JP5023737B2 - Organic electroluminescence device - Google Patents

Organic electroluminescence device Download PDF

Info

Publication number
JP5023737B2
JP5023737B2 JP2007048049A JP2007048049A JP5023737B2 JP 5023737 B2 JP5023737 B2 JP 5023737B2 JP 2007048049 A JP2007048049 A JP 2007048049A JP 2007048049 A JP2007048049 A JP 2007048049A JP 5023737 B2 JP5023737 B2 JP 5023737B2
Authority
JP
Japan
Prior art keywords
refractive index
interlayer insulating
thin film
insulating film
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007048049A
Other languages
Japanese (ja)
Other versions
JP2008210717A (en
Inventor
孝夫 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2007048049A priority Critical patent/JP5023737B2/en
Publication of JP2008210717A publication Critical patent/JP2008210717A/en
Application granted granted Critical
Publication of JP5023737B2 publication Critical patent/JP5023737B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、有機エレクトロルミネセンスデバイスに関する。より詳細には、光取り出し効率を向上することができる有機エレクトロルミネセンスデバイスに関する。 The present invention relates to an organic electroluminescent device. In more detail, it is related with the organic electroluminescent device which can improve light extraction efficiency.

TFT(Thin Film Transistor)駆動の有機エレクトロルミネセンスデバイスは一般的に図2(A)で示す構造を有する。陽極(ITO電極)8から注入されたホールと陰極17から注入された電子は発光層16を構成する発光層上で再結合して発光する。しかし、発光層からの光の全部を出射させて取り出せるわけではない。発光層16において発光した光の取り出し効率は非常に低く、20%前後である。 A TFT (Thin Film Transistor) driven organic electroluminescence device generally has a structure shown in FIG. The holes injected from the anode (ITO electrode) 8 and the electrons injected from the cathode 17 recombine on the light emitting layer constituting the light emitting layer 16 to emit light. However, not all of the light from the light emitting layer can be emitted and extracted. The extraction efficiency of light emitted from the light emitting layer 16 is very low, around 20%.

図2(C)より、発光層16から出射した光においては、層間絶縁膜7と支持基板上1との間で損失(光損失)が生じる。この光損失は、導波モードやSPP励起によって生じ、80%程度に達することもある。 As shown in FIG. 2C, in the light emitted from the light emitting layer 16, a loss (light loss) occurs between the interlayer insulating film 7 and the support substrate 1. This optical loss is caused by the waveguide mode or SPP excitation, and may reach about 80%.

導波モードによる光損失は、屈折率の差により生じる。図2(A)を参照して具体的に説明する。図2(A)に示すとおり、支持基板1(屈折率n=1.45)及び層間絶縁膜7(屈折率n=2)を有する有機エレクトロルミネセンスデバイスの例においては、両者の屈折率の差によりトラップされる光束が支配的となる。支持基板1と層間絶縁膜7との屈折率の差により光がトラップされ、導波モードが生じる。このトラップされた光は、端面から出射するか又は次第に支持基板1と層間絶縁膜7とに吸収され光損失となる。発光層からの発光は、発光層の向きがランダムであれば等方的で、発光層内を四方八方に伝播し発光層を狭持する界面に達する。 The optical loss due to the guided mode is caused by the difference in refractive index. A specific description will be given with reference to FIG. As shown in FIG. 2A, in the example of the organic electroluminescence device having the support substrate 1 (refractive index n = 1.45) and the interlayer insulating film 7 (refractive index n = 2), The light beam trapped by the difference becomes dominant. Light is trapped by the difference in refractive index between the support substrate 1 and the interlayer insulating film 7, and a waveguide mode is generated. The trapped light is emitted from the end face or gradually absorbed by the support substrate 1 and the interlayer insulating film 7 to cause light loss. The light emitted from the light emitting layer is isotropic if the direction of the light emitting layer is random, and propagates in all directions in the light emitting layer to reach the interface holding the light emitting layer.

屈折率の大きな媒質から小さな媒質へ進行する光は、ある有限な入射角以上では全反射をする。また、屈折率が小さな媒質から大きな媒質の界面では、透過する成分と反射する成分とに分光する。全反射による損失を除いた光の取り出し効率は、発光層の屈折率nと最外部の空気屈折率n=1とによってのみ決まり、1/2n2程度である。 Light traveling from a medium having a large refractive index to a medium having a small refractive index undergoes total reflection at a certain incident angle or more. In addition, at the interface between a medium having a small refractive index and a medium having a large refractive index, the light is split into a transmitting component and a reflecting component. The light extraction efficiency excluding the loss due to total reflection is determined only by the refractive index n of the light emitting layer and the outermost air refractive index n = 1, and is about 1 / 2n 2 .

導波モード損失の低減については各種提案されている。例えば、発光層内の横方向の導波モードに対しては、光のブラッグ散乱が生じるように発光層を回折格子化する技術が開示されている(非特許文献1及び2)。この技術の問題は、発光の角度依存性や発光スペクトルの変化が生じることである。また、この技術は、実際のデバイス構成に対応させることはできない。支持基板内の導波モードに対しては、回折特性や体積拡散性を有する明るさ向上フィルムの技術が特許文献1に開示されている。これは支持基板に対しては有効であるが、内部の導波モード損失に対しては適用できない。 Various proposals have been made for reducing waveguide mode loss. For example, with respect to the transverse waveguide mode in the light emitting layer, a technique is disclosed in which the light emitting layer is formed into a diffraction grating so that Bragg scattering of light occurs (Non-Patent Documents 1 and 2). The problem with this technique is that the angle dependence of light emission and the emission spectrum change. In addition, this technique cannot be adapted to an actual device configuration. For the waveguide mode in the support substrate, Patent Document 1 discloses a technique for a brightness enhancement film having diffraction characteristics and volume diffusibility. This is effective for the support substrate, but cannot be applied to the internal waveguide mode loss.

層間絶縁膜7内の導波モード損失を低減するために、非特許文献1及び2で記載されたような陽極に格子構造を付与し、陽極上に発光層を堆積することは高分子型発光層においては好ましくない。また、発光層をスリットコート法やインクジェット等の塗布方法によって形成する場合、発光層の気液界面は平らになる。従って、陽極上に凹凸がある場合、水系の正孔輸送材料を陽極に塗工することは発光層の厚さムラに直結し、発光の均一性が得られなくなる。また、陽極に周期的格子を形成すると、後述の式(2)で示すようにスペクトルの角度依存性が生じるので好ましくない。高分子型発光層においては、明るさ向上フィルムを支持基板に貼り付けることが唯一の有効な損失低減策である。 In order to reduce the waveguide mode loss in the interlayer insulating film 7, a lattice structure is imparted to the anode as described in Non-Patent Documents 1 and 2, and a light emitting layer is deposited on the anode. It is not preferred in the layer. Further, when the light emitting layer is formed by a coating method such as slit coating or ink jet, the gas-liquid interface of the light emitting layer becomes flat. Therefore, when there are irregularities on the anode, coating the water-based hole transport material on the anode directly leads to uneven thickness of the light emitting layer, and the uniformity of light emission cannot be obtained. In addition, it is not preferable to form a periodic lattice on the anode because the spectral angle dependence occurs as shown in the following formula (2). For polymer light-emitting layers, the only effective loss reduction measure is to attach a brightness enhancement film to a support substrate.

次に、表面プラズモンポラリトン(SPP:Surface Plasmon Polariton)励起による光の損失について説明する。陰極をなす金属(多くの場合アルミニウム、銀等)に近接して存在する双極子モーメントが金属表面にSPPを励起することによって光の損失が生じる。一般にはかなりの発光エネルギーがSPP励起に費やされてしまい、輻射場と結合する割合が低下している。SPP励起による光の損失分は、金属表面上を伝播して、最終的に熱となって散逸する(特許文献2及び非特許文献2参照)。 Next, the loss of light due to surface plasmon polariton (SPP) excitation will be described. Light loss is caused by the dipole moment existing close to the metal forming the cathode (often aluminum, silver, etc.) exciting the SPP on the metal surface. In general, a considerable amount of luminescence energy is consumed for SPP excitation, and the rate of coupling with the radiation field is reduced. The loss of light due to SPP excitation propagates on the metal surface and eventually becomes heat and is dissipated (see Patent Document 2 and Non-Patent Document 2).

SPP励起による光の損失回復に対しては、陰極の金属に波型の格子構造を導入する技術が開示されている(非特許文献2)。これによれば、フォトレジストに干渉光を照射して、表面に凹凸を形成し、この形成した凹凸構造に後続層を堆積することで、再表層の金属の電極部分に格子構造を再現している。 For light loss recovery by SPP excitation, a technique of introducing a corrugated lattice structure into a cathode metal is disclosed (Non-Patent Document 2). According to this, by irradiating the photoresist with interference light, forming irregularities on the surface, and depositing a subsequent layer on the formed irregular structure, the lattice structure is reproduced on the metal electrode portion of the surface layer again. Yes.

金属表面に生成されるSPPの波数kspは、金属の誘電率εと、表面に接触する誘電体の誘電率εによって決まり、次式(1)で求められる(cは入射光の速さ、ωは角速度)。

Figure 0005023737
The wave number k sp of the SPP generated on the metal surface is determined by the dielectric constant ε m of the metal and the dielectric constant ε d of the dielectric material in contact with the surface, and is obtained by the following equation (1) (c is the speed of incident light) Where ω is the angular velocity).
Figure 0005023737

周期構造がないと、SPPは熱に変化して光の損失となるが、表面に周期Λの格子的変調があると、
ksinθ=ksp+n(2π/Λ) (n=±1、±2、 ) ・・・(2)
を満たす波数kの光がθ方向に再輻射される。あるいは、金属表面の欠陥などによってSPPが散乱され輻射光になることもある。これらは発光効率の大幅な増加につながる可能性がある。しかしながら、非特許文献2に記載されている方法は、アクティブマトリクス方式の発光デバイスには適合しない。
Without a periodic structure, the SPP changes to heat and loses light, but if there is a lattice modulation of period Λ on the surface,
ksin θ = k sp + n (2π / Λ) (n = ± 1, ± 2,) (2)
Light having a wave number k satisfying the above condition is reradiated in the θ direction. Alternatively, the SPP may be scattered and become radiant light due to defects on the metal surface. These can lead to a significant increase in luminous efficiency. However, the method described in Non-Patent Document 2 is not suitable for an active matrix light-emitting device.

このため、アクティブマトリクス方式の発光デバイスに適合させた格子構造が特許文献2に開示されている。これは陽極としての透明電極に格子構造を持たせたもので、基本的には非特許文献1及び2と類似である。しかしながら、高分子型発光層である場合には、SPPの生成効率は低分子型発光層に較べて少ないと考えられる。SPPの励起確率は、発光双極子モーメントの方向が金属に垂直な場合において最大となる。蒸着法で製造する低分子型発光層の場合はこれに当てはまる。一方、高分子型発光層では、双極子モーメントが高分子主鎖に平行である場合が殆どで、高分子鎖は陽極と平行に配向する。従って、双極子モーメントが金属表面に垂直となる確率は低分子型発光層と較べて相当低い。よって、導波モードの光の損失がSPP損失よりも遥かに大きいといえる。 For this reason, Patent Document 2 discloses a lattice structure adapted to an active matrix light emitting device. This is a transparent electrode as an anode having a lattice structure, and is basically similar to Non-Patent Documents 1 and 2. However, in the case of a polymer type light emitting layer, the SPP generation efficiency is considered to be less than that of a low molecular type light emitting layer. The excitation probability of the SPP is maximized when the direction of the light emitting dipole moment is perpendicular to the metal. This is the case in the case of a low molecular type light emitting layer manufactured by vapor deposition. On the other hand, in the polymer light emitting layer, the dipole moment is almost parallel to the polymer main chain, and the polymer chain is oriented parallel to the anode. Therefore, the probability that the dipole moment is perpendicular to the metal surface is considerably lower than that of the low molecular light emitting layer. Therefore, it can be said that the loss of light in the waveguide mode is much larger than the SPP loss.

また、光を効率よく取り出すために、電極に凹凸加工を施すことは行われていた。発光層を形成する方法は、印刷やインクジェット法がある。この方法は、有機発光材料を用いた有機エレクトロルミネセンス素子に適用できるだけでなく、無機発光材料を有機バインダー中に分散し湿式法によって層形成を行うエレクトロルミネセンス素子にも適用できる。エレクトロルミネセンス素子においては、発光層を30〜100nm(好ましくは50〜80nm前後)と電極上に非常に薄く形成する必要がある。このとき、電極に凹凸があると、一定の厚みで発光層を構成することができず、発光ムラやショートの原因となってしまう問題がある。また、支持基板そのものに凹凸を設けるという方法では、ゲート電極がゆがんでしまう問題がある。薄膜トランジスタ基板の構造として、支持基板上に、ゲート電極、層間絶縁膜、ドレイン電極及びソース電極の順で形成されるのが一般的である。一方、ゲート電極の厚みにより層間絶縁膜表面に凹凸ができ、その上に形成されたドレイン電極、ソース電極に断線が起きるという問題もある。 Moreover, in order to take out light efficiently, an uneven | corrugated process was performed to the electrode. As a method for forming the light emitting layer, there are a printing method and an ink jet method. This method can be applied not only to an organic electroluminescent element using an organic light emitting material, but also to an electroluminescent element in which an inorganic light emitting material is dispersed in an organic binder and a layer is formed by a wet method. In an electroluminescent element, it is necessary to form a light emitting layer 30-100 nm (preferably around 50-80 nm) and very thin on an electrode. At this time, if the electrode is uneven, there is a problem that the light emitting layer cannot be formed with a constant thickness, causing light emission unevenness and short circuit. In addition, there is a problem that the gate electrode is distorted by the method of providing the support substrate with unevenness. As a structure of a thin film transistor substrate, a gate electrode, an interlayer insulating film, a drain electrode, and a source electrode are generally formed on a supporting substrate in this order. On the other hand, there is a problem that the surface of the interlayer insulating film is uneven due to the thickness of the gate electrode, and the drain electrode and the source electrode formed thereon are disconnected.

国際公開第02/37568号(発明の名称:Brightness and ContrastEnhancement of direct View Emissive Display, Chou 他、 2001年)WO 02/37568 (Title: Brightness and Contrast Enhancement of direct View Emissive Display, Chou et al., 2001) 特開2004-31350号公報 イーストマンーコダックカンパニー、2004年JP 2004-31350 Publication Eastman Kodak Company, 2004 J.M.Lupton, B.J.Matterson, I.D.W.Samuel,M.J.Jory, and W.L.Barns, Applied Physics Letters, 77巻,3340頁、2000年J.M.Lupton, B.J.Matterson, I.D.W.Samuel, M.J.Jory, and W.L.Barns, Applied Physics Letters, 77, 3340, 2000 A.N.Safonov,M.Jory,B.J.Matterson,J.M.Lupton,M.G.Salt, J.A.E.Wasey, W.L.Barns and I.D.W.Samuel, Synthetic Metals, 116巻,145、2001年A.N.Safonov, M.Jory, B.J.Matterson, J.M.Lupton, M.G.Salt, J.A.E.Wasey, W.L.Barns and I.D.W.Samuel, Synthetic Metals, 116, 145, 2001

本発明は、有機エレクトロルミネセンスデバイスにおいて、支持基板と層間絶縁膜との界面における導波モード損失を低減することを目的とする。 An object of the present invention is to reduce waveguide mode loss in an interface between a support substrate and an interlayer insulating film in an organic electroluminescent device.

本発明の一実施形態によると、支持基板と、前記支持基板上の層間絶縁膜と、前記層間絶縁膜上の陽極と、前記陽極上の発光層と、前記発光層上の陰極と、前記支持基板と前記層間絶縁膜との間に設けられたゲート電極と、前記層間絶縁膜上に配設されたソース電極、半導体膜及びドレイン電極とを有する薄膜トランジスタと、前記支持基板と前記層間絶縁膜との間であり且つ前記薄膜トランジスタの前記ゲート電極の周囲に設けられ、前記支持基板の屈折率と前記層間絶縁膜の屈折率との間の屈折率を有する薄膜を備えたことを特徴とする有機エレクトロルミネセンスデバイスが提供される。 According to an embodiment of the present invention, a support substrate, an interlayer insulating film on the support substrate, an anode on the interlayer insulating film, a light emitting layer on the anode, a cathode on the light emitting layer, and the support A thin film transistor having a gate electrode provided between a substrate and the interlayer insulating film, a source electrode, a semiconductor film and a drain electrode disposed on the interlayer insulating film; the support substrate; and the interlayer insulating film; And a thin film provided around the gate electrode of the thin film transistor and having a refractive index between the refractive index of the support substrate and the refractive index of the interlayer insulating film. A luminescent device is provided.

前記薄膜の屈折率と前記層間絶縁膜の屈折率との差よりも前記薄膜の屈折率と前記支持基板の屈折率との差の方が小さくなるようにしてもよい。 The difference between the refractive index of the thin film and the refractive index of the support substrate may be smaller than the difference between the refractive index of the thin film and the refractive index of the interlayer insulating film.

前記薄膜の屈折率と前記層間絶縁膜の屈折率との差が可視域において0.3以上であり、且つ、前記薄膜の屈折率と前記支持基板の屈折率との差が0.1以下であるようにしてもよい。 The difference between the refractive index of the thin film and the refractive index of the interlayer insulating film is 0.3 or more in the visible region, and the difference between the refractive index of the thin film and the refractive index of the support substrate is 0.1 or less. There may be.

前記薄膜の表面は、周期的又は非周期的な凹凸を有するようにしてもよい。 The surface of the thin film may have periodic or non-periodic irregularities.

前記周期的又は非周期的な凹凸は、サインカーブ形状、ピラミッド形状又は矩形状にしてもよい。 The periodic or non-periodic unevenness may have a sine curve shape, a pyramid shape, or a rectangular shape.

前記薄膜トランジスタ及び前記陽極が行列状に設けられるようにしてもよい。 The thin film transistor and the anode may be provided in a matrix.

前記半導体膜は、酸化物半導体でなること。 The semiconductor film is made of an oxide semiconductor.

本発明によれば、支持基板と層間絶縁膜との間に薄膜を備えたことにより、支持基板と層間絶縁膜との界面にトラップされた光を外部へ取り出すことが可能となる。よって、本発明によれば、有機エレクトロルミネセンスデバイスにおいて、支持基板及び層間絶縁膜における導波モード損失を低減することができる。 According to the present invention, by providing a thin film between the support substrate and the interlayer insulating film, light trapped at the interface between the support substrate and the interlayer insulating film can be extracted to the outside. Therefore, according to the present invention, in the organic electroluminescence device, it is possible to reduce the waveguide mode loss in the support substrate and the interlayer insulating film.

本発明の実施の形態について、図1を用いて説明をする。 An embodiment of the present invention will be described with reference to FIG.

図1(A)は、本実施形態に係る本発明の有機エレクトロルミネセンスデバイスの平面図である。図1(A)に示すとおり、本実施形態に係る本発明の有機エレクトロルミネセンスデバイスは、ボトムゲート型の薄膜トランジスタ14を有している。ボトムゲート型の薄膜トランジスタ14は、支持基板1と層間絶縁膜7との間に配設されたゲート電極2と、層間絶縁膜7上に配設されたソース電極5、半導体膜6及びドレイン電極4を有する。半導体膜6は、チャネル形成領域となる。ドレイン電極4は、発光層16に電流を供給する陽極(ITO(Indium Tin Oxide)電極)8に接続している。また、本実施形態に係る本発明の有機エレクトロルミネセンスデバイスは、ゲート電極2と同じ層に蓄積容量電極を設けることも可能である。 FIG. 1A is a plan view of the organic electroluminescence device of the present invention according to this embodiment. As shown in FIG. 1A, the organic electroluminescent device of the present invention according to this embodiment includes a bottom-gate thin film transistor 14. The bottom gate type thin film transistor 14 includes a gate electrode 2 disposed between the support substrate 1 and the interlayer insulating film 7, a source electrode 5, a semiconductor film 6, and a drain electrode 4 disposed on the interlayer insulating film 7. Have The semiconductor film 6 becomes a channel formation region. The drain electrode 4 is connected to an anode (ITO (Indium Tin Oxide) electrode) 8 that supplies current to the light emitting layer 16. In addition, the organic electroluminescence device of the present invention according to this embodiment can be provided with a storage capacitor electrode in the same layer as the gate electrode 2.

層間絶縁膜7は、発光部分20(正孔輸送層15/発光層16/陰極17/保護膜18)の底部まで延長して堆積されている。 The interlayer insulating film 7 is deposited extending to the bottom of the light emitting portion 20 (hole transport layer 15 / light emitting layer 16 / cathode 17 / protective film 18).

本実施形態においては、支持基板1にはガラス基板を用い、ゲート電極2には100〜250nmのITOを用いる。ソース電極5及びドレイン電極4にはITOを用いる。 In this embodiment, a glass substrate is used for the support substrate 1 and ITO of 100 to 250 nm is used for the gate electrode 2. ITO is used for the source electrode 5 and the drain electrode 4.

本実施形態においては、半導体膜6は酸化物半導体からなる。半導体膜6を構成する酸化物半導体としては、インジウム及びガリウムを含む酸化亜鉛(InGaZnO4)等を用いることができる。チャネルが形成される半導体膜6に酸化物半導体を用いた薄膜トランジスタの製造プロセスにおいては、最高プロセス温度が200℃程度であり、チャネルが形成される半導体膜にアモルファスシリコン又はポリシリコンを用いる製造プロセスに較べて最高プロセス温度が低い。そのため、支持基板1や薄膜12に無機材料のみならず、アクリル系、エポキシ系、ポリイミド系、ポリメチルメタクリレート等の有機物を用いることができる。 In the present embodiment, the semiconductor film 6 is made of an oxide semiconductor. As an oxide semiconductor constituting the semiconductor film 6, zinc oxide containing indium and gallium (InGaZnO 4 ) or the like can be used. In the manufacturing process of a thin film transistor using an oxide semiconductor for the semiconductor film 6 in which the channel is formed, the maximum process temperature is about 200 ° C., and the manufacturing process uses amorphous silicon or polysilicon for the semiconductor film in which the channel is formed. Lower maximum process temperature. Therefore, not only inorganic materials but also organic materials such as acrylic, epoxy, polyimide, and polymethyl methacrylate can be used for the support substrate 1 and the thin film 12.

ゲート電極2と半導体膜6とを隔離する層間絶縁膜7には、窒化シリコン(SiN)、酸化窒化シリコン(SiNO)、酸化シリコン(SiO)、酸化アルミニウム(Al)のいずれかを用いることができる。本実施形態においては、層間絶縁層7の厚さを200〜300nmとする。 The interlayer insulating film 7 that separates the gate electrode 2 and the semiconductor film 6 is made of silicon nitride (SiN), silicon oxynitride (SiNO), silicon oxide (SiO 2 ), or aluminum oxide (Al 2 O 3 ). Can be used. In the present embodiment, the thickness of the interlayer insulating layer 7 is set to 200 to 300 nm.

発光層16をなす有機物の屈折率nは、概ね1.6〜2である。本実施形態においては、発光層16として高分子発光体PPV(poly[p-phenylene vinylene])を用いている。PPVの屈折率nは2である。一方、ゲート電極2及び層間絶縁膜7の屈折率は1.9〜2である。発光層16と層間絶縁膜7との界面における導波モード損失はそれほど大きくは無い。支持基板1(本実施形態においてはガラス基板)の屈折率は約1.45であり、層間絶縁膜7と支持基板1との界面における全反射による光損失が大きいと考えられる。 The refractive index n of the organic material forming the light emitting layer 16 is approximately 1.6 to 2. In the present embodiment, a polymer light emitter PPV (poly [p-phenylene vinylene]) is used as the light emitting layer 16. The refractive index n of PPV is 2. On the other hand, the refractive indexes of the gate electrode 2 and the interlayer insulating film 7 are 1.9-2. The waveguide mode loss at the interface between the light emitting layer 16 and the interlayer insulating film 7 is not so large. The support substrate 1 (glass substrate in the present embodiment) has a refractive index of about 1.45, and it is considered that the optical loss due to total reflection at the interface between the interlayer insulating film 7 and the support substrate 1 is large.

高分子型発光層においては、SPPによる光の損失は少ないので、導波モードによる光の損失低減が最重要である。そのため、本実施形態に係る本発明の有機エレクトロルミネセンスデバイスは、支持基板1と層間絶縁膜7との界面において、ゲート電極2を除いた部分(図1の斜線部)の周囲に薄膜12を備える。この薄膜12の密度は、支持基板1の密度と層間絶縁膜7の密度との間にあるため密度を変調している部分ということができる。この薄膜12の屈折率は、層間絶縁膜7の屈折率とは差があり、且つ、支持基板(本実施形態においてはガラス)の屈折率とは差がないことが望ましい。この屈折率の差が大きい方が光の屈折や光の散乱を増大し、支持基板1と層間絶縁膜7との界面おいて光の損失が減るからである。薄膜12の屈折率と層間絶縁膜7の屈折率の差は0.3以上であることが望ましい。また、支持基板1の屈折率と薄膜12の屈折率との差は、0.1以下程度であることが望ましい。 In the polymer light emitting layer, the loss of light due to the SPP is small, so the reduction of the loss of light due to the waveguide mode is the most important. Therefore, in the organic electroluminescent device of the present invention according to this embodiment, the thin film 12 is provided around the portion (hatched portion in FIG. 1) excluding the gate electrode 2 at the interface between the support substrate 1 and the interlayer insulating film 7. Prepare. Since the density of the thin film 12 is between the density of the support substrate 1 and the density of the interlayer insulating film 7, it can be said that the density is modulated. It is desirable that the refractive index of the thin film 12 is different from the refractive index of the interlayer insulating film 7 and not different from the refractive index of the support substrate (glass in the present embodiment). This is because a larger difference in refractive index increases light refraction and light scattering, and light loss is reduced at the interface between the support substrate 1 and the interlayer insulating film 7. The difference between the refractive index of the thin film 12 and the refractive index of the interlayer insulating film 7 is desirably 0.3 or more. In addition, the difference between the refractive index of the support substrate 1 and the refractive index of the thin film 12 is preferably about 0.1 or less.

ゲート電極2の周囲に薄膜12を備えることで、ゲート電極2が存在することによる層間絶縁膜7の高低差を低減することができる。そのために、ゲート電極の肩の部分におけるゲートリーク電流が低減され、また、ソース電極5及びドレイン電極4の断線を防止することができる。 By providing the thin film 12 around the gate electrode 2, the height difference of the interlayer insulating film 7 due to the presence of the gate electrode 2 can be reduced. Therefore, gate leakage current at the shoulder portion of the gate electrode is reduced, and disconnection of the source electrode 5 and the drain electrode 4 can be prevented.

薄膜12は、所定の屈折率を備える材料であれば絶縁性でも導電性でもよい。導電性の材料である場合は、ゲート電極2から一定の距離だけ離す必要がある。ゲート電極2との隔たりを埋めるという観点からは、絶縁材料の方が好ましい。所定の屈折率を備え、所定の厚みで形成できれば、凹凸を設けてもよいし、屈折率の異なる複数種類の樹脂の混合物、例えば、硬化前の樹脂に、樹脂ビーズを混ぜ合わせた組成物の塗布等による膜を用いてもよい。 The thin film 12 may be insulative or conductive as long as the material has a predetermined refractive index. In the case of a conductive material, it needs to be separated from the gate electrode 2 by a certain distance. From the viewpoint of filling a gap with the gate electrode 2, an insulating material is preferable. As long as it has a predetermined refractive index and can be formed with a predetermined thickness, unevenness may be provided, or a mixture of a plurality of types of resins having different refractive indexes, for example, a composition in which resin beads are mixed with a resin before curing. A film by coating or the like may be used.

薄膜12の構造は非周期的な凹凸でも周期的な凹凸(サインカーブ、ピラミミッド、矩形等)を有していて構わない。周期的変調の周期Λは、波長程度以下(可視波長程度100〜700nm)が好適である。振幅に関しては、概ね波長Λの1/4〜1/10程度が望ましい。この薄膜12の周期的な凹凸の高低差は、発光層16の陽極(ITO電極)8に継承されないようにする必要がある。 The structure of the thin film 12 may have non-periodic unevenness and periodic unevenness (sine curve, pyramid, rectangle, etc.). The period Λ of the periodic modulation is preferably about a wavelength or less (visible wavelength is about 100 to 700 nm). As for the amplitude, about 1/4 to 1/10 of the wavelength Λ is generally desirable. It is necessary to prevent the height difference of the periodic unevenness of the thin film 12 from being inherited by the anode (ITO electrode) 8 of the light emitting layer 16.

非周期的な薄膜12の製法としては、例えば、PMMA、エポキシ樹脂をゲート電極以外に、厚さ70〜100nmで塗布して、RIE(Reactive ion etching)を施すのが容易であった。この方法では、平均粗さ50nm、ピーク間隔が100nm程度の非周期的な凹凸が形成できた。周期的な薄膜12の製法としては、例えば、感光性ポリイミド樹脂を支持基板1上に塗布して、周期的な開口を有するマスクを用いて露光現像すればよい。なお、薄膜12の製法は、ここで説明した例に限定されない。 As a method for producing the non-periodic thin film 12, for example, it was easy to apply RIE (Reactive Ion Etching) by applying PMMA and epoxy resin in a thickness of 70 to 100 nm in addition to the gate electrode. In this method, non-periodic irregularities having an average roughness of 50 nm and a peak interval of about 100 nm could be formed. As a method for producing the periodic thin film 12, for example, a photosensitive polyimide resin may be applied on the support substrate 1 and exposed and developed using a mask having a periodic opening. In addition, the manufacturing method of the thin film 12 is not limited to the example demonstrated here.

水系の正孔輸送層15をスリットコートする場合、発光ムラをなくすためには、陽極(ITO電極)8表面の凹凸高低差を10nm以下にする必要があった。支持基板1上において凹凸形成が容易で且つ屈折率を選択することができる薄膜12の材料は有機材料である。例えば、薄膜12に用いる有機材料としては、PMMA、ポリイミド系、アクリル系、エポキシ系樹脂が挙げられる。可視域での屈折率は、化学構造によって異なるが、PMMAで1.5、アクリル樹脂で1.4〜1.6、ポリイミド系で1.5〜1.75程度であり。本実施形態に係る本発明の有機エレクトロルミネセンスデバイスにおいては、薄膜12は、その屈折率が支持基板1の屈折率に近い材料を選択する。 When the water-based hole transport layer 15 is slit coated, in order to eliminate light emission unevenness, the unevenness height difference on the surface of the anode (ITO electrode) 8 needs to be 10 nm or less. The material of the thin film 12 on which the unevenness can be easily formed on the support substrate 1 and the refractive index can be selected is an organic material. For example, examples of the organic material used for the thin film 12 include PMMA, polyimide-based, acrylic-based, and epoxy-based resins. The refractive index in the visible region varies depending on the chemical structure, but is about 1.5 for PMMA, 1.4 to 1.6 for acrylic resin, and about 1.5 to 1.75 for polyimide. In the organic electroluminescent device of the present invention according to this embodiment, a material whose refractive index is close to the refractive index of the support substrate 1 is selected for the thin film 12.

ゲート電極2は、支持基板1上に形成するが、抵抗を低くするには膜厚は厚い方が好ましい。一方、膜厚は厚くすると、その上にスパッタリング法で堆積する層間絶縁膜7が段差を持つことになる。そうなるとゲート電流のリークが生じやすくなり、また、微細なソース電極5、ドレイン電極4が断線しやすくなる。そのため、ゲート電極2は薄い方が望ましい。 Although the gate electrode 2 is formed on the support substrate 1, it is preferable that the film thickness is large in order to reduce the resistance. On the other hand, when the film thickness is increased, the interlayer insulating film 7 deposited thereon by the sputtering method has a step. As a result, gate current leakage is likely to occur, and the fine source electrode 5 and drain electrode 4 are likely to be disconnected. Therefore, it is desirable that the gate electrode 2 is thin.

このゲート電極2に、隣接して薄膜12を設けると、ゲート電極2の段差が薄膜12の厚み分低減する。発光部の陽極8に継承される凹凸の程度と、必要なゲート電極2の抵抗とのバランスを考慮し、ゲート電極2の厚み、層間絶縁膜7の厚みを最適化するのが望ましい。 When the thin film 12 is provided adjacent to the gate electrode 2, the step of the gate electrode 2 is reduced by the thickness of the thin film 12. It is desirable to optimize the thickness of the gate electrode 2 and the thickness of the interlayer insulating film 7 in consideration of the balance between the degree of unevenness inherited by the anode 8 of the light emitting portion and the necessary resistance of the gate electrode 2.

本実施形態においては、例えば、ゲート電極2の厚さを80〜120nmとし、層間絶縁膜7の厚さを200〜300nmとする。層間絶縁膜7は、周期200〜500nm、平均厚さ80nm、高低差30nm程度が望ましい形態であった。本実施形態においては、陽極(ITO電極)8の凹凸は概ね10nm程度に減少しており、その上の材料を印刷する上での不適合、膜厚ムラによる発光上の問題はなかった。 In the present embodiment, for example, the thickness of the gate electrode 2 is set to 80 to 120 nm, and the thickness of the interlayer insulating film 7 is set to 200 to 300 nm. The interlayer insulating film 7 had a desirable form with a period of 200 to 500 nm, an average thickness of 80 nm, and a height difference of about 30 nm. In this embodiment, the unevenness of the anode (ITO electrode) 8 is reduced to about 10 nm, and there is no problem in light emission due to incompatibility in printing the material thereon and uneven film thickness.

本発明の有機エレクトロルミネセンスデバイスは、種々の電子機器の操作パネルや情報表示パネルに用いることができる。本発明の有機エレクトロルミネセンスデバイスを用いた電子機器としては、テレビ、携帯電話、デジタルビデオカメラ、デジタルスチルカメラ、携帯ゲーム機、ノートパソコン、PDA等が挙げられる。 The organic electroluminescent device of the present invention can be used for operation panels and information display panels of various electronic devices. Examples of the electronic apparatus using the organic electroluminescence device of the present invention include a television, a mobile phone, a digital video camera, a digital still camera, a portable game machine, a notebook computer, and a PDA.

また、本発明の有機エレクトロルミネセンスデバイスは、照明装置の発光モジュールや、電子機器のディスプレイのバックライトモジュールとしても用いることができる。 Moreover, the organic electroluminescent device of the present invention can also be used as a light emitting module of a lighting device or a backlight module of a display of an electronic device.

(A)は本発明の一実施形態に係る有機エレクトロルミネセンスデバイスの平面図である。(B)は(A)をF−F線で切った断面図である。(C)は(B)のA断面図である。(A) is a top view of the organic electroluminescent device which concerns on one Embodiment of this invention. (B) is sectional drawing which cut (A) by the FF line. (C) is A sectional drawing of (B). (A)は従来の有機エレクトロルミネセンスデバイスの平面図である。(B)は(A)をF−F線で切った断面図である。(C)は(B)のA断面図である。(A) is a top view of the conventional organic electroluminescent device. (B) is sectional drawing which cut (A) by the FF line. (C) is A sectional drawing of (B).

符号の説明Explanation of symbols

1 支持基板
2 ゲート電極
4 ドレイン電極
5 ソース電極
6 半導体膜
7 層間絶縁膜
8 陽極(ITO電極)
9 ゲート保護膜
12 薄膜
15 正孔輸送層
16 発光層
17 陰極
18 保護層
DESCRIPTION OF SYMBOLS 1 Support substrate 2 Gate electrode 4 Drain electrode 5 Source electrode 6 Semiconductor film 7 Interlayer insulating film 8 Anode (ITO electrode)
9 Gate protective film 12 Thin film 15 Hole transport layer 16 Light emitting layer 17 Cathode 18 Protective layer

Claims (9)

支持基板と、
前記支持基板上の層間絶縁膜と、
前記層間絶縁膜上の陽極と、
前記陽極上の発光層と、
前記発光層上の陰極と、
前記支持基板と前記層間絶縁膜との間に設けられたゲート電極と、前記層間絶縁膜上に配設されたソース電極、半導体膜及びドレイン電極とを有する薄膜トランジスタと、
前記支持基板と前記層間絶縁膜との間であり且つ前記薄膜トランジスタの前記ゲート電極の周囲に設けられ、前記支持基板の屈折率と前記層間絶縁膜の屈折率との間の屈折率を有する薄膜を備えたことを特徴とする有機エレクトロルミネセンスデバイス。
A support substrate;
An interlayer insulating film on the support substrate;
An anode on the interlayer insulating film;
A light emitting layer on the anode;
A cathode on the light emitting layer;
A thin film transistor having a gate electrode provided between the support substrate and the interlayer insulating film, and a source electrode, a semiconductor film and a drain electrode disposed on the interlayer insulating film;
A thin film provided between the support substrate and the interlayer insulating film and around the gate electrode of the thin film transistor and having a refractive index between the refractive index of the support substrate and the refractive index of the interlayer insulating film; An organic electroluminescence device comprising:
前記薄膜の屈折率と前記層間絶縁膜の屈折率との差よりも前記薄膜の屈折率と前記支持基板の屈折率との差の方が小さいことを特徴とする請求項1に記載の有機エレクトロルミネセンスデバイス。 The organic electro according to claim 1, wherein the difference between the refractive index of the thin film and the refractive index of the support substrate is smaller than the difference between the refractive index of the thin film and the refractive index of the interlayer insulating film. Luminescence device. 前記薄膜の屈折率と前記層間絶縁膜の屈折率との差が可視域において0.3以上であり、且つ、前記薄膜の屈折率と前記支持基板の屈折率との差が0.1以下であることを特徴とする請求項に記載の有機エレクトロルミネセンスデバイス。 The difference between the refractive index of the thin film and the refractive index of the interlayer insulating film is 0.3 or more in the visible region, and the difference between the refractive index of the thin film and the refractive index of the support substrate is 0.1 or less. The organic electroluminescent device according to claim 2 , wherein the organic electroluminescent device is provided. 前記薄膜の表面は、周期的又は非周期的な凹凸を有することを特徴とする請求項1乃至の何れか一に記載の有機エレクトロルミネセンスデバイス。 The surface of the thin film, an organic electroluminescent device according to any one of claims 1 to 3, characterized by having a periodic or non-periodic roughness. 前記周期的又は非周期的な凹凸は、サインカーブ形状、ピラミッド形状又は矩形状であることを特徴とする請求項に記載の有機エレクトロルミネセンスデバイス。 The organic electroluminescence device according to claim 4 , wherein the periodic or non-periodic unevenness has a sine curve shape, a pyramid shape, or a rectangular shape. 前記薄膜トランジスタ及び前記陽極が行列状に設けられたことを特徴とする請求項乃至請求項の何れか一に記載の有機エレクトロルミネセンスデバイス。 The organic electroluminescent device according to any one of claims 1 to 5, wherein the thin film transistor and the anode are provided in a matrix. 前記半導体膜は、酸化物半導体でなることを特徴とする請求項乃至請求項の何れか一に記載の有機エレクトロルミネセンスデバイス。 The semiconductor film is an organic electroluminescent device according to any one of claims 1 to 5, characterized by comprising an oxide semiconductor. 請求項1乃至請求項の何れか一に記載の有機エレクトロルミネセンスデバイスを備えたことを特徴とする電子機器。 An electronic apparatus comprising the organic electroluminescence device according to any one of claims 1 to 7 . 請求項1乃至請求項の何れか一に記載の有機エレクトロルミネセンスデバイスを備えたことを特徴とする照明機器。
Claims 1 to lighting equipment, characterized in that it comprises an organic electroluminescent device according to any one of claims 7.
JP2007048049A 2007-02-27 2007-02-27 Organic electroluminescence device Expired - Fee Related JP5023737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007048049A JP5023737B2 (en) 2007-02-27 2007-02-27 Organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007048049A JP5023737B2 (en) 2007-02-27 2007-02-27 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2008210717A JP2008210717A (en) 2008-09-11
JP5023737B2 true JP5023737B2 (en) 2012-09-12

Family

ID=39786835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007048049A Expired - Fee Related JP5023737B2 (en) 2007-02-27 2007-02-27 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP5023737B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100110551A1 (en) * 2008-10-31 2010-05-06 3M Innovative Properties Company Light extraction film with high index backfill layer and passivation layer
JP2012204103A (en) * 2011-03-24 2012-10-22 Toshiba Corp Organic electroluminescent element, display device and luminaire
JP5659095B2 (en) * 2011-07-19 2015-01-28 株式会社日立製作所 ORGANIC LIGHT EMITTING ELEMENT, LIGHT SOURCE DEVICE, AND METHOD FOR PRODUCING ORGANIC LIGHT EMITTING ELEMENT
EP2736089B1 (en) * 2011-07-19 2018-09-12 Hitachi, Ltd. Organic light-emitting element, light source device and organic light-emitting element manufacturing method
JP6000703B2 (en) 2011-08-12 2016-10-05 キヤノン株式会社 ORGANIC EL ELEMENT, AND LIGHT EMITTING DEVICE, IMAGE FORMING DEVICE, LIGHT EMITTING ELEMENT ARRAY, IMAGING DEVICE, DISPLAY DEVICE USING THE SAME
EP2803645B1 (en) * 2013-05-17 2018-08-01 Saint-Gobain Glass France Transparent diffusive oled substrate and method for producing such a substrate
EP2803644B1 (en) * 2013-05-17 2018-08-08 Saint-Gobain Glass France Transparent diffusive oled substrate and method for producing such a substrate
CN109390478B (en) * 2017-08-07 2024-07-26 固安翌光科技有限公司 Organic electroluminescent device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077680A (en) * 2001-09-06 2003-03-14 Konica Corp Organic electroluminescent element and display device
JP2005276620A (en) * 2004-03-25 2005-10-06 Semiconductor Energy Lab Co Ltd Light emitting device, electronic equipment, and television receiver
EP1810335B1 (en) * 2004-11-10 2020-05-27 Canon Kabushiki Kaisha Light-emitting device
JP2006236655A (en) * 2005-02-23 2006-09-07 Konica Minolta Holdings Inc Organic electroluminescent device
KR100683766B1 (en) * 2005-03-30 2007-02-15 삼성에스디아이 주식회사 Flat panel display and method for fabricating the same

Also Published As

Publication number Publication date
JP2008210717A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP5023737B2 (en) Organic electroluminescence device
US10483496B2 (en) Electroluminescent devices with improved optical out-coupling efficiencies
US10177344B2 (en) Display panel and method for manufacturing the same
US8232572B2 (en) Light emitting device
JP5849087B2 (en) Light emitting device and article
US10957877B2 (en) Organic light emitting diode display
US7711221B2 (en) Optical device and system and method for fabricating the device
TWI279159B (en) Organic EL display
US7781961B2 (en) Top emitting, electroluminescent component with frequency conversion centres
US8835947B2 (en) Display apparatus
KR100753257B1 (en) Optical device and organic el display
US9412973B2 (en) Organic light emitting diode display device and method of fabricating the same
JP2004311419A (en) Light-emitting device and organic electroluminescent light-emitting device
JP2011507196A (en) Improved external efficiency of light emitting diodes
Zhu et al. Ultrahighly efficient white quantum dot light‐emitting diodes operating at low voltage
US10784323B2 (en) Display panel, method for producing the same and display device
TW202125868A (en) Organic light-emitting diode (oled) display devices with uv-cured filler
JP2019102153A (en) Light emitting device and display device
KR101466831B1 (en) Light extraction substrate for oled, method of fabricating thereof and oled including the same
Mei et al. Light extraction employing optical tunneling in blue InP quantum dot light-emitting diodes
Kim et al. Nanosinusoidal surface zinc oxide for optical out-coupling of inverted organic light-emitting diodes
JP2009044117A (en) Light-emitting device
US20090153029A1 (en) Light emitting diodes, including high-efficiency outcoupling oled utilizing two-dimensional grating
JP2010287562A (en) Display device
Lee et al. Enhancement of Light Extraction Efficiency and Suppression of Roll‐Off Characteristics of Thermally Activated Delayed Fluorescence Organic Light‐Emitting Diodes by Inserting Nanoscale Pixel‐Defining Layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5023737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees