物体の円形状外面部に対して円弧状の壁状に配列されるように前記静止物体に配設され、両側面部に高圧側、低圧側の空間を形成するブラシシールと、
前記ブラシシールの低圧側の側面部に相対して設けられる背板体と、を有し、
前記背板体は、前記ブラシシールの低圧側の側面部との間に、前記作動流体が前記高圧側から前記ブラシシールの内周面先端部と前記回転物体の円形状外面部との間隙を介して低圧側に漏れ出たものである漏れ流体を通流させる漏れ流体通路を形成するとともに、前記漏れ流体通路の終端部分に形成されて、この漏れ流体通路を通流した前記漏れ流体を前記低圧側の圧力を持つ空間に排出するための貫通孔を有し、
前記ブラシシールの低圧側の側面部に加わる静圧を、前記線条体の先端部に近い部位よりも前記貫通孔に近い部位ほど小さい値としたことで前記線条体を前記低圧側へ拡大する力を働かせ、
該拡大力と前記線条体の反力とをバランスさせることにより、
前記ブラシシールの前記内周面先端部と前記回転物体の前記円形状外面部との前記間隙の間隙長を形成したことを特徴とする回転物体用シール装置。
The working fluid passes through a gap formed between a rotating object having a circular outer surface portion having a circular outer surface shape and a stationary object having an inner peripheral surface opposite to the circular outer surface portion of the rotating object. In a sealing device disposed on the stationary object to suppress flowing,
Arranged in the stationary object such that a bundle of a large number of rigid linear bodies are arranged in an arcuate wall shape with respect to the circular outer surface of the rotating object, the high pressure side and the low pressure side on both side surfaces A brush seal that forms a space of
A back plate body provided opposite to the low pressure side surface portion of the brush seal,
The back plate has a gap between the low pressure side surface portion of the brush seal and the working fluid from the high pressure side between the tip of the inner peripheral surface of the brush seal and the circular outer surface portion of the rotating object. A leakage fluid passage for allowing a leakage fluid that has leaked to the low-pressure side to flow therethrough, and formed in a terminal portion of the leakage fluid passage so that the leakage fluid that has flowed through the leakage fluid passage is It has a through hole for discharging to a space with the pressure on the low pressure side,
The linear pressure applied to the low pressure side surface portion of the brush seal is set to a value closer to the through hole than to a portion close to the tip of the linear body, thereby expanding the linear body to the low pressure side. Work the power to
By balancing the expansion force and the reaction force of the striatum,
A rotating object sealing device , wherein a gap length of the gap between the tip of the inner peripheral surface of the brush seal and the circular outer surface of the rotating object is formed .
請求項1に記載の回転物体用シール装置において、前記背板体は、前記漏れ流体通路の終端部分に円弧状に形成され、前記貫通孔に連通する凹溝を有することを特徴とする回転物体用シール装置。 2. The rotating object sealing device according to claim 1, wherein the back plate body is formed in an arc shape at a terminal portion of the leakage fluid passage and has a concave groove communicating with the through hole. Sealing device. 請求項1または2に記載の回転物体用シール装置において、前記背板よりも下流の前記回転物体の周面部に、前記背板体の内周面と前記回転物体の円形状外面部の表面との間の間隙を通過する漏れ流体に対する流体抵抗となる流体抵抗体を備えることを特徴とする回転物体用シール装置。 The sealing device for a rotating object according to claim 1 or 2, wherein an inner peripheral surface of the back plate body and a surface of a circular outer surface portion of the rotating object are provided on a peripheral surface portion of the rotating object downstream of the back plate. A sealing device for a rotating object, comprising: a fluid resistor that serves as a fluid resistance against a leaking fluid that passes through a gap therebetween.
JP2006244949A 2006-09-11 2006-09-11 Sealing device for rotating objects Active JP5028918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006244949A JP5028918B2 (en) 2006-09-11 2006-09-11 Sealing device for rotating objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006244949A JP5028918B2 (en) 2006-09-11 2006-09-11 Sealing device for rotating objects

Publications (2)

Publication Number Publication Date
JP2008064260A JP2008064260A (en) 2008-03-21
JP5028918B2 true JP5028918B2 (en) 2012-09-19

Family

ID=39287142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006244949A Active JP5028918B2 (en) 2006-09-11 2006-09-11 Sealing device for rotating objects

Country Status (1)

Country Link
JP (1) JP5028918B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008055736A1 (en) * 2008-11-04 2010-05-12 Siemens Aktiengesellschaft Brush seal for a turbomachine and turbo machine with a brush ring seal assembly
US7938403B1 (en) * 2009-12-31 2011-05-10 General Electric Company Brush seals
US9347333B2 (en) 2010-05-03 2016-05-24 Elliott Company Brush ring seal
US8794918B2 (en) 2011-01-07 2014-08-05 General Electric Company System for adjusting brush seal segments in turbomachine
US9255486B2 (en) 2011-03-28 2016-02-09 General Electric Company Rotating brush seal
US9121297B2 (en) 2011-03-28 2015-09-01 General Electric Company Rotating brush seal
JP6631837B2 (en) * 2016-05-09 2020-01-15 三菱日立パワーシステムズ株式会社 Seal segment and rotating machine
CN111663963B (en) * 2020-05-14 2021-06-04 复旦大学 Multistage brush type sealing structure capable of adjusting final-stage pressure drop

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401036A (en) * 1993-03-22 1995-03-28 Eg & G Sealol, Inc. Brush seal device having a recessed back plate
US6139018A (en) * 1998-03-25 2000-10-31 General Electric Co. Positive pressure-actuated brush seal
US6293554B1 (en) * 1999-05-13 2001-09-25 General Electric Company Brush seal segment having bristle damping
US6457719B1 (en) * 2000-08-14 2002-10-01 United Technologies Corporation Brush seal
JP4644378B2 (en) * 2001-03-27 2011-03-02 イーグル・エンジニアリング・エアロスペース株式会社 Brush seal device
US6669443B2 (en) * 2001-11-16 2003-12-30 General Electric Company Rotor platform modification and methods using brush seals in diaphragm packing area of steam turbines to eliminate rotor bowing

Also Published As

Publication number Publication date
JP2008064260A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP5028918B2 (en) Sealing device for rotating objects
JP2017537282A (en) Followable hybrid gas lubricated thrust bearing
JP5600542B2 (en) Rotating machinery shaft seal device
US20110135453A1 (en) Leaf seal
KR101721348B1 (en) Shaft seal device and rotary machine
JPWO2010146805A1 (en) Shaft seal and rotating machine equipped with the same
JP2019052600A (en) Compressor
JP6358976B2 (en) Turbine sealing device and turbine, and thin plate for sealing device
JP5116833B2 (en) Plate brush seal device
JP6759324B2 (en) Brush seal
JP6276209B2 (en) Turbine sealing device and turbine, and thin plate for sealing device
US10196987B2 (en) Shaft sealing mechanism
JP2006132635A (en) Shaft seal
JP2016156421A (en) Labyrinth seal device and turbo machinery
US10190433B2 (en) Shaft sealing mechanism
JP2006132636A (en) Shaft seal and rotary machine
JP5178385B2 (en) Rotating shaft sealing device
KR20150144627A (en) Brush seal assembly
JP2005337448A (en) Brush sealing device
JP7350447B2 (en) mechanical seal
JP2009108918A (en) Seal device for rotary machine, and rotary machine
JP5657268B2 (en) Shaft seal device
JP2021092234A (en) Seal device
JP2011089585A (en) Shaft sealing device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Ref document number: 5028918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250