JP5023959B2 - High pressure discharge lamp and high pressure discharge lamp apparatus - Google Patents

High pressure discharge lamp and high pressure discharge lamp apparatus Download PDF

Info

Publication number
JP5023959B2
JP5023959B2 JP2007273951A JP2007273951A JP5023959B2 JP 5023959 B2 JP5023959 B2 JP 5023959B2 JP 2007273951 A JP2007273951 A JP 2007273951A JP 2007273951 A JP2007273951 A JP 2007273951A JP 5023959 B2 JP5023959 B2 JP 5023959B2
Authority
JP
Japan
Prior art keywords
tube
discharge lamp
pressure discharge
arc tube
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007273951A
Other languages
Japanese (ja)
Other versions
JP2009104839A (en
Inventor
哲哉 鳥飼
和之 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP2007273951A priority Critical patent/JP5023959B2/en
Priority to TW097131001A priority patent/TWI383424B/en
Priority to KR1020080084546A priority patent/KR101172934B1/en
Priority to CN2008101700640A priority patent/CN101419895B/en
Publication of JP2009104839A publication Critical patent/JP2009104839A/en
Application granted granted Critical
Publication of JP5023959B2 publication Critical patent/JP5023959B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2026Gas discharge type light sources, e.g. arcs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0732Main electrodes for high-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/33Special shape of cross-section, e.g. for producing cool spot
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/366Seals for leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/366Seals for leading-in conductors
    • H01J61/368Pinched seals or analogous seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • H01J61/523Heating or cooling particular parts of the lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/54Igniting arrangements, e.g. promoting ionisation for starting
    • H01J61/541Igniting arrangements, e.g. promoting ionisation for starting using a bimetal switch
    • H01J61/544Igniting arrangements, e.g. promoting ionisation for starting using a bimetal switch and an auxiliary electrode outside the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/84Lamps with discharge constricted by high pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/84Lamps with discharge constricted by high pressure
    • H01J61/86Lamps with discharge constricted by high pressure with discharge additionally constricted by close spacing of electrodes, e.g. for optical projection

Description

本発明は、半導体、液晶等の露光装置用光源に用いられる高圧放電ランプおよび高圧放電ランプ装置に関し、特に、発光管の外側に外管を配置した高圧放電ランプおよび、当該高圧放電ランプを冷却ジャケット内に配置した高圧放電ランプ装置に関する。   The present invention relates to a high-pressure discharge lamp and a high-pressure discharge lamp device used as a light source for an exposure apparatus such as a semiconductor or a liquid crystal, and in particular, a high-pressure discharge lamp having an outer tube disposed outside an arc tube and a cooling jacket for the high-pressure discharge lamp The present invention relates to a high-pressure discharge lamp device disposed inside.

現在、例えば接着剤などの樹脂の硬化処理やプリント基板などの露光処理においては、紫外線照射装置が利用されており、紫外線光源としては、例えば高圧放電ランプが用いられている。
図6は、従来における高圧放電ランプ装置の構成の概略を示す説明図である。
特許文献1に記載の発明のように、この高圧放電ランプ装置は、高圧放電ランプ1の発光管2の外側に、内管25と外管26とからなる冷却ジャケット21を配置し、発光管2の冷却を行っている。高圧放電ランプ1の発光管2と冷却ジャケット21の内管との隙間は、平均約1mmとなっている。高圧放電ランプ1は、直管状の石英ガラス製の発光管2の両端に一対の電極を封着し、内部に水銀を封入している。冷却ジャケット21は円筒状の石英ガラス等の透明な材料よりなり、内管25と外管26よりなる二重管構造になっている。また、両端外周に設けられた接続管27a,27bを通して外部から冷却水がジャケット内を循環して、空気層を介して近接する発光管2を冷却すると共に高圧放電ランプ1から放射される熱を吸収する。
Currently, for example, an ultraviolet irradiation device is used in a curing process of a resin such as an adhesive or an exposure process of a printed circuit board, and a high-pressure discharge lamp is used as an ultraviolet light source.
FIG. 6 is an explanatory diagram showing an outline of the configuration of a conventional high-pressure discharge lamp device.
As in the invention described in Patent Document 1, this high-pressure discharge lamp device is provided with a cooling jacket 21 including an inner tube 25 and an outer tube 26 outside the arc tube 2 of the high-pressure discharge lamp 1. The cooling is done. The average gap between the arc tube 2 of the high-pressure discharge lamp 1 and the inner tube of the cooling jacket 21 is about 1 mm. In the high-pressure discharge lamp 1, a pair of electrodes are sealed at both ends of a straight tubular quartz glass-made arc tube 2, and mercury is sealed inside. The cooling jacket 21 is made of a transparent material such as cylindrical quartz glass, and has a double tube structure including an inner tube 25 and an outer tube 26. In addition, cooling water circulates from the outside through the connection pipes 27a and 27b provided on the outer circumferences of both ends to cool the adjacent arc tube 2 through the air layer and to radiate heat radiated from the high-pressure discharge lamp 1. Absorb.

図6に記載の高圧放電ランプ装置では、高圧放電ランプ1の発光管2と冷却ジャケット21の内管25との隙間に存在する空気の単純な熱伝導だけでは発光管2で発生する熱を冷却ジャケット21に伝達することができないので、高圧放電ランプ1の発光管2と冷却ジャケット21の内管25との隙間に冷却風を流して冷却効率を高めている。しかし、放電ランプの発光管2と冷却ジャケット21の内管25との隙間を進む冷却風は、入射側と出射側で温度が不均一になり、それに伴って発光管2の温度も不均一になってしまう。
特開平6−267512号公報
In the high-pressure discharge lamp device shown in FIG. 6, the heat generated in the arc tube 2 is cooled only by simple heat conduction of air existing in the gap between the arc tube 2 of the high-pressure discharge lamp 1 and the inner tube 25 of the cooling jacket 21. Since it cannot be transmitted to the jacket 21, the cooling air is passed through the gap between the arc tube 2 of the high-pressure discharge lamp 1 and the inner tube 25 of the cooling jacket 21 to increase the cooling efficiency. However, the temperature of the cooling air that travels through the gap between the arc tube 2 of the discharge lamp and the inner tube 25 of the cooling jacket 21 becomes uneven on the incident side and the exit side, and accordingly, the temperature of the arc tube 2 also becomes non-uniform. turn into.
JP-A-6-267512

そこで、発光管2と冷却ジャケット21との隙間に冷却風を流すことなく発光管2の冷却を行うために、発光管2と冷却ジャケット21の間隔を小さくすることが提案されている。発光管2と冷却ジャケット21との隙間を平均約50μmとすることで、発光管2の内径3.4mm(発光管2の外径7.4mm)の高圧放電ランプ1において、入力を250W/cmとしても発光管2の内表面温度を800℃程度に冷却することができる。   Therefore, it has been proposed to reduce the distance between the arc tube 2 and the cooling jacket 21 in order to cool the arc tube 2 without flowing cooling air through the gap between the arc tube 2 and the cooling jacket 21. By setting the gap between the arc tube 2 and the cooling jacket 21 to an average of about 50 μm, the input is 250 W / cm in the high-pressure discharge lamp 1 having an inside diameter of 3.4 mm (the outside diameter of the arc tube 2 7.4 mm). The inner surface temperature of the arc tube 2 can be cooled to about 800 ° C.

高圧放電ランプ装置は、半導体等の露光装置用光源として使用される時、処理中以外のワーク入れ替えなどの待機中は、節電のため、図7に示すように、ランプに投入する入力電力を下げて点灯する。待機電力は低ければ低いほど節電効果が大きいことから、待機電力の低電力化が望まれている。
しかしながら、待機モード時の待機電力を下げすぎると、発光管2の内表面温度が低下してしまい、発光管2内の封入された水銀の未蒸発が発生する。水銀の未蒸発が発生すると、待機モードから処理モードへ移行するときの立ち上がり時間が遅くなることや、放電が維持できなくなり立ち切れしてしまうといった問題が生じる。
When the high-pressure discharge lamp device is used as a light source for an exposure apparatus such as a semiconductor, the input power input to the lamp is lowered as shown in FIG. Lights up. Since the power saving effect is greater as the standby power is lower, it is desired to reduce the standby power.
However, if the standby power in the standby mode is lowered too much, the inner surface temperature of the arc tube 2 is lowered, and the mercury enclosed in the arc tube 2 is not evaporated. When the mercury has not evaporated, there are problems that the rise time when shifting from the standby mode to the processing mode is delayed, or that the discharge cannot be maintained and it is cut off.

本発明は、待機モードの待機電力を下げつつ、処理モードにおいて、短時間で立ち上がり、立ち切れしない高出力点灯ができる高圧放電ランプおよび高圧放電ランプ装置を提供することを目的とする。   An object of the present invention is to provide a high-pressure discharge lamp and a high-pressure discharge lamp device capable of high-power lighting that rises in a short period of time and does not stop in the processing mode while reducing standby power in the standby mode.

本願第1の発明は、一対の電極が対向配置され、水銀が封入された発光管と、前記発光管の外側に形成された直管状の外管を備え、前記発光管の両端で前記外管が固定されている高圧放電ランプにおいて、前記発光管の外表面、または、前記外管の内表面に、凸部が形成されていることを特徴とする。
また、本願第2の発明は、本願第1の発明において、前記凸部は、外管の内表面に螺旋状の筋を設けることにより形成されることを特徴とする。
また、本願第3の発明は、本願第1の発明において、前記凸部は、発光管の外表面を、管軸方向に垂直に切断した断面において断面多角形状にすることにより形成されることを特徴とする。
また、本願第4の発明は、本願第1〜3の発明において、前記外管の内径と前記発光管の外径との差は200μm以下であり、前記凸部の高さは200μm以下であることを特徴とする。
また、本願第4の発明は、本願第1〜4の発明のいずれかに記載の高圧放電ランプを、冷却ジャケットの内部に配置し、前記外管の壁面に沿って冷却媒体が流過されることを特徴とする。
A first invention of the present application includes an arc tube in which a pair of electrodes are arranged facing each other and mercury is sealed, and a straight tubular outer tube formed outside the arc tube, and the outer tube is formed at both ends of the arc tube. In the high pressure discharge lamp to which is fixed, a convex portion is formed on the outer surface of the arc tube or the inner surface of the outer tube.
According to a second aspect of the present invention, in the first aspect of the present invention, the convex portion is formed by providing a spiral streak on the inner surface of the outer tube.
In the third invention of the present application, in the first invention of the present application, the convex portion is formed by forming the outer surface of the arc tube into a polygonal cross section in a cross section cut perpendicular to the tube axis direction. Features.
In the fourth invention of the present application, in the first to third inventions of the present application, the difference between the inner diameter of the outer tube and the outer diameter of the arc tube is 200 μm or less, and the height of the convex portion is 200 μm or less. It is characterized by that.
In the fourth aspect of the present invention, the high-pressure discharge lamp according to any one of the first to fourth aspects of the present invention is disposed inside the cooling jacket, and the cooling medium flows along the wall surface of the outer tube. It is characterized by that.

本発明に係る高圧放電ランプおよび高圧放電ランプ装置によれば、外管の内表面、または、発光管の外表面に凸部を形成することによって、放電空間内における最冷点の温度を上げることができるので、待機電力を下げても発光管の内表面温度を高く維持することができ、発光管内の封入された水銀の未蒸発の発生を抑制することができる。したがって、待機モードの待機電力を下げつつ、処理モードにおいて、短時間で立ち上がり、立ち切れしない高出力点灯ができる高圧放電ランプを実現できる。   According to the high-pressure discharge lamp and the high-pressure discharge lamp device according to the present invention, the temperature of the coldest spot in the discharge space is raised by forming a convex portion on the inner surface of the outer tube or the outer surface of the arc tube. Therefore, even when the standby power is lowered, the inner surface temperature of the arc tube can be kept high, and the occurrence of unevaporated mercury enclosed in the arc tube can be suppressed. Therefore, it is possible to realize a high-pressure discharge lamp that can be turned on in a short time in the processing mode and can be turned on at a high output without being cut off while reducing standby power in the standby mode.

本発明の第1の実施形態について説明する。図1は、本発明の高圧放電ランプ装置の構成を示す説明用断面図である。
高圧放電ランプ装置は、冷却ジャケット21の内部に、発光管2の外側に外管3が配置された高圧放電ランプ1を挿通して構成される。冷却ジャケット21は、高圧放電ランプ1から放射される紫外線を透過する材料、例えば石英ガラスにより構成されている。冷却ジャケット21の両端には、冷却媒体を供給する供給流路22と、冷却媒体を排出する排出流路23が形成される。供給流路22および排出流路23は全体が略L字型の管状であり、冷却ジャケット21および高圧放電ランプ1を保持固定している。軸方向内方側の口締め部24aによって、Oリングを介して冷却ジャケット21の外周面が保持固定されている。軸方向外方側の口締め部24bによって、Oリングを介して高圧放電ランプ1の外周面が保持固定されている。
A first embodiment of the present invention will be described. FIG. 1 is a cross-sectional view illustrating the configuration of a high-pressure discharge lamp device according to the present invention.
The high-pressure discharge lamp device is configured by inserting a high-pressure discharge lamp 1 in which an outer tube 3 is disposed outside the arc tube 2 inside a cooling jacket 21. The cooling jacket 21 is made of a material that transmits ultraviolet rays emitted from the high-pressure discharge lamp 1, for example, quartz glass. At both ends of the cooling jacket 21, a supply flow path 22 for supplying a cooling medium and a discharge flow path 23 for discharging the cooling medium are formed. The supply channel 22 and the discharge channel 23 are generally L-shaped tubular, and hold and fix the cooling jacket 21 and the high-pressure discharge lamp 1. The outer peripheral surface of the cooling jacket 21 is held and fixed via the O-ring by the axially inward closing portion 24a. The outer peripheral surface of the high-pressure discharge lamp 1 is held and fixed via an O-ring by the axially outer closing portion 24b.

高圧放電ランプ1の点灯時において、冷却媒体が図示しないポンプによって供給される。高圧放電ランプ1の冷却は、冷却媒体を例えば5L(リットル)/minの流量で循環させることによって達成される。また、冷却媒体には、水、純水、逆浸透膜透過水等が好適である。   When the high-pressure discharge lamp 1 is turned on, the cooling medium is supplied by a pump (not shown). Cooling of the high-pressure discharge lamp 1 is achieved by circulating a cooling medium at a flow rate of, for example, 5 L (liter) / min. As the cooling medium, water, pure water, reverse osmosis membrane permeated water and the like are suitable.

図2は、本発明の高圧放電ランプ1の構成を示す説明用断面図である。
高圧放電ランプ1は、両端が封止された、例えば石英ガラスからなる直管状の発光管2の内部に、各々例えばタングステンからなる一対の棒状の電極4が対向配置されている。各電極4は金属箔5の一端に接続し、金属箔5の他端には外部リード6が接続されている。金属箔5はモリブデンよりなり、発光管2の両端に形成されたロッド状の封止部7に気密に埋設されている。外部リード6は、封止部7の外方においてサポーター9によって被覆され、大径になっている。封止部7は、例えば、発光管2の構成材料であるパイプ体における両端部を溶融状態にして内部を減圧するシュリンクシール法により形成されたものであり、発光管2の中央部(発光領域に相当する部分)より小径とされている。
FIG. 2 is a cross-sectional view illustrating the configuration of the high-pressure discharge lamp 1 of the present invention.
In the high-pressure discharge lamp 1, a pair of rod-shaped electrodes 4 each made of, for example, tungsten are opposed to each other inside a straight tubular arc tube 2 made of, for example, quartz glass and sealed at both ends. Each electrode 4 is connected to one end of a metal foil 5, and an external lead 6 is connected to the other end of the metal foil 5. The metal foil 5 is made of molybdenum and is hermetically embedded in rod-shaped sealing portions 7 formed at both ends of the arc tube 2. The external lead 6 is covered with a supporter 9 outside the sealing portion 7 and has a large diameter. The sealing portion 7 is formed by, for example, a shrink seal method in which both ends of a pipe body, which is a constituent material of the arc tube 2, are melted and the inside is decompressed. The diameter is smaller than the portion corresponding to.

高圧放電ランプ1は、例えば「キャピラリーランプ」と称される高圧水銀ランプとして構成されており、発光管2の内部には、例えば1mg/cc以上の水銀、あるいは水銀と共に鉄、コバルト、ニッケル、鉛、ガリウム、マグネシウム、錫、タリウム、マンガン等の金属ハロゲン化物のうち少なくとも一種類以上が添加、封入されると共にアルゴンガスなどの希ガスが適宜の量で封入されている。そして、例えば波長が200〜450nmの紫外線を含む光を放射する。   The high-pressure discharge lamp 1 is configured as, for example, a high-pressure mercury lamp called “capillary lamp”, and the arc tube 2 has, for example, 1 mg / cc or more of mercury, or mercury, iron, cobalt, nickel, lead. At least one of metal halides such as gallium, magnesium, tin, thallium, and manganese is added and sealed, and a rare gas such as argon gas is sealed in an appropriate amount. For example, light including ultraviolet rays having a wavelength of 200 to 450 nm is emitted.

高圧放電ランプ1の発光管2の外側に、円筒状の石英ガラス等の透明な材料よりなり、内径寸法が管軸方向に対して均一な直管状の外管3が形成される。外管3の外表面に沿って冷却媒体を流過させて、高圧放電ランプ1が冷却される。発光管2の両端近傍から外部リード6を被覆するサポーター9の一部にわたって、外管3との間にベース8が挿入され、ベース8を介して接着剤により発光管2と外管3とが気密に固定されている。発光管2と外管3との間の隙間には、空気層または適宜のガスによるガス層が形成されている。   A straight tubular outer tube 3 made of a transparent material such as cylindrical quartz glass and having a uniform inner diameter in the tube axis direction is formed outside the arc tube 2 of the high-pressure discharge lamp 1. The high pressure discharge lamp 1 is cooled by allowing a cooling medium to flow along the outer surface of the outer tube 3. A base 8 is inserted between the vicinity of both ends of the arc tube 2 and a part of the supporter 9 that covers the external lead 6, and the outer tube 3, and the arc tube 2 and the outer tube 3 are bonded by an adhesive via the base 8. It is airtightly fixed. In the gap between the arc tube 2 and the outer tube 3, an air layer or a gas layer of an appropriate gas is formed.

高圧放電ランプ1の発光管2は、発光領域に相当する中央部より封止部7の方が小径となるように構成されているので、中央部において外管3に近接し、封止部7において外管3と離間している。そのため、高圧放電ランプ1の発光管2の中央部において、冷却媒体により十分に冷却して、過熱による発光管2の破損を防止できる。さらに、高圧放電ランプ1の発光管2の封止部7において、冷却作用が弱められるので、過冷却されることを確実に防止して、水銀の未蒸発に起因する照度低下を防止できる。   Since the arc tube 2 of the high-pressure discharge lamp 1 is configured such that the sealing portion 7 has a smaller diameter than the central portion corresponding to the light emitting region, the sealing portion 7 is close to the outer tube 3 in the central portion. Is separated from the outer tube 3. Therefore, the arc tube 2 of the high-pressure discharge lamp 1 can be sufficiently cooled by the cooling medium at the center of the arc tube 2 to prevent the arc tube 2 from being damaged due to overheating. Furthermore, since the cooling action is weakened in the sealing portion 7 of the arc tube 2 of the high-pressure discharge lamp 1, it is possible to reliably prevent overcooling and to prevent a decrease in illuminance due to non-evaporation of mercury.

上記高圧放電ランプ1の一構成例を示すと、発光管2における中央部の内径がφ3.4mm、発光管2における中央部の外径がφ7.4mm、封止部7の外径がφ6mm、発光管2の全長が150mm、電極4間距離が100mm、放電空間10内に位置される電極4部分の長さが3mm、水銀の封入量が44mg/mmである。外管3の外径がφ9.5mm、外管3の内径がφ7.4mmである。
ランプ点灯時における高圧放電ランプ1の定格電圧が2000V、定格電流が1.25Aであり、入力電力が2500Wである。
A configuration example of the high-pressure discharge lamp 1 is as follows. The inner diameter of the central portion of the arc tube 2 is φ3.4 mm, the outer diameter of the central portion of the arc tube 2 is φ7.4 mm, the outer diameter of the sealing portion 7 is φ6 mm, The total length of the arc tube 2 is 150 mm, the distance between the electrodes 4 is 100 mm, the length of the electrode 4 portion located in the discharge space 10 is 3 mm, and the amount of mercury enclosed is 44 mg / mm 3 . The outer diameter of the outer tube 3 is φ9.5 mm, and the inner diameter of the outer tube 3 is φ7.4 mm.
When the lamp is turned on, the rated voltage of the high-pressure discharge lamp 1 is 2000 V, the rated current is 1.25 A, and the input power is 2500 W.

図3は、本発明の高圧放電ランプ1の中央部を示す拡大断面図である。図3(a)は高圧放電ランプ1を管軸に垂直に切断したときの拡大断面図であり、図3(b)は高圧放電ランプ1を管軸に平行に切断したときの接触部分17の拡大断面図である。
高圧放電ランプ1は、発光管2と外管3の間の隙間14が平均50μm程度と非常に狭いので、発光管2と外管3の軸中心を一致させても、石英ガラスが有する寸法誤差等のため、発光管2と外管3が接触する領域が発生してしまう。図3(a)に示すように、発光管2が外管3の中心より下側に偏って配置され、下側の発光管2と外管3との隙間dが、上側の発光管2と外管3との隙間Dより小さくなっている。下側の発光管2の外表面12は、冷却媒体により冷却されている外管3までの距離が短いので、上側の発光管2の外表面12に比べて冷却効果が高い。したがって、発光管2の外表面12と外管3の内表面13とが接触する接触部分17における発光管2の内表面11が最も冷却効果が高く、放電空間10内における最冷点となる。逆に、発光管2の外表面12と外管3の内表面13との間の隙間Dが最も大きくなる部分における発光管2の内表面11が最も冷却効果が低く、放電空間10内における最温点となる。
FIG. 3 is an enlarged sectional view showing a central portion of the high-pressure discharge lamp 1 of the present invention. 3A is an enlarged cross-sectional view when the high-pressure discharge lamp 1 is cut perpendicularly to the tube axis, and FIG. 3B is a view of the contact portion 17 when the high-pressure discharge lamp 1 is cut parallel to the tube axis. It is an expanded sectional view.
The high-pressure discharge lamp 1 has a very narrow gap 14 between the arc tube 2 and the outer tube 3 on average of about 50 μm. Therefore, even if the axial centers of the arc tube 2 and the outer tube 3 are aligned, the dimensional error of the quartz glass For this reason, an area where the arc tube 2 and the outer tube 3 are in contact with each other is generated. As shown in FIG. 3 (a), the arc tube 2 is disposed below the center of the outer tube 3, and a gap d between the lower arc tube 2 and the outer tube 3 is separated from the upper arc tube 2. It is smaller than the gap D with the outer tube 3. Since the outer surface 12 of the lower arc tube 2 has a short distance to the outer tube 3 cooled by the cooling medium, the cooling effect is higher than the outer surface 12 of the upper arc tube 2. Therefore, the inner surface 11 of the arc tube 2 in the contact portion 17 where the outer surface 12 of the arc tube 2 and the inner surface 13 of the outer tube 3 are in contact has the highest cooling effect and becomes the coldest point in the discharge space 10. On the contrary, the inner surface 11 of the arc tube 2 in the portion where the gap D between the outer surface 12 of the arc tube 2 and the inner surface 13 of the outer tube 3 is the largest has the lowest cooling effect and is the most in the discharge space 10. It becomes a hot spot.

図3(b)に示すように、高圧放電ランプ1の管軸方向に沿って切断した断面において、外管3の内表面13に軸方向に周期的に凸部15が発生するように形成されている。具体的には、円筒状の外管3の内表面13において、凸部15が螺旋状の筋となって形成されている。凸部15の高さhは10〜200μmであり、隣接する凸部15との間隔Pは0.1〜2mmである。外管3の内表面13に凸部15が形成されているので、接触部分17といえども拡大してみると、凸部15においては発光管2の外表面12と外管3の内表面13が接触しているが、凸部15以外の部分では発光管2の外表面12と外管3の内表面13との間に隙間が発生し、空気層16が存在する。発光管2の外表面12と外管3の内表面13との間の隙間dが最も小さくなる接触部分17においても、発光管2の外表面12と外管3の内表面13は密着して面接触しているわけではなく、発光管2の外表面12と外管3の内表面13は凸部15において接触する線接触または点接触となり、接触箇所と空気層16部分が存在する。   As shown in FIG. 3B, in the cross section cut along the tube axis direction of the high-pressure discharge lamp 1, it is formed so that convex portions 15 are periodically generated on the inner surface 13 of the outer tube 3 in the axial direction. ing. Specifically, the convex portion 15 is formed as a spiral streak on the inner surface 13 of the cylindrical outer tube 3. The height h of the convex part 15 is 10-200 micrometers, and the space | interval P with the adjacent convex part 15 is 0.1-2 mm. Since the convex portion 15 is formed on the inner surface 13 of the outer tube 3, even if the contact portion 17 is enlarged, the outer surface 12 of the arc tube 2 and the inner surface 13 of the outer tube 3 in the convex portion 15. However, a gap is generated between the outer surface 12 of the arc tube 2 and the inner surface 13 of the outer tube 3 at a portion other than the convex portion 15, and an air layer 16 exists. Even at the contact portion 17 where the gap d between the outer surface 12 of the arc tube 2 and the inner surface 13 of the outer tube 3 is the smallest, the outer surface 12 of the arc tube 2 and the inner surface 13 of the outer tube 3 are in close contact. Instead of being in surface contact, the outer surface 12 of the arc tube 2 and the inner surface 13 of the outer tube 3 are in line contact or point contact in contact with the convex portion 15, and there are contact portions and air layer 16 portions.

図3(a)に示すように、上側の発光管2の外表面12と外管3の内表面13との間の隙間Dは、発光管2の外表面12と外管3の内表面13との接触部分17に対向するため、最も大きくなる。しかし、接触部分17の発光管2の外表面12と外管3の内表面13との間の間隔が凸部15の高さh程度あるので、隙間14が最も大きくなる部分の発光管2の外表面12と外管3の内表面13との間の隙間Dも、外管3の内径Rと発光管2の外径rとの差から、凸部15の高さhを引いた値((R−r)−h)となる。
このように、発光管2の外表面12と外管3の内表面13との間の隙間dが最も小さくなる接触部分17において、隙間dが凸部15の高さh程度あるので、発光管2の外表面12と外管3の内表面13との間の隙間Dが最も大きくなる部分において、外管3の内表面13に凸部15が形成されていない場合に比べて、隙間Dが凸部15の高さhだけ小さくなる。
As shown in FIG. 3A, the gap D between the outer surface 12 of the upper arc tube 2 and the inner surface 13 of the outer tube 3 is the outer surface 12 of the arc tube 2 and the inner surface 13 of the outer tube 3. Because it is opposed to the contact portion 17 with, it becomes the largest. However, since the distance between the outer surface 12 of the arc tube 2 of the contact portion 17 and the inner surface 13 of the outer tube 3 is about the height h of the convex portion 15, the gap of the arc tube 2 in the portion where the gap 14 is the largest. The gap D between the outer surface 12 and the inner surface 13 of the outer tube 3 is also a value obtained by subtracting the height h of the convex portion 15 from the difference between the inner diameter R of the outer tube 3 and the outer diameter r of the arc tube 2 ( (Rr) -h).
Thus, since the gap d is about the height h of the convex portion 15 at the contact portion 17 where the gap d between the outer surface 12 of the arc tube 2 and the inner surface 13 of the outer tube 3 is the smallest, the arc tube 2, the gap D between the outer surface 12 of the outer tube 3 and the inner surface 13 of the outer tube 3 is larger than that when the convex portion 15 is not formed on the inner surface 13 of the outer tube 3. The height 15 of the convex portion 15 is reduced.

放電空間10内における最冷点となる隙間14が最も小さくなる接触部分17において、発光管2の外表面12と外管3の内表面13は凸部15において接触する線接触または点接触となるので、外管3との間に空気層16が存在し、冷却媒体により冷却されている外管3との距離が大きくなるので、最冷点の温度が上がる。また、凸部15が円筒状の外管3の内表面13において螺旋状の筋となるように形成されているため、外管3の内表面13のどの箇所に接触部分17が形成されても、必ず空気層16が存在し、発光管2の外表面12と外管3の内表面13とが密着することがない。一方、放電空間10内における最温点となる隙間14が最も大きくなる部分Dは、外管3との距離がわずかに小さくなるが、外管3との間に隙間14による空気の層が存在するため、最温点の温度は凸部15の有無に係わらずほとんど変動しない。したがって、外管3の内表面13に凸部15を形成することによって、最冷点と最温点の温度差を小さくすることができる。   In the contact portion 17 in which the gap 14 serving as the coldest point in the discharge space 10 becomes the smallest, the outer surface 12 of the arc tube 2 and the inner surface 13 of the outer tube 3 are in line contact or point contact in contact with the convex portion 15. Therefore, since the air layer 16 exists between the outer tube 3 and the distance from the outer tube 3 cooled by the cooling medium is increased, the temperature at the coldest point is increased. In addition, since the convex portion 15 is formed to be a spiral line on the inner surface 13 of the cylindrical outer tube 3, no matter where the contact portion 17 is formed on the inner surface 13 of the outer tube 3. The air layer 16 always exists, and the outer surface 12 of the arc tube 2 and the inner surface 13 of the outer tube 3 do not adhere to each other. On the other hand, the distance D between the outer tube 3 and the portion D where the gap 14 serving as the warmest point in the discharge space 10 is the largest is slightly reduced, but there is an air layer between the outer tube 3 and the outer tube 3. Therefore, the temperature at the hottest point hardly fluctuates regardless of the presence or absence of the convex portion 15. Therefore, by forming the convex portion 15 on the inner surface 13 of the outer tube 3, the temperature difference between the coldest point and the hottest point can be reduced.

外管3の内表面13に凸部15を形成することによって、放電空間10内における最冷点の温度を上げることができるので、待機電力を下げても発光管2の内表面11の温度を高く維持することができ、発光管2内の封入された水銀の未蒸発の発生を抑制することができる。したがって、待機モードの待機電力を下げつつ、処理モードにおいて、短時間で立ち上がり、立ち切れしない高出力点灯ができる高圧放電ランプ1を実現できる。   By forming the convex portion 15 on the inner surface 13 of the outer tube 3, the temperature of the coldest spot in the discharge space 10 can be raised, so that the temperature of the inner surface 11 of the arc tube 2 can be increased even if the standby power is lowered. It can be kept high, and generation of non-evaporated mercury enclosed in the arc tube 2 can be suppressed. Accordingly, it is possible to realize the high-pressure discharge lamp 1 that can be turned on in a short time in the processing mode and can be turned on at a high output without being cut off while reducing standby power in the standby mode.

図4は、本発明の高圧放電ランプ1を製作する方法を説明するための説明図である。
この高圧放電ランプ1は、次のようにして作製することができる。
まず、金属箔5の両端に、ロッド状の電極4と外部リード6とを電気的に接続し、電極4構造体を2つ作成する。円筒状の石英ガラス管の内部に、適宜の量の水銀等を封入すると共に電極構造体を石英ガラス管の両側から挿入し、シュリンクシール法により石英ガラス管の両端部を封止する。このようにして、内部に封入物および電極4を備える発光管2が作成される。
FIG. 4 is an explanatory diagram for explaining a method of manufacturing the high-pressure discharge lamp 1 of the present invention.
The high pressure discharge lamp 1 can be manufactured as follows.
First, the rod-shaped electrode 4 and the external lead 6 are electrically connected to both ends of the metal foil 5 to create two electrode 4 structures. An appropriate amount of mercury or the like is sealed in a cylindrical quartz glass tube, and electrode structures are inserted from both sides of the quartz glass tube, and both ends of the quartz glass tube are sealed by a shrink seal method. In this way, the arc tube 2 including the enclosure and the electrode 4 is produced.

図4(a)に示すように、発光管2の外表面12に直径80μmのカーボン線30を2mm間隔で螺旋状に巻く。便宜上、図面の上ではカーボン線30を拡大して描画している。一方、発光管2の外径寸法より大きい内径寸法を有する円筒状の石英ガラス管31を用意し、片方のみを封止する。カーボン線30が巻回された発光管2を石英ガラス管31の中に入れ、石英ガラス管31の内部を減圧して回転させる。酸水素バーナーを軸方向にスキャンさせて、石英ガラス管31の外側から加熱して、石英ガラス管31を焼き縮めて外管3が形成される。このとき、外管3は、発光管2との隙間14がカーボン線30よりも狭くなるまで焼き縮める。   As shown in FIG. 4A, a carbon wire 30 having a diameter of 80 μm is spirally wound around the outer surface 12 of the arc tube 2 at intervals of 2 mm. For convenience, the carbon line 30 is enlarged and drawn on the drawing. On the other hand, a cylindrical quartz glass tube 31 having an inner diameter larger than the outer diameter of the arc tube 2 is prepared, and only one of them is sealed. The arc tube 2 around which the carbon wire 30 is wound is put in a quartz glass tube 31, and the inside of the quartz glass tube 31 is depressurized and rotated. The outer tube 3 is formed by scanning the oxyhydrogen burner in the axial direction and heating from the outside of the quartz glass tube 31 to shrink the quartz glass tube 31. At this time, the outer tube 3 is shrunk until the gap 14 with the arc tube 2 becomes narrower than the carbon wire 30.

図4(b)に示すように、外管3が十分に焼き縮められたら、外管3の両端を切断して、両端開口の円筒管形状にする。そして、高圧放電ランプ1を大気圧雰囲気で1000℃の電気炉中で3時間加熱する。この加熱により、カーボン線30が焼き飛ばされる。外管3と発光管2との隙間14に存在したカーボン線30がなくなり、外管3の内表面13に螺旋状の筋が設けられることよりなる凸部15が形成される。図示のように高圧放電ランプ1の管軸に沿って切断した断面において、外管3の内表面13に凸部15が管軸方向に周期的に複数形成される。螺旋状の筋よりなる凸部15は、このようにカーボン線30を巻きつけて加工することによって容易に形成することができる。また、上述のように石英ガラス管31を焼き縮めて外管3を形成すると、カーボン線30がスペーサーの役割もするので、外管3と発光管2の間隔をほぼ一定のパターンで制御できる。そのため、発光管2と外管3が密着する領域が発生せず、冷却の偏りなどが解消され、高圧放電ランプ1のばらつきも抑えることができる。   As shown in FIG. 4B, when the outer tube 3 is sufficiently baked, both ends of the outer tube 3 are cut into a cylindrical tube shape with both ends opened. Then, the high-pressure discharge lamp 1 is heated in an electric furnace at 1000 ° C. in an atmospheric pressure atmosphere for 3 hours. The carbon wire 30 is burned off by this heating. The carbon wire 30 present in the gap 14 between the outer tube 3 and the arc tube 2 is eliminated, and a convex portion 15 is formed by providing a spiral line on the inner surface 13 of the outer tube 3. In the cross section cut along the tube axis of the high-pressure discharge lamp 1 as shown, a plurality of convex portions 15 are periodically formed on the inner surface 13 of the outer tube 3 in the tube axis direction. The convex portion 15 formed of a spiral line can be easily formed by winding and processing the carbon wire 30 in this way. Further, when the outer tube 3 is formed by shrinking the quartz glass tube 31 as described above, since the carbon wire 30 also serves as a spacer, the distance between the outer tube 3 and the arc tube 2 can be controlled in a substantially constant pattern. For this reason, a region where the arc tube 2 and the outer tube 3 are in close contact with each other does not occur, the uneven cooling is eliminated, and variations in the high pressure discharge lamp 1 can be suppressed.

続いて、本発明の第2の実施形態について説明する。図5は、本発明の高圧放電ランプ1の中央部において、高圧放電ランプ1を管軸に垂直に切断したときの発光管2の外表面12と外管3の外表面12との接触部分17を示す一部拡大断面図である。
第2の実施形態の高圧放電ランプ1は、外管3の内表面13が滑らかな面となっていて、発光管2の外表面12が断面多角形状となっていることを除いて、第1の実施形態の高圧放電ランプ1と同様の構成を有するものである。第2の実施形態について、第1実施形態の高圧放電ランプ1と同一の構成部材の説明は省略する。
Subsequently, a second embodiment of the present invention will be described. FIG. 5 shows a contact portion 17 between the outer surface 12 of the arc tube 2 and the outer surface 12 of the outer tube 3 when the high-pressure discharge lamp 1 is cut perpendicularly to the tube axis in the central portion of the high-pressure discharge lamp 1 of the present invention. FIG.
The high-pressure discharge lamp 1 of the second embodiment is the first except that the inner surface 13 of the outer tube 3 is a smooth surface and the outer surface 12 of the arc tube 2 has a polygonal cross section. It has the same configuration as the high-pressure discharge lamp 1 of the embodiment. About 2nd Embodiment, description of the same structural member as the high pressure discharge lamp 1 of 1st Embodiment is abbreviate | omitted.

図5に示すように、発光管2の外表面12が、高圧放電ランプ1の管軸方向に垂直に切断した断面において、発光管2の外周が断面多角形状に形成され、その頂部が凸部18となるように形成されている。具体的には、円筒状の発光管2の外表面12が、軸方向に長い断面多角形状となるように形成されている。10〜60個の角を有する多角形であり、凸部18の高さhは10〜200μmであり、隣接する凸部18の間隔Pは0.5〜2mmである。凸部18となっている部分が発光管2の厚さが最大となっており、発光管2の外表面12と外管3の内表面13とが接触している。凸部16以外の部分では発光管2の厚さが薄くなっており、発光管2の外表面12と外管3の内表面13との間に空気層16が形成される。   As shown in FIG. 5, the outer surface 12 of the arc tube 2 is cut in a cross section perpendicular to the tube axis direction of the high-pressure discharge lamp 1. 18 is formed. Specifically, the outer surface 12 of the cylindrical arc tube 2 is formed to have a polygonal cross section that is long in the axial direction. It is a polygon having 10 to 60 corners, the height h of the convex portion 18 is 10 to 200 μm, and the interval P between the adjacent convex portions 18 is 0.5 to 2 mm. The thickness of the arc tube 2 is maximized at the portion that is the convex portion 18, and the outer surface 12 of the arc tube 2 and the inner surface 13 of the outer tube 3 are in contact. The thickness of the arc tube 2 is thin at portions other than the convex portion 16, and an air layer 16 is formed between the outer surface 12 of the arc tube 2 and the inner surface 13 of the outer tube 3.

発光管2の外表面12と外管3の内表面13とが接触する凸部18は、冷却媒体により冷却されている外管3までの距離が短く、発光管2が外管3によって直接冷却される。凸部18における発光管2の内表面11は、冷却効果が最も高い。一方、凸部18の隣接部分20は、発光管2の外表面12と外管3の内表面13との間に空気層16が形成され、冷却媒体により冷却されている外管3までの距離が遠くなる。発光管2は空気層16によって間接冷却されることになるので、発光管2の内表面11の冷却効果が弱まる。そのため、隣接部分20における発光管2の内表面11の温度は、凸部18の内表面13ほど下がらない。
また、凸部18が発光管2の外周を断面多角形状にすることによって形成されているため、外管3の内表面13のどの箇所に接触部分17が存在しても、必ず空気層16が存在し、発光管2の外表面12と外管3の内表面13とが密着することがない。
The convex portion 18 where the outer surface 12 of the arc tube 2 and the inner surface 13 of the outer tube 3 are in contact has a short distance to the outer tube 3 cooled by the cooling medium, and the arc tube 2 is directly cooled by the outer tube 3. Is done. The inner surface 11 of the arc tube 2 in the convex portion 18 has the highest cooling effect. On the other hand, the adjacent portion 20 of the convex portion 18 is a distance to the outer tube 3 where the air layer 16 is formed between the outer surface 12 of the arc tube 2 and the inner surface 13 of the outer tube 3 and is cooled by the cooling medium. Will be far away. Since the arc tube 2 is indirectly cooled by the air layer 16, the cooling effect of the inner surface 11 of the arc tube 2 is weakened. Therefore, the temperature of the inner surface 11 of the arc tube 2 in the adjacent portion 20 is not lowered as much as the inner surface 13 of the convex portion 18.
Further, since the convex portion 18 is formed by making the outer periphery of the arc tube 2 have a polygonal cross section, the air layer 16 is always formed regardless of the location of the contact portion 17 on the inner surface 13 of the outer tube 3. It exists and the outer surface 12 of the arc tube 2 and the inner surface 13 of the outer tube 3 do not adhere to each other.

接触部分17においても、発光管2の外表面12と外管3の内表面13は密着して面接触しているわけではなく、発光管2の外表面12と外管3の内表面13は凸部18において接触する線接触または点接触となり、接触箇所と空気層16部分が存在する。空気層16を有する隣接部分20における発光管2の内表面11の温度は、凸部18における発光管2の内表面11の温度より高くなるので、凸部18における発光管2の内表面11を温めて、接触部分17の全体としての発光管2の内表面11の温度を高くすることができる。したがって、放電空間10内における最冷点となる接触部分17における発光管2の内表面11の温度を、発光管2の外表面12に凸部18を形成しない場合に比べて、上げることができる。
発光管2の外表面12に凸部18を形成することによって、放電空間10内における最冷点の温度を上げることができるので、待機電力を下げても発光管2の内表面11の温度を高く維持することができ、発光管2内の封入された水銀の未蒸発の発生を抑制することができる。したがって、待機モードの待機電力を下げつつ、処理モードにおいて、短時間で立ち上がり、立ち切れしない高出力点灯ができる高圧放電ランプ1を実現できる。
Also in the contact portion 17, the outer surface 12 of the arc tube 2 and the inner surface 13 of the outer tube 3 are not in close contact with each other, but the outer surface 12 of the arc tube 2 and the inner surface 13 of the outer tube 3 are not in contact with each other. Line contact or point contact is made at the convex portion 18, and a contact location and an air layer 16 portion exist. Since the temperature of the inner surface 11 of the arc tube 2 in the adjacent portion 20 having the air layer 16 is higher than the temperature of the inner surface 11 of the arc tube 2 in the convex portion 18, the temperature of the inner surface 11 of the arc tube 2 in the convex portion 18 is increased. The temperature of the inner surface 11 of the arc tube 2 as the entire contact portion 17 can be increased by heating. Therefore, the temperature of the inner surface 11 of the arc tube 2 at the contact portion 17 that is the coldest point in the discharge space 10 can be increased as compared with the case where the convex portion 18 is not formed on the outer surface 12 of the arc tube 2. .
By forming the convex portion 18 on the outer surface 12 of the arc tube 2, the temperature of the coldest spot in the discharge space 10 can be raised, so that the temperature of the inner surface 11 of the arc tube 2 can be increased even if the standby power is lowered. It can be kept high, and generation of non-evaporated mercury enclosed in the arc tube 2 can be suppressed. Accordingly, it is possible to realize the high-pressure discharge lamp 1 that can be turned on in a short time in the processing mode and can be turned on at a high output without being cut off while reducing standby power in the standby mode.

続いて、実施例について説明する。
<実施例1>
第1の実施形態に示す高圧放電ランプを用いた高圧放電ランプ装置を作成し、実験対象とした。実験対象として用いた高圧放電ランプの仕様を以下に示す。
発光管:石英ガラス製、中央部の内径φ8mm、中央部の外径φ12mm、封止部の外径:φ6mm、発光長100mm
外管:石英ガラス製、内径φ12.1mm、外径φ14.1mm
凸部:高さ50μm、管軸方向の間隔2mm
電極:タングステン製、電極間距離100mm、放電空間10内に位置される電極部分の長さ3mm
封入物:水銀7.5mg/cc、アルゴンガス100Torr
なお、凸部は発光管の外表面に直径80μmのカーボン線を2mm間隔でコイル状に巻いて、上述した方法により形成した。
処理モードで30秒間点灯し、続いて待機モードで30秒間点灯し、処理モードと待機モードとが交互になるように点灯した。処理モード時において、高圧放電ランプの入力電力が3000W(300W/cm)となるように点灯した。待機モード時において、高圧放電ランプの入力電力が2000W(200W/cm)となるように点灯した。
冷却ジャケットには、冷却媒体として、水を5L/minの流量で循環させた。
また、比較対象として、外管の内表面に凸部が形成されていないことを除いて、実験対象と同様の仕様の高圧放電ランプ1を作成した。
Next, examples will be described.
<Example 1>
A high-pressure discharge lamp apparatus using the high-pressure discharge lamp shown in the first embodiment was created and used as an experiment target. The specifications of the high-pressure discharge lamp used for the experiment are shown below.
Arc tube: made of quartz glass, central part inner diameter φ8 mm, central part outer diameter φ12 mm, sealing part outer diameter: φ6 mm, light emission length 100 mm
Outer tube: Quartz glass, inner diameter φ12.1 mm, outer diameter φ14.1 mm
Convex part: height 50 μm, interval in tube axis direction 2 mm
Electrode: made of tungsten, distance between electrodes: 100 mm, length of electrode part located in discharge space 10: 3 mm
Inclusion material: Mercury 7.5 mg / cc, Argon gas 100 Torr
In addition, the convex part was formed by winding the carbon wire with a diameter of 80 μm on the outer surface of the arc tube in a coil shape at intervals of 2 mm.
It was lit for 30 seconds in the processing mode, then lit for 30 seconds in the standby mode, and lit so that the processing mode and the standby mode were alternated. During the processing mode, the high-pressure discharge lamp was turned on so that the input power was 3000 W (300 W / cm). In the standby mode, the high pressure discharge lamp was lit so that the input power was 2000 W (200 W / cm).
In the cooling jacket, water was circulated as a cooling medium at a flow rate of 5 L / min.
In addition, as a comparison object, a high-pressure discharge lamp 1 having the same specifications as that of the experiment object was prepared, except that no convex portion was formed on the inner surface of the outer tube.

外管の内表面に凸部が形成された実験対象の高圧放電ランプは、発光管の内表面における温度が、処理モードでは、接触部分で700℃となり、隙間の最大部分で1000℃となった。また、待機モードでは、接触部分で540℃となり、隙間の最大部分で800℃となった。
外管の内表面に凸部が形成されていない比較対象の高圧放電ランプは、発光管の内表面における温度が、処理モードでは、接触部分で550℃となり、隙間の最大部分で1000℃となった。また、待機モードでは、接触部分で430℃となり、隙間の最大部分で800℃となった。
外管の内表面に凸部が形成された実験対象の高圧放電ランプは、最冷点となる接触部分の温度が、比較対象の高圧放電ランプに比べて、処理モードでは150℃高く、待機モードでは110℃高くなった。
In the high pressure discharge lamp to be tested in which the convex portion was formed on the inner surface of the outer tube, the temperature on the inner surface of the arc tube became 700 ° C. at the contact portion and 1000 ° C. at the maximum portion of the gap in the processing mode. . In the standby mode, the temperature was 540 ° C. at the contact portion and 800 ° C. at the maximum portion of the gap.
In the comparative high-pressure discharge lamp in which no convex portion is formed on the inner surface of the outer tube, the temperature on the inner surface of the arc tube is 550 ° C. at the contact portion and 1000 ° C. at the maximum portion of the gap in the processing mode. It was. In the standby mode, the temperature was 430 ° C. at the contact portion and 800 ° C. at the maximum portion of the gap.
In the high pressure discharge lamp of the experiment subject with the convex portion formed on the inner surface of the outer tube, the temperature of the contact portion serving as the coldest point is 150 ° C. higher in the processing mode than the high pressure discharge lamp of the comparison subject, and the standby mode Then, it became 110 degreeC high.

放電空間内の温度が400℃以下になると、封入されている水銀の未蒸発が発生して、待機モードから処理モードへ移行するときの立上り時間の遅延や、放電を維持できなくなる立ち切れが発生する。本実験結果より、外管の内表面に凸部が形成された実験対象の高圧放電ランプは、高圧放電ランプの点灯中に放電容器内の温度が最も低くなる待機モード時における接触部分の温度が540℃であり、最冷点温度が400℃より140℃高くなることがわかった。これより、外管の内表面に凸部が形成された実験対象の高圧放電ランプは、待機モードの入力電力を200W/cmより小さくして、待機モード時における接触部分の温度がさらに低下するような条件で点灯しても、水銀の未蒸発分が発生しないことが予測された。   When the temperature in the discharge space falls below 400 ° C, the enclosed mercury will not evaporate, causing a delay in the rise time when shifting from the standby mode to the processing mode, and a break that prevents the discharge from being maintained. To do. From the results of this experiment, the high pressure discharge lamp to be tested in which the convex portion is formed on the inner surface of the outer tube has the temperature of the contact portion in the standby mode in which the temperature in the discharge vessel is the lowest during the lighting of the high pressure discharge lamp. It was 540 ° C., and the coldest spot temperature was found to be 140 ° C. higher than 400 ° C. As a result, in the high pressure discharge lamp to be tested in which the convex portion is formed on the inner surface of the outer tube, the input power in the standby mode is made smaller than 200 W / cm so that the temperature of the contact portion in the standby mode further decreases. It was predicted that mercury would not be evaporated even when the lamp was lit under various conditions.

<実験例2>
実験例1の実験結果からの予測から、外管の内表面に凸部が形成された実験対象の高圧放電ランプ装置を、待機モードの入力電力を小さくして点灯することにした。実験対象として用いた高圧放電ランプの仕様は、実験例1と同様とした。また、高圧放電ランプ装置の冷却条件も、実験例1と同様とした。なお、高圧放電ランプの点灯条件は、次のようにした。
処理モードで30秒間点灯し、続いて待機モードで30秒間点灯し、処理モードと待機モードとが交互になるように点灯した。処理モード時において、高圧放電ランプの入力電力が3000W(300W/cm)となるように点灯した。待機モード時において、高圧放電ランプの入力電力が1500W(150W/cm)となるように点灯した。
すなわち、待機モードの入力電力を下げたことを除いて、高圧放電ランプの点灯条件も、実験例1と同様とした。
<Experimental example 2>
From the prediction based on the experimental result of Experimental Example 1, the high pressure discharge lamp device to be tested in which the convex portion was formed on the inner surface of the outer tube was turned on with the input power in the standby mode being reduced. The specifications of the high-pressure discharge lamp used as an experiment target were the same as those in Experimental Example 1. The cooling conditions of the high-pressure discharge lamp device were also the same as in Experimental Example 1. The lighting conditions for the high pressure discharge lamp were as follows.
It was lit for 30 seconds in the processing mode, then lit for 30 seconds in the standby mode, and lit so that the processing mode and the standby mode were alternated. During the processing mode, the high-pressure discharge lamp was turned on so that the input power was 3000 W (300 W / cm). In the standby mode, the high pressure discharge lamp was lit so that the input power was 1500 W (150 W / cm).
That is, the lighting conditions of the high-pressure discharge lamp were the same as in Experimental Example 1 except that the input power in the standby mode was lowered.

外管の内表面に凸部が形成された実験対象の高圧放電ランプは、待機モードの入力電力を150W/cmとしても、水銀の未蒸発分が発生しなかった。水銀の未蒸発分が発生しないので、待機モードから処理モードへの移行も、立上り時間が短いまま維持できた。また、処理モードにおいては、待機モードの入力電力値にかかわらず、高い入力電力で高出力点灯ができた。
したがって、待機モードの待機電力を下げても、水銀の未蒸発分が発生しないので、待機モードから処理モードへ短時間で立ち上がり、処理モードにおいて立ち切れしない高出力点灯ができる高圧放電ランプを実現できることが確かめられた。
The high pressure discharge lamp of the test object in which the convex portion was formed on the inner surface of the outer tube did not generate mercury unevaporated even when the standby mode input power was 150 W / cm. Since no non-evaporated mercury was generated, the transition from the standby mode to the processing mode could be maintained with a short rise time. In the processing mode, high output lighting was possible with high input power regardless of the input power value in the standby mode.
Therefore, even if the standby power in the standby mode is lowered, no unevaporated mercury is generated, so that it is possible to realize a high-pressure discharge lamp that can rise from the standby mode to the processing mode in a short time and can be lit at high power without being interrupted in the processing mode. Was confirmed.

実験例1の結果によれば、外管の内表面に凸部が形成されていない高圧放電ランプでは、入力電力を200W/cmとすると、放電空間内の最冷点となる接触部分の発光管の内表面温度が430℃となる。入力電力値をこれ以上小さくすると、放電空間内の最冷点温度が下がって水銀の未蒸発が発生してしまう。すなわち、外管の内表面に凸部が形成されていない高圧放電ランプでは、待機モードにおける入力電力の最低値が200W/cmであった。
一方、実験例2の結果により、外管の内表面に凸部が形成された実験対象の高圧放電ランプは、待機モードの入力電力を150W/cmとできることが確かめられた。これより、凸部が形成されていない従来技術に係る高圧放電ランプに比べて、待機モードの入力電力を75%に低減できることがわかった。
According to the result of Experimental Example 1, in the high pressure discharge lamp in which the convex portion is not formed on the inner surface of the outer tube, when the input power is 200 W / cm, the arc tube at the contact portion that becomes the coldest point in the discharge space The inner surface temperature becomes 430 ° C. If the input power value is further reduced, the coldest spot temperature in the discharge space is lowered, and mercury is not evaporated. That is, in the high pressure discharge lamp in which the convex portion is not formed on the inner surface of the outer tube, the minimum value of the input power in the standby mode was 200 W / cm.
On the other hand, from the results of Experimental Example 2, it was confirmed that the high-pressure discharge lamp to be tested in which the convex portion was formed on the inner surface of the outer tube could have the standby mode input power of 150 W / cm. From this, it was found that the input power in the standby mode can be reduced to 75% as compared with the high-pressure discharge lamp according to the prior art in which no convex portion is formed.

本発明の高圧放電ランプ装置の構成を示す説明用断面図Sectional drawing for description which shows the structure of the high pressure discharge lamp apparatus of this invention 本発明の高圧放電ランプの構成を示す説明用断面図Sectional drawing for description which shows the structure of the high pressure discharge lamp of this invention 本発明の高圧放電ランプの中央部を示す拡大断面図The expanded sectional view which shows the center part of the high-pressure discharge lamp of this invention 本発明の高圧放電ランプを製作する方法を説明するための説明図Explanatory drawing for demonstrating the method to manufacture the high pressure discharge lamp of this invention 本発明の高圧放電ランプの中央部を示す拡大断面図The expanded sectional view which shows the center part of the high-pressure discharge lamp of this invention 従来における高圧放電ランプ装置の構成の概略を示す説明図Explanatory drawing which shows the outline of a structure of the conventional high pressure discharge lamp apparatus. 高圧放電ランプ使用時の入力電力を示す説明図Explanatory diagram showing input power when using a high-pressure discharge lamp

符号の説明Explanation of symbols

1 高圧放電ランプ
2 発光管
3 外管
4 電極
14 隙間
15 凸部
16 空気層
17 接触部分
21 冷却ジャケット
DESCRIPTION OF SYMBOLS 1 High pressure discharge lamp 2 Arc tube 3 Outer tube 4 Electrode 14 Crevice 15 Protrusion 16 Air layer 17 Contact part 21 Cooling jacket

Claims (5)

一対の電極が対向配置され、水銀が封入された発光管と、前記発光管の外側に形成された直管状の外管を備え、前記発光管の両端で前記外管が気密に固定されている高圧放電ランプにおいて、
前記発光管の外表面、または、前記外管の内表面に、凸部が軸方向に一体形成され、発光管の外表面と外管の内表面が当該凸部において接触していることを特徴とする高圧放電ランプ。
A light emitting tube in which a pair of electrodes are arranged to oppose each other and mercury is sealed, and a straight tubular outer tube formed outside the light emitting tube, and the outer tube is airtightly fixed at both ends of the light emitting tube. In high pressure discharge lamps,
A convex portion is integrally formed on the outer surface of the arc tube or the inner surface of the outer tube in the axial direction, and the outer surface of the arc tube and the inner surface of the outer tube are in contact with each other at the convex portion. High pressure discharge lamp.
前記凸部は、外管の内表面に螺旋状の筋を設けることにより形成されることを特徴とする請求項1に記載の高圧放電ランプ。 The high-pressure discharge lamp according to claim 1, wherein the convex portion is formed by providing a spiral streak on the inner surface of the outer tube. 前記凸部は、発光管の外表面を、管軸方向に垂直に切断した断面において断面多角形状にすることにより形成されることを特徴とする請求項1に記載の高圧放電ランプ。 The high-pressure discharge lamp according to claim 1, wherein the convex portion is formed by forming the outer surface of the arc tube into a polygonal cross section in a cross section cut perpendicularly to the tube axis direction. 前記外管の内径と前記発光管の外径との差は200μm以下であり、前記凸部の高さは200μm以下であることを特徴とする請求項1乃至3に記載の高圧放電ランプ。 4. The high-pressure discharge lamp according to claim 1, wherein a difference between an inner diameter of the outer tube and an outer diameter of the arc tube is 200 μm or less, and a height of the convex portion is 200 μm or less. 請求項1〜請求項4のいずれかに記載の高圧放電ランプを、冷却ジャケットの内部に配置し、前記外管の壁面に沿って冷却媒体が流過されることを特徴とする高圧放電ランプ装置。 5. The high pressure discharge lamp device according to claim 1, wherein the high pressure discharge lamp is disposed inside a cooling jacket, and a cooling medium flows along the wall surface of the outer tube. .
JP2007273951A 2007-10-22 2007-10-22 High pressure discharge lamp and high pressure discharge lamp apparatus Expired - Fee Related JP5023959B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007273951A JP5023959B2 (en) 2007-10-22 2007-10-22 High pressure discharge lamp and high pressure discharge lamp apparatus
TW097131001A TWI383424B (en) 2007-10-22 2008-08-14 High pressure discharge lamp and high pressure discharge lamp device
KR1020080084546A KR101172934B1 (en) 2007-10-22 2008-08-28 High pressure discharge lamp and high pressure discharge lamp device
CN2008101700640A CN101419895B (en) 2007-10-22 2008-10-22 High-pressure discharge lamp and high-pressure discharge lamp device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273951A JP5023959B2 (en) 2007-10-22 2007-10-22 High pressure discharge lamp and high pressure discharge lamp apparatus

Publications (2)

Publication Number Publication Date
JP2009104839A JP2009104839A (en) 2009-05-14
JP5023959B2 true JP5023959B2 (en) 2012-09-12

Family

ID=40630638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273951A Expired - Fee Related JP5023959B2 (en) 2007-10-22 2007-10-22 High pressure discharge lamp and high pressure discharge lamp apparatus

Country Status (4)

Country Link
JP (1) JP5023959B2 (en)
KR (1) KR101172934B1 (en)
CN (1) CN101419895B (en)
TW (1) TWI383424B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283226A (en) * 2008-05-21 2009-12-03 Harison Toshiba Lighting Corp Metal halide lamp
JP2011065761A (en) * 2009-09-15 2011-03-31 Harison Toshiba Lighting Corp Metal halide lamp
JP5056903B2 (en) * 2010-06-03 2012-10-24 ウシオ電機株式会社 Ultra high pressure mercury lamp and method of manufacturing the ultra high pressure mercury lamp
TWI500068B (en) * 2010-10-26 2015-09-11 Ushio Electric Inc Long arc discharge lamp, and light irradiation device
JP5691417B2 (en) * 2010-11-11 2015-04-01 ウシオ電機株式会社 Lamp device
US20140015396A1 (en) * 2011-03-24 2014-01-16 Koninklijke Philips N.V. Gas-discharge lamp
JP5736989B2 (en) * 2011-06-15 2015-06-17 ウシオ電機株式会社 Light source device and lamp lighting method
JP6226178B2 (en) * 2013-09-26 2017-11-08 岩崎電気株式会社 Direct water-cooled UV lamp
CN112117181A (en) * 2020-10-10 2020-12-22 罗璐 Excimer lamp and beauty instrument

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182654A (en) * 1984-02-29 1985-09-18 Toshiba Electric Equip Corp Light illumination device
JPS63162445U (en) * 1987-04-13 1988-10-24
DE4132530A1 (en) * 1991-09-30 1993-04-01 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh HIGH PRESSURE DISCHARGE LAMP WITH LOW POWER
DE69511987T2 (en) * 1994-05-19 2000-03-16 Koninkl Philips Electronics Nv BASED HIGH PRESSURE DISCHARGE LAMP
JPH10275593A (en) * 1996-11-05 1998-10-13 Toshiba Lighting & Technol Corp Multi-tube fluorescent lamp and lighting system
JP2000011953A (en) * 1998-06-25 2000-01-14 Nec Corp Fluorescent lamp formed from multi-tube
JP2000340177A (en) * 1999-05-28 2000-12-08 Sanken Electric Co Ltd Double tube type discharge tube
JP2003297228A (en) * 2002-03-29 2003-10-17 Orc Mfg Co Ltd Short arc type discharge lamp and light source device
US7196473B2 (en) * 2004-05-12 2007-03-27 General Electric Company Dielectric barrier discharge lamp
CN101010542A (en) * 2004-09-02 2007-08-01 皇家飞利浦电子股份有限公司 Lamp assembly comprising a high- pressure gas discharge lamp
TWI261858B (en) * 2005-05-13 2006-09-11 Glory Praise Photronics Corp Cooling device of high intensity gas discharge lamp

Also Published As

Publication number Publication date
CN101419895A (en) 2009-04-29
CN101419895B (en) 2013-03-27
KR20090040835A (en) 2009-04-27
TWI383424B (en) 2013-01-21
TW200919528A (en) 2009-05-01
JP2009104839A (en) 2009-05-14
KR101172934B1 (en) 2012-08-10

Similar Documents

Publication Publication Date Title
JP5023959B2 (en) High pressure discharge lamp and high pressure discharge lamp apparatus
US9318311B2 (en) Plasma cell for laser-sustained plasma light source
CN1747117B (en) Extra-high pressure mercury lamp
KR100528232B1 (en) Short Arc Electric Discharge Lamp
JP4587130B2 (en) High pressure discharge lamp, manufacturing method thereof, and light irradiation device
JP3623137B2 (en) Discharge lamp and light source device
JP2006134710A (en) Metal halide lamp
JP5217021B2 (en) Metal halide lamp
JP2010257875A (en) Discharge lamp
JP2007299563A (en) High power sterilizer lamp
JP2009283226A (en) Metal halide lamp
JP4671036B2 (en) Cold cathode fluorescent discharge tube and surface light source device
JP7290248B2 (en) discharge lamp
JP5240144B2 (en) Super high pressure discharge lamp
JP6263770B2 (en) Short arc type discharge lamp
JP2006236756A (en) Short-arc type discharge lamp
US7170229B2 (en) Short arc type super high pressure discharge lamp
JP2009105062A (en) Short-arc type extra high-pressure mercury lamp
JP6733310B2 (en) Discharge lamp for automobile headlight
JP5691417B2 (en) Lamp device
JP2006179421A (en) Short arc type high-pressure discharge lamp
JP2022114093A (en) Low-voltage ultraviolet lamp unit
JP5811453B2 (en) Long arc type discharge lamp
JP2007258085A (en) Short-arc mercury lamp device
JP2020107467A (en) Barrier discharge lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5023959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees