JP5022073B2 - Flameproofing furnace and carbon fiber manufacturing method - Google Patents

Flameproofing furnace and carbon fiber manufacturing method Download PDF

Info

Publication number
JP5022073B2
JP5022073B2 JP2007072773A JP2007072773A JP5022073B2 JP 5022073 B2 JP5022073 B2 JP 5022073B2 JP 2007072773 A JP2007072773 A JP 2007072773A JP 2007072773 A JP2007072773 A JP 2007072773A JP 5022073 B2 JP5022073 B2 JP 5022073B2
Authority
JP
Japan
Prior art keywords
hot air
flameproofing
fiber bundle
furnace
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007072773A
Other languages
Japanese (ja)
Other versions
JP2008231611A (en
Inventor
博司 稲垣
斉 友部
禎雄 鮫島
伸之 山本
篤志 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2007072773A priority Critical patent/JP5022073B2/en
Publication of JP2008231611A publication Critical patent/JP2008231611A/en
Application granted granted Critical
Publication of JP5022073B2 publication Critical patent/JP5022073B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Inorganic Fibers (AREA)

Description

本発明は、耐炎化炉及び炭素繊維の製造方法に関する。   The present invention relates to a flameproofing furnace and a method for producing carbon fiber.

炭素繊維は比強度、比弾性率、耐熱性、耐薬品性に優れていることから、各種素材の強化材として有用であり、航空宇宙用途、レジャー用途、一般産業用途等の幅広い分野で使用されている。炭素繊維は、強度を要求される箇所に用いられることが多いため、極めて高い特性の均一性と安定性を備えている必要があり、すなわち優れて高品質であることが要求されている。  Since carbon fiber is excellent in specific strength, specific elastic modulus, heat resistance, and chemical resistance, it is useful as a reinforcing material for various materials and is used in a wide range of fields such as aerospace applications, leisure applications, and general industrial applications. ing. Since carbon fibers are often used in places where strength is required, it is necessary to have extremely high uniformity of properties and stability, that is, excellent quality is required.

一般に、ポリアクリロニトリル系繊維束から炭素繊維束を製造する方法としては、ポリアクリロニトリル系重合体の単繊維を数千から数万本束ねた繊維束(以下、前駆体繊維束と略する。)を、耐炎化炉に送入し、200〜300℃に熱せられた空気等の酸化性雰囲気の熱風に晒すことにより加熱処理(耐炎化処理)した後、得られた耐炎化繊維束を炭素化炉に送入し、300〜1000℃の不活性ガス雰囲気中で加熱処理(前炭素化処理)した後に、さらに1000℃以上の不活性ガス雰囲気で満たされた炭素化炉で加熱処理(炭素化処理)する方法が知られている。また、中間材料である耐炎化繊維は、その燃え難い性能を活かして、難燃性織布向けの素材としても広く用いられている。  Generally, as a method for producing a carbon fiber bundle from a polyacrylonitrile fiber bundle, a fiber bundle obtained by bundling thousands to tens of thousands of single fibers of a polyacrylonitrile polymer (hereinafter abbreviated as a precursor fiber bundle). The heat-treated (flame-proofing treatment) was carried out by feeding into a flame-proofing furnace and exposed to hot air in an oxidizing atmosphere such as air heated to 200 to 300 ° C., and the resulting flame-resistant fiber bundle was carbonized. And then heat treatment (pre-carbonization treatment) in an inert gas atmosphere at 300 to 1000 ° C., and further heat treatment (carbonization treatment) in a carbonization furnace filled with an inert gas atmosphere at 1000 ° C. or higher. ) Is known. In addition, the flame-resistant fiber, which is an intermediate material, is widely used as a material for flame-retardant woven fabrics by taking advantage of its incombustible performance.

炭素繊維の製造工程の中でも、耐炎化処理は前駆体繊維束の発熱を伴う酸化反応を生ずるため、耐炎化炉内の熱風や酸化反応に伴う多量の発熱によって、単繊維同士が融着しやすい。単繊維が融着した耐炎化繊維束は、著しく低品質であり、例えばその後の炭素化処理において、毛羽や糸切れの発生、及び各種特性の低下を引き起こしやすい。
耐炎化繊維の融着を回避するためには、例えば前駆体繊維束に油剤を付与する方法が知られており、それを目的として多くの油剤が検討されている。その中でも、高い耐熱性を有し、かつ融着を効果的に抑えることから、シリコ−ン系油剤がよく用いられている。
Among the carbon fiber manufacturing processes, the flameproofing treatment causes an oxidation reaction accompanied by heat generation of the precursor fiber bundle, so that the single fibers are likely to be fused together by a large amount of heat generated by the hot air in the flameproofing furnace or the oxidation reaction. . The flame-resistant fiber bundle in which the single fibers are fused is extremely low quality, and for example, in the subsequent carbonization treatment, fluff and thread breakage are likely to occur, and various characteristics are likely to deteriorate.
In order to avoid the fusion of flame resistant fibers, for example, a method of applying an oil agent to a precursor fiber bundle is known, and many oil agents have been studied for that purpose. Among these, silicone oils are often used because they have high heat resistance and effectively suppress fusion.

ところで、工業生産規模の耐炎化処理には、熱風循環方式の耐炎化炉が広く用いられている。熱風循環方式の耐炎化炉は、前駆体繊維束に耐炎化処理を行う熱処理室と、熱風を加熱し循環させるための熱風循環路とによる熱風循環系を構成している。熱風循環系によって熱風を何度も繰り返し利用できるため、熱風循環方式の耐炎化炉は、熱エネルギーの損失を少なくできるという利点がある。   By the way, a hot-air circulation type flameproofing furnace is widely used for the flameproofing treatment on an industrial production scale. The hot air circulation type flameproofing furnace constitutes a hot air circulation system including a heat treatment chamber for performing a flameproofing treatment on the precursor fiber bundle and a hot air circulation path for heating and circulating the hot air. Since the hot air can be repeatedly used by the hot air circulation system, the hot air circulation type flameproof furnace has an advantage that the loss of heat energy can be reduced.

しかしながら、熱風循環方式の耐炎化炉は、熱風中に滞留する不純物が熱風循環系の外に排出されにくいため、粉塵等の不純物が耐炎化炉内の熱風中に長期にわたり滞留しやすいという欠点がある。特に、前駆体繊維束に付与されたシリコ−ン系油剤は、耐炎化処理の高熱によって、その一部が揮発し、熱風中に滞留しやすい。この揮発物は次第に固化して粉塵となり、耐炎化炉内に蓄積し、耐炎化処理中の前駆体繊維束にも付着する。前駆体繊維束に付着した粉塵の付着点は、その後の炭素化処理における毛羽の発生や単糸切れの発生起点となり、得られる炭素繊維束の品質を著しく低下させてしまう。
耐炎化炉内に滞留する粉塵の大部分は、前記で説明したシリコーン系油剤由来の粉塵であるが、それ以外にも、例えばシリコーン油剤以外の油剤成分の凝集物、前駆体繊維束であるポリアクリロニトリル系繊維束から発生するタール成分の凝集物、前駆体繊維束に付着して耐炎化炉の外から持ち込まれる粉塵、耐炎化炉内に流入する外気に含まれる粉塵、及びそれらの複合物からなる粉塵等も挙げられる。
However, the hot air circulation type flameproofing furnace has a disadvantage that impurities such as dust are likely to stay in the hot air in the flameproofing furnace for a long time because impurities staying in the hot air are not easily discharged outside the hot air circulation system. is there. In particular, a part of the silicone-based oil applied to the precursor fiber bundle is volatilized due to the high heat of the flameproofing treatment and tends to stay in the hot air. This volatile matter gradually solidifies into dust, accumulates in the flameproofing furnace, and adheres to the precursor fiber bundle during the flameproofing treatment. The adhesion point of the dust adhering to the precursor fiber bundle becomes a starting point of fluff generation and single yarn breakage in the subsequent carbonization treatment, and the quality of the obtained carbon fiber bundle is remarkably deteriorated.
Most of the dust staying in the flameproofing furnace is dust derived from the silicone-based oil described above, but other than that, for example, aggregates of oil component other than the silicone oil, polysilica which is a precursor fiber bundle Aggregates of tar components generated from acrylonitrile fiber bundles, dust brought into the precursor fiber bundle from the outside of the flameproofing furnace, dust contained in the outside air flowing into the flameproofing furnace, and composites thereof And the like.

これらの粉塵が耐炎化炉内に滞留すると、熱風吹出口の吹出し面に設けられた風速整流用の多孔板が目詰まりを起こして閉塞し、熱風の循環を滞らせてしまう。熱処理室内の熱風の循環が滞ると、前駆体繊維束の除熱が円滑に行われず、前駆体繊維束の糸切れを誘発してしまう。糸切れした前駆体繊維束は、さらに他の前駆体繊維束に絡む等して、他の走行域を走行する先駆体繊維束の糸切れを誘発し、最悪の場合は火災に至る等、耐炎化炉の安定運転を妨げる原因にもなる。  If these dusts stay in the flameproofing furnace, the perforated plate for wind speed rectification provided on the outlet surface of the hot air outlet is clogged and blocked, and the circulation of hot air is delayed. When the circulation of the hot air in the heat treatment chamber is delayed, heat removal of the precursor fiber bundle is not performed smoothly, and thread breakage of the precursor fiber bundle is induced. Thread breakage of precursor fiber bundles is further entangled with other precursor fiber bundles to induce thread breakage of precursor fiber bundles traveling in other traveling areas, and in the worst case, fire may occur. It also becomes a cause of hindering stable operation of the chemical reactor.

従って、従来の耐炎化炉では、長期間の連続稼動が困難であり、頻繁に稼動を停止して耐炎化炉内の清掃を行う必要があった。これが、耐炎化繊維束の生産効率向上の足枷になっていた。また、耐炎化炉の清掃に要するメンテナンス費用は多大であり、また、多大なメンテナンス費用を掛けても、耐炎化炉内から数μmもの微細な粉塵を清掃によって完全に除去するのは困難であった。
熱風循環方式の耐炎化炉において、生産効率の向上、及びメンテナンスの低減を図るには、耐炎化炉内の粉塵を如何に低減するかに掛かっている。粉塵を低減するには、粉塵の生成要因を取り除く、或いは生成された粉塵を熱風循環系から排出する等が考えられる。
Therefore, the conventional flameproofing furnace is difficult to operate continuously for a long time, and it is necessary to frequently stop the operation and clean the inside of the flameproofing furnace. This has been a foothold for improving the production efficiency of the flameproof fiber bundle. In addition, the maintenance cost required for cleaning the flameproofing furnace is great, and even if a large maintenance cost is applied, it is difficult to completely remove fine dust of several μm from the inside of the flameproofing furnace by cleaning. It was.
In order to improve production efficiency and reduce maintenance in a hot air circulation type flameproofing furnace, it depends on how dust in the flameproofing furnace is reduced. In order to reduce the dust, it is conceivable to remove the generation factor of the dust or to discharge the generated dust from the hot air circulation system.

この課題に対し、例えば特許文献1では、熱風循環路に排気口を設けた耐炎化炉が提案されている。この耐炎化炉によれば、炉内清掃後の再稼動前に、熱風循環系の熱風を排気口から熱風循環系の外に排気するので、耐炎化炉内に残留する粉塵を低減でき、以って再稼動後の初期に生じる耐炎化繊維束の品質低下を防ぐことができるとしている。
特許3610659号公報
In response to this problem, for example, Patent Document 1 proposes a flameproof furnace in which an exhaust port is provided in a hot air circulation path. According to this flameproofing furnace, the hot air in the hot air circulation system is exhausted from the exhaust port to the outside of the hot air circulation system before restarting after cleaning the inside of the furnace, so that dust remaining in the flameproofing furnace can be reduced. Thus, it is possible to prevent deterioration in the quality of the flame-resistant fiber bundle that occurs in the initial stage after re-operation.
Japanese Patent No. 3610659

しかしながら、特許文献1では、耐炎化炉の再稼動後の初期に生じる耐炎化繊維束の品質低下を防ぐことはできるものの、粉塵の発生を抑制できるわけではないため、耐炎化炉の清掃の頻度を低減することはできない。
本発明は、前記事情に鑑みてなされたものであって、高品質な炭素繊維を得ることができ、かつ長期的な連続稼動が可能な耐炎化炉及び炭素繊維の製造方法を目的とする。
However, in Patent Document 1, although it is possible to prevent the deterioration of the quality of the flame-resistant fiber bundle that occurs in the initial stage after the restart of the flame-resistant furnace, it is not possible to suppress the generation of dust, so the frequency of cleaning the flame-resistant furnace is low. Can not be reduced.
This invention is made | formed in view of the said situation, Comprising: It aims at the flame-proofing furnace which can obtain a high quality carbon fiber, and a long-term continuous operation, and the manufacturing method of carbon fiber.

前記の課題を達成するために、本発明は以下の構成を採用した。
[1] 以下の熱風循環系と、排出手段とを有する耐炎化炉。
(1)熱風循環系
熱処理室と、熱風循環路とを有し、
熱処理室は、多段の走行域を折り返しながら走行する前駆体繊維束に熱風を吹きつけて耐炎化処理し、
熱風循環路は、熱風を熱処理室内に吹き込み、熱処理室外に排出することにより、熱風を熱風循環系内で循環させる。
(2)排出手段
前駆体繊維束の初期走行域を通過した熱風を、熱風循環系の外に排出する。
[2] 前記排出手段が排ガス燃焼装置と集塵装置とを有する[1]に記載の耐炎化炉。
[3] [1]または[2]に記載の耐炎化炉を用いる炭素繊維の製造方法。
[4] 複数の耐炎化炉を用いた炭素繊維の製造方法において、少なくとも最初の耐炎化処理を行う耐炎化炉が、[1]または[2]に記載の耐炎化炉である炭素繊維の製造方法。
In order to achieve the above object, the present invention adopts the following configuration.
[1] A flameproof furnace having the following hot air circulation system and discharge means.
(1) Hot air circulation system It has a heat treatment chamber and a hot air circulation path,
The heat treatment chamber is flameproofed by blowing hot air on the precursor fiber bundle that travels while folding back the multi-stage traveling area,
The hot air circulation path circulates the hot air in the hot air circulation system by blowing hot air into the heat treatment chamber and discharging it out of the heat treatment chamber.
(2) Discharge means The hot air that has passed through the initial travel region of the precursor fiber bundle is discharged out of the hot air circulation system.
[2] The flameproof furnace according to [1], wherein the discharge means includes an exhaust gas combustion device and a dust collector.
[3] A method for producing carbon fiber using the flameproofing furnace according to [1] or [2].
[4] In the method for producing carbon fiber using a plurality of flameproofing furnaces, the production of carbon fiber wherein the flameproofing furnace performing at least the first flameproofing treatment is the flameproofing furnace described in [1] or [2] Method.

本発明の耐炎化炉及び炭素繊維の製造方法によれば、高品質な炭素繊維を得ることができ、かつ耐炎化炉の長期的な連続稼動が可能となる。   According to the flameproofing furnace and carbon fiber manufacturing method of the present invention, high-quality carbon fiber can be obtained, and long-term continuous operation of the flameproofing furnace becomes possible.

本発明の耐炎化炉は、熱風循環系と、排出手段とを有する。熱風循系は、図1に示すように、多段の走行域を折り返しながら走行する前駆体繊維束に熱風を吹きつけて耐炎化処理する熱処理室2と、熱風を前記熱処理室2内に吹き込み、熱処理室2外に排出することにより、熱風を熱風循環系内で循環させる熱風循環路8とを有する。
前記熱処理室2内には、前駆体繊維束1の各走行域に配された熱風を吹き込むための熱風吹出口4と、各走行域に配された熱風を熱処理室2外に排出する熱風排出口5及び5aを備えている。また、熱風循環路8の経路途中には、熱風を加熱する加熱器6と、熱風の風速を制御する送風器7とが設けられている。また、前駆体繊維束1から発生するHCN等のガスの濃度を一定値以下に抑えるため、これらのガスを含んだ熱風を、熱風循環系の外に排出するための排気ファン16、及びガスを処理するための排ガス燃焼装置17を設けていてもよい。
The flameproofing furnace of the present invention has a hot air circulation system and discharge means. As shown in FIG. 1, the hot air circulation system includes a heat treatment chamber 2 that blows hot air on a precursor fiber bundle that travels while turning back and forth in a multi-stage traveling region, and flame-resistant treatment, and blows hot air into the heat treatment chamber 2. A hot air circulation path 8 is provided for circulating hot air in the hot air circulation system by discharging the heat treatment chamber 2 to the outside.
In the heat treatment chamber 2, hot air outlets 4 for blowing hot air disposed in each traveling region of the precursor fiber bundle 1 and hot air exhaust for discharging the hot air disposed in each traveling region to the outside of the heat treatment chamber 2. Outlets 5 and 5a are provided. Further, a heater 6 for heating the hot air and a blower 7 for controlling the wind speed of the hot air are provided in the middle of the hot air circulation path 8. Further, in order to suppress the concentration of gas such as HCN generated from the precursor fiber bundle 1 to a certain value or less, an exhaust fan 16 for exhausting hot air containing these gases out of the hot air circulation system, and gas An exhaust gas combustion device 17 for processing may be provided.

前駆体繊維束1は、耐炎化炉10の熱処理室2側壁に設けたスリットから熱処理室2内に送入され、熱処理室2内を直線的に走行した後、対面の側壁のスリットから熱処理室2外に一旦送出され、熱処理室2外の側壁に設けられたガイドロール3によって折り返され、再び熱処理室2内に送入される。このように、前駆体繊維束1は複数のガイドロール3によって走行方向を複数回折り返すことで、熱処理室2内への送入送出を複数回繰り返して、熱処理室2内を多段で、全体として図1の下から上に向けて移動する。なお、熱処理室2内での前駆体繊維束1の折り返し回数は特に限定されず、耐炎化炉の規模等によって適宜設計される。なおガイドロール3は、熱処理室2の内部に設けてもよい。
前駆体繊維束1は、折り返しながら熱処理室2内を走行している間に、熱風吹出口4から吹き付けられる熱風によって耐炎化処理されて、耐炎化繊維束または予備耐炎化繊維束となる。なお、図示しないが、前駆体繊維束1は紙面に対して垂直な方向に複数本並行するように引き揃えられた幅広のシート状の形態を有している。
The precursor fiber bundle 1 is fed into the heat treatment chamber 2 from a slit provided on the side wall of the heat treatment chamber 2 of the flameproofing furnace 10, travels linearly in the heat treatment chamber 2, and then passes through the slit on the opposite side wall to the heat treatment chamber. 2 is once sent out, folded back by a guide roll 3 provided on a side wall outside the heat treatment chamber 2, and again fed into the heat treatment chamber 2. As described above, the precursor fiber bundle 1 is repeatedly diffracted in a plurality of directions by a plurality of guide rolls 3, so that the feeding and sending into the heat treatment chamber 2 is repeated a plurality of times, and the heat treatment chamber 2 is multi-staged as a whole. It moves from bottom to top in FIG. The number of turns of the precursor fiber bundle 1 in the heat treatment chamber 2 is not particularly limited, and is appropriately designed depending on the scale of the flameproofing furnace. The guide roll 3 may be provided inside the heat treatment chamber 2.
The precursor fiber bundle 1 is flame-resistant by hot air blown from the hot air outlet 4 while traveling in the heat treatment chamber 2 while being turned back into a flame-resistant fiber bundle or a preliminary flame-resistant fiber bundle. In addition, although not shown in figure, the precursor fiber bundle 1 has a wide sheet-like form that is aligned so that a plurality of the precursor fiber bundles 1 are parallel to each other in a direction perpendicular to the paper surface.

熱風吹出口4は、その吹き出し面に多孔板等の抵抗体及びハニカム等の整流部材(ともに不図示)を配して圧力損失を持たせるのが好ましい。整流部材により、熱処理室2内に吹き込む熱風を整流し、熱処理室2内により均一な風速の熱風を吹き込むことができる。
熱風排出口5及び5aは、熱風吹出口4と同様に、その吸い込み面に多孔板等の抵抗体を配して圧力損失を持たせてもよいが、持たせなくてもよく、必要に応じて適宜決定される。
The hot air outlet 4 is preferably provided with a pressure loss by arranging a resistor such as a perforated plate and a rectifying member such as a honeycomb (both not shown) on the blowing surface. The flow of hot air blown into the heat treatment chamber 2 can be rectified by the flow regulating member, and hot air having a uniform wind speed can be blown into the heat treatment chamber 2.
As with the hot air outlet 4, the hot air outlets 5 and 5a may be provided with a pressure loss by arranging a resistor such as a perforated plate on the suction surface. To be determined as appropriate.

熱風吹出口4によって熱処理室2内に吹き込まれた熱風は、熱処理室2内を矢印の方向、すなわち排出口5側に向かって流れながら前駆体繊維束1を加熱する。下流に達した熱風は、熱風排出口5によって熱処理室2外に排出され、熱風循環路8に導かれる。そして、熱風循環路8の途中に設けられた加熱器6によって所望の温度に加熱され、送風器7によって風速が制御された上で、再び熱風吹出口4から熱処理室2内に吹き込まれる。このようにして、耐炎化炉10は、熱処理室2と熱風循環路8からなる熱風循環系によって、熱処理室2内に所定の温度と風速の熱風を流すことができるようになっている。
なお、本発明の耐炎化炉10に用いられる加熱器6としては、所望の機能を有していれば特に限定されず、例えば電気ヒーター等の公知の加熱器を用いればよい。送風器7に関しても、所望の機能を有していれば特に限定されず、例えば軸流ファン等の公知の送風器を用いればよい。
The hot air blown into the heat treatment chamber 2 by the hot air outlet 4 heats the precursor fiber bundle 1 while flowing in the heat treatment chamber 2 in the direction of the arrow, that is, toward the discharge port 5. The hot air reaching the downstream is discharged out of the heat treatment chamber 2 through the hot air discharge port 5 and guided to the hot air circulation path 8. And it heats to desired temperature with the heater 6 provided in the middle of the hot air circulation path 8, and after blowing the air speed by the air blower 7, it blows in the heat processing chamber 2 again from the hot air blower outlet 4. FIG. In this manner, the flameproofing furnace 10 can flow hot air at a predetermined temperature and wind speed into the heat treatment chamber 2 by the hot air circulation system including the heat treatment chamber 2 and the hot air circulation path 8.
The heater 6 used in the flameproofing furnace 10 of the present invention is not particularly limited as long as it has a desired function. For example, a known heater such as an electric heater may be used. The blower 7 is not particularly limited as long as it has a desired function. For example, a known blower such as an axial fan may be used.

本発明の耐炎化炉10は、前駆体繊維束1の初期走行域を通過した熱風を、熱処理室2と熱風循環路8からなる熱風循環系の外に排出する排出手段とを備えることを特徴としている。排出手段は、熱風排出口5aと排出路11によって構成される。熱処理室2内の前駆体繊維の初期走行域を流れる熱風は、熱風排出口5aから排出路11に導かれて、熱風循環系の外に排出される。なお、排出路11には、排気ファン12を設けて、熱風排出口5aからの熱風の排出を補助するのが好ましい。
ここで前駆体繊維束1の初期走行域とは、耐炎化初期に相当する前駆体繊維束1の走行域のことを表す。具体的に、どの走行域までを初期走行域とするかは、耐炎化炉の大きさ、熱処理温度、前駆体繊維束1の種類、耐炎化の進行度合い等によっても異なるが、図1の耐炎化炉10においては、およそ下から2段目までが初期走行域の目安である。
The flameproofing furnace 10 of the present invention includes a discharge means for discharging the hot air that has passed through the initial travel region of the precursor fiber bundle 1 out of the hot air circulation system including the heat treatment chamber 2 and the hot air circulation path 8. It is said. The discharge means is constituted by the hot air discharge port 5 a and the discharge path 11. The hot air flowing in the initial travel region of the precursor fiber in the heat treatment chamber 2 is guided to the discharge path 11 from the hot air discharge port 5a and is discharged out of the hot air circulation system. In addition, it is preferable to provide the exhaust path 12 with the exhaust fan 12, and to assist discharge of the hot air from the hot air discharge port 5a.
Here, the initial travel region of the precursor fiber bundle 1 represents the travel region of the precursor fiber bundle 1 corresponding to the early stage of flame resistance. Specifically, up to which traveling region is set as the initial traveling region depends on the size of the flameproofing furnace, the heat treatment temperature, the type of the precursor fiber bundle 1, the progress of the flameproofing, etc. In the converter 10, the approximate range from the bottom to the second stage is the initial travel range.

熱処理室2を通過する熱風のうち、排出手段を通じて熱風循環系の外に排出される熱風の割合は、熱風排出口5及び熱風排出口5aの配置数等によっても異なるが、熱処理室2から排出される熱風の2.5〜35%が、排出手段を通じて熱風循環系の外に排出されるのが好ましい。 Of the hot air passing through the heat treatment chamber 2, the ratio of the hot air discharged through the discharge means to the outside of the hot air circulation system varies depending on the number of hot air discharge ports 5 and hot air discharge ports 5a, etc., but is discharged from the heat treatment chamber 2. It is preferable that 2.5 to 35% of the hot air to be discharged is discharged out of the hot air circulation system through the discharge means.

前駆体繊維束1からのシリコーン系油剤の揮発物は、熱処理室2内への送入直後から数分の間、すなわち初期走行域において顕著に発生する。そのため、初期走行域を流れた熱風中には、シリコーン系油剤の揮発物が多く含まれている。ゆえに、初期走行域を通過した熱風を、熱風循環系の外へ排出してやれば、熱風循環系に滞留するシリコーン系油剤の揮発物を大幅に低減させることができる。該揮発物の滞留を低減できれば、該揮発物から生じる粉塵の発生も減少する。
このように、熱風排出手段を備えた耐炎化炉10は、熱エネルギーの損失が少ないという熱風循環方式の利点を有しながら、熱風循環方式の欠点である粉塵の滞留を低減できる。ゆえに、耐炎化炉内の清掃の頻度を低減できるため、従来の耐炎化炉に比べてメンテナンス費用を大幅に軽減できる。また、耐炎化炉の長期的な連続稼動が可能となることで、耐炎化繊維の生産性が向上できる。さらには、粉塵による耐炎化繊維の品質低下を抑えることができるので、高品質な耐炎化繊維束を均一かつ安定して製造できる。
The volatiles of the silicone-based oil agent from the precursor fiber bundle 1 are remarkably generated for several minutes immediately after being fed into the heat treatment chamber 2, that is, in the initial running region. For this reason, the hot air flowing through the initial travel region contains a large amount of volatile substances of silicone oil. Therefore, if the hot air that has passed through the initial travel region is discharged out of the hot air circulation system, the volatiles of the silicone-based oil that stays in the hot air circulation system can be greatly reduced. If the retention of the volatile matter can be reduced, the generation of dust generated from the volatile matter is also reduced.
As described above, the flameproofing furnace 10 provided with the hot air discharge means can reduce the retention of dust, which is a drawback of the hot air circulation method, while having the advantage of the hot air circulation method that there is little loss of thermal energy. Therefore, since the frequency of cleaning in the flameproofing furnace can be reduced, the maintenance cost can be greatly reduced as compared with the conventional flameproofing furnace. In addition, the long-term continuous operation of the flameproofing furnace becomes possible, so that the productivity of the flameproofing fiber can be improved. Furthermore, since the quality deterioration of the flame-resistant fiber due to dust can be suppressed, a high-quality flame-resistant fiber bundle can be produced uniformly and stably.

排出手段によって循環系の外に排出される熱風中には、シリコーン系油剤の揮発物の他に、前駆体繊維束1が耐炎化する際に発生するHCN等のガス等も含まれている。従って、シリコーン系油剤の揮発物を固体の酸化シリコーン粒子まで酸化し、かつHCN等のガスも酸化処理できるような排ガス燃焼装置13を排出手段に備えることが好ましい。
また、熱風排出口5aによって取り込まれた熱風中には、粉塵が多く含まれるため、粉塵を集塵するための集塵装置14を排出手段に備えることが好ましい。
なお、本発明の耐炎化炉10に用いる排ガス燃焼装置13としては、所望の機能を有していれば特に限定されず、公知の排ガス燃焼装置を用いればよい。また、集塵装置14に関しても、所望の機能を有していれば特に限定されず、例えばバグフィルター等の公知の集塵装置を用いればよい。また、排ガス燃焼装置13及び集塵装置14は単数に限定されず、機能分担や性能強化等を目的として複数設けてもよい。
The hot air discharged out of the circulation system by the discharging means includes gas such as HCN generated when the precursor fiber bundle 1 becomes flame resistant, in addition to the volatiles of the silicone-based oil agent. Therefore, it is preferable to provide the exhaust means with an exhaust gas combustion device 13 that can oxidize the volatiles of the silicone-based oil to solid silicone oxide particles and also oxidize a gas such as HCN.
Further, since the hot air taken in by the hot air discharge port 5a contains a lot of dust, it is preferable to provide the discharge means with a dust collecting device 14 for collecting the dust.
The exhaust gas combustion device 13 used in the flameproofing furnace 10 of the present invention is not particularly limited as long as it has a desired function, and a known exhaust gas combustion device may be used. The dust collector 14 is not particularly limited as long as it has a desired function. For example, a known dust collector such as a bag filter may be used. Further, the exhaust gas combustion device 13 and the dust collection device 14 are not limited to a single number, and a plurality may be provided for the purpose of sharing functions or enhancing performance.

また、排出手段から排出される熱風を補うために、外気取入口15を設けて、そこから外気(酸化性雰囲気)を補充してもよい。外気取入口15の設置場所は、所望の機能を果せれば特に限定されないが、好ましくは加熱器6の雰囲気の流れの上流側の循環炉8に配置される。これにより、取り込んだ外気を加熱器6で加熱してから熱処理室2内に送り込むことができる。なお、外気取入口15には、外気に混入する粉塵等を除去するためにフィルタ(不図示)を備えていることが好ましい。外気取入口15からの外気の取り込みには、送風ファンや調整弁(ともに不図示)等を用いて、その取り込み量を制御してもよいが、排出手段からの熱風の排出に応じて受動的に取り込まれてもよい。   Moreover, in order to supplement the hot air discharged from the discharge means, the outside air intake 15 may be provided, and the outside air (oxidizing atmosphere) may be supplemented therefrom. The installation location of the outside air inlet 15 is not particularly limited as long as it can perform a desired function, but is preferably disposed in the circulation furnace 8 on the upstream side of the flow of the atmosphere of the heater 6. Thereby, the taken-out outside air can be sent into the heat treatment chamber 2 after being heated by the heater 6. The outside air inlet 15 is preferably provided with a filter (not shown) in order to remove dust and the like mixed in the outside air. For taking in the outside air from the outside air inlet 15, the intake amount may be controlled using a blower fan, a regulating valve (both not shown) or the like, but passively according to the discharge of hot air from the discharge means. May be included.

さらには、排出手段に設けた廃熱回収装置(不図示)によって、排出路11を通過する熱風から廃熱回収を行い、回収された廃熱を外気取入口15から取り込まれる外気の加熱に用いることもできる。これにより、あらかじめ加熱した外気を耐炎化炉10内に送り込むことができ、加熱器6の負担を低減できる。なお、排ガス燃焼装置に廃熱回収装置を組み込むこともできる。   Further, the waste heat recovery device (not shown) provided in the discharge means recovers waste heat from the hot air passing through the discharge path 11 and uses the recovered waste heat for heating the outside air taken in from the outside air inlet 15. You can also. Thereby, the external air heated previously can be sent in into the flame-proofing furnace 10, and the burden of the heater 6 can be reduced. Note that a waste heat recovery device can be incorporated into the exhaust gas combustion device.

本発明の耐炎化炉には、例えば図2に示す耐炎化炉20のように、初期走行域と後期走行域との間に仕切り板9を設けていてもよい。仕切り板9を設けることで、熱処理室2内を初期走行域に該当する熱処理区画2aと後期走行域に該当する熱処理区画2bとに区分けでき、初期走行域を流れる熱風を効率的に熱風排出口5aに導くことができる。なお、仕切り板9は、熱処理区画2aと熱処理区画2bとの間を完全に仕切っていてもよいが、部分的に仕切っているだけでもよい。なお、図2の耐炎化炉20の符号について、図1の耐炎化炉10の各構成と同様の構成物に関しては、便宜上、図1と同じ符号を付して、説明を省略する。   In the flameproofing furnace of the present invention, a partition plate 9 may be provided between the initial traveling area and the late traveling area, for example, as in the flameproofing furnace 20 shown in FIG. By providing the partition plate 9, the inside of the heat treatment chamber 2 can be divided into a heat treatment section 2a corresponding to the initial traveling area and a heat treatment section 2b corresponding to the latter traveling area, and the hot air flowing through the initial traveling area can be efficiently discharged into the hot air outlet. 5a. The partition plate 9 may completely partition between the heat treatment compartment 2a and the heat treatment compartment 2b, or may only partly partition. For the reference numerals of the flameproofing furnace 20 in FIG. 2, the same reference numerals as those in FIG.

前記においては、いわゆる横型耐炎化炉について説明したが、熱処理室2が上下方向に延びる縦型耐炎化炉も全く同様に構成することができる。
また、本発明の耐炎化炉10、20は炭素繊維の製造工程で複数使用してもよい。さらには、図3に示す従来の耐炎化炉30と組み合わせて用いてもよい。シリコーン油剤由来の揮発物は、その大部分が耐炎化処理の初期において発生するため、複数の耐炎化炉を用いた炭素繊維の製造においては、少なくとも最初の耐炎化処理を行う耐炎化炉に、本発明の耐炎化炉10、20を用いることが好ましい。これにより、前駆体繊維束1からの揮発物を熱処理室2内から効率よく取り除くことができ、製造ライン全体での粉塵の発生を抑制できる。よって、本発明の耐炎化炉10、20を用いれば、複数の耐炎化炉を使用した場合においても、複数の耐炎化炉の長期的な連続運転が可能となる。
また、本発明の耐炎化炉10、20は、主に炭素繊維を得るための前駆体繊維束1の耐炎化処理に好ましく用いられるが、他にも、例えば糸やフィルム、シート等といった各種の熱処理にも使用できる。なお、図3の耐炎化炉30に付した各構成の符号において、図1の耐炎化炉10の各構成と同様の構成には、図1と同じ符号を付して、説明を省略する。
In the above description, a so-called horizontal flameproofing furnace has been described. However, a vertical flameproofing furnace in which the heat treatment chamber 2 extends in the vertical direction can be configured in exactly the same manner.
Moreover, you may use multiple flameproofing furnaces 10 and 20 of this invention in the manufacturing process of carbon fiber. Furthermore, you may use in combination with the conventional flameproofing furnace 30 shown in FIG. Since most of the volatiles derived from the silicone oil are generated at the beginning of the flameproofing treatment, in the production of carbon fiber using a plurality of flameproofing furnaces, at least the first flameproofing furnace that performs the flameproofing treatment, It is preferable to use the flameproofing furnaces 10 and 20 of the present invention. Thereby, the volatile matter from the precursor fiber bundle 1 can be efficiently removed from the heat treatment chamber 2, and generation of dust in the entire production line can be suppressed. Therefore, if the flameproofing furnaces 10 and 20 of the present invention are used, a plurality of flameproofing furnaces can be operated continuously for a long time even when a plurality of flameproofing furnaces are used.
The flameproofing furnaces 10 and 20 of the present invention are preferably used mainly for the flameproofing treatment of the precursor fiber bundle 1 for obtaining carbon fibers, but various other types such as yarns, films, sheets, etc. Can also be used for heat treatment. In addition, in the code | symbol of each structure attached | subjected to the flameproofing furnace 30 of FIG. 3, the code | symbol same as each structure of the flameproofing furnace 10 of FIG. 1 is attached | subjected, and description is abbreviate | omitted.

次に、本発明の耐炎化炉10、20を用いた炭素繊維の製造方法について説明する。本発明の炭素繊維の製造方法に用いられる前駆体繊維としては、ポリアクリロニトリル系繊維束、ピッチ系繊維、フェノール系繊維等の公知の前駆体繊維を挙げることができるが、コストと性能のバランスから、好ましくはポリアクリロニトリル系が用いられる。
ポリアクリロニトリル系繊維束は、アクリルニトリル系重合体を有機溶剤あるいは無機溶剤に溶解し、通常用いられる方法にて紡糸されるが、特にその紡糸方法、及び紡糸条件に制限はない。
Next, the manufacturing method of the carbon fiber using the flameproofing furnaces 10 and 20 of this invention is demonstrated. Examples of the precursor fiber used in the carbon fiber production method of the present invention include known precursor fibers such as polyacrylonitrile fiber bundles, pitch fibers, and phenol fibers, but from the balance of cost and performance. A polyacrylonitrile system is preferably used.
The polyacrylonitrile fiber bundle is prepared by dissolving an acrylonitrile polymer in an organic solvent or an inorganic solvent and spinning by a commonly used method, but there are no particular restrictions on the spinning method and spinning conditions.

アクリロニトリル系重合体の成分の割合としては特に制限はないが、アクリロニトリルを85重量%以上、より好ましくは90重量%以上を含有する重合体を使用する。アクリロニトリル系重合体としては、アクリロニトリル単独重合体またはアクリロニトリル共重合体、あるいはこれら重合体の混合重合体が好ましく使用される。
アクリロニトリル共重合体は、アクリロニトリルと共重合しうる単量体とアクリロニトリルとの共重合生成物である。アクリロニトリルと共重合しうる単量体としては、メチル(メタ)アクリレ−ト、エチル(メタ)アクリレ−ト、プロピル(メタ)アクリレ−ト、ブチル(メタ)アクリレ−ト、ヘキシル(メタ)アクリレ−ト等の(メタ)アクリル酸エステル類、塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類、(メタ)アクリル酸、イタコン酸、クロトン酸等の酸類及びそれらの塩類やマレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α−メチルスチレン、酢酸ビニル、更にはスチレンスルホン酸ソ−ダ、アリルスルホン酸ソ−ダ、β−スチレンスルホン酸ソ−ダ、メタアリルスルホン酸ソ−ダ等のスルホン基を含む重合性不飽和単量体、2−ビニルピリジン、2−メチル−5−ビニルピリジン等のピリジン基を含む重合性不飽和単量体等が挙げられるが、これらに限定されない。
Although there is no restriction | limiting in particular as a ratio of the component of an acrylonitrile type polymer, The polymer containing 85 weight% or more of acrylonitrile, More preferably, 90 weight% or more is used. As the acrylonitrile-based polymer, an acrylonitrile homopolymer, an acrylonitrile copolymer, or a mixed polymer of these polymers is preferably used.
The acrylonitrile copolymer is a copolymerized product of a monomer that can be copolymerized with acrylonitrile and acrylonitrile. Monomers that can be copolymerized with acrylonitrile include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and hexyl (meth) acrylate. (Meth) acrylic acid esters such as vinyl chloride, vinyl halides such as vinyl chloride, vinyl bromide, vinylidene chloride, acids such as (meth) acrylic acid, itaconic acid, crotonic acid and their salts and maleic imides, Phenylmaleimide, (meth) acrylamide, styrene, α-methylstyrene, vinyl acetate, styrene sulfonic acid soda, allyl sulfonic acid soda, β-styrene sulfonic acid soda, methallyl sulfonic acid soda A polymerizable unsaturated monomer containing a sulfone group such as 2-vinylpyridine, 2-methyl-5-vinylpyridine and the like Examples thereof include, but are not limited to, polymerizable unsaturated monomers containing an amine group.

アクリロニトリル共重合体の重合法については、従来公知の溶液重合、懸濁重合、乳化重合等を適用できる。アクリロニトリル共重合体の溶液作製に使用される溶媒としては、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、塩化亜鉛水溶液、硝酸等の公知の溶媒を使用できる。なお、アクリロニトリル共重合体の紡糸方法には、湿式紡糸法、乾湿式紡糸法、乾式紡糸法等の公知の紡糸方法を適用できる。
このようにして得られた凝固糸は、次いで一次延伸される。一次延伸の方法としては、公知の方法を用いることができるが、好ましくは浴中延伸が用いられる。浴中延伸は、50〜98℃程度の凝固糸を凝固浴中または延伸浴中で延伸する延伸方法である。浴中延伸は、凝固糸に対して1回または2回以上行われる。この他にも、一部空中延伸した後に浴中延伸する等、複数の延伸方法を組み合わせてもよい。また、一次延伸の前後、あるいは一次延伸と同時に、公知の方法による洗浄処理を行ってもよい。
As the polymerization method of the acrylonitrile copolymer, conventionally known solution polymerization, suspension polymerization, emulsion polymerization and the like can be applied. As the solvent used for preparing the acrylonitrile copolymer solution, known solvents such as dimethyl sulfoxide, dimethylacetamide, dimethylformamide, zinc chloride aqueous solution, nitric acid and the like can be used. It should be noted that known spinning methods such as a wet spinning method, a dry wet spinning method, and a dry spinning method can be applied to the spinning method of the acrylonitrile copolymer.
The coagulated yarn thus obtained is then primarily drawn. As a method for primary stretching, a known method can be used, but stretching in a bath is preferably used. Stretching in a bath is a stretching method in which a coagulated yarn of about 50 to 98 ° C. is stretched in a coagulation bath or in a stretching bath. The drawing in the bath is performed once or twice or more on the coagulated yarn. In addition to this, a plurality of stretching methods such as partially stretching in the air and then stretching in the bath may be combined. Moreover, you may perform the washing process by a well-known method before and after primary extending | stretching, or simultaneously with primary extending | stretching.

このようにして得られたポリアクリロニトリル系繊維からなる前駆体繊維束1には、次いで紡糸工程油剤処理が行われ、さらに二次延伸処理が行われる。なお、前駆体繊維束1の油剤処理は、この紡糸工程油剤処理と、後に行われる耐炎化処理直前の油剤処理(耐炎化工程油剤処理)の計2回行われる。このとき少なくともどちらか一方の油剤処理において、シリコーン系化合物を含む油剤(シリコーン系油剤)を用いることが好ましい。すなわち、紡糸工程と耐炎化工程油剤処理で付与される油剤の組み合わせとしては、以下の3つが挙げられる。
1)紡糸工程油剤:シリコーン系油剤、耐炎化工程油剤:シリコーン系油剤
2)紡糸工程油剤:シリコーン系油剤、耐炎化工程油剤:非シリコーン系油剤
3)紡糸工程油剤:非シリコーン系油剤、耐炎化工程油剤:シリコーン系油剤
The precursor fiber bundle 1 composed of the polyacrylonitrile fiber thus obtained is then subjected to a spinning process oil treatment and further subjected to a secondary stretching treatment. In addition, the oil agent treatment of the precursor fiber bundle 1 is performed twice in total, that is, the spinning step oil agent treatment and the oil agent treatment (flame resistance step oil agent treatment) immediately before the flame resistance treatment to be performed later. At this time, it is preferable to use an oil containing a silicone compound (silicone oil) in at least one of the oil agent treatments. That is, the following three are mentioned as a combination of the oil agent provided by the spinning process and the flameproofing process oil agent treatment.
1) Spinning process oil: silicone-based oil, flameproofing process oil: silicone-based oil 2) Spinning process oil: silicone-based oil, flameproofing process oil: non-silicone-based oil 3) Spinning process oil: non-silicone-based oil, flameproofing Process oil: Silicone oil

紡糸工程油剤処理によって、紡糸工程における前駆体繊維束1の収束性、柔軟性、平滑性、工程安定性、及び帯電防止性が向上する。さらに耐炎化処理及び炭素化処理における、通過性、収束性、及び融着防止性が向上する。
特に、シリコーン系油剤は、前駆体繊維束1に対して優れた収束性と工程安定性を与えることができ、さらに耐炎化処理及び炭素化処理における優れた通過性を得ることができ、特に炭素化処理での融着防止に顕著な効果を発揮する。
なお、シリコーン系油剤に含まれるシリコーン系化合物としては、アミノ変性シリコーンが好ましく用いられる。アミノ変性シリコーンの中でも、特に側鎖1級アミノ変性シリコーン、側鎖1,2級アミノ変性シリコーン、あるいは両末端アミノ変性シリコーンが好ましく用いられる。
The spinning process oil treatment improves the convergence, flexibility, smoothness, process stability, and antistatic properties of the precursor fiber bundle 1 in the spinning process. Furthermore, in the flame resistance treatment and the carbonization treatment, passability, convergence, and anti-fusing properties are improved.
In particular, the silicone-based oil agent can give excellent convergence and process stability to the precursor fiber bundle 1, and can also obtain excellent passability in flameproofing treatment and carbonization treatment, particularly carbon. Demonstrates remarkable effect in preventing fusion in the heat treatment.
An amino-modified silicone is preferably used as the silicone compound contained in the silicone oil. Among amino-modified silicones, side-chain primary amino-modified silicone, side-chain 1, secondary amino-modified silicone, or both-end amino-modified silicone is particularly preferably used.

紡糸工程油剤処理は、前駆体繊維束1に対して均一に付与するために、浴中延伸後または洗浄後の水膨潤状態にある前駆体繊維束1に行うことが好ましい。
前駆体繊維束1に紡糸工程油剤を付与する方法については特に制限はないが、一般に、油剤と水を含む処理液が入った油剤処理槽に、前駆体繊維束1を浸漬して油剤を付着させるのが、工業的な面から好ましい。
紡糸工程油剤処理による前駆体繊維束1の油剤の付着量は、乾燥した前駆体繊維束1に対して0.1〜3.0質量%が好ましい。油剤の付着量を調整する方法としては、例えば処理液中の油剤濃度の調整、または前駆体繊維束1に浸漬させた処理液をニップロール等によって絞ることで調整できる。
The spinning process oil agent treatment is preferably performed on the precursor fiber bundle 1 in a water-swollen state after stretching in the bath or after washing in order to uniformly apply the precursor fiber bundle 1 to the precursor fiber bundle 1.
There is no particular limitation on the method of applying the spinning process oil to the precursor fiber bundle 1, but generally, the precursor fiber bundle 1 is immersed in an oil treatment tank containing a treatment liquid containing an oil and water, and the oil is attached. It is preferable from the industrial viewpoint.
As for the adhesion amount of the oil agent of the precursor fiber bundle 1 by a spinning process oil agent process, 0.1-3.0 mass% is preferable with respect to the dried precursor fiber bundle 1. FIG. As a method of adjusting the adhesion amount of the oil agent, for example, the oil agent concentration in the treatment liquid can be adjusted, or the treatment liquid immersed in the precursor fiber bundle 1 can be adjusted by squeezing with a nip roll or the like.

1回目の油剤処理、すなわち紡糸工程油剤処理を終えた前駆体繊維束1には、次いで公知の方法によって乾燥緻密化処理及び後延伸処理が行われた後、2回目の油剤処理、すなわち耐炎化工程油剤処理が行われる。なお、耐炎化工程油剤処理を行う目的は、紡糸工程油剤処理と同様であるが、油剤の付着をより確実なものとするために行われる。
耐炎化工程油剤処理における耐炎化工程油剤の付与方法については特に制限はないが、前記の紡糸工程油剤処理と同様の方法を用いることができる。また、前駆体繊維束1への耐炎化工程油剤の付着量及び付着量の調整方法も、前記の紡糸工程油剤処理に順ずることができる。
なお、前記油剤処理を経た前駆体繊維束1を、水分を多く含んだ状態で耐炎化処理すると、シリコーン系油剤由来の粉塵の発生量が増加する。シリコーン系油剤由来の粉塵発生量と、前駆体繊維束1に含まれる水分との因果関係は明らかではないものの、前駆体繊維束1を充分に乾燥させてから耐炎化処理を行うことが重要である。
The precursor fiber bundle 1 that has finished the first oil agent treatment, that is, the spinning step oil agent treatment, is then subjected to a drying densification treatment and a post-stretching treatment by a known method, and then a second oil agent treatment, that is, flame resistance. Process oil treatment is performed. The purpose of performing the flameproofing process oil treatment is the same as that of the spinning process oil treatment, but is performed in order to make the adhesion of the oil more reliable.
Although there is no restriction | limiting in particular about the provision method of the flameproofing process oil agent in a flameproofing process oil agent process, The method similar to the said spinning process oil agent process can be used. Further, the adhesion amount of the flameproofing process oil agent to the precursor fiber bundle 1 and the method for adjusting the adhesion amount can also follow the spinning process oil agent treatment.
In addition, if the precursor fiber bundle 1 that has undergone the oil agent treatment is subjected to flame resistance treatment in a state of containing a large amount of moisture, the generation amount of dust derived from the silicone oil agent increases. Although the causal relationship between the amount of dust generated from the silicone-based oil and the moisture contained in the precursor fiber bundle 1 is not clear, it is important that the precursor fiber bundle 1 be sufficiently dried before performing the flame resistance treatment. is there.

耐炎化工程油剤処理された前駆体繊維束1は、充分に乾燥された後、次いで本発明の耐炎化炉10または20に送入され、耐炎化処理される。
前駆体繊維束1の耐炎化条件としては、200〜300℃の熱風中、緊張あるいは延伸条件下で、好ましくは耐炎化処理後の耐炎化繊維の密度が1.30g/cm〜1.40g/cmになるまで耐炎化処理するのが好ましい。1.30g/cm未満では耐炎化の進行度が不充分であり、耐炎化処理後に行われる前炭素化処理及び炭素化処理の際に単糸間の融着を生じやすく、得られる炭素繊維束の品質が低下する。また、耐炎化繊維の密度が1.40g/cmを超えると、前炭素化処理及び炭素化処理の際に、耐炎化繊維束に酸素が過度に導入され、最終的な炭素繊維の内部構造が緻密にならず、得られる炭素繊維束の品質が低下する。
Flame proofing process After the precursor fiber bundle 1 treated with the oil is sufficiently dried, it is then fed into the flame proofing furnace 10 or 20 of the present invention and flame proofed.
As the flameproofing conditions of the precursor fiber bundle 1, the density of the flameproofed fiber after the flameproofing treatment is preferably 1.30 g / cm 3 to 1.40 g in hot air at 200 to 300 ° C. under tension or stretching conditions. It is preferable to carry out the flameproofing treatment until it becomes / cm 3 . If it is less than 1.30 g / cm 3 , the degree of progress of flame resistance is insufficient, and the carbon fiber obtained is likely to cause fusion between single yarns during pre-carbonization treatment and carbonization treatment performed after the flame resistance treatment. The quality of the bundle is reduced. Further, when the density of the flame resistant fiber exceeds 1.40 g / cm 3 , oxygen is excessively introduced into the flame resistant fiber bundle during the pre-carbonization treatment and the carbonization treatment, and the final internal structure of the carbon fiber is obtained. Does not become dense, and the quality of the obtained carbon fiber bundle is deteriorated.

一方、耐炎化繊維束を焼成加工して難燃性織布等の耐熱製品を製造する場合は、それに用いる耐炎化繊維束の密度は1.40g/cmを超えていても構わない。ただし、1.50g/cmを超えると、耐炎化繊維束を焼成加工する時間が長くなるため、経済的に好ましくない。 On the other hand, when a heat-resistant product such as a flame-retardant woven fabric is produced by firing the flame-resistant fiber bundle, the density of the flame-resistant fiber bundle used therefor may exceed 1.40 g / cm 3 . However, if it exceeds 1.50 g / cm 3 , the time for firing the flameproof fiber bundle becomes longer, which is not economically preferable.

本発明の耐炎化炉10または20の熱処理室2内を満たす熱風(酸化性雰囲気)としては、酸素を含む気体であれば特に制限されないが、工業生産の面からすると、空気を用いるのが経済面、安全面で特に優れている。また、酸化能力を調整する目的で、熱風中の酸素濃度を変更することもできる。  The hot air (oxidizing atmosphere) that fills the heat treatment chamber 2 of the flameproofing furnace 10 or 20 of the present invention is not particularly limited as long as it is a gas containing oxygen, but from the viewpoint of industrial production, it is economical to use air. It is particularly excellent in terms of safety and safety. Further, the oxygen concentration in the hot air can be changed for the purpose of adjusting the oxidation ability.

耐炎化処理によって得られた耐炎化繊維束は、次いで炭素化炉に送入されて前炭素化処理される。前炭素化処理における最高温度は550〜800℃が好ましい。
300〜500℃の温度領域においては、500℃/分以下の昇温速度で前炭素化処理を行うのが、炭素繊維の機械的特性を向上させるために好ましい。より好ましくは300℃/分以下である。
炭素化炉内を満たす不活性雰囲気としては、窒素、アルゴン、ヘリウム等の公知の不活性雰囲気を採用できるが、経済性の面から窒素が好ましい。
The flame-resistant fiber bundle obtained by the flame resistance treatment is then fed into a carbonization furnace and pre-carbonized. The maximum temperature in the pre-carbonization treatment is preferably 550 to 800 ° C.
In the temperature range of 300 to 500 ° C., it is preferable to perform the pre-carbonization treatment at a heating rate of 500 ° C./min or less in order to improve the mechanical properties of the carbon fiber. More preferably, it is 300 degrees C / min or less.
As the inert atmosphere that fills the carbonization furnace, a known inert atmosphere such as nitrogen, argon, or helium can be adopted, but nitrogen is preferable from the viewpoint of economy.

前炭素化処理によって得られた前炭素化繊維束は、次いで炭素化炉に送入されて炭素化処理される。炭素繊維の機械的特性を向上させるためには、1200〜3000℃の不活性雰囲気中、1000〜1200℃の温度領域において、500℃/分以下の昇温速度で炭素化処理するのが好ましい。
不活性雰囲気については、窒素、アルゴン、ヘリウム等の公知の不活性雰囲気を採用できるが、経済性の面から窒素が好ましい。
The pre-carbonized fiber bundle obtained by the pre-carbonization treatment is then fed into a carbonization furnace and carbonized. In order to improve the mechanical properties of the carbon fiber, it is preferable to perform carbonization treatment at a temperature increase rate of 500 ° C./min or less in a temperature range of 1000 to 1200 ° C. in an inert atmosphere of 1200 to 3000 ° C.
As the inert atmosphere, a known inert atmosphere such as nitrogen, argon, helium or the like can be adopted, but nitrogen is preferable from the viewpoint of economy.

このようにして得られた炭素繊維束には、必要に応じて、炭素繊維束の取り扱い性や、マトリックス樹脂との親和性を向上させるため、サイジング剤を付与してもよい。サイジング剤の種類としては、所望の特性を得ることができれば特に限定されないが、例えば、エポキシ樹脂、ポリエーテル樹脂、エポキシ変性ポリウレタン樹脂、ポリエステル樹脂を主成分としたサイジング剤が挙げられる。サイジング剤の付与は公知の方法を用いることができる。
さらに炭素繊維束には、必要に応じて、繊維強化複合材料マトリックス樹脂との親和性及び接着性の向上を目的とした電解酸化処理や酸化処理を行ってもよい。
The carbon fiber bundle obtained in this manner may be provided with a sizing agent as necessary in order to improve the handleability of the carbon fiber bundle and the affinity with the matrix resin. The type of the sizing agent is not particularly limited as long as desired characteristics can be obtained, and examples thereof include a sizing agent mainly composed of an epoxy resin, a polyether resin, an epoxy-modified polyurethane resin, and a polyester resin. A known method can be used to apply the sizing agent.
Further, the carbon fiber bundle may be subjected to electrolytic oxidation treatment or oxidation treatment for the purpose of improving the affinity and adhesiveness with the fiber reinforced composite material matrix resin as necessary.

本発明よれば、熱風循環系に存在する粉塵を効率的に除去できるので、耐炎化炉10の長期的な連続稼動が可能になる。これにより、粉塵除去に要するメンテナンス費用が低減でき、かつ耐炎化繊維の生産性が向上できる。また、熱処理室2内の粉塵の滞留が低減されるため、糸切れのない耐炎化繊維を得ることができ、ひいては高品質な炭素繊維を製造が可能となる。   According to the present invention, dust existing in the hot air circulation system can be efficiently removed, so that the flameproof furnace 10 can be continuously operated for a long time. Thereby, the maintenance cost required for dust removal can be reduced, and the productivity of the flameproof fiber can be improved. Moreover, since the accumulation of dust in the heat treatment chamber 2 is reduced, flameproof fibers without yarn breakage can be obtained, and as a result, high-quality carbon fibers can be produced.

以下に、実施例によって本発明をさらに具体的に説明するが、本発明はこれらによって限定されない。なお、実施例の評価方法は次の方法に拠った。
<含有シリコーン量(Si残存量)測定>
ポリアクリロニトリル系前駆体繊維束からなる前駆体繊維束1及び耐炎化繊維束の測定サンプルを、縦2cm、横4cm、幅0.5cmのアクリル樹脂製板に隙間無く横方向に均一に巻いてから、通常の蛍光X線分析方法により蛍光X線強度を測定し、含有シリコーン量、すなわちSi残存量(蛍光X線強度、単位:cps)を求めた。なお、測定サンプルの巻き作業は、測定サンプルが全て同一の巻き長になるように慎重に行った。なお、蛍光X線強度の測定器には、蛍光X線分析装置(型式:ZSX100e リガク社製)を用いた。
前駆体繊維束1及び耐炎化繊維束への油剤の付着斑、あるいは測定誤差等を考慮し、測定時間毎のサンプルの測定数はn=10とし、その平均値を求めてSi残存量とした。
前記測定によって求められた前駆体繊維束1のSi残存量をA1、また、前記測定によって得られた耐炎化繊維束のSi残存量をA2とし、下記式(1)で計算して得られた値をSi残存率とした。
Si残存率(%)=A2/A1×100 (1)
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. In addition, the evaluation method of the Example was based on the following method.
<Measurement of contained silicone amount (Si remaining amount)>
After the precursor fiber bundle 1 and the flame-resistant fiber bundle measurement sample made of a polyacrylonitrile-based precursor fiber bundle are uniformly wound in a lateral direction on an acrylic resin plate having a length of 2 cm, a width of 4 cm, and a width of 0.5 cm without gaps. Then, the fluorescent X-ray intensity was measured by an ordinary fluorescent X-ray analysis method, and the amount of silicone contained, that is, the Si residual amount (fluorescent X-ray intensity, unit: cps) was determined. Note that the measurement sample was carefully wound so that all the measurement samples had the same winding length. A fluorescent X-ray analyzer (model: ZSX100e, manufactured by Rigaku Corporation) was used as a measuring device for fluorescent X-ray intensity.
Taking into account the adhesion spots of the oil agent to the precursor fiber bundle 1 and the flameproof fiber bundle, or measurement errors, the number of samples measured per measurement time was set to n = 10, and the average value was obtained as the Si residual amount. .
The amount of Si remaining in the precursor fiber bundle 1 obtained by the measurement was A1, and the amount of Si remaining in the flame-resistant fiber bundle obtained by the measurement was A2. The value was made into Si residual rate.
Si residual ratio (%) = A2 / A1 × 100 (1)

(実施例1)
アクリロニトリル共重合体を、共重合体濃度が21質量%となるようにジメチルアセトアミドに溶解して紡糸原液とした。この紡糸原液を12000ホールのノズルを用いて濃度70質量%、温度35℃のジメチルアセトアミド水溶液中に吐出して湿式紡糸した。次に、凝固繊維を空中延伸にて1.5倍の延伸を行った後、さらに沸水中で浴中延伸して3倍の延伸を行い、同時に洗浄及び脱溶剤も行った。
その後、紡糸工程油剤の水分散液が入った油剤処理槽に凝固糸を浸漬し、紡糸工程の油剤を1.0質量%付着させた後、140℃の加熱ローラにて乾燥緻密化し、加圧水蒸気中にて3倍延伸し、単繊維繊度1.2dtexのポリアクリロニトリル系繊維束を得た。
前記で用いた紡糸工程油剤の水分散液は、以下の原料と方法を用いて調整された。まず、油剤主剤には両末端アミノ変性シリコーン(25℃での粘度450cSt、アミノ当量5700)、油剤乳化物にはノニオン系乳化剤(ポリオキシエチレンステアリルエーテル[エチレンオキサイド:12モル、HLB:13.9])を用い、これらの混合物にイオン交換水を加え、ホモミキサーで乳化し、さらに乳化粒径が0.3μmになるよう高圧ホモジナイザーで圧力を調整して二次乳化を行うことで調整し、紡糸工程油剤の水分散液とした。
Example 1
The acrylonitrile copolymer was dissolved in dimethylacetamide so that the copolymer concentration was 21% by mass to obtain a spinning dope. This spinning dope was discharged into a dimethylacetamide aqueous solution having a concentration of 70% by mass and a temperature of 35 ° C. using a 12,000-hole nozzle to perform wet spinning. Next, the coagulated fiber was stretched 1.5 times by air stretching, and further stretched in a bath in boiling water to stretch 3 times, and at the same time, washing and solvent removal were performed.
Thereafter, the coagulated yarn is immersed in an oil agent treatment tank containing an aqueous dispersion of the spinning process oil agent, and 1.0 mass% of the oil agent in the spinning process is attached, and then dried and densified with a heating roller at 140 ° C. The polyacrylonitrile fiber bundle having a single fiber fineness of 1.2 dtex was obtained.
The aqueous dispersion of the spinning process oil used above was prepared using the following raw materials and methods. First, an oil-based main agent is an amino-modified silicone at both ends (viscosity 450 cSt at 25 ° C., amino equivalent 5700), and an oil-based emulsion is a nonionic emulsifier (polyoxyethylene stearyl ether [ethylene oxide: 12 mol, HLB: 13.9]. ]), Ion-exchanged water is added to these mixtures, emulsified with a homomixer, and further adjusted by performing secondary emulsification by adjusting the pressure with a high-pressure homogenizer so that the emulsion particle size becomes 0.3 μm, An aqueous dispersion of the spinning process oil was obtained.

次いで、このポリアクリロニトリル系繊維束を、紡糸工程と同じ油剤の水分散液が入った油剤処理槽に浸漬し、耐炎化工程油剤処理を行って、油剤を0.1質量%付着させた。その後、ニップローラにてポリアクリロニトリル系繊維束の水分を絞ってSi残存量を調整することにより、ポリアクリロニトリル系繊維束からなる前駆体繊維束1を得た。なお、ニップローラで絞られた後の繊維束の含水率は36.8%であり、ポリアクリロニトリル系繊維束のSi残存量は、5659cpsであった。  Next, this polyacrylonitrile fiber bundle was immersed in an oil agent treatment tank containing an aqueous dispersion of the same oil agent as that in the spinning process, and subjected to a flame resistance process oil agent treatment to deposit 0.1% by mass of the oil agent. Then, the precursor fiber bundle 1 which consists of a polyacrylonitrile fiber bundle was obtained by restrict | squeezing the water | moisture content of a polyacrylonitrile fiber bundle with a nip roller, and adjusting Si residual amount. The water content of the fiber bundle after being squeezed by the nip roller was 36.8%, and the residual amount of Si in the polyacrylonitrile fiber bundle was 5659 cps.

耐炎化工程直前の油剤処理を終えた前駆体繊維束1を、4台の耐炎化炉に連続して送入し、耐炎化処理を4回に分けて行った。
まず、1回目の耐炎化処理、すなわち予備耐炎化処理として、図2に示す本発明の耐炎化炉20を用いた。熱処理室2内の温度は231℃に設定し、前駆体繊維束1を15分間かけて緊張下に耐炎化処理した。なお、前駆体繊維束1の初期走行域に相当する熱処理区画2a内の走行時間は225秒であった。
The precursor fiber bundle 1 that had been subjected to the oil treatment immediately before the flameproofing process was continuously fed into four flameproofing furnaces, and the flameproofing process was divided into four times.
First, the flameproofing furnace 20 of the present invention shown in FIG. 2 was used as the first flameproofing process, that is, the preliminary flameproofing process. The temperature in the heat treatment chamber 2 was set to 231 ° C., and the precursor fiber bundle 1 was flameproofed under tension over 15 minutes. The traveling time in the heat treatment section 2a corresponding to the initial traveling region of the precursor fiber bundle 1 was 225 seconds.

1回目の耐炎化処理で予備耐炎化処理された前駆体繊維束1を、次に、図3に示す構造の従来の耐炎化炉30を3台用意し、これらに続けて送入し、2〜4回目の耐炎化処理を行った。3台の耐炎化炉30の熱処理室2内は、設定温度をそれぞれ236℃、243℃、252℃とし、前駆体繊維束1を各15分間かけて緊張下に耐炎化処理した。このようにして、4回の耐炎化処理によって得られた耐炎化繊維束は、1.35g/cmの耐炎化密度を有していた。 The precursor fiber bundle 1 subjected to the preliminary flameproofing treatment in the first flameproofing treatment is then prepared, and three conventional flameproofing furnaces 30 having the structure shown in FIG. The fourth flameproofing treatment was performed. In the heat treatment chambers 2 of the three flameproofing furnaces 30, the set temperatures were 236 ° C., 243 ° C., and 252 ° C., respectively, and the precursor fiber bundle 1 was flameproofed under tension for 15 minutes each. In this way, the flame-resistant fiber bundle obtained by the four times flame-proofing treatment had a flame-resistant density of 1.35 g / cm 3 .

耐炎化炉20で予備耐炎化処理を行った際の、前駆体繊維束1の時間経過毎のSi残存量及びSi残存率を、図4及び図5に示す。前駆体繊維束1に付着しているSi残存量は、耐炎化炉20への送入から30秒の間に急激に低下し、30秒後のSi残存率は86.5%、120秒後では83.0%、600秒後では80.0%であった。なお、600秒以降は、Si残存量の変化がほとんど認められず、耐炎化繊維束のSi残存率は、79.9%であった。従って、シリコーン系油剤からの揮発物は、その大部分が耐炎化炉への送入後3分弱の間に生じていることが確認された。本実施例における耐炎化炉20の熱処理室2aの滞在時間は233秒だったので、大部分の揮発物は、排出手段によって熱風循環系の外に排出されたと推察された。
2週間にわたり前記の耐炎化処理を継続したが、耐炎化炉20及び従来の耐炎化炉30において、多孔板の目詰まりは発生しなかった。
(比較例1)
1回目の耐炎化処理に図3の従来の耐炎化炉30を用いた以外、すなわち4台の耐炎化炉30に前駆体繊維束1を連続投入した以外は、実施例1と同様の条件にして、密度1.35g/cmの耐炎化繊維束を得た。また、得られた耐炎化繊維束のSi残存率は79.9%であった。
この状態にて耐炎化処理を継続したが、運転開始1週間目になって、1回目の耐炎化処理に用いていた従来の耐炎化炉30で、前駆体繊維束1の糸切れが多発した。運転を停止して従来の耐炎化炉30内を観察すると、熱風吹出口4に設けた多孔板に粉塵による目詰まりが発生しており、熱風吹出口4がほぼ閉塞していた。
FIGS. 4 and 5 show the Si residual amount and Si residual rate of the precursor fiber bundle 1 over time when the preliminary flameproofing treatment is performed in the flameproofing furnace 20. The remaining amount of Si adhering to the precursor fiber bundle 1 rapidly decreases in 30 seconds after being fed into the flameproofing furnace 20, and the Si remaining rate after 30 seconds is 86.5%, after 120 seconds. Was 83.0%, and after 600 seconds, it was 80.0%. In addition, after 600 seconds, the change of Si residual amount was hardly recognized, and the Si residual rate of the flame-resistant fiber bundle was 79.9%. Therefore, it was confirmed that most of the volatiles from the silicone-based oil were generated in less than 3 minutes after being fed into the flameproofing furnace. Since the residence time of the heat treatment chamber 2a of the flameproofing furnace 20 in this example was 233 seconds, it was assumed that most of the volatiles were discharged out of the hot air circulation system by the discharge means.
Although the above flameproofing treatment was continued for 2 weeks, clogging of the perforated plate did not occur in the flameproofing furnace 20 and the conventional flameproofing furnace 30.
(Comparative Example 1)
Except for using the conventional flameproofing furnace 30 of FIG. 3 for the first flameproofing treatment, that is, except that the precursor fiber bundle 1 was continuously fed into four flameproofing furnaces 30, the same conditions as in Example 1 were used. Thus, a flame-resistant fiber bundle having a density of 1.35 g / cm 3 was obtained. Further, the Si residual ratio of the obtained flame-resistant fiber bundle was 79.9%.
In this state, the flameproofing treatment was continued, but in the conventional flameproofing furnace 30 used for the first flameproofing treatment in the first week of operation, yarn breakage of the precursor fiber bundle 1 occurred frequently. . When the operation was stopped and the inside of the conventional flameproofing furnace 30 was observed, clogging due to dust occurred in the porous plate provided in the hot air outlet 4, and the hot air outlet 4 was almost closed.

前記の実施例1及び比較例1によって、本発明の耐炎化炉20は、シリコーン系油剤からの揮発物の大部分が熱風循環系の外に排出されるため、従来の耐炎化炉30に比して熱処理室2内の粉塵の発生を抑制でき、これにより、耐炎化炉の長期的な連続稼動が可能であると評価された。  According to Example 1 and Comparative Example 1 described above, the flameproofing furnace 20 of the present invention is more than the conventional flameproofing furnace 30 because most of the volatiles from the silicone-based oil are discharged out of the hot air circulation system. Thus, the generation of dust in the heat treatment chamber 2 can be suppressed, and it has been evaluated that long-term continuous operation of the flameproofing furnace is possible.

本発明の耐炎化炉及び炭素繊維の製造方法によれば、熱エネルギーの損失が少ないという熱風循環方式の利点を有しながら、熱風循環方式の欠点である粉塵の滞留を低減できる。従って、耐炎化炉の清掃に伴うメンテナンス費用が低減でき、かつ耐炎化炉の長期的な連続稼動が可能になることで、耐炎化繊維束の生産効率を向上できる。
また、本発明の耐炎化炉は、熱風循環系内の粉塵の滞留を低減できるので、熱風吹出口の閉塞が起こりにくい。従って、本発明の耐炎化炉を用いた炭素繊維の製造方法によれば、熱風の循環が長期にわたり安定して行われるので、前駆体繊維束の糸切れを低減できる。また、粉塵が低減されるので、前駆体繊維束への粉塵の付着も低減される。ゆえに、高品質な炭素繊維を得ることができる。
複数の耐炎化炉を用いた炭素繊維の製造において、少なくとも最初の耐炎化処理を行う耐炎化炉に本発明の耐炎化炉を用いれば、前駆体繊維束から発生する揮発物を熱風循環系の外に排出できるため、最初の耐炎化炉及びそれ以降の耐炎化炉おける糸切れや発火を減少できる。これにより、高品質な耐炎化繊維を得ることができ、以って高品質な炭素繊維が製造できる。
According to the flameproofing furnace and the carbon fiber manufacturing method of the present invention, it is possible to reduce dust retention, which is a disadvantage of the hot air circulation system, while having the advantage of the hot air circulation system that there is little loss of thermal energy. Therefore, the maintenance cost accompanying the cleaning of the flameproofing furnace can be reduced, and the flameproofing furnace can be operated continuously for a long time, so that the production efficiency of the flameproofing fiber bundle can be improved.
Moreover, since the flameproofing furnace of the present invention can reduce the accumulation of dust in the hot air circulation system, the hot air outlet is not easily blocked. Therefore, according to the carbon fiber manufacturing method using the flameproofing furnace of the present invention, hot air is circulated stably over a long period of time, so that yarn breakage of the precursor fiber bundle can be reduced. Moreover, since dust is reduced, adhesion of dust to the precursor fiber bundle is also reduced. Therefore, a high quality carbon fiber can be obtained.
In the production of carbon fibers using a plurality of flameproofing furnaces, if the flameproofing furnace of the present invention is used in at least the first flameproofing furnace, the volatile matter generated from the precursor fiber bundle is removed from the hot air circulation system. Since it can discharge outside, yarn breakage and ignition in the first flameproofing furnace and the subsequent flameproofing furnaces can be reduced. Thereby, a high-quality flameproof fiber can be obtained, and thus a high-quality carbon fiber can be produced.

本発明の耐炎化炉を示す概略側面図。The schematic side view which shows the flameproofing furnace of this invention. 本発明の別形態の耐炎化炉を示す概略側面図。The schematic side view which shows the flameproofing furnace of another form of this invention. 従来の耐炎化炉を示す概略側面図。The schematic side view which shows the conventional flameproofing furnace. 前駆体繊維束のSi残存量と耐炎化処理時間との関係を示した図。The figure which showed the relationship between Si residual amount of a precursor fiber bundle, and flameproofing processing time. 前駆体繊維束のSi残存率と耐炎化処理時間との関係を示した図。The figure which showed the relationship between Si residual rate of a precursor fiber bundle, and flame-proofing processing time.

符号の説明Explanation of symbols

1 前駆体繊維束
2 熱処理室
2a、2b 熱処理区画
3 ガイドロール
4 熱風吹出口
5、5a 熱風排出口
6 加熱器
7 送風器
8 熱風循環路
9 仕切り板
10、20 耐炎化炉
11 排出路
12、16 排気ファン
13、17 排ガス燃焼装置
14 集塵装置
15 外気取り入れ口
30 従来の耐炎化炉
DESCRIPTION OF SYMBOLS 1 Precursor fiber bundle 2 Heat processing chamber 2a, 2b Heat processing section 3 Guide roll 4 Hot-air outlet 5, 5a Hot-air outlet 6 Heater 7 Blower 8 Hot-air circulation path 9 Partition plate 10, 20 Flame-resistant furnace 11 Exhaust path 12, 16 Exhaust fans 13, 17 Exhaust gas combustion device 14 Dust collector 15 Outside air intake 30 Conventional flameproofing furnace

Claims (4)

以下の熱風循環系と、排出手段とを有する耐炎化炉。
(1)熱風循環系
熱処理室と、熱風循環路とを有し、
熱処理室は、多段の走行域を折り返しながら走行する前駆体繊維束に熱風を吹きつけて耐炎化処理し、
熱風循環路は、熱風を熱処理室内に吹き込み、該熱処理室内における前駆体繊維束の初期走行域以外から熱風を熱処理室外に排出することにより、熱風を熱風循環系内で循環させる。
(2)排出手段
前駆体繊維束の初期走行域を通過した熱風を、熱風循環系の外に排出する。
A flameproof furnace having the following hot air circulation system and discharge means.
(1) Hot air circulation system It has a heat treatment chamber and a hot air circulation path,
The heat treatment chamber is flameproofed by blowing hot air on the precursor fiber bundle that travels while folding back the multi-stage traveling area,
The hot air circulation path circulates the hot air in the hot air circulation system by blowing hot air into the heat treatment chamber and discharging the hot air from outside the initial travel region of the precursor fiber bundle in the heat treatment chamber.
(2) Discharge means The hot air that has passed through the initial travel region of the precursor fiber bundle is discharged out of the hot air circulation system.
前記排出手段が排ガス燃焼装置と集塵装置とを有する請求項1に記載の耐炎化炉。   The flameproof furnace according to claim 1, wherein the discharge means includes an exhaust gas combustion device and a dust collector. 請求項1または2に記載の耐炎化炉を用いる炭素繊維の製造方法。   A carbon fiber production method using the flameproofing furnace according to claim 1 or 2. 複数の耐炎化炉を用いた炭素繊維の製造方法において、少なくとも最初の耐炎化処理を行う耐炎化炉が、請求項1または2に記載の耐炎化炉である炭素繊維の製造方法。   The carbon fiber manufacturing method using a plurality of flameproofing furnaces, wherein the flameproofing furnace performing at least the first flameproofing process is the flameproofing furnace according to claim 1 or 2.
JP2007072773A 2007-03-20 2007-03-20 Flameproofing furnace and carbon fiber manufacturing method Active JP5022073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072773A JP5022073B2 (en) 2007-03-20 2007-03-20 Flameproofing furnace and carbon fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072773A JP5022073B2 (en) 2007-03-20 2007-03-20 Flameproofing furnace and carbon fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2008231611A JP2008231611A (en) 2008-10-02
JP5022073B2 true JP5022073B2 (en) 2012-09-12

Family

ID=39904756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072773A Active JP5022073B2 (en) 2007-03-20 2007-03-20 Flameproofing furnace and carbon fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP5022073B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6064409B2 (en) * 2012-07-27 2017-01-25 東レ株式会社 Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP6372095B2 (en) * 2014-03-06 2018-08-15 三菱ケミカル株式会社 Carbon fiber manufacturing method
KR102090917B1 (en) 2017-02-08 2020-03-18 도레이 카부시키가이샤 Cleaning method of flame resistant furnace and method of manufacturing flame resistant fiber, carbon fiber, graphitized fiber
EP4123065A1 (en) * 2020-03-18 2023-01-25 Toray Industries, Inc. Flame resistant fiber bundles, carbon fiber bundle production method, and flame resistant furnace

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116423A (en) * 1982-12-22 1984-07-05 Toray Ind Inc Manufacture of flame resistant fiber or carbon fiber
JPH04308225A (en) * 1991-04-01 1992-10-30 Asahi Chem Ind Co Ltd Heat treatment apparatus for carbon fiber
JPH10237723A (en) * 1996-12-16 1998-09-08 Toray Ind Inc The treatment furnace and production of carbon fiber

Also Published As

Publication number Publication date
JP2008231611A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP6028840B2 (en) Carbon fiber manufacturing method
JP6424932B2 (en) Method of manufacturing oxidized fiber bundle, and method of manufacturing carbon fiber bundle
JP5022073B2 (en) Flameproofing furnace and carbon fiber manufacturing method
JP2006299439A (en) Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same
JP2010133059A (en) Flameproofing furnace, and method for producing carbon fiber using the same
JP5313788B2 (en) Carbon fiber precursor fiber bundle and method for producing the same
JPH1112874A (en) Acrylic fiber yarn, and method and apparatus for steam-drawing of the same, and carbon fiber
JP3892212B2 (en) Carbon fiber precursor fiber bundle
JP2012201997A (en) Flameproofing furnace apparatus
CN110168154B (en) Method for cleaning refractor oven and method for producing refractory fiber, carbon fiber, and graphitized fiber
JP4809757B2 (en) Flame-resistant heat treatment apparatus and method for producing flame-resistant fiber bundle
JPS6052206B2 (en) Method for manufacturing acrylic carbon fiber
JP5473468B2 (en) Carbon fiber precursor fiber bundle, method for producing the same, and carbon fiber bundle
JP4216873B2 (en) Method for producing carbon fiber precursor fiber bundle
JP2002302828A (en) Acrylonitrile-based precursor filament bundle for carbon fiber and method for producing the same
JPH11286845A (en) Production of acrylic drawn filament yarn
JP4332285B2 (en) Carbon fiber precursor fiber bundle
JP6354926B1 (en) Method for cleaning flameproofing furnace and method for producing flameproofed fiber, carbon fiber and graphitized fiber
JP6232814B2 (en) Acrylic fiber manufacturing method
JP6217342B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
EP3699333B1 (en) Method for manufacturing oxidized fiber bundle, method for manufacturing carbon fiber bundle, and joining apparatus
JP2009150033A (en) Method and apparatus for producing flame retardant fiber
WO2017082309A1 (en) Production method for carbon fiber and production method for flame-resistant fiber
JPH09176923A (en) Precursor for carbon fiber, its production and production of carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120615

R151 Written notification of patent or utility model registration

Ref document number: 5022073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250