JP5027959B2 - Coating device - Google Patents

Coating device Download PDF

Info

Publication number
JP5027959B2
JP5027959B2 JP2007156881A JP2007156881A JP5027959B2 JP 5027959 B2 JP5027959 B2 JP 5027959B2 JP 2007156881 A JP2007156881 A JP 2007156881A JP 2007156881 A JP2007156881 A JP 2007156881A JP 5027959 B2 JP5027959 B2 JP 5027959B2
Authority
JP
Japan
Prior art keywords
air
flow path
coating liquid
amount
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007156881A
Other languages
Japanese (ja)
Other versions
JP2008307460A (en
Inventor
浩司 上野
基博 田中
Original Assignee
株式会社Uhk
田中インポートグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uhk, 田中インポートグループ株式会社 filed Critical 株式会社Uhk
Priority to JP2007156881A priority Critical patent/JP5027959B2/en
Publication of JP2008307460A publication Critical patent/JP2008307460A/en
Application granted granted Critical
Publication of JP5027959B2 publication Critical patent/JP5027959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • Nozzles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating device which can automatically supply a coating liquid correspondingly with the size of a work and stably atomize the coating liquid in succession, even in case the coating weight is extremely small, with the advantages that the manufacturing cost is low, the minute flow adjustment correspondingly with the work can be performed, and maintenance services are not necessary. <P>SOLUTION: This coating device comprises an air flow path 2, a cooling water flow path 3, a lubricant flow path 4 and a liquid volume adjustment part 11 which can adjust the inclusion volume of the coating liquid into the air. The liquid volume adjustment part 11 is formed of a flow path 15 consisting of a gap space 15a in a flat strip form and in such a way that the resistance of the flow path 15 extending from an inflow part 16 to an outflow part 17 is the lowest in the neighborhood of a coating liquid supply part. Besides, the air, first, flows near the coating liquid supply part and then, flows spreading widely in the width direction of the flow path 15 too, as the blow-off air volume becomes larger. Further, the flow velocity of the air flowing near the coating liquid supply part changes correspondingly with the blow-off air volume, resulting in the change of the differential pressure. Thus, the adjustment of the air inclusion volume into the coating liquid can be achieved. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は切削加工に使用する潤滑油や冷却水などの塗布液を被加工物に塗布する塗布装置に関するもので、特に、小さい被加工物に対しても極く微量の塗布液を安定して塗布する塗布装置に関するものである。   The present invention relates to a coating apparatus that coats a workpiece with a coating liquid such as lubricating oil or cooling water used for cutting, and in particular, a very small amount of coating liquid can be stably applied to a small workpiece. The present invention relates to a coating apparatus for coating.

従来より、金属材料、合成樹脂材料等の切削加工においては、被加工物表面の潤滑及び熱発生による変形防止や工具保護のために潤滑油、冷却水などの塗布液を空気スプレーによって塗布することが行なわれている。これらの塗布液を塗布するにはポンプ等を使用して空気及び塗布液を送り込み、空気中に塗布液を混入させて、加工刃物自体に設けられている吹出流路先端の吹出孔または加工刃物から離間して別途に取付けられた吹付ノズルから被加工物にスプレー塗布している。   Conventionally, in cutting of metal materials, synthetic resin materials, etc., coating liquid such as lubricating oil and cooling water is applied by air spray to prevent deformation due to lubrication and heat generation of the workpiece surface and tool protection. Has been done. In order to apply these coating liquids, a pump or the like is used to feed air and the coating liquid, and the coating liquid is mixed into the air, so that the blow hole at the tip of the blow channel provided in the processing blade itself or the processing blade The workpiece is spray-applied from a spray nozzle that is separately attached to the workpiece.

ところで、近年環境問題、油剤の節約などの点から、被加工物が小さいものに対してはその大きさに対応して極く微量の塗布液を吐出し、ミスト化して使用する研究開発が行なわれ、実施されてきている。即ち、被加工物が小さくて本来極く微量の塗布液を塗布すれば足りるところを過剰量の塗布液を塗布することによって職場環境更には自然環境を悪化させ、また、塗布液が無駄となるのを防止すべく改善が進められている。ここで、一般には、塗布液は被加工物の大きさに対応して、均一にミスト化して良好な噴霧状態を得るために、流量調節バルブを操作するなどして必要最小限の適量が供給される。   By the way, in recent years, from the viewpoint of environmental problems and saving of oil, research and development has been carried out to discharge a very small amount of coating liquid corresponding to the size of a small workpiece and use it as a mist. Has been implemented. In other words, the work environment and the natural environment are deteriorated by applying an excessive amount of the coating liquid where it is sufficient to apply a very small amount of the coating liquid, and the coating liquid is wasted. Improvements are being made to prevent this. Here, in general, the coating solution is supplied in the minimum amount necessary by operating the flow control valve, etc., in order to obtain a good spray state by uniformly misting according to the size of the workpiece. Is done.

しかし、従来の塗布装置は、被加工物が異なる毎にその大きさに対応して流量調節バルブを調整し直さなければならなかった。また、供給ポンプを使用するものではピストンの往復回数を調節し直さなければならなかった。このため、塗布液量を調節するのは、大変煩わしく面倒な作業となっていた。また、調整操作を忘れて油剤を無駄に使用したり、逆に噴霧不足から切削不良となることも往々としてあった。   However, the conventional coating apparatus has to readjust the flow rate adjusting valve in accordance with the size of each workpiece to be processed. In addition, in the case of using a feed pump, the number of reciprocations of the piston had to be adjusted again. For this reason, adjusting the amount of the coating liquid has been very troublesome and troublesome. In addition, forgetting the adjustment operation, the oil agent is used wastefully, or conversely, cutting is poor due to insufficient spraying.

更に、被加工物が小さく極く微量の塗布液を供給する場合に、従来の液量調整バルブや液滴で落下させて供給する装置などではバルブを極く微量に絞り込んで供給することができなかった。また、塗布液の供給が不連続で脈動し易く、低コストで連続して安定に供給することはできなかった。   Furthermore, when supplying a very small amount of coating liquid with a small workpiece, the conventional liquid volume adjustment valve or a device that drops and supplies liquid droplets can be supplied with a very small valve. There wasn't. Further, the supply of the coating liquid is discontinuous and easily pulsates, and cannot be continuously supplied stably at a low cost.

このようなことに鑑み、本件出願人は、特許第3390831号公報において、空気供給源から送給された空気を吹出側に導く空気流路の途中に、細溝からなる主流路とこれから分岐した複数の細溝からなる分岐流路とで形成され、吹出空気量に対応して塗布液供給部における差圧を変化させて塗布液の流量を調節する流量調節部を設けた塗布装置を提案した。この塗布装置によれば、被加工物の大きさに対応して自動的に吹出空気量に合致した油のミスト濃度を得ることができるので、被加工物が異なる毎に油量調節バルブを調整し直したり、供給ポンプのピストンの往復回数を調整し直したりする手間を省くことができる。また、油の塗布量が微量であっても、常に一定で均一な油のミストを供給することができる。そして、流量調節部は弁などの部品を全く使用しないので、故障の心配がなく、安定して稼働できる。
特許第3390831号公報
In view of such circumstances, the present applicant, in Japanese Patent No. 3390831, branched from the main flow path consisting of a narrow groove in the middle of the air flow path for guiding the air supplied from the air supply source to the blowing side. Proposed a coating apparatus that is formed with a branch flow path composed of a plurality of narrow grooves and includes a flow rate adjusting unit that adjusts the flow rate of the coating liquid by changing the differential pressure in the coating liquid supply unit in accordance with the amount of blown air. . According to this coating device, it is possible to automatically obtain the oil mist concentration that matches the blown air amount according to the size of the work piece, so the oil amount adjustment valve is adjusted each time the work piece is different. It is possible to save the trouble of re-adjusting or adjusting the number of reciprocations of the piston of the supply pump. Also, even if the amount of oil applied is very small, a constant and uniform oil mist can always be supplied. And since the flow control part does not use parts such as valves at all, there is no fear of failure and it can operate stably.
Japanese Patent No. 3390831

しかし、前記特許第3390831号公報に掲載の塗布装置は、流量調節部が主流路と複数の分岐流路とからなる複雑な構造となっており、いずれも細溝で形成されているので、その溝加工が面倒で手間を要し、製造コストが高いものとなっていた。また、流量調節部は主流路と複数の分岐流路とで構成されているから、この部分を通流する空気流量は段階的に変化するものであり、その間においても無段階に任意の流量を通流し得るものではなかった。このため、よりきめの細かい流量調節を行なうことができなかった。更に、流量調節部は流路が複数の細溝で形成され、複雑な構造となっているため、メンテナンスが必要であった。   However, the coating apparatus described in the above-mentioned Japanese Patent No. 3390831 has a complicated structure in which the flow rate adjusting portion is composed of a main flow path and a plurality of branch flow paths, and both are formed by narrow grooves. Grooving was cumbersome and time-consuming, and the manufacturing cost was high. In addition, since the flow rate control unit is composed of a main flow path and a plurality of branch flow paths, the air flow rate flowing through this portion changes stepwise, and an arbitrary flow rate can be continuously stepped between them. It was not something that could flow. For this reason, the finer flow rate adjustment cannot be performed. Furthermore, since the flow rate adjusting part has a complicated structure in which the flow path is formed by a plurality of narrow grooves, maintenance is required.

そこで、本発明は、被加工物の大きさに対応して自動的に塗布液を供給でき、塗布量が極く微量の場合であっても塗布液を連続して安定してミスト化できるとともに、安価に製造でき、また、任意の流量を通流して被加工物の大きさに対応してきめ細かい流量調節ができ、更には、メンテナンスが不要の塗布装置の提供を課題とするものである。   Therefore, the present invention can automatically supply the coating liquid according to the size of the workpiece, and can continuously and stably mist the coating liquid even when the coating amount is extremely small. Another object of the present invention is to provide a coating apparatus that can be manufactured at low cost, can be adjusted at a fine flow rate corresponding to the size of the workpiece by passing an arbitrary flow rate, and does not require maintenance.

請求項1の塗布装置は、空気供給源から送給された空気を導入して吹出側に導く空気流路と、塗布液容器に加わる気圧と前記空気流路の途中に設けられた塗布液供給部における気圧との差圧によって、前記塗布液容器内の塗布液を前記塗布液供給部に送り込む塗布液流路と、前記空気流路の途中に設けられ、前記塗布液容器から前記塗布液供給部に送り込まれて前記空気流路を通流する空気に混入される前記塗布液の混入量を調節する液量調節部とを備えている。そして、前記液量調節部は、空気が通流する偏平帯板状の隙間空間からなる流路で形成され、その流入部から流出部に至る流路抵抗が前記流路の幅方向において前記塗布液供給部の近傍で最小となるよう形成され、空気は前記流路内において最初に前記塗布液供給部の近傍を流れ、吹出空気量が増大するに従って前記塗布液供給部から流路の幅方向に離間する部分にも拡大して流れるとともに、吹出空気量に対応して前記塗布液供給部の近傍を通流する空気の流速が変化し前記差圧が変化することによって、前記塗布液の空気への混入量を調節するものである。   The coating apparatus according to claim 1 includes an air flow path that introduces air supplied from an air supply source and guides the air to a blowing side, a pressure applied to the coating liquid container, and a coating liquid supply provided in the middle of the air flow path. The coating liquid flow path for supplying the coating liquid in the coating liquid container to the coating liquid supply section by the differential pressure from the atmospheric pressure in the section and the air flow path, and supplying the coating liquid from the coating liquid container A liquid amount adjusting unit that adjusts the mixing amount of the coating liquid that is fed into the air and flows into the air flowing through the air flow path. The liquid amount adjusting unit is formed by a flow path composed of a flat strip-shaped gap space through which air flows, and a flow path resistance from the inflow part to the outflow part is applied in the width direction of the flow path. It is formed so as to be minimum in the vicinity of the liquid supply part, and the air first flows in the vicinity of the coating liquid supply part in the flow path, and the width direction of the flow path from the coating liquid supply part as the amount of blown air increases And the flow rate of the air flowing through the vicinity of the coating liquid supply unit corresponding to the amount of blown air changes, and the differential pressure changes, whereby the air of the coating liquid changes. It adjusts the amount of contamination.

即ち、この塗布装置は、塗布液容器に加わる気圧が塗布液供給部における気圧より大きいため、その差圧によって塗布液供給部に送り込まれ、空気流路を通流する空気中に混入される。ここで、塗布液供給部における気圧は、この塗布液供給部の近傍を通流する空気の流速によって左右され、流路抵抗、管路抵抗や塗布液の粘性等によっても異なるが、基本的には、ベルヌーイの定理によって、流速が大きくなる程この部分の気圧は低下し、塗布液容器に加わる気圧との差圧が増大する。したがって、被加工物の大きさに対応して吹出空気量が増加するに伴って、塗布液供給部の近傍を通流する空気の流速は大きくなり、差圧が拡大するため、塗布液の混入量は被加工物の大きさに対応して自動的に適量が混入されることとなる。   That is, in this coating apparatus, since the atmospheric pressure applied to the coating liquid container is larger than the atmospheric pressure in the coating liquid supply unit, the pressure difference is fed into the coating liquid supply unit and mixed into the air flowing through the air flow path. Here, the atmospheric pressure in the coating liquid supply unit depends on the flow velocity of the air flowing in the vicinity of the coating liquid supply unit, and varies depending on the flow path resistance, the pipe resistance, the viscosity of the coating liquid, etc. According to Bernoulli's theorem, the higher the flow velocity, the lower the pressure in this portion, and the differential pressure from the pressure applied to the coating solution container increases. Therefore, as the amount of blown air increases corresponding to the size of the workpiece, the flow rate of the air that flows near the coating liquid supply unit increases, and the differential pressure increases. An appropriate amount is automatically mixed according to the size of the workpiece.

次に、被加工物が小さく、塗布液を極く微量塗布する必要があるときは、それに応じて吹出空気量も極く少量となる。ここで、液量調節部は、空気が通流する扁平帯板状の隙間空間からなる流路で形成され、空気は極く狭い空間内を通流することになるので、全体として多大な流路抵抗を受ける。その一方、液量調節部の流入部から流出部に至る流路抵抗は塗布液供給部の近傍で最小となるよう形成されている。これは、塗布液供給部から離間した位置に空気を流しても、塗布液供給部の近傍の気圧はほとんど影響を受けることがなく、低下による差圧を生じないので、塗布液容器から塗布液が押し出されてこない。そこで、敢えてこの塗布液供給部の近傍における流路抵抗を最小にして少なくともこの塗布液供給部の近傍には空気が流れるようにしたのである。   Next, when the workpiece is small and it is necessary to apply a very small amount of the coating liquid, the amount of blown air is correspondingly small. Here, the liquid amount adjusting unit is formed by a flow path composed of a flat strip-like gap space through which air flows, and air flows through a very narrow space, so that a large flow as a whole. Receives road resistance. On the other hand, the flow path resistance from the inflow part to the outflow part of the liquid amount adjusting unit is formed to be minimum in the vicinity of the coating liquid supply unit. This is because even if air is allowed to flow away from the coating liquid supply unit, the air pressure in the vicinity of the coating liquid supply unit is hardly affected and does not cause a differential pressure due to a drop. Is not pushed out. Therefore, the flow resistance in the vicinity of the coating liquid supply unit is intentionally minimized so that air flows at least in the vicinity of the coating liquid supply unit.

これらのことから、空気は、液量調節部のうちで、流路の幅方向において、流路抵抗が最小で最も流れ易い部分であって、塗布液が塗布液容器から押し出されてくる塗布液供給部の近傍の部分に集中して流れ込み、通流することとなる。これにより、この部分において空気の流れは加速され、流速は大きいものとなる。その結果、塗布液の重量に抗して塗布液容器から塗布液供給部に送り出すに足る差圧が生じ、塗布液は微量の吹出空気量に合致した微量が確実に液量調節部内に供給され、空気中に混入されることになる。   For these reasons, the air is the portion of the liquid amount adjusting unit that has the smallest flow path resistance and is most likely to flow in the width direction of the flow path, and the coating liquid is pushed out of the coating liquid container. It flows in and flows through the portion near the supply unit. Thereby, the air flow is accelerated in this portion, and the flow velocity becomes large. As a result, a differential pressure sufficient to be sent out from the coating solution container to the coating solution supply unit against the weight of the coating solution is generated, and the coating solution is surely supplied in a small amount corresponding to a small amount of blown air into the fluid amount adjusting unit. , Will be mixed in the air.

一方、吹出空気量が多い場合は、流路の幅方向において最も流路抵抗の小さい塗布液供給部の近傍のみでなく、吹出空気量に対応して液量調節部の流路抵抗に抗して塗布液供給部から幅方向に離間する部分にも流れ、即ち、通流断面積が連続的に拡大し、吹出空気量と同一の多量の空気が液量調節部内を流れることとなる。同時に、塗布液供給部の近傍の空気の流速は大きくなり、差圧が大きくなって、吹出空気量に対応した多量の塗布液が塗布液供給部に送り出されることとなる。   On the other hand, when the amount of blown air is large, not only in the vicinity of the coating liquid supply unit with the smallest flow path resistance in the width direction of the flow path, but also against the flow path resistance of the liquid amount adjusting unit corresponding to the amount of blown air. Thus, the flow also flows in a portion separated in the width direction from the coating liquid supply unit, that is, the flow cross-sectional area continuously increases, and a large amount of air equal to the amount of blown air flows in the liquid amount adjusting unit. At the same time, the flow velocity of the air in the vicinity of the coating solution supply unit increases, the differential pressure increases, and a large amount of coating solution corresponding to the amount of blown air is sent out to the coating solution supply unit.

このように、液量調節部の流路は、形態上は、偏平帯板状の隙間空間からなるので、一定の通流断面積を有するのであるが、狭い空間で形成されていて相当の流路抵抗を生ずるために、空気は、まず、流路の幅方向、即ち通流方向と直交する方向において流路抵抗が最も小さく一番流れ易い塗布液供給部の近傍に流れ込んで通流し、以下、吹出空気量が増加するに従って前記塗布液供給部から流路の幅方向に離間する部分にも拡大して流れ、実質的には、通流断面積は無段階に連続的に拡大する。これにより、塗布液は、空気への混入量が極く微量から多量に至るいずれの場合においても、常に安定して均一に塗布されることとなる。   As described above, the flow path of the liquid amount adjusting unit is formed of a flat strip-like gap space in form, and thus has a constant flow cross-sectional area, but is formed in a narrow space and has a considerable flow rate. In order to generate the path resistance, the air first flows into the vicinity of the coating liquid supply section where the flow path resistance is the smallest and most likely to flow in the width direction of the flow path, that is, in the direction orthogonal to the flow direction. As the amount of blown air increases, the flow also expands to a portion that is separated from the coating liquid supply unit in the width direction of the flow path, and the flow cross-sectional area is continuously expanded steplessly. As a result, the coating solution is always stably and uniformly applied in any case where the amount of air mixed in is extremely small to a large amount.

次に、請求項2の塗布装置は、液量調節部が、極く微量の塗布液を空気に混入可能な隙間空間からなる流路で形成されている、即ち、流路は極く狭い隙間空間で形成されているから、請求項1と同様に、極く微量の塗布液であっても常に一定量を安定して供給できる。   Next, in the coating apparatus according to the second aspect, the liquid amount adjusting unit is formed by a flow path composed of a gap space in which a very small amount of coating liquid can be mixed into the air, that is, the flow path is a very narrow gap. Since it is formed in a space, as in the first aspect, even a very small amount of coating liquid can always be supplied stably in a constant amount.

請求項3の塗布装置は、特に、液量調節部における空気の流入部から流出部に至る流路長が塗布液供給部の近傍で最小に形成されたものである。具体的には、例えば、壁材に台形状の開口を有する凹部を刻設し、該開口を他の壁材等で閉塞して偏平帯板状の隙間空間に形成することができ、空気は台形状の平行する2辺間をこれらの辺に沿って通流する。これにより、液量調節部内の空気は最初に流路長が短かいことによって流路抵抗が最も小さい最短路の塗布液供給部の近傍を通流し、以下、通流する空気量が増大するに従って他の流路長の部分にも流れる。   In the coating apparatus of the third aspect, in particular, the flow path length from the air inflow portion to the outflow portion in the liquid amount adjusting portion is formed to be minimum in the vicinity of the coating liquid supply portion. Specifically, for example, a recess having a trapezoidal opening can be engraved in a wall material, and the opening can be closed with another wall material or the like to form a flat band plate-like gap space. The two trapezoidal parallel sides flow along these sides. Thereby, the air in the liquid amount adjusting unit first flows in the vicinity of the application liquid supply unit of the shortest path having the smallest flow path resistance due to the short flow path length, and as the amount of air flowing through increases thereafter It also flows through other flow path lengths.

請求項1の発明は、液量調節部が設けられていることにより、被加工物の大きさに対応する吹出空気量に応じてその空気中の塗布液のミスト量もほぼ比例して変化し、塗布液の塗布量が極く微量であっても、常に空気中の塗布液のミスト量は一定で均一なものとなる。これにより、被加工物には過不足なく最適な塗布量が吹出されるので、良好な潤滑状態、冷却状態が得られるとともに、過剰な潤滑油等の塗布液のミストが散布されることによる作業環境の悪化を防止できる。また、液量調節部は弁などの部品を全く使用しないから、塗布装置間で塗布量がばらつくことがなく、故障のない安定した装置を提供できる。更に、被加工物の大きさが異なっても、自動的に吹出空気量に合致したミスト濃度を得ることができるので、被加工物が異なる度に液量調節バルブを調整し直したり、供給ポンプのピストンの往復回数を調整し直したりする手間を省くことができる。   According to the first aspect of the present invention, since the liquid amount adjusting unit is provided, the mist amount of the coating liquid in the air also changes in proportion to the amount of blown air corresponding to the size of the workpiece. Even if the coating amount of the coating solution is extremely small, the mist amount of the coating solution in the air is always constant and uniform. As a result, an optimum application amount is blown out to the workpiece without excess or deficiency, so that a good lubrication state and cooling state can be obtained, and work by spraying an excessive amount of coating liquid mist such as lubricating oil It can prevent environmental degradation. Further, since the liquid amount adjusting unit does not use any parts such as a valve, the application amount does not vary between the application devices, and a stable device without failure can be provided. Furthermore, even if the size of the workpiece is different, it is possible to automatically obtain a mist concentration that matches the amount of blown air, so that the liquid volume adjustment valve can be readjusted every time the workpiece is different, or the supply pump The trouble of adjusting the number of reciprocations of the piston can be saved.

そして、特に、液量調節部は、空気が通流する偏平帯板状の隙間空間からなる流路で形成されているため、構造が簡易で安価に製造できるとともに軽量化できる。また、吹出空気量が増大するに従って液量調節部内の空気は塗布液供給部の近傍から流路の幅方向に離間する部分にも拡大して流れ、通流断面積が連続的に拡大するから、被加工物の大きさに対応する液量の塗布液を自動的にきめ細かく供給できる。更に、簡易な偏平帯板状の流路のみで形成されているため、メンテナンスが不要である。   In particular, since the liquid amount adjusting part is formed by a flow path including a flat strip-like gap space through which air flows, the structure can be manufactured easily and inexpensively and can be reduced in weight. In addition, as the amount of blown air increases, the air in the liquid amount adjusting section flows from the vicinity of the coating liquid supply section to the portion that is separated in the width direction of the flow path, and the flow cross-sectional area continuously increases. Thus, it is possible to automatically and finely supply a coating liquid having an amount corresponding to the size of the workpiece. Furthermore, since it is formed only with a simple flat strip plate-like channel, no maintenance is required.

次に、請求項2の発明は、液量調節部が、極く微量の塗布液を空気に混入可能な隙間空間からなる流路で形成されているから、請求項1と同様の効果を奏する。   Next, the second aspect of the invention has the same effect as that of the first aspect because the liquid amount adjusting portion is formed by a flow path including a gap space in which a very small amount of coating liquid can be mixed into the air. .

請求項3の発明は、特に、液量調節部における空気の流入部から流出部に至る流路長が塗布液供給部の近傍で最小に形成されているから、簡易な構造で液量調節部のうち塗布液供給部の近傍において流路抵抗が最も小さくなるようにすることができる。   In the invention of claim 3, in particular, since the channel length from the air inflow portion to the outflow portion in the liquid amount adjusting portion is formed to be the minimum in the vicinity of the coating liquid supply portion, the liquid amount adjusting portion has a simple structure. Among these, the flow path resistance can be minimized in the vicinity of the coating liquid supply unit.

以下、本発明の実施形態の塗布装置を図1及び図2に基づいて説明する。ここで、図1は本発明の実施形態の塗布装置を示す模式図、図2は図1のA−A切断線による断面図である。なお、本実施形態では、塗布液として潤滑油及び冷却水を使用した例を示す。   Hereinafter, the coating apparatus of embodiment of this invention is demonstrated based on FIG.1 and FIG.2. Here, FIG. 1 is a schematic view showing a coating apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line AA in FIG. In the present embodiment, an example in which lubricating oil and cooling water are used as the coating liquid is shown.

図1において、塗布装置1は、エアコンプレッサ21から送出された空気Aを吹出ノズル7または加工刃物8の吹出孔8aに導く空気流路2と、塗布液容器としての冷却水圧力タンク5から送出された冷却水Wを後述する冷却水供給部18に送り込む冷却水流路3と、別の塗布液容器としての潤滑油圧力タンク6から送出された潤滑油Oを潤滑油供給部19に送り込む潤滑油流路4と、空気流路2を通流する空気Aに混入される冷却水W及び潤滑油Oの混入量を調節する液量調節部11とを主な構成要素としている。   In FIG. 1, a coating apparatus 1 delivers air A sent from an air compressor 21 to a blowing nozzle 7 or a blowing hole 8a of a processing blade 8 and a cooling water pressure tank 5 serving as a coating liquid container. Lubricating oil that feeds the lubricating water O sent from the cooling water flow path 3 that feeds the cooled cooling water W to a cooling water supply unit 18 to be described later and the lubricating oil pressure tank 6 as another coating liquid container The flow path 4 and the liquid amount adjusting unit 11 that adjusts the mixing amount of the cooling water W and the lubricating oil O mixed in the air A flowing through the air flow path 2 are main components.

エアコンプレッサ21から送出された空気Aは電磁弁等の空気開閉バルブ22によって流路が開閉され、空気開閉バルブ22が開の状態で空気流路2内に流れ、液量調節部11を通流し、吹出ノズル7または加工刃物8の吹出孔8aから図示しない被加工物に向けて吹き出され、一部は分岐部2aで圧力タンク側に分岐し、更に、分岐部2bで冷却水圧力タンク5と潤滑油圧力タンク6とに分岐して、これらの圧力タンク内を加圧するようになっている。分岐部2bと冷却水圧力タンク5との間、及び分岐部2bと潤滑油圧力タンク6との間には、それぞれ逆流を防止するチェック弁23及びチェック弁24が設けられている。   The air A sent from the air compressor 21 is opened and closed by an air opening / closing valve 22 such as an electromagnetic valve, flows into the air passage 2 with the air opening / closing valve 22 open, and flows through the liquid amount adjusting unit 11. The air is blown toward the workpiece (not shown) from the blow nozzle 8 or the blow hole 8a of the processing blade 8, and partly branches to the pressure tank side at the branch portion 2a, and further to the cooling water pressure tank 5 at the branch portion 2b. It branches to the lubricating oil pressure tank 6 and pressurizes the inside of these pressure tanks. A check valve 23 and a check valve 24 are provided between the branch portion 2b and the cooling water pressure tank 5, and between the branch portion 2b and the lubricating oil pressure tank 6, respectively, to prevent backflow.

冷却水圧力タンク5と液量調節部11との間は冷却水流路3となっており、その流路途中に、冷却水Wの通流を制御する冷却水開閉バルブ25と、この冷却水開閉バルブ25を通過した冷却水Wの流量を調節して空気A中における冷却水Wの濃度を粗調節する濃度調節バルブ26とが設けられている。ここで、この濃度調節バルブ26は空気A中に混入される冷却水Wの量を概略調節するものであり、微量の冷却水Wを吹出空気量に精度良く対応して微調節する液量調節部11とは異なる。同様に、潤滑油圧力タンク6と液量調節部11との間は潤滑油流路4となっており、その流路途中に、潤滑油Oの通流を制御する潤滑油開閉バルブ27と、この潤滑油開閉バルブ27を通過した潤滑油Oの流量を調節して空気A中における潤滑油Oの濃度を粗調節する濃度調節バルブ28とが設けられている。   A cooling water flow path 3 is provided between the cooling water pressure tank 5 and the liquid amount adjusting unit 11, and a cooling water opening / closing valve 25 for controlling the flow of the cooling water W and the cooling water opening / closing are provided in the middle of the flow path. A concentration adjusting valve 26 for adjusting the flow rate of the cooling water W that has passed through the valve 25 to roughly adjust the concentration of the cooling water W in the air A is provided. Here, the concentration adjusting valve 26 roughly adjusts the amount of the cooling water W mixed in the air A, and adjusts the amount of the cooling water W that finely adjusts the minute amount of the cooling water W corresponding to the blown air amount with high accuracy. Different from the part 11. Similarly, a lubricating oil flow path 4 is provided between the lubricating oil pressure tank 6 and the liquid amount adjusting unit 11, and in the middle of the flow path, a lubricating oil opening / closing valve 27 that controls the flow of the lubricating oil O, A concentration adjusting valve 28 for adjusting the concentration of the lubricating oil O in the air A by adjusting the flow rate of the lubricating oil O that has passed through the lubricating oil opening / closing valve 27 is provided.

次に、本発明の特徴である前記液量調節部11は、図2に示すように、鋼材或いは合成樹脂材等からなる一対の第1壁材12と第2壁材13との間に設けられており、本実施形態では、第1壁材12側に凹部14を刻設し、その開口14aを第2壁材13で閉塞して、その間に形成された隙間空間15aによって偏平帯板状の流路15を形成して成る。更に具体的には、液量調節部11の本体部分である凹部14と、エアコンプレッサ21から送出された空気Aが流入する流入部16と、凹部14内の空気Aが吹出ノズル7または加工刃物8の吹出孔8a側に流出する流出部17と、冷却水圧力タンク5から冷却水流路3を通って送出されてきた冷却水Wが供給開孔18aから流入し、供給される冷却水供給部18と、潤滑油圧力タンク6から潤滑油流路4を通って送出されてきた潤滑油Oが供給開孔19aから流入し、供給される潤滑油供給部19とで構成されている。   Next, as shown in FIG. 2, the liquid amount adjusting unit 11, which is a feature of the present invention, is provided between a pair of a first wall member 12 and a second wall member 13 made of steel, synthetic resin, or the like. In this embodiment, the concave portion 14 is formed on the first wall member 12 side, the opening 14a is closed by the second wall member 13, and the flat strip plate shape is formed by the gap space 15a formed therebetween. The flow path 15 is formed. More specifically, the concave portion 14 which is the main body portion of the liquid amount adjusting portion 11, the inflow portion 16 into which the air A sent from the air compressor 21 flows, and the air A in the concave portion 14 is blown out from the nozzle 7 or the processing blade. 8 and the cooling water supply part which the cooling water W sent out through the cooling water flow path 3 from the cooling water pressure tank 5 flows in from the supply opening 18a, and is supplied. 18, and the lubricating oil O sent from the lubricating oil pressure tank 6 through the lubricating oil flow path 4 flows into the supply opening 19 a and is supplied to the lubricating oil supply unit 19.

液量調節部11の凹部14は、開口14aが、図1に示すように、逆向き台形状に形成されている。流入部16は台形状の傾斜面に沿って形成され、その傾斜面全体に形成された流入開口16aから凹部14内に空気Aが流入するようになっている。また、流出部17は台形状の傾斜面に沿って形成され、その傾斜面全体に形成された流出開口17aから凹部14外に空気Aが流出するようになっている。そして、凹部14は、図2に示すように、深さdが極く小さく形成され、幅wが大きく形成されて、隙間空間15aが非常に小さい偏平帯板状の流路15に形成されている。なお、液量調節部11の流路15の寸法は、塗布装置1の大きさ、塗布液の材質、性状等によって異なるので、試作、試行により最適値を見い出し、設定するとよい。これにより、空気Aが凹部14内を流入部16から流出部17に向けて流れるときは、第1壁材12及び第2壁材13の壁面から大きな流路抵抗を受けることとなり、その流路抵抗は流路長lにほぼ比例して増大する。   As for the recessed part 14 of the liquid quantity adjustment | control part 11, the opening 14a is formed in the reverse trapezoid shape, as shown in FIG. The inflow portion 16 is formed along a trapezoidal inclined surface, and air A flows into the recess 14 from an inflow opening 16a formed in the entire inclined surface. The outflow portion 17 is formed along a trapezoidal inclined surface, and air A flows out of the recess 14 from an outflow opening 17a formed on the entire inclined surface. As shown in FIG. 2, the recess 14 is formed in a flat strip plate-like channel 15 having a very small depth d, a large width w, and a very small gap space 15a. Yes. In addition, since the dimension of the flow path 15 of the liquid amount adjusting unit 11 varies depending on the size of the coating apparatus 1, the material of the coating liquid, the properties, and the like, it is preferable to find and set an optimum value through trial manufacture and trial. Thereby, when the air A flows in the recessed part 14 toward the outflow part 17 from the inflow part 16, it will receive large flow path resistance from the wall surface of the 1st wall material 12 and the 2nd wall material 13, and the flow path The resistance increases almost in proportion to the flow path length l.

液量調節部11の凹部14はこのような構造となっているから、空気Aは流入部16の流入開口16aから凹部14内に流入した後、台形状の上下辺に沿って平行に流れ、流出部17の流出開口17aから凹部14外に流出する。このようなことから、空気Aは凹部14内を流れるとき、流路が長い程大きな流路抵抗を受けるため、また、流体の慣性によって流入部16の先端まで流れ易いため、空気流量が少ない場合は、自ずと、図3(a)に示す、流入部16の先端側にあって流路長lが最も小さく流路抵抗が最も小さい冷却水供給部18及び潤滑油供給部19の近傍の流線イの部分を通って流出開口17aに向かうこととなる。   Since the concave portion 14 of the liquid amount adjusting portion 11 has such a structure, the air A flows into the concave portion 14 from the inflow opening 16a of the inflow portion 16, and then flows in parallel along the trapezoidal upper and lower sides. It flows out of the recess 14 from the outflow opening 17 a of the outflow portion 17. For this reason, when the air A flows through the recess 14, the longer the flow path, the larger the flow resistance, and the easier it is to flow to the tip of the inflow section 16 due to the inertia of the fluid. 3A is a streamline in the vicinity of the cooling water supply unit 18 and the lubricating oil supply unit 19 that are at the tip side of the inflow portion 16 and have the smallest flow path length l and the smallest flow path resistance, as shown in FIG. It will go to the outflow opening 17a through the part of (a).

一方、空気流量が少し多い場合は、図3(b)に示す、流路長lがやや大きく流路抵抗が少し大きい流線ロの部分にも流れることとなる。即ち、空気Aの流線イの部分のみでは通流しきれない流量分は流線ロの部分に流れ、空気Aは流線イに流線ロが加わることによって通流断面積が増大した部分を流れることとなる。そして、空気流量が更に多い場合には、図1に示す、流路長lが更に大きく流路抵抗が更に大きい流線ハの部分にも流れることとなる。即ち、空気Aの流線イ及び流線ロの部分のみでは通流しきれない流量分は流線ハの部分に流れ、空気Aは流線イの部分と流線ロの部分とに流線ハの部分が加わることによって通流断面積が更に増大した部分を流れることとなる。以下、空気流量が更に増すに従って、空気Aが通流する流線の部分は順に拡大し、最終的には、空気Aは、図3(c)に示すように、凹部14内の隙間空間15aの全体を流れることとなる。一方、空気流量が増すに従って、同時に、冷却水供給部18及び潤滑油供給部19の近傍の流線イの部分を流れる空気の流速も増大する。   On the other hand, when the air flow rate is slightly high, the flow also flows to the portion of the streamline B shown in FIG. 3 (b) where the flow path length l is slightly large and the flow path resistance is slightly large. That is, the flow rate that cannot be passed through only the streamline A part of the air A flows to the streamline B part, and the air A has a part where the flow cross-sectional area is increased by adding the streamline B to the streamline A. It will flow. When the air flow rate is further increased, the air flow also flows through a portion of a streamline C having a larger flow path length l and a larger flow path resistance shown in FIG. That is, the flow rate that cannot be passed through only the streamline a and streamline b of the air A flows into the streamline c part, and the air A flows into the streamline a part and the streamline b part. As a result, the flow cross-sectional area further increases. Hereinafter, as the air flow rate further increases, the portion of the streamline through which the air A flows increases in order, and finally, the air A becomes a gap space 15a in the recess 14 as shown in FIG. Will flow through. On the other hand, as the air flow rate increases, at the same time, the flow velocity of the air flowing through the portion of the streamline A in the vicinity of the cooling water supply unit 18 and the lubricating oil supply unit 19 also increases.

ここで、通流断面積は、外部から何ら操作されることなく、空気流量に応じて自然にかつ自在に拡大変化する。即ち、外見上は凹部14の通流断面積は幅w、深さdの大きさを有してはいるものの、隙間空間15aが大変小さく空気Aが流れるときに多大な流路抵抗を受けるため、実質的には、通流断面積は、流路抵抗が最も小さく流れ易い流線イの部分から空気流量が増すにつれて順次他の流線ハの部分などへと自在に拡大変化し、かつ、無段階に連続的に可変する構造となっている。   Here, the flow cross-sectional area expands and changes naturally and freely according to the air flow rate without any operation from the outside. That is, in appearance, the flow cross-sectional area of the recess 14 has a width w and a depth d, but the gap space 15a is very small and receives a great flow resistance when the air A flows. In practice, the cross-sectional area of the flow freely expands and changes freely from the portion of the streamline i where the flow resistance is the smallest and easy to flow to the other streamline c portion as the air flow rate increases, and The structure is continuously variable in a stepless manner.

なお、液量調節部11の凹部14の深さdは極く小さく形成しているが、流入部16及び流出部17における流路はこの大きさ及び形状に限られるものではない。   In addition, although the depth d of the recessed part 14 of the liquid quantity adjustment | control part 11 is formed very small, the flow path in the inflow part 16 and the outflow part 17 is not restricted to this magnitude | size and shape.

次に、このように構成された塗布装置1における空気A、冷却水W及び潤滑油Oの流れ及び流量について説明する。
今、冷却水圧力タンク5に加わる気圧p1は、エアコンプレッサ21の圧縮空気圧とほぼ同一の一定値であるのに対し、液量調節部11の凹部14内の冷却水供給部18における気圧p2は、この部分を空気Aが流れる以上、周辺部の気圧より低くなり、ベルヌーイの定理によって、この部分を通流する空気Aの流速に応じて変化し、流速が大きくなる程小さくなる。したがって、p1>p2であって、その差圧により、冷却水圧力タンク5内の冷却水Wは冷却水流路3内に押し上げられて供給開孔18aから冷却水供給部18内に送り出され、空気A中に混入する。同様に、潤滑油圧力タンク6内の潤滑油Oは潤滑油圧力タンク6から潤滑油流路4内に押し上げられて供給開孔19aから潤滑油供給部19内に送り出される。
Next, the flow and flow rate of the air A, the cooling water W, and the lubricating oil O in the coating apparatus 1 configured as described above will be described.
Now, the air pressure p1 applied to the cooling water pressure tank 5 is a constant value substantially the same as the compressed air pressure of the air compressor 21, whereas the air pressure p2 in the cooling water supply unit 18 in the recess 14 of the liquid amount adjusting unit 11 is As long as the air A flows through this portion, it becomes lower than the atmospheric pressure at the peripheral portion, and changes according to the flow velocity of the air A flowing through this portion according to Bernoulli's theorem, and becomes smaller as the flow velocity increases. Accordingly, p1> p2, and due to the differential pressure, the cooling water W in the cooling water pressure tank 5 is pushed up into the cooling water flow path 3 and sent out from the supply opening 18a into the cooling water supply unit 18, and the air Into A. Similarly, the lubricating oil O in the lubricating oil pressure tank 6 is pushed up from the lubricating oil pressure tank 6 into the lubricating oil flow path 4 and sent out into the lubricating oil supply unit 19 from the supply opening 19a.

そこで、まず、被加工物が小さい場合は、空気Aは吹出ノズル7または加工刃物8の吹出孔8aで絞られて極く少量が吹き出されるから、当然塗布装置1内の空気流路2を流れる流量も同一の極く少量である。このため、図3(a)に示すように、エアコンプレッサ21から送出されて液量調節部11の隙間空間15a内に送られた空気Aは流入部16における台形状の傾斜面に沿って流入開口16aから流路抵抗が最も小さく流路15内では最も流れ易い冷却水供給部18及び潤滑油供給部19の近傍の流線イの部分を通流し、流出部17に向けて流れることとなる。このとき、流路15内の流線イの部分を流れ、冷却水供給部18及び潤滑油供給部19の近傍を流れる空気Aの流量は少なく、流速は小さいため、冷却水供給部18及び潤滑油供給部19における気圧p2の低下は小さい。したがって、この気圧p2と圧力タンクに加わる気圧p1との差圧は小さい。但し、空気Aは、流線イの通流断面積が相当小さいことから相応の流速を生じるため、前記差圧は、冷却水圧力タンク5内の冷却水Wを冷却水供給部18に送り出し、また、潤滑油圧力タンク6内の潤滑油Oを潤滑油供給部19に送り出すに足る大きさとなっている。これらのことにより、冷却水圧力タンク5からは極く少量の冷却水Wが冷却水流路3を通流して冷却水供給部18内に押し出され、潤滑油圧力タンク6からは極く少量の潤滑油Oが潤滑油流路4を通流して潤滑油供給部19内に押し出され、それぞれ流路15内の空気A中に混入される。   Therefore, first, when the workpiece is small, the air A is squeezed by the blowing nozzle 7 or the blowing hole 8a of the machining blade 8, and a very small amount is blown out. The flow rate that flows is the same very small amount. For this reason, as shown in FIG. 3A, the air A sent from the air compressor 21 and sent into the gap space 15a of the liquid amount adjusting unit 11 flows along the trapezoidal inclined surface in the inflow unit 16. From the opening 16 a, the flow resistance is the smallest and the flow of the cooling water supply part 18 and the lubricating oil supply part 19 in the vicinity of the lubricating oil supply part 19 flow most easily in the flow path 15, and flow toward the outflow part 17. . At this time, since the flow rate of the air A flowing in the streamline part A in the flow path 15 and flowing in the vicinity of the cooling water supply unit 18 and the lubricating oil supply unit 19 is small and the flow velocity is small, the cooling water supply unit 18 and the lubricating oil are lubricated. The decrease in the pressure p2 in the oil supply unit 19 is small. Therefore, the differential pressure between the atmospheric pressure p2 and the atmospheric pressure p1 applied to the pressure tank is small. However, since the air A has a flow velocity corresponding to the flow cross-sectional area of the streamline A, the differential pressure sends the cooling water W in the cooling water pressure tank 5 to the cooling water supply unit 18, Further, the size is sufficient to send the lubricating oil O in the lubricating oil pressure tank 6 to the lubricating oil supply unit 19. As a result, a very small amount of cooling water W flows from the cooling water pressure tank 5 through the cooling water flow path 3 and is pushed out into the cooling water supply unit 18, and a very small amount of lubrication from the lubricating oil pressure tank 6. Oil O flows through the lubricating oil flow path 4 and is pushed out into the lubricating oil supply unit 19 and mixed into the air A in the flow path 15.

つまり、被加工物が小さく吹出空気量が極く少ない場合は、その空気A中に混入される冷却水W及び潤滑油Oも極く少量となる。このことから、被加工物が小さく、冷却水W及び潤滑油Oがミスト化されて吹出ノズル7または加工刃物8の吹出孔8aから極く少量だけ吐出される場合であっても、液量調節部11によって被加工物の大きさに対応した適量が確実に空気A中に供給され、混入された後、吹き出される。   That is, when the workpiece is small and the amount of blown air is extremely small, the cooling water W and the lubricating oil O mixed in the air A are also extremely small. Therefore, even when the work piece is small and the cooling water W and the lubricating oil O are misted and discharged from the blow nozzle 7 or the blow hole 8a of the work blade 8 in a very small amount, the liquid amount is adjusted. An appropriate amount corresponding to the size of the workpiece is reliably supplied into the air A by the part 11 and mixed and then blown out.

次に、被加工物が少し大きい場合は、それに応じて吹出ノズル7及び加工刃物8の吹出孔8aからは少し多い量の空気Aが吹き出される。一方、液量調節部11内の空気Aは、図3(b)に示すように、まず、流線イの部分に流れるとともに、この部分のみでは対応できない量は隣接する流線ロの部分に流れることとなる。   Next, when the workpiece is a little large, a little larger amount of air A is blown out from the blowing nozzle 7 and the blowing hole 8a of the machining blade 8 accordingly. On the other hand, as shown in FIG. 3 (b), the air A in the liquid amount adjusting unit 11 first flows into the streamline a part, and the amount that cannot be handled only by this part is in the adjacent streamline b part. It will flow.

このとき、この液量調節部11内を通流する空気量が増大するに従って冷却水供給部18及び潤滑油供給部19の近傍の流線イの部分における流速も増大する。これに伴って、冷却水供給部18及び潤滑油供給部19おける気圧p2の低下は大きくなる。その結果、冷却水圧力タンク5及び潤滑油圧力タンク6に加わる気圧p1と冷却水供給部18及び潤滑油供給部19における気圧p2との差圧が拡大し、その分、冷却水圧力タンク5から冷却水供給部18に送り出される冷却水Wの量及び潤滑油圧力タンク6から潤滑油供給部19に送り出される潤滑油Oの量は吹出空気量に対応して増加する、つまり、被加工物の大きさに対応する量の塗布液が流路15に供給される。   At this time, as the amount of air flowing through the liquid amount adjusting unit 11 increases, the flow velocity in the portion of the streamline A in the vicinity of the cooling water supply unit 18 and the lubricating oil supply unit 19 also increases. In connection with this, the fall of the atmospheric | air pressure p2 in the cooling water supply part 18 and the lubricating oil supply part 19 becomes large. As a result, the differential pressure between the atmospheric pressure p1 applied to the cooling water pressure tank 5 and the lubricating oil pressure tank 6 and the atmospheric pressure p2 in the cooling water supply unit 18 and the lubricating oil supply unit 19 is increased. The amount of cooling water W sent to the cooling water supply unit 18 and the amount of lubricating oil O sent from the lubricating oil pressure tank 6 to the lubricating oil supply unit 19 increase corresponding to the amount of blown air. An amount of coating liquid corresponding to the size is supplied to the flow path 15.

次に、被加工物が更に大きい場合は、それに応じて吹出ノズル7及び加工刃物8の吹出孔8aからは更に多量の空気Aが吹き出される。一方、液量調節部11内の空気Aは、図1に示すように、まず、流線イの部分、更には流線ロの部分にも流れるとともに、この部分のみでは対応できない量は隣接する流線ハの部分にも流れることとなる。   Next, when the workpiece is larger, a larger amount of air A is blown out from the blow nozzle 7 and the blow hole 8a of the work blade 8 accordingly. On the other hand, as shown in FIG. 1, the air A in the liquid amount adjusting unit 11 first flows into the streamline i part and further into the streamline b part, and the amount that cannot be handled only by this part is adjacent. It will also flow to the streamlined part.

このとき、液量調節部11内を通流する空気Aの流量が更に増大するに伴って、冷却水供給部18及び潤滑油供給部19の近傍における流速は更に増大する。これに伴って、冷却水供給部18及び潤滑油供給部19における気圧p2の低下も更に大きくなる。これにより、冷却水圧力タンク5及び潤滑油圧力タンク6に加わる気圧p1と冷却水供給部18及び潤滑油供給部19における気圧p2との差圧は更に拡大し、その分、冷却水圧力タンク5から冷却水供給部18に送り出される冷却水Wの量及び潤滑油圧力タンク6から潤滑油供給部19に送り出される潤滑油Oの量は吹出空気量に対応して増加する、つまり、被加工物の大きさに対応する量の塗布液が流路15に供給される。   At this time, as the flow rate of the air A flowing through the liquid amount adjusting unit 11 further increases, the flow velocity in the vicinity of the cooling water supply unit 18 and the lubricating oil supply unit 19 further increases. Along with this, the decrease in the pressure p2 in the cooling water supply unit 18 and the lubricating oil supply unit 19 is further increased. As a result, the differential pressure between the air pressure p1 applied to the cooling water pressure tank 5 and the lubricating oil pressure tank 6 and the air pressure p2 in the cooling water supply unit 18 and the lubricating oil supply unit 19 is further expanded. The amount of cooling water W sent from the cooling water supply unit 18 to the cooling water supply unit 18 and the amount of lubricating oil O sent from the lubricating oil pressure tank 6 to the lubricating oil supply unit 19 increase corresponding to the amount of blown air. An amount of the coating liquid corresponding to the size of is supplied to the flow path 15.

以下、被加工物の大きさが更に大きくなるに従って、吹出空気量は増大し、空気Aは、最終的には、図3(c)に示すように、凹部14内の全体を流れることとなり、同時に、流線イの部分を流れる空気Aの流速は最大となって、差圧も最大となり、多量の塗布液が流路15に供給される。   Hereinafter, as the size of the workpiece further increases, the amount of blown air increases, and the air A finally flows through the entire recess 14 as shown in FIG. At the same time, the flow rate of the air A flowing through the stream line a is maximized, the differential pressure is also maximized, and a large amount of coating liquid is supplied to the flow path 15.

次に、本実施形態の塗布装置1の作用を説明する。
塗布装置1は冷却水圧力タンク5及び潤滑油圧力タンク6に加わる気圧p1が冷却水供給部18及び潤滑油供給部19における気圧p2より大きいため、その差圧によって、冷却水W及び潤滑油Oはそれぞれ冷却水供給部18及び潤滑油供給部19に送り込まれ、流路15を通流する空気A中に混入される。その混入量は液量調節部11によって調節され、塗布液は被加工物の大きさに対応して自動的に適量が混入される。
Next, the operation of the coating apparatus 1 according to this embodiment will be described.
In the coating apparatus 1, the atmospheric pressure p <b> 1 applied to the cooling water pressure tank 5 and the lubricating oil pressure tank 6 is larger than the atmospheric pressure p <b> 2 in the cooling water supply unit 18 and the lubricating oil supply unit 19. Are respectively fed into the cooling water supply unit 18 and the lubricating oil supply unit 19 and mixed into the air A flowing through the flow path 15. The mixing amount is adjusted by the liquid amount adjusting unit 11, and an appropriate amount of the coating liquid is automatically mixed according to the size of the workpiece.

ここで、塗布装置1の液量調節部11は、扁平帯板状の隙間空間15aからなる流路15で形成されていて、空気Aは液量調節部11の極く狭い流路15内を通流するため、相当の流路抵抗を受ける。一方、液量調節部11における流路長lは流路15の幅方向において連続的に変化しているので、液量調節部11内の空気Aは最初に流路長lが最も短かく流路抵抗が最も小さい冷却水供給部18及び潤滑油供給部19の近傍の流線イの部分を通流し、以下、通流する空気量が増大するに従って順次に流線ロ、流線ハ、…への部分と流路長lの長い部分にも流れることとなる。このため、被加工物の大きさに対応して吹出空気量が大きくなると、液量調節部11を流れる空気Aの流量及び流速が増大し、冷却水供給部18及び潤滑油供給部19の近傍の流速も大きくなって、冷却水供給部18及び潤滑油供給部19における気圧p2は更に低下する。したがって、この気圧p2と、一定の大きさで冷却水圧力タンク5及び潤滑油圧力タンク6に加わっている気圧p1との差圧が大きくなって多量の塗布液が冷却水圧力タンク5及び潤滑油圧力タンク6から冷却水供給部18及び潤滑油供給部19に送り込まれ、流路15内の空気A中に混入されることとなる。   Here, the liquid amount adjusting unit 11 of the coating apparatus 1 is formed by a flow path 15 including a flat strip-like gap space 15 a, and the air A passes through a very narrow flow path 15 of the liquid amount adjusting unit 11. Since it flows, it receives considerable flow resistance. On the other hand, since the flow path length l in the liquid volume adjusting unit 11 continuously changes in the width direction of the flow path 15, the air A in the liquid volume adjusting unit 11 flows first with the shortest flow path length l. A portion of the stream line A in the vicinity of the cooling water supply unit 18 and the lubricating oil supply unit 19 having the smallest path resistance flows, and the flow line b, stream line c,. It flows also to the part to a long part and the flow path length l. For this reason, when the amount of blown air increases corresponding to the size of the workpiece, the flow rate and flow velocity of the air A flowing through the liquid amount adjusting unit 11 increase, and the vicinity of the cooling water supply unit 18 and the lubricating oil supply unit 19 And the air pressure p2 in the cooling water supply unit 18 and the lubricating oil supply unit 19 further decreases. Accordingly, the differential pressure between the atmospheric pressure p2 and the atmospheric pressure p1 applied to the cooling water pressure tank 5 and the lubricating oil pressure tank 6 with a constant magnitude increases, and a large amount of coating liquid becomes the cooling water pressure tank 5 and the lubricating oil. It is fed from the pressure tank 6 to the cooling water supply unit 18 and the lubricating oil supply unit 19 and is mixed into the air A in the flow path 15.

その結果、冷却水W及び潤滑油Oは被加工物の大きさに対応する吹出空気量に応じて無段階に任意の量が流路15内に供給される。それとともに、これらの塗布液の塗布量が極く微量であっても、被加工物の大きさに対応して液量調節部11における空気Aは冷却水供給部18及び潤滑油供給部19の近傍に集中し、狭い流路15内を所定の流速で通流するため、所要の差圧が発生し、対応する極く微量の塗布液が確実に安定して冷却水供給部18及び潤滑油供給部19に送り出され、吹き出される空気A中の塗布液のミスト量は常に一定で均一なものとなる。これにより、冷却水W及び潤滑油Oは被加工物に対して常に過不足なく最適量が吹出されるので、被加工物は良好な潤滑状態、冷却状態が得られるとともに、過剰な塗布液のミストが拡散することによる作業環境の悪化も防止される。また、液量調節部11は弁などの部品を全く使用しないから、塗布装置1間の塗布量にはばらつきを生じない。そして、故障のない安定した塗布装置1を提供できる。更に、被加工物の大きさが異なっても、自動的に吹出空気量に合致した塗布液のミスト濃度を得ることができるので、被加工物が異なる度に液量調節バルブを調整し直したり、供給ポンプのピストンの往復回数を調整し直したりする手間は不要となる。   As a result, the cooling water W and the lubricating oil O are supplied in an arbitrary amount into the flow path 15 in a stepless manner according to the amount of blown air corresponding to the size of the workpiece. At the same time, even if the application amount of these application liquids is extremely small, the air A in the liquid amount adjustment unit 11 is supplied to the cooling water supply unit 18 and the lubricating oil supply unit 19 in accordance with the size of the workpiece. Since it concentrates in the vicinity and flows through the narrow flow path 15 at a predetermined flow velocity, a required differential pressure is generated, and the corresponding minute amount of coating liquid is reliably and stably stabilized in the cooling water supply unit 18 and the lubricating oil. The amount of mist of the coating liquid in the air A sent out and blown out to the supply unit 19 is always constant and uniform. As a result, the optimum amount of the cooling water W and the lubricating oil O is always blown out to the workpiece without excess or deficiency, so that the workpiece can have a good lubrication state and cooling state, and an excessive amount of coating liquid can be obtained. The work environment is prevented from deteriorating due to the diffusion of mist. Further, since the liquid amount adjusting unit 11 does not use any parts such as a valve, there is no variation in the application amount between the application devices 1. And the stable coating device 1 without a failure can be provided. Furthermore, even if the size of the workpiece is different, it is possible to automatically obtain the mist concentration of the coating liquid that matches the blown air volume. The trouble of re-adjusting the number of reciprocations of the piston of the supply pump becomes unnecessary.

そして、特に、液量調節部11は、空気Aが通流する偏平帯板状の隙間空間15aからなる流路15で形成され、その流路15は台形状の開口14aを有する凹部14に形成されて流入部16から流出部17に至る流路長lが流路15の幅方向において連続的に拡大しているため、構造が簡易であり、単に鋼材等に台形状の開口14aを有する凹部14を形成するのみで簡単かつ安価に製造できるとともに軽量化できる。また、吹出空気量が増大するに従って液量調節部11内の空気Aは塗布液供給部の近傍から流路15の幅方向に離間する部分にも拡大して流れ、通流断面積が連続的に拡大するから、被加工物の大きさに対応する量の塗布液を自動的にきめ細かく供給できる。更に、簡易な偏平帯板状の隙間空間15aからなる流路15のみで形成されているため、故障がなく安定しており、メンテナンスも不要である。   In particular, the liquid amount adjusting unit 11 is formed by a flow path 15 including a flat strip-shaped gap space 15a through which air A flows, and the flow path 15 is formed in a recess 14 having a trapezoidal opening 14a. Since the flow path length l from the inflow section 16 to the outflow section 17 is continuously enlarged in the width direction of the flow path 15, the structure is simple, and the recess having a trapezoidal opening 14a in a steel material or the like. It is possible to easily and inexpensively manufacture and reduce the weight simply by forming 14. Further, as the amount of blown air increases, the air A in the liquid amount adjusting unit 11 expands from the vicinity of the coating liquid supply unit to the portion separated in the width direction of the flow path 15 and the flow cross-sectional area is continuous. Therefore, the amount of coating liquid corresponding to the size of the workpiece can be automatically and finely supplied. Furthermore, since it is formed only by the flow path 15 composed of a simple flat strip-like gap space 15a, it is stable without a failure and does not require maintenance.

ところで、上記実施形態では、塗布液として、冷却水W及び潤滑油Oを用いているが、そのいずれか一方のみを用いてもよい。なお、冷却水圧力タンク5及び潤滑油圧力タンク6は図1に示す位置に設置しているが、その位置を互いに入れ替えてもよいことは言うまでもない。また、塗布液は、冷却水W、潤滑油Oに限られるものでもない。   By the way, in the said embodiment, although the cooling water W and the lubricating oil O are used as a coating liquid, you may use only any one of them. In addition, although the cooling water pressure tank 5 and the lubricating oil pressure tank 6 are installed in the position shown in FIG. 1, it cannot be overemphasized that the position may mutually be replaced. Further, the coating liquid is not limited to the cooling water W and the lubricating oil O.

更に、上記実施形態の液量調節部11の凹部14の開口14aは、両側に傾斜辺を有する台形状に形成されているが、左右のいずれか片側に傾斜辺を有する台形状に形成してもよい。或いは、左右の傾斜部分は直線状でなく、図4に示すように、傾斜部分のいずれか一方または双方を円弧状等に形成してもよい。この場合は、空気Aは、円弧状等に形成された流入部16を流れて流体の慣性により隙間空間15a内の流線イの部分に流入し易くなる。また、凹部14の開口14aは、これらの台形状に限られるものでもない。   Furthermore, the opening 14a of the concave portion 14 of the liquid amount adjusting unit 11 of the above embodiment is formed in a trapezoidal shape having inclined sides on both sides, but is formed in a trapezoidal shape having an inclined side on either the left or right side. Also good. Alternatively, the left and right inclined portions are not linear, and one or both of the inclined portions may be formed in an arc shape or the like as shown in FIG. In this case, the air A flows through the inflow portion 16 formed in an arc shape or the like, and easily flows into the streamline a portion in the gap space 15a due to the inertia of the fluid. Moreover, the opening 14a of the recessed part 14 is not restricted to these trapezoidal shapes.

そして、上記実施形態の液量調節部11は、空気Aが上方から台形状の傾斜辺に沿って流入部16に流れ、最初に下端から流線イの部分に流入し、この部分を通流した後、流出部17を経て真下に下降するよう形成されているが、これに限られるものではなく、例えば、図5に示すように、エアコンプレッサ21から送出されてきた空気Aが流線イの部分に直ちに流入し、反対側から直線状に流出するようにしてもよい。   In the liquid amount adjusting unit 11 of the above embodiment, the air A flows from above to the inflow portion 16 along the trapezoidal inclined side, and first flows from the lower end to the portion of the streamline A, and flows through this portion. However, the present invention is not limited to this. For example, as shown in FIG. 5, the air A sent from the air compressor 21 is streamlined. It is possible to immediately flow into this part and flow out linearly from the opposite side.

また、この液量調節部11は、台形状に形成され、流路15の幅方向における各流線の流路長lは、塗布液供給部の近傍の流線イの部分を最も短かくし、以下、塗布液供給部から流路15の幅方向に離間するに従って順次連続的に長くしたものに形成しているが、本発明を実施する場合は、これに限定されるものではなく、流線イの部分を最も短かいものとすれば、他の部分の流路長lは必ずしも塗布液供給部から流路15の幅方向に離間するに従って順次連続的に長くしたものとする必要はない。   Further, the liquid amount adjusting unit 11 is formed in a trapezoidal shape, and the flow path length l of each stream line in the width direction of the flow path 15 makes the portion of the stream line A in the vicinity of the coating liquid supply unit the shortest, Hereinafter, it is formed to be successively longer as it is separated from the coating liquid supply section in the width direction of the flow path 15, but is not limited to this when the present invention is implemented. If the part a is the shortest, the flow path length l of the other part does not necessarily have to be successively increased as the distance from the coating liquid supply unit in the width direction of the flow path 15 increases.

更には、上記実施形態の液量調節部11の凹部14は、その底面を一定の深さdの平面に形成しているが、これに限られるものではなく、例えば、底面を流路15の幅方向に傾斜する傾斜面に形成し、流入部16から流出部17に至る流路抵抗が流路15の幅方向において連続的に相違するようにしてもよい。   Furthermore, the recess 14 of the liquid amount adjusting unit 11 of the above embodiment has a bottom surface formed in a plane having a constant depth d, but is not limited thereto. The flow path resistance from the inflow part 16 to the outflow part 17 may be continuously different in the width direction of the flow path 15 by forming on an inclined surface inclined in the width direction.

加えて、上記実施形態の液量調節部11は、第1壁材12側に凹部14を刻設して流路15に形成したものとしているが、これに限られるものではなく、第1壁材12及び第2壁材13の双方に互いに対向する位置に凹部を形成し、第1壁材12及び第2壁材13を組付けて1個の流路15に形成されるものとしてもよい。   In addition, the liquid amount adjusting unit 11 of the above embodiment is formed in the flow path 15 by engraving the concave portion 14 on the first wall material 12 side, but is not limited to this. It is good also as what forms a recessed part in the position which mutually opposes both in the material 12 and the 2nd wall material 13, and assembles the 1st wall material 12 and the 2nd wall material 13, and is formed in the one flow path 15. .

なお、上記実施形態の液量調節部11、冷却水圧力タンク5及び潤滑油圧力タンク6は、塗布装置1の本体内に設けてもよく、本体とは別体としてその外部に設けてもよい。   In addition, the liquid amount adjusting unit 11, the cooling water pressure tank 5, and the lubricating oil pressure tank 6 of the above embodiment may be provided in the main body of the coating apparatus 1, or may be provided outside the main body as a separate body. .

本発明の実施形態の塗布装置の全体を示す構成図である。It is a lineblock diagram showing the whole coating device of an embodiment of the present invention. 図1のA−A切断線による断面図である。It is sectional drawing by the AA cutting line of FIG. 図1の液量調節部内の流路を示す内部構造図であり、(a)は空気量が極く微量の場合、(b)は中程度の量の場合、(c)は多量の場合を示す。Fig. 2 is an internal structural diagram showing the flow path in the liquid volume control unit of Fig. 1, where (a) shows a very small amount of air, (b) shows a medium amount, and (c) shows a case of a large amount. Show. 図1の液量調節部の変形例を示す内部構造図である。It is an internal structure figure which shows the modification of the liquid quantity adjustment | control part of FIG. 図1とは別の液量調節部を示す内部構造図である。It is an internal structure figure which shows the liquid quantity adjustment | control part different from FIG.

符号の説明Explanation of symbols

1 塗布装置
2 空気流路
3 冷却水流路
4 潤滑油流路
5 冷却水圧力タンク
6 潤滑油圧力タンク
11 液量調節部
14 凹部
15 流路
15a 隙間空間
18 冷却水供給部
19 潤滑油供給部
21 エアコンプレッサ
A 空気
W 冷却水
O 潤滑油
l 流路長
イ、ロ、ハ 流線
p1 圧力タンクに加わる気圧
p2 塗布液供給部における気圧
DESCRIPTION OF SYMBOLS 1 Application | coating apparatus 2 Air flow path 3 Cooling water flow path 4 Lubricating oil flow path 5 Cooling water pressure tank 6 Lubricating oil pressure tank 11 Liquid quantity adjustment part 14 Recess 15 Flow path 15a Crevice space 18 Cooling water supply part 19 Lubricating oil supply part 21 Air compressor A Air W Cooling water O Lubricating oil l Flow path length b, b, c Streamline p1 Pressure applied to pressure tank p2 Pressure at coating liquid supply section

Claims (3)

空気供給源から送給された空気を導入して吹出側に導く空気流路と、
塗布液容器に加わる気圧と前記空気流路の途中に設けられた塗布液供給部における気圧との差圧によって、前記塗布液容器内の塗布液を前記塗布液供給部に送り込む塗布液流路と、
前記空気流路の途中に設けられ、前記塗布液容器から前記塗布液供給部に送り込まれて前記空気流路を通流する空気に混入される前記塗布液の混入量を調節する液量調節部と
を備え、
前記液量調節部は、空気が通流する偏平帯板状の隙間空間からなる流路で形成され、その流入部から流出部に至る流路抵抗が前記流路の幅方向において前記塗布液供給部の近傍で最小となるよう形成され、空気は前記流路内において最初に前記塗布液供給部の近傍に流れ、吹出量が増大するに従って前記塗布液供給部から前記流路の幅方向に離間する部分にも拡大して流れるとともに、吹出空気量に対応して前記塗布液供給部の近傍を通流する空気の流速が変化し前記差圧が変化することによって、前記塗布液の空気への混入量を調節することを特徴とする塗布装置。
An air flow path for introducing air fed from an air supply source and leading it to the blowout side;
A coating liquid flow path for feeding the coating liquid in the coating liquid container to the coating liquid supply section by a differential pressure between the atmospheric pressure applied to the coating liquid container and the atmospheric pressure in the coating liquid supply section provided in the middle of the air flow path; ,
A liquid amount adjusting unit that is provided in the middle of the air flow path and adjusts the amount of the coating liquid that is fed from the coating liquid container to the coating liquid supply unit and mixed into the air flowing through the air flow path And
The liquid amount adjusting unit is formed by a flow path composed of a flat strip plate-shaped gap space through which air flows, and a flow resistance from the inflow part to the outflow part is supplied in the width direction of the flow path. In the flow path, the air first flows in the vicinity of the coating liquid supply section, and is separated from the coating liquid supply section in the width direction of the flow path as the blowing amount increases. And the flow rate of the air flowing through the vicinity of the coating liquid supply unit corresponding to the amount of blown air changes and the differential pressure changes, so that the coating liquid flows into the air. A coating apparatus that adjusts the amount of mixing.
前記液量調節部は、極く微量の塗布液を空気に混入可能な隙間空間からなる流路で形成されたことを特徴とする請求項1に記載の塗布装置。   The coating apparatus according to claim 1, wherein the liquid amount adjusting unit is formed by a flow path including a gap space in which a very small amount of coating liquid can be mixed into the air. 前記液量調節部は、その流入部から流出部に至る流路長が塗布液供給部の近傍で最小に形成されたことを特徴とする請求項1または請求項2に記載の塗布装置。   3. The coating apparatus according to claim 1, wherein the liquid amount adjusting unit is formed to have a minimum flow path length from the inflow portion to the outflow portion in the vicinity of the coating liquid supply portion.
JP2007156881A 2007-06-13 2007-06-13 Coating device Active JP5027959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007156881A JP5027959B2 (en) 2007-06-13 2007-06-13 Coating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007156881A JP5027959B2 (en) 2007-06-13 2007-06-13 Coating device

Publications (2)

Publication Number Publication Date
JP2008307460A JP2008307460A (en) 2008-12-25
JP5027959B2 true JP5027959B2 (en) 2012-09-19

Family

ID=40235567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156881A Active JP5027959B2 (en) 2007-06-13 2007-06-13 Coating device

Country Status (1)

Country Link
JP (1) JP5027959B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6068971B2 (en) * 2012-12-20 2017-01-25 株式会社ディスコ Cutting equipment
CN110918290A (en) * 2019-11-30 2020-03-27 江苏旭正信息科技有限公司 Equipment suitable for outside of rubber pipeline sprays paint

Also Published As

Publication number Publication date
JP2008307460A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP5547802B2 (en) nozzle
US10007246B2 (en) Machining tool utilizing a supercritical coolant
US20090320655A1 (en) Machining tool utilizing a supercritical coolant
US6557784B1 (en) Mixer for forming a thin oil film on a surface of a drop of water
US8881871B2 (en) Minimal lubrication device
CN104985477B (en) Oil-water-gas three-phase mixing nozzle and the nozzle system comprising the nozzle
EP2690341A1 (en) Apparatus and method for cooling and lubrication
TW200720528A (en) Microcircuit cooling for blades
CN103522118A (en) Nested type three-phase mixing nozzle of water, oil and gas and nozzle system with same
JP5027959B2 (en) Coating device
TWI523697B (en) Liquid discharge device
ITMI20101517A1 (en) MINIMAL LUBRICATION DEVICE WITH END FLOW REGULATION OF OIL FLOW
US10406574B2 (en) Strip deflector and roll assembly
TW200732067A (en) Metal powder production apparatus
JP4775545B2 (en) Mist generator
JP4641208B2 (en) Water droplet generator with oil film
EP3258159B1 (en) Minimal lubrication device with fine adjustment of the flow of oil
JP5504093B2 (en) Mist generator
US6622942B2 (en) Oil mist discharger
JP2001162198A (en) Nozzle assembly for lubricating trace spray
JP4301776B2 (en) nozzle
CN109174486B (en) Low-temperature processing nozzle
JP3113983B1 (en) Coating device
JP2002253997A (en) Coating apparatus
JP2005224876A (en) Oil mist generator and oil feeder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5027959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250