JP5023329B2 - Rotating launcher - Google Patents

Rotating launcher Download PDF

Info

Publication number
JP5023329B2
JP5023329B2 JP2006318457A JP2006318457A JP5023329B2 JP 5023329 B2 JP5023329 B2 JP 5023329B2 JP 2006318457 A JP2006318457 A JP 2006318457A JP 2006318457 A JP2006318457 A JP 2006318457A JP 5023329 B2 JP5023329 B2 JP 5023329B2
Authority
JP
Japan
Prior art keywords
steel ball
magnetic
eml
force
turns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006318457A
Other languages
Japanese (ja)
Other versions
JP2008131993A (en
Inventor
勉 水野
学 堀内
義納 大橋
誉 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2006318457A priority Critical patent/JP5023329B2/en
Publication of JP2008131993A publication Critical patent/JP2008131993A/en
Application granted granted Critical
Publication of JP5023329B2 publication Critical patent/JP5023329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pinball Game Machines (AREA)

Description

本発明は、電磁ランチア(以下、EMLと略記)の発射機構に関するものである。   The present invention relates to a launch mechanism of an electromagnetic launcher (hereinafter abbreviated as EML).

EMLは磁性体を瞬間的な電磁力の作用によって非接触で発射させる装置である。EMLの用途の一つとしてパチンコ機の遊戯球発射装置(特許文献1参照)がある。従来鋼球の発射は回転モータ、リニアアクチュエータ、またはモータとばねなどを用いて槌によって機械的に打ち出すものであった(特許文献2参照)。パチンコ台は遊戯面に液晶画面などによる様々な演出や趣向(特許文献3参照)が施されているのに対して、鋼球の発射には全く趣向が凝らされていない。これに対して特開2004−351088では鋼球を回転発射することで遊戯面に球を多く残し、アミューズメント性を追求している。これはレールと接触した状態で鋼球を台座に保持して、始端位置から終端位置までレール上をスライド移動して、鋼球に回転を与えて発射する機械式の回転発射装置であった。   EML is a device that launches a magnetic material in a non-contact manner by the action of instantaneous electromagnetic force. One of the uses of EML is a pachinko machine game ball launcher (see Patent Document 1). Conventionally, steel balls have been mechanically launched by a spear using a rotary motor, a linear actuator, or a motor and a spring (see Patent Document 2). While the pachinko machine has various effects and preferences (see Patent Document 3) such as a liquid crystal screen on the playing surface, the launch of steel balls is not at all elaborate. On the other hand, JP 2004-351088 pursues amusement by leaving many balls on the playing surface by rotating and firing steel balls. This was a mechanical rotary launcher that held a steel ball on a pedestal in contact with the rail, slidably moved on the rail from the start position to the end position, and rotated the steel ball to fire.

特開2003−159387号公報JP 2003-159387 A 特開2003−033481号公報Japanese Patent Laid-Open No. 2003-033481 特開2003−030679号公報JP2003-030679A

鋼球の発射に関してアミューズメント性を加えており、遊戯面に打ち出された球が遊戯者に視覚的な趣向を与える機構の開発を必要とした。   Amusement was added to the launch of steel balls, and it was necessary to develop a mechanism in which the balls launched on the play surface give the player a visual taste.

本発明は、鋼球が非接触で発射される様子を目視できる構造であり、さらに鋼球に磁気的に回転力を与える。以上の2点から上記の問題を解決しようとするものである。   The present invention has a structure in which a steel ball can be visually observed as it is fired in a non-contact manner, and further provides a rotational force magnetically to the steel ball. The above two points are intended to solve the above problem.

本発明によれば発射される様子を目視できることでアミューズメント性が向上し、回転を加えて遊戯面に射出された球が釘に弾かれてランダムに運動して、遊戯面により多くの球を残すことができる。   According to the present invention, it is possible to visually observe the state of being fired, so that amusement is improved, and a ball that is rotated and ejected to the play surface is randomly moved by being hit by the nail, leaving many balls on the play surface. be able to.

(実施の形態1)
本実施の形態では、まずEMLについて説明する。図14にパチンコ台に用いるEMLの基本構成(従来技術)を示した。同システムはコア1と鋼球2とコイル3、および定電流源4で構成されている。コアは2つの磁極から構成される。定電流源4から通電時間T0のパルス電流I (5)を通電すると、コイル3に同図中に示した方向に電流が流れる。これによってコア1にはパルス電流I (5)による磁束F (6)が流れる。磁束F (6)はギャップ部において空気より透磁率の高い鋼球2に鎖交する。磁束F (6)は磁路を最小にとって磁気抵抗を減少させようとするため、鋼球2には紙面上方向の磁気力F (11)が作用する。これによって鋼球2は速度v (7)で発射される。鋼球2の発射方向である変位zと磁気力Fの正方向9を同図のようにとり、鋼球2の中心と磁極18を形成する鉄心の中心が一致する位置を変位z =
0 mm (10)とする。このとき、実測により鋼球2の初期位置z0 (8) = -32.5 mmにおいて、飛翔高さが1 mとなるように電流を設定した場合、鋼球2の回転数は3.3〜5.7 rpsとなった。鋼球2に変位z = z0からz =
z1まで運動した間に与えられる仕事Wは次式で与えられる。
(Embodiment 1)
In this embodiment, first, EML will be described. Fig. 14 shows the basic configuration (conventional technology) of EML used for pachinko machines. The system includes a core 1, a steel ball 2, a coil 3, and a constant current source 4. The core is composed of two magnetic poles. When a pulse current I (5) of energization time T 0 is energized from the constant current source 4, a current flows through the coil 3 in the direction shown in FIG. As a result, the magnetic flux F (6) due to the pulse current I (5) flows through the core 1. The magnetic flux F (6) is linked to the steel ball 2 having a higher permeability than air in the gap portion. Since the magnetic flux F (6) tries to decrease the magnetic resistance with the magnetic path being minimized, the magnetic force F (11) in the upward direction on the paper acts on the steel ball 2. As a result, the steel ball 2 is launched at a velocity v (7). The displacement z, which is the firing direction of the steel ball 2, and the positive direction 9 of the magnetic force F are taken as shown in the figure, and the position where the center of the steel ball 2 and the center of the iron core forming the magnetic pole 18 coincide is displaced z =
0 mm (10). At this time, when the current is set so that the flight height is 1 m at the initial position z 0 (8) = -32.5 mm of the steel ball 2 by actual measurement, the rotation speed of the steel ball 2 is 3.3 to 5.7 rps. became. Displacement on steel ball 2 z = z 0 to z =
The work W given while exercising to z 1 is given by:

ここに、F:磁気力[N]、z:変位[m] Where F: magnetic force [N], z: displacement [m]

与えられた仕事は運動エネルギーTとなり、次式で与えられる。   The given work becomes kinetic energy T and is given by the following equation.

ここに、m:鋼球の質量[kg]、v:速度[m/s]   Where m: mass of steel ball [kg], v: speed [m / s]

すなわち、図14のEMLでは運動エネルギーTは鋼球2を発射するエネルギーとなる。   That is, in the EML of FIG. 14, the kinetic energy T is energy for launching the steel ball 2.

図1に本実施の形態のEMLの構成を示す。左右の磁極18に異なる巻数のコイルを挿入したEMLを示した。同図では鋼球2に磁気力F (11)が発生するとともに、磁極18を形成する左右の鉄心で磁束密度Byのアンバランスを生じさせ、磁極方向に垂直力Fy (12)が作用する。このときレール19と鋼球2との間で摩擦力Ff (13)が働いて、角速度w (14)の回転を与えて発射することができる。なお、同図では左右のコイル巻数を変えることで垂直力Fy (12)を発生させているが、左右のコイル巻数が等しくても2つの電源によって左右のコイルに流すパルス電流の大きさを変えることによっても同様の効果が得られる。 FIG. 1 shows the configuration of the EML according to the present embodiment. An EML in which coils with different numbers of turns are inserted in the left and right magnetic poles 18 is shown. In the figure, the magnetic force F (11) is generated in the steel ball 2 and the left and right iron cores forming the magnetic pole 18 cause an imbalance in the magnetic flux density B y , and the normal force F y (12) acts in the magnetic pole direction. To do. At this time, the frictional force F f (13) works between the rail 19 and the steel ball 2, and it is possible to launch by giving the rotation of the angular velocity w (14). In this figure, the vertical force F y (12) is generated by changing the number of turns of the left and right coils. The same effect can be obtained by changing.

図2に左右の磁極18に異なる巻数のコイルを挿入したEMLの磁気力-変位特性を示した。同図は有限要素法(以下、FEMと略記)の静磁界解析を用いて計算した。鉄心に電磁鋼板を用いている。また試料振動形磁力計を用いて測定した鋼球2の磁化特性をFEMに入力して解析を行った。起磁力は左右のコイル合わせてNI = 5.5 kA一定とした。左右の巻数は、紙面左側コイルの巻数:紙面右側コイルの巻数 = 1:2となるように決定した。ギャップ21の長さは15 mmである。図14の従来技術の磁気力F (11)と比較して磁気力F (11)はほぼ同じ特性である。   FIG. 2 shows the magnetic force-displacement characteristics of EML in which coils with different turns are inserted in the left and right magnetic poles 18. The figure was calculated using the static magnetic field analysis of the finite element method (hereinafter abbreviated as FEM). An electromagnetic steel sheet is used for the iron core. In addition, the magnetization characteristics of the steel ball 2 measured using a sample vibration magnetometer were input to the FEM for analysis. The magnetomotive force was constant at NI = 5.5 kA for both the left and right coils. The number of turns on the left and right was determined such that the number of turns on the left coil of the paper: the number of turns on the right coil of the paper = 1: 2. The length of the gap 21 is 15 mm. Compared with the conventional magnetic force F (11) of FIG. 14, the magnetic force F (11) has substantially the same characteristics.

図3に左右の磁極18に異なる巻数のコイルを挿入したEMLの垂直力-変位特性を示した。同図はFEMを用いて図2と同じ解析条件で計算を行った。垂直力Fy (12)は最大で5 N程度であった。 Fig. 3 shows the normal force-displacement characteristics of EML in which coils with different turns are inserted in the left and right magnetic poles 18. The figure was calculated using FEM under the same analysis conditions as in FIG. The normal force F y (12) was about 5 N at maximum.

図4に左右の磁極18に異なる巻数のコイルを挿入したEMLの磁束密度-y軸方向の位置特性を示した。同図はFEMの静磁界解析を用いて計算した。起磁力は左右のコイル合わせてNI = 3.6 kA一定とした。左右の巻数は、紙面左側コイルの巻数:紙面右側コイルの巻数 = 144:258となるように決定した。ギャップ21の長さは15 mmである。従来技術では、y = 0の軸に対して、磁束密度Byは対称となった。異なる巻数モデルでの磁束密度Byは従来技術と比較して、コイルの巻数が大きい側で大きく、コイル巻数が小さい側で小さくなった。この磁束密度Byの偏りによって垂直力Fy (12)が生ずる。 FIG. 4 shows the magnetic flux density of the EML in which coils with different turns are inserted in the left and right magnetic poles 18 and the positional characteristics in the y-axis direction. The figure was calculated using FEM static magnetic field analysis. The magnetomotive force was constant at NI = 3.6 kA for both the left and right coils. The number of turns on the left and right was determined such that the number of turns on the left coil of the paper: the number of turns of the right coil on the paper = 144: 258. The length of the gap 21 is 15 mm. In the prior art, the magnetic flux density B y is symmetric with respect to the axis y = 0. The magnetic flux density B y at different turns model as compared to the prior art, larger on the side turns is large coil, becomes smaller number of coil turns is small side. A normal force F y (12) is generated by the deviation of the magnetic flux density B y .

鋼球2とレール19の間に発生する摩擦力Ff (13)は次式で与えられる。 The frictional force F f (13) generated between the steel ball 2 and the rail 19 is given by the following equation.

ここに、m:摩擦係数、Fy:垂直力[N] Where m is the coefficient of friction, F y is the normal force [N]

また摩擦係数が次式の条件を満たしたとき、摩擦力Ff (13)は次のようにも与えられる。 When the friction coefficient satisfies the condition of the following equation, the friction force F f (13) is also given as follows.

ここに、msm:最大静止摩擦係数、ms:静止摩擦係数 Where m sm is the maximum coefficient of static friction, m s is the coefficient of static friction

このとき鋼球2はレール19の上をすべることなく回転するため、運動エネルギーTは次式で与えられる。   At this time, since the steel ball 2 rotates without sliding on the rail 19, the kinetic energy T is given by the following equation.

ここに、I:慣性モーメント[kg・m2]、w:角速度[rad/s] Where I: moment of inertia [kg · m 2 ], w: angular velocity [rad / s]

すなわち運動エネルギーTは鋼球2を発射するエネルギーと回転力に要するエネルギーの和で与えられる。よって入力エネルギーが一定の場合、変位z方向の磁気力F (11)は減少して、発射の速度v (7)も減少する。すなわち図1のモデルでは、磁気力F (11)と垂直力Fy (12)の比率を、速度vが要求する仕様を満足するように決定する必要がある。 In other words, the kinetic energy T is given by the sum of the energy required to launch the steel ball 2 and the energy required for the rotational force. Therefore, when the input energy is constant, the magnetic force F (11) in the displacement z direction decreases, and the firing speed v (7) also decreases. That is, in the model of FIG. 1, it is necessary to determine the ratio of the magnetic force F (11) and the vertical force F y (12) so as to satisfy the specification required by the speed v.

また鋼球2とレール19の間にすべりがある場合、すなわち数4を満たさない場合、摩擦力Ff (13)は次式で与えられる。 In addition, when there is a slip between the steel ball 2 and the rail 19, that is, when Equation 4 is not satisfied, the frictional force F f (13) is given by the following equation.

ここに、 md:動摩擦係数 Where, m d : dynamic friction coefficient

このとき運動エネルギーTはすべりによって損失するため、所要の回転力や発射速度を得るように決定する必要がある。   At this time, since the kinetic energy T is lost due to the slip, it is necessary to determine to obtain the required rotational force and firing speed.

実測により左右の磁極18に異なる巻数のコイルを挿入したEMLでは、鋼球2の初期位置z0 (8) = -33 mmにおいて、飛翔高さが1 mとなるように電流を設定した場合、鋼球2の回転数は18〜21 rpsとなった。 In the EML in which coils with different turns are inserted in the left and right magnetic poles 18 by actual measurement, when the current is set so that the flying height is 1 m at the initial position z 0 (8) = -33 mm of the steel ball 2, The rotation speed of the steel ball 2 was 18 to 21 rps.

(実施の形態2)
図5に本実施の形態のEMLの構成を示す。本実施の形態は、左右の磁極18に非対称の切欠き20を設けたEMLである。同図は図4と同様に鋼球2に作用する磁束密度Byをy = 0の軸に対して非対称に与えて磁極18方向に垂直力Fy (12)が作用することによって、レール19との摩擦で鋼球2に回転を与えて発射する構造である。
(Embodiment 2)
FIG. 5 shows the configuration of the EML according to the present embodiment. The present embodiment is an EML in which left and right magnetic poles 18 are provided with asymmetric notches 20. As in FIG. 4, the magnetic flux density B y acting on the steel ball 2 is given asymmetrically with respect to the axis of y = 0, and the normal force F y (12) acts in the direction of the magnetic pole 18 to apply the rail 19 This is a structure in which the steel ball 2 is rotated and fired by friction.

図6に左右の磁極18に非対称の切欠き20を設けたEMLの磁気力-変位特性を示した。同図はFEM静磁界解析であり、鉄心に電磁鋼板を用いて、起磁力は左右のコイル合わせてNI = 5.5 kA一定とした。ギャップ21の長さは15 mmである。また切欠き20は紙面左側の磁極18の中心から、10.2 度の角度の切欠き20を設けてある。磁気力は従来技術と比較して最大値が減少している。しかしF = 0 Nとなる変位はz = 2 mm程度となっており、変位z = -7.5 mm 〜 2 mmまでは切欠きモデルの磁気力F (11)が従来技術の磁気力F (11)を上回っている。このことから図14における電流の通電時間T0をF > 0とすれば、鋼球2に与える仕事は従来技術と切欠きモデルで、ほぼ同じになる。 FIG. 6 shows the magnetic force-displacement characteristics of the EML in which the left and right magnetic poles 18 are provided with asymmetric notches 20. This figure is an FEM static magnetic field analysis. An electromagnetic steel plate is used for the iron core, and the magnetomotive force is constant at NI = 5.5 kA for both the left and right coils. The length of the gap 21 is 15 mm. The notch 20 is provided with a notch 20 having an angle of 10.2 degrees from the center of the magnetic pole 18 on the left side of the drawing. The maximum value of the magnetic force is reduced as compared with the prior art. However, the displacement at which F = 0 N is about z = 2 mm, and the magnetic force F (11) of the notch model is the magnetic force F (11) of the prior art until the displacement z = -7.5 mm to 2 mm. Is over. Therefore, if the current application time T 0 in FIG. 14 is F> 0, the work given to the steel ball 2 is almost the same in the notch model and the prior art.

図7に左右の磁極18に非対称の切欠き20を設けたEMLの垂直力-変位特性を示した。同図はFEMを用いて図6と同じ解析条件で計算を行った。垂直力Fy (12)は最大で6 N程度であった。なお、本実施の形態で示した磁極の切欠きは1例であり、ギャップ中の磁束密度が非対称なるように磁極の形状を変えてもよい。 FIG. 7 shows the normal force-displacement characteristics of the EML in which the left and right magnetic poles 18 are provided with asymmetric notches 20. The figure was calculated using FEM under the same analysis conditions as in FIG. The normal force F y (12) was about 6 N at the maximum. Note that the notch of the magnetic pole shown in this embodiment is an example, and the shape of the magnetic pole may be changed so that the magnetic flux density in the gap is asymmetric.

(実施の形態3)
図8に本実施の形態のEMLの構成を示す。本実施の形態は、鋼球2を偏心させたEMLである。同図はギャップ21の中心軸に対して鋼球2を偏心させて設置することによって、磁極方向に垂直力Fy (12)を作用させて、レール19との摩擦で鋼球2に回転を与えて発射する構造である。
(Embodiment 3)
FIG. 8 shows the configuration of the EML according to the present embodiment. The present embodiment is an EML in which the steel ball 2 is eccentric. In the figure, the steel ball 2 is installed eccentrically with respect to the central axis of the gap 21, so that a normal force F y (12) is applied in the magnetic pole direction and the steel ball 2 is rotated by friction with the rail 19. It is a structure that gives and fires.

図9に鋼球2をy方向に偏心させたEMLの磁気力-変位特性を示した。同図はFEM静磁界解析であり、鉄心に電磁鋼板を用いて、起磁力は左右のコイル合わせてNI = 5.5 kA一定とした。ギャップ21の長さは15 mmである。また鋼球2はギャップ21の長さの中心軸上に対して、y方向に1 mm偏心させている。磁気力F (11)は従来技術よりも若干大きな力を得ることができる。これは鋼球2の直径11 mmに対してギャップ21の長さが15 mmと大きいために、鋼球2がより磁極18に近づいた方が磁束F (6) は流れやすくなる。   Fig. 9 shows the magnetic force-displacement characteristics of the EML with the steel ball 2 eccentric in the y direction. This figure is an FEM static magnetic field analysis. An electromagnetic steel plate is used for the iron core, and the magnetomotive force is constant at NI = 5.5 kA for both the left and right coils. The length of the gap 21 is 15 mm. The steel ball 2 is eccentric by 1 mm in the y direction with respect to the central axis of the length of the gap 21. The magnetic force F (11) can obtain a slightly larger force than the prior art. This is because the length of the gap 21 is as large as 15 mm with respect to the diameter 11 mm of the steel ball 2, so that the magnetic flux F (6) flows more easily when the steel ball 2 is closer to the magnetic pole 18.

図10に鋼球2を偏心させたEMLの垂直力-変位特性を示した。同図はFEMを用いて図9と同じ解析条件で計算を行った。垂直力Fy (12) = 15 N以上の大きな力を得ることができる。これによってすべりなく鋼球2に回転を与えることができる。 Fig. 10 shows the normal force-displacement characteristics of EML with the steel ball 2 eccentric. The figure was calculated using FEM under the same analysis conditions as in FIG. A normal force F y (12) = 15 N or more can be obtained. As a result, the steel ball 2 can be rotated without slipping.

実測により鋼球2を偏心させたEMLでは、鋼球2の初期位置 z0 (8) = -33 mmにおいて、飛翔高さが1 mとなるように電流を設定した場合、鋼球2の回転数は18〜27 rpsとなった。 In the EML in which the steel ball 2 is eccentrically measured, when the current is set so that the flying height is 1 m at the initial position z 0 (8) = -33 mm, the rotation of the steel ball 2 The number became 18-27 rps.

(実施の形態4)
図11に本実施の形態のEMLの構成を示す。本実施の形態は、磁極18にくまとりコイル15を挿入したEMLである。同図は片側の磁極18にくまとりコイル15を挿入している。くまとりコイルとは銅線を1〜2回程度巻いた磁束の位相を遅らせる作用があるコイルである。そのため、くまとりコイル15内部の鉄心を通る磁束F’ (16)は、それ以外の部分を通る磁束よりも位相が遅れる。よって鋼球2に時間的に遅れた磁束が鎖交して回転を与えて発射することができる。
(Embodiment 4)
FIG. 11 shows the configuration of the EML according to the present embodiment. The present embodiment is an EML in which a bear coil 15 is inserted into a magnetic pole 18. In the figure, a bear coil 15 is inserted in a magnetic pole 18 on one side. A kumatori coil is a coil that has the effect of delaying the phase of magnetic flux obtained by winding a copper wire about once or twice. Therefore, the phase of the magnetic flux F ′ (16) passing through the iron core inside the kumatori coil 15 is delayed from that of the magnetic flux passing through the other portions. Accordingly, the magnetic ball delayed in time can be linked to the steel ball 2 to be rotated and fired.

(実施の形態5)
図12に本実施の形態のEMLの構成を示す。本実施の形態は、右側の磁極18に磁性体板17を取り付けたEMLである。同図は磁極18に磁性体板17を取り付けている。磁性体板17が磁化されることにより鋼球2が磁性体板17に引き寄せられ、鋼球2に紙面右方向の垂直力Fy (12)を作用させる。これによって磁性体板17との摩擦で鋼球2に回転を与えて発射する構造である。
(Embodiment 5)
FIG. 12 shows the configuration of the EML according to the present embodiment. The present embodiment is an EML in which a magnetic plate 17 is attached to the right magnetic pole 18. In the figure, a magnetic plate 17 is attached to a magnetic pole 18. When the magnetic plate 17 is magnetized, the steel ball 2 is attracted to the magnetic plate 17 and a normal force F y (12) in the right direction on the paper surface is applied to the steel ball 2. Thus, the steel ball 2 is rotated by the friction with the magnetic plate 17 and fired.

実測により右側の磁極18に磁性体板17を取り付けたEMLでは、鋼球2の初期位置z0 (8) = -32.5 mmにおいて、飛翔高さが1 mとなるように電流を設定した場合、鋼球2の回転数は56〜67 rpsとなった。 In the EML in which the magnetic plate 17 is attached to the magnetic pole 18 on the right side by actual measurement, when the current is set so that the flying height is 1 m at the initial position z 0 (8) = -32.5 mm of the steel ball 2, The rotation speed of the steel ball 2 was 56 to 67 rps.

(実施の形態6)
図13に本実施の形態のEMLの構成を示す。本実施の形態は、鋼球2の発射方向に左右の磁極18をずらしたEMLである。磁極18がずれていることによって、磁束F (6)の流れが変化し、鋼球2にy方向の垂直力Fy (12)を作用させる。これによってレール19との摩擦で鋼球2に回転を与えて発射する構造である。
(Embodiment 6)
FIG. 13 shows the configuration of the EML according to the present embodiment. The present embodiment is an EML in which the left and right magnetic poles 18 are shifted in the firing direction of the steel ball 2. Due to the deviation of the magnetic pole 18, the flow of the magnetic flux F (6) is changed, and the vertical force F y (12) in the y direction is applied to the steel ball 2. As a result, the steel ball 2 is rotated by the friction with the rail 19 and fired.

実測により鋼球2の発射方向に左右の磁極18をずらしたEMLでは、鋼球2の初期位置 z0 (8) = -32.5 mmにおいて、飛翔高さが1 mとなるように電流を設定した場合、鋼球2の回転数は16〜21 rpsとなった。 In the EML where the left and right magnetic poles 18 are shifted in the firing direction of the steel ball 2 by measurement, the current was set so that the flying height was 1 m at the initial position z 0 (8) = -32.5 mm of the steel ball 2 In this case, the rotation speed of the steel ball 2 was 16 to 21 rps.

以上の実施の形態について、個々にもしくは2つ、3つを併用して用いることで、鋼球に回転力を与えて発射する機構が実現し、鋼球の発射に関して更なるアミューズメント性を凝らすことができる。   Using the above embodiments individually or in combination of two or three, a mechanism for applying a rotational force to the steel ball and launching it is realized, and further amusement is achieved with respect to the steel ball launch. Can do.

左右の磁極18に異なる巻数のコイルを挿入したEMLEML with coils with different turns on left and right magnetic poles 18 左右の磁極18に異なる巻数のコイルを挿入したEMLの磁気力-変位特性Magnetic force-displacement characteristics of EML with coils with different turns on left and right magnetic poles 18 左右の磁極18に異なる巻数のコイルを挿入したEMLの垂直力-変位特性Normal force-displacement characteristics of EML with coils with different turns on left and right magnetic poles 18 左右の磁極18に異なる巻数のコイルを挿入したEMLの磁束密度-y軸方向の位置特性Magnetic flux density of EML in which coils with different number of turns are inserted in the left and right magnetic poles 18-positional characteristics in the y-axis direction 左右の磁極18に非対称の切欠き20を設けたEMLEML with left and right magnetic poles 18 with asymmetric notches 20 左右の磁極18に非対称の切欠き20を設けたEMLの磁気力-変位特性Magnetic force-displacement characteristics of EML with left and right magnetic poles 18 with asymmetric notches 20 左右の磁極18に非対称の切欠き20を設けたEMLの垂直力-変位特性Normal force-displacement characteristics of EML with left and right magnetic poles 18 with asymmetric notches 20 鋼球2を偏心させたEMLEML with steel ball 2 eccentric 鋼球2を偏心させたEMLの磁気力-変位特性Magnetic force-displacement characteristics of EML with steel ball 2 eccentric 鋼球2を偏心させたEMLの垂直力-変位特性Normal force-displacement characteristics of EML with steel ball 2 eccentric 磁極18にくまとりコイル15を挿入したEMLEML with kumatori coil 15 inserted in magnetic pole 18 磁極18に磁性体板17を取り付けたEMLEML with magnetic plate 17 attached to magnetic pole 18 鋼球2の発射方向に左右の磁極18をずらしたEMLEML with the left and right magnetic poles 18 shifted in the firing direction of the steel ball 2 パチンコ台に用いるEMLの基本構成(従来技術)Basic configuration of EML used for pachinko machine (conventional technology)

符号の説明Explanation of symbols

1 コア
2 鋼球
3 コイル
4 定電流源
5 パルス電流I
6 パルス電流による磁束F
7 速度v
8 鋼球の初期位置z0
9 変位zと磁気力Fの正方向
10 変位z = 0 mm
11 磁気力F
12 垂直力Fy
13 摩擦力Ff
14 角速度w
15 くまとりコイル
16 くまとりコイルによる磁束F'
17 磁性体板
18 磁極
19 レール
20 切欠き
21 ギャップ
1 Core 2 Steel ball 3 Coil 4 Constant current source 5 Pulse current I
6 Magnetic flux F by pulse current
7 Speed v
8 Initial position of steel ball z 0
9 Positive direction of displacement z and magnetic force F 10 Displacement z = 0 mm
11 Magnetic force F
12 Normal force F y
13 Friction force F f
14 Angular velocity w
15 Kumatori coil 16 Magnetic flux F 'by Kumatori coil
17 Magnetic plate 18 Magnetic pole 19 Rail 20 Notch 21 Gap

Claims (1)

左右に相対して配置された第1および第2の磁極からなるギャップを有するコアと、
前記第1および第2の磁極のいずれか一方に挿入されたくまとりコイルと、
前記磁極に沿ってギャップ中に配置されたレールと、
前記ギャップをはさんで前記コアに巻きつけた2つのコイルを有し、
前記2つのコイルは巻き数が異なる発射装置。
A core having a gap made up of first and second magnetic poles arranged relative to the left and right ;
A kuma coil inserted into one of the first and second magnetic poles;
A rail disposed in the gap along the magnetic pole;
Having two coils wound around the core across the gap;
The two coils have different numbers of turns.
JP2006318457A 2006-11-27 2006-11-27 Rotating launcher Active JP5023329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006318457A JP5023329B2 (en) 2006-11-27 2006-11-27 Rotating launcher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006318457A JP5023329B2 (en) 2006-11-27 2006-11-27 Rotating launcher

Publications (2)

Publication Number Publication Date
JP2008131993A JP2008131993A (en) 2008-06-12
JP5023329B2 true JP5023329B2 (en) 2012-09-12

Family

ID=39557273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006318457A Active JP5023329B2 (en) 2006-11-27 2006-11-27 Rotating launcher

Country Status (1)

Country Link
JP (1) JP5023329B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3147920B2 (en) * 1991-04-02 2001-03-19 亮拿 佐藤 Low voltage motor
JPH052965A (en) * 1991-06-21 1993-01-08 Matsushita Electric Works Ltd Ac relay
JPH07328185A (en) * 1994-06-03 1995-12-19 Matsushita Electric Ind Co Ltd Pachinko ball shooting device
JP2956479B2 (en) * 1994-07-04 1999-10-04 松下電器産業株式会社 Pachinko ball launcher
JP4483319B2 (en) * 2004-01-30 2010-06-16 パナソニック電工株式会社 Game ball launcher

Also Published As

Publication number Publication date
JP2008131993A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JPS58175533U (en) Moving device for mechanical structural parts
JP5023329B2 (en) Rotating launcher
JP2007007271A (en) Ball guide passage of game machine
JPH09313677A (en) Rotary actuator for pachinko ball shooting
JPH0810399A (en) Ball shooting device
JP2007037325A (en) Motor
RU2003124007A (en) PULSE MAGNETOELECTRIC GENERATOR
JP6661849B2 (en) Hammer-back method in pachinko ball launcher
RU2252476C2 (en) Electric motor
JP4004570B2 (en) Ball launcher
JP6093940B2 (en) Pachinko ball launcher using a rotary solenoid
JP6750547B2 (en) Permanent magnet evaluation device
JP2004031766A (en) Rotary solenoid
JP2005205027A (en) Game machine
JP3448625B2 (en) Flywheel for ignition device
JP2005118211A (en) Pachinko game launching device and method
JP2016112038A (en) Method for holding hammer in pachinko ball launcher
JPH0724145Y2 (en) Small linear actuator
JPS62111761A (en) Wire drive device for wire dot head
JP2985670B2 (en) Game machine ball launcher
JP2003339988A (en) Game ball shooting apparatus for ball game machine
JPH09276482A (en) Ball shooting device
JPH06204035A (en) Magnetization method of multipole anisotropic tubular permanent magnet and magnetization device
JP6155422B2 (en) Pachinko ball launcher using a rotary solenoid
JPS6285958A (en) Wire dot head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150