JP5021560B2 - Casting equipment for continuous casting - Google Patents

Casting equipment for continuous casting Download PDF

Info

Publication number
JP5021560B2
JP5021560B2 JP2008131962A JP2008131962A JP5021560B2 JP 5021560 B2 JP5021560 B2 JP 5021560B2 JP 2008131962 A JP2008131962 A JP 2008131962A JP 2008131962 A JP2008131962 A JP 2008131962A JP 5021560 B2 JP5021560 B2 JP 5021560B2
Authority
JP
Japan
Prior art keywords
mold
casting
copper plate
cooling water
fixing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008131962A
Other languages
Japanese (ja)
Other versions
JP2009279600A (en
Inventor
宣彰 馬場
浩 榊巻
伸之 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2008131962A priority Critical patent/JP5021560B2/en
Publication of JP2009279600A publication Critical patent/JP2009279600A/en
Application granted granted Critical
Publication of JP5021560B2 publication Critical patent/JP5021560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋼の連続鋳造に際し、特に鋳型内の溶鋼に電磁ブレーキ又は電磁攪拌を選択的に作用させることが可能な電磁コイル(以下、兼用電磁コイルと言う)を有効に使用するための連続鋳造用鋳型設備に関するものである。   The present invention is a continuous for effectively using an electromagnetic coil (hereinafter referred to as a combined electromagnetic coil) capable of selectively applying an electromagnetic brake or electromagnetic stirring to molten steel in a mold during continuous casting of steel. The present invention relates to a casting mold facility.

鋼の連続鋳造において、鋳片の品質を向上させるため、鋳型内の溶鋼を攪拌する電磁攪拌等、電磁力を作用させることが行われており、従来から多くの提案がなされている。   In continuous casting of steel, in order to improve the quality of a slab, electromagnetic force such as electromagnetic stirring that stirs molten steel in a mold is applied, and many proposals have been made conventionally.

例えば特許文献1〜3では、電磁攪拌装置とその印加方法が提案されている。
特開昭62−203648号公報 特開昭63−188461号公報 特開平10−5949号公報
For example, Patent Documents 1 to 3 propose an electromagnetic stirring device and an application method thereof.
JP-A-62-203648 JP-A-63-188461 Japanese Patent Laid-Open No. 10-5949

また、鋳型内溶鋼の電磁攪拌による鋳片表層部の品質改善と、高速鋳造時の吐出流制動による操業安定性確保の使い分けを目的とした兼用電磁コイルが、特許文献4、5で提案されている。
特開2004−322179号公報 特開2005−349454号公報
Patent Documents 4 and 5 propose dual-purpose electromagnetic coils for improving the quality of the slab surface layer by electromagnetic stirring of molten steel in the mold and for ensuring proper operation stability by discharge flow braking during high-speed casting. Yes.
JP 2004-322179 A JP 2005-349454 A

これら特許文献4、5の兼用電磁コイルは、鋳型の各長辺に配置する2n個(nは2以上の自然数。以下同じ。)のティース部それぞれに内側巻き線を施し、その外側からさらに外側巻き線を施してひとまとめにしたn個の電磁コイルからなるものである。このような構成を採用することで、ひとつの電磁コイルで電磁攪拌と電磁ブレーキの溶鋼流動制御の兼用を可能としている。   These dual-purpose electromagnetic coils of Patent Documents 4 and 5 are provided with an inner winding on each of 2n teeth (n is a natural number of 2 or more, the same applies hereinafter) arranged on each long side of the mold, and further outward from the outside. It consists of n electromagnetic coils that are wound together. By adopting such a configuration, it is possible to use both electromagnetic stirring and molten steel flow control of an electromagnetic brake with a single electromagnetic coil.

しかしながら、特許文献1〜5で提案された発明は、いずれも電磁コイルに関する発明であり、コイル本体に関する内容は開示されているが、電磁コイルを収納、配置するための鋳型に関しては、なんら開示や示唆はされていない。   However, the inventions proposed in Patent Documents 1 to 5 are all inventions related to electromagnetic coils, and the contents related to the coil body are disclosed. However, regarding the mold for housing and arranging the electromagnetic coils, no disclosure or There is no suggestion.

鋳型内溶鋼を電磁攪拌するに際し、その攪拌効果を高めるために、電磁コイルの鉄芯を極力溶鋼湯面(メニスカス)に近づけることで、メニスカスにおける磁束密度を高める方法が知られている。   In order to enhance the stirring effect when electromagnetically stirring the molten steel in the mold, a method of increasing the magnetic flux density in the meniscus by bringing the iron core of the electromagnetic coil as close as possible to the molten steel surface (meniscus) is known.

しかしながら、電磁コイルは、鉄芯に巻き線を施した構成であり、コイル上端側のスペースが限られるので、鉄芯をメニスカスに近づけると、排水室を鋳型の上部に設置できなくなり、例えば鋳型の冷却水流路を鋳型の上方部に設けることが困難になる。   However, the electromagnetic coil has a configuration in which the iron core is wound and the space on the upper end side of the coil is limited. Therefore, when the iron core is brought close to the meniscus, the drainage chamber cannot be installed on the upper part of the mold. It becomes difficult to provide the cooling water flow path in the upper part of the mold.

そこで、電磁コイルの鉄芯をメニスカスに近づけることが可能なように、鋳型の構造や電磁コイルを工夫した提案がなされている。例えば特許文献6には、鉄芯をメニスカスに極力近づけることを可能にするために、鉄芯を鋳型の冷却箱の収納室の下方に設け、さらに冷却水の流路を工夫した鋳型が開示されている。
実公昭58−49172号公報
Therefore, proposals have been made to devise the mold structure and electromagnetic coil so that the iron core of the electromagnetic coil can be brought close to the meniscus. For example, Patent Document 6 discloses a mold in which an iron core is provided below a storage chamber of a mold cooling box and a cooling water channel is devised in order to make the iron core as close as possible to the meniscus. ing.
Japanese Utility Model Publication No. 58-49172

また、特許文献7では、鋳型を冷却した後の排水流路を、鋳型銅板の固定用プレート内における鋳造方向上部の水平面方向に加工し、排水ヘッダーを鋳型の両側部に設けた連続鋳造用鋳型が開示されている。
特開2005−305476号公報
Further, in Patent Document 7, the drainage flow path after cooling the mold is processed in a horizontal plane direction above the casting direction in the fixing plate of the mold copper plate, and a continuous casting mold in which drainage headers are provided on both sides of the mold. Is disclosed.
JP 2005-305476 A

しかしながら、この特許文献7で開示された鋳型は、鋳型銅板の固定用プレート内への排水溝を特殊な孔加工により形成しなければならず、加工の難度が高く、製作コストが高くなるという問題がある。   However, the mold disclosed in Patent Document 7 has a problem that the drainage groove into the fixing plate of the mold copper plate has to be formed by a special hole processing, and the processing difficulty is high and the manufacturing cost is high. There is.

また、孔加工によって前記固定用プレートの剛性が低下し、また、鋳型上部に冷却箱がないことから、固定用プレートを背面側から支持できなくなるので、鋳型全体の剛性が低下する。従って、鋳型銅板の固定用プレートの厚みを増加させて対応せざるをえず、電磁コイルと溶鋼の間が離れて磁束密度の低下を招いていた。   Further, the rigidity of the fixing plate is reduced by the hole processing, and since there is no cooling box at the upper part of the mold, the fixing plate cannot be supported from the back side, so that the rigidity of the entire mold is reduced. Therefore, the thickness of the fixing plate for the mold copper plate must be increased to cope with it, and the electromagnetic coil and the molten steel are separated from each other, resulting in a decrease in magnetic flux density.

一方で、鉄芯のコイル巻回部を切り欠いて巻き線を施すことで、電磁コイル上方のスペースを確保し、鉄芯を極力メニスカスまで上げるようにした鋳型が開示されている(例えば特許文献8)。
特開2007−136537号公報
On the other hand, a mold is disclosed in which a coil winding portion of an iron core is cut out and wound to ensure a space above the electromagnetic coil and to raise the iron core to the meniscus as much as possible (for example, Patent Documents). 8).
JP 2007-136537 A

しかしながら、特許文献8で開示された構造では、鉄芯を切り欠いた分だけコイル巻回部の鉄芯が細くなるので、磁束密度の低下に繋がる。   However, in the structure disclosed in Patent Document 8, the iron core of the coil winding portion becomes thinner by the amount of the notch of the iron core, which leads to a decrease in magnetic flux density.

また、図3(a)に示す前記特許文献4、5で開示された兼用電磁コイルの場合、鉄芯(コア部)1を構成するヨーク部1aから突出するティース部1b(コイル巻回部の鉄芯)が細くなって磁束密度が低下する。また、切り欠きの程度では、冷却水流路も具備する、直径が10数mm程度の太い内外巻き線2a,2bを巻回するための空間はほとんどできない。   Further, in the case of the dual-purpose electromagnetic coil disclosed in Patent Documents 4 and 5 shown in FIG. 3A, the tooth portion 1 b (of the coil winding portion) protruding from the yoke portion 1 a constituting the iron core (core portion) 1. The iron core becomes thinner and the magnetic flux density decreases. Moreover, the space for winding the thick inner and outer windings 2a and 2b having a diameter of about several tens of millimeters, which includes the cooling water flow path, can hardly be formed by the degree of the notch.

従って、図3(a)に示す前記特許文献8で開示された電磁コイルのように、鉄芯1における巻き線2の巻回部のみを下げて、電磁コイルの上方に排水室を設置するスペースを確保することは困難で、その結果、攪拌力を増加させる大きな成果が得られない。   Therefore, like the electromagnetic coil disclosed in Patent Document 8 shown in FIG. 3A, the space for installing the drainage chamber above the electromagnetic coil by lowering only the winding portion of the winding 2 in the iron core 1. Is difficult to secure, and as a result, a great result of increasing the stirring force cannot be obtained.

本発明が解決しようとする問題点は、前記兼用電磁コイルは、ティース部を切り欠くことが難しく、また、ティース部のみを下げて、兼用電磁コイルの上方に排水室を設置するスペースを確保することは困難であるという点である。   The problem to be solved by the present invention is that the dual-purpose electromagnetic coil is difficult to cut out the tooth portion, and only the teeth portion is lowered to secure a space for installing the drainage chamber above the dual-purpose electromagnetic coil. That is difficult.

本発明の連続鋳造用鋳型設備は、
鋳型冷却能を低下させずに、特許文献4、5で開示された兼用電磁コイルの電磁攪拌能力を低下させずに、鋳型に収納、設置するために、
鋳型長辺の背面側に配置した電磁コイルに直流電流又は2相以上の多相交流電流を通電することにより、鋳型内溶鋼に電磁ブレーキ又は電磁攪拌を選択的に作用させて鋼を連続鋳造する方法に用いる連続鋳造用鋳型設備であって、
鋳型銅板の背面側に固定用プレートを接触状態で配置した鋳型と、
鋳型各長辺で2n個(nは2以上の自然数)のティース部を有し、各ティース部はそれぞれ内側巻き線が施されると共に、これら2個のティース部をひとまとめにすべく、前記内側巻き線の外側からさらに外側巻き線を施したn個の電磁コイルを備え、
この電磁コイルの下方位置に前記鋳型銅板を冷却する冷却水の給水室を、また、前記電磁コイルの上方位置に排水室を、それぞれ前記固定用プレートと接触させて配置すると共に、前記鋳型銅板の背面側には、前記給水室に繋ぐ冷却水流路を鋳造方向に設ける一方、前記固定用プレートには、前記冷却水流路を通過した後の冷却排水を、入口部から前記冷却水流路と直角の水平方向に設けた水平排水流路を介して前記排水室に導く、鋳造方向の長さLz(mm)が下記式を満たす排水流路を設け、
また、前記鋳型銅板の上部に、前記固定用プレートと同じ高さになるように、非磁性体の鋳型銅板押さえ用板を配置したことを最も主要な特徴としている。
Lm<Lz≦0.3×Lbp
ここで、Lmは溶鋼湯面位置(メニスカス)から鋳型銅板の上端までの距離(mm)、Lbpは鋳型銅板に設けた冷却水流路の下端から固定用プレートに設けた排水流路の上端までの距離(mm)である。
The casting equipment for continuous casting of the present invention is
In order to store and install in a mold without reducing the electromagnetic stirring ability of the combined electromagnetic coil disclosed in Patent Documents 4 and 5 without reducing the mold cooling capacity,
Continuously casting steel by selectively applying an electromagnetic brake or electromagnetic stirring to the molten steel in the mold by passing a direct current or multiphase alternating current of two or more phases to the electromagnetic coil placed on the back side of the long side of the mold A casting apparatus for continuous casting used in the method,
A mold in which a fixing plate is arranged in contact with the back side of the mold copper plate;
Each long side of the mold has 2n teeth (n is a natural number of 2 or more), and each of the teeth is wound on the inner side. Comprising n electromagnetic coils with outer windings applied from the outside of the windings;
A cooling water supply chamber for cooling the mold copper plate is disposed below the electromagnetic coil, and a drain chamber is disposed above the electromagnetic coil in contact with the fixing plate. On the back side, a cooling water flow path connected to the water supply chamber is provided in the casting direction. On the fixing plate, cooling drainage after passing through the cooling water flow path is perpendicular to the cooling water flow path from the inlet . leading to the discharge chamber through the horizontal drainage passage provided in the horizontal direction, setting the drain passage casting direction length Lz to (mm) satisfies the following formula,
The most important feature is that a non-magnetic mold copper plate pressing plate is disposed above the mold copper plate so as to be at the same height as the fixing plate.
Lm <Lz ≦ 0.3 × Lbp
Here, Lm is the distance (mm) from the molten steel surface position (meniscus) to the upper end of the casting copper plate, and Lbp is from the lower end of the cooling water passage provided on the casting copper plate to the upper end of the drainage passage provided on the fixing plate. Distance (mm).

本発明では、鋳型冷却能を低下させずに、鋳型各長辺に配置した2n個のティース部それぞれに施した内側巻き線の外側からさらに外側巻き線を施してひとまとめにしたn個の兼用電磁コイルの、メニスカスにおける磁束密度の低下を最小限に抑えることができる。   In the present invention, the n number of combined electromagnetics obtained by further applying the outer winding from the outside of the inner winding applied to each of the 2n teeth arranged on each long side of the mold without reducing the mold cooling ability. A decrease in magnetic flux density at the meniscus of the coil can be minimized.

以下、本発明の着想から課題解決に至るまでの過程と共に、本発明を実施するための最良の形態について説明する。
発明者等は、前記兼用電磁コイルを設置するための最適な鋳型形状について検討した。
Hereinafter, the best mode for carrying out the present invention will be described together with the process from the idea of the present invention to the solution of the problem.
The inventors studied the optimum mold shape for installing the dual-purpose electromagnetic coil.

鋳型の各長辺に配置する2n個のティース部それぞれに内側巻き線を施し、これら内側巻き線の外側からさらに外側巻き線を施したn個の前記兼用電磁コイルでは、メニスカスと鉄芯の位置を揃える場合、ティース部の上部に内外巻き線分のスペースが必要となる。   Each of the 2n teeth portions arranged on each long side of the mold is provided with an inner winding, and in the n number of dual-purpose electromagnetic coils further provided with an outer winding from the outside of the inner winding, the positions of the meniscus and the iron core When aligning, the space for the inner and outer windings is required at the top of the tooth portion.

従って、兼用電磁コイルの上部に排水室を設ける場合、前記特許文献8の図2に示されるように、鋳型銅板の上端をメニスカスの上方に延ばした形状になって、メニスカスから鋳型銅板の上端までの距離が長くなる。   Therefore, when the drainage chamber is provided on the upper part of the dual-purpose electromagnetic coil, as shown in FIG. 2 of Patent Document 8, the upper end of the mold copper plate is extended above the meniscus, and from the meniscus to the upper end of the mold copper plate. The distance becomes longer.

発明者等が調査した結果、鋳造方向全域に冷却水流路を形成した鋳型銅板では、その上端からメニスカスまでの距離が長くなると、溶鋼に接触していない鋳型銅板の上部に磁束が逃げて、メニスカスにおいて攪拌に寄与する磁束が低下することが分かった。従って、溶鋼を効率的に攪拌するためには、鋳型銅板の上端とメニスカスまでの距離は極力短くする必要がある。   As a result of investigation by the inventors, in the mold copper plate in which the cooling water flow path is formed in the entire casting direction, when the distance from the upper end to the meniscus becomes long, the magnetic flux escapes to the upper part of the mold copper plate not in contact with the molten steel, and the meniscus It was found that the magnetic flux that contributes to stirring is reduced. Therefore, in order to stir the molten steel efficiently, the distance between the upper end of the mold copper plate and the meniscus must be as short as possible.

そこで、発明者等は、鋳型銅板からの排水流路構造について鋭意検討を重ねた。
その結果、図1に示すように、メニスカス11から鋳型銅板12の上端12aまでの距離Lmを極力短くした上で、兼用電磁コイル13の上部に排水室14を設けるスペースを確保するには、下記(1)(2)の排水流路構造が適当であることを見出した。
Therefore, the inventors conducted extensive studies on the structure of the drainage channel from the mold copper plate.
As a result, as shown in FIG. 1, the distance Lm from the meniscus 11 to the upper end 12a of the mold copper plate 12 is shortened as much as possible, and a space for providing the drainage chamber 14 above the dual-purpose electromagnetic coil 13 is as follows. (1) The drainage channel structure of (2) was found to be appropriate.

(1) 鋳型銅板12の背面側に接触状態で配置する固定用プレート15に、鋳型銅板12の背面側に形成した鋳造方向の冷却水流路12bを通過した冷却排水の入口部15aを設ける。 (1) The fixing plate 15 arranged in contact with the back side of the mold copper plate 12 is provided with an inlet 15a for cooling drainage that has passed through the cooling water passage 12b in the casting direction formed on the back side of the mold copper plate 12.

(2) 前記固定用プレート15に、前記冷却排水の入口部15aと排水室14を繋ぐべく前記冷却水流路12bと直角の水平方向に設けた水平排水流路15dと鋳造方向上部に向かう排水流路15bを設ける。この排水流路15bは、例えば固定用プレート15の上部から垂直方向に孔加工を施し、加工後に上部を遮蔽プラグや溶接等で塞ぐことによって簡単に製作できる。 (2) In order to connect the cooling drainage inlet 15a and the drainage chamber 14 to the fixing plate 15, a horizontal drainage channel 15d provided in a horizontal direction perpendicular to the cooling water channel 12b and drainage toward the upper part in the casting direction. A flow path 15b is provided. The drainage flow path 15b can be easily manufactured by, for example, machining a hole in the vertical direction from the upper part of the fixing plate 15, and closing the upper part with a shielding plug or welding after the machining.

また、前記の排水流路構造において、鋳型銅板12の上端12aからメニスカス11までの距離Lmと、固定用プレート15に設ける排水流路15bの鋳造方向長さLzは、取り合いの関係から、下記(A)式で規定することができる。   In the drainage channel structure, the distance Lm from the upper end 12a of the mold copper plate 12 to the meniscus 11 and the casting direction length Lz of the drainage channel 15b provided in the fixing plate 15 are as follows. It can be defined by equation (A).

Lm<Lz …(A)   Lm <Lz (A)

ところで、この排水流路構造の場合、固定用プレートに鋳型銅板の冷却水流路から排水室に向けた水平方向の排水流路を設けただけの特許文献8の図2の構造と比べて、排水ラインが複雑化して圧力損失が大きくなり、冷却水水量が不足する懸念がある。   By the way, in the case of this drainage channel structure, compared with the structure of FIG. 2 of Patent Document 8 in which a horizontal drainage channel from the cooling water channel of the mold copper plate to the drainage chamber is provided on the fixing plate. There is a concern that the line will become complicated and pressure loss will increase, resulting in a shortage of cooling water.

そのため、発明者等は、下記表1に示す排水流路条件で、冷却水の圧力損失を比較した。その結果を表1に併記する。   Therefore, the inventors compared the pressure loss of the cooling water under the drainage channel conditions shown in Table 1 below. The results are also shown in Table 1.

Figure 0005021560
Figure 0005021560

表1より発明例では、特許文献8の図2で示された構造(比較例)と比べて、約0.5kgf/cm2程度の圧力損失増加に留まっており、大きな水量低下には至らないと推定される。 As shown in Table 1, the invention example has an increase in pressure loss of about 0.5 kgf / cm 2 compared to the structure (comparative example) shown in FIG. It is estimated to be.

0.5kgf/cm2程度の圧力損失増加であれば、ポンプ能力に余裕がある場合には、送水量の増加により対応できるからである。仮にポンプ能力が不足する場合も、例えば表1の条件の場合、鋳型銅板12の冷却水流路12bの深さを2mm程度広げる程度の加工を行えば、鋳型冷却水流路系における全体の圧力損失の合計は同等となるからである。 This is because if the pressure loss increases by about 0.5 kgf / cm 2 , if there is a margin in the pump capacity, it can be handled by increasing the amount of water delivered. Even if the pumping capacity is insufficient, for example, in the case of the conditions shown in Table 1, if processing is performed to increase the depth of the cooling water flow path 12b of the mold copper plate 12 by about 2 mm, the total pressure loss in the mold cooling water flow path system is reduced. This is because the sum is equivalent.

発明者等は、特に前記問題点の中でも固定用プレート15の排水側の圧力損失に着目して検討した結果、図2に示すような関係を得た。図2の結果を得た排水流路の仕様は、排水流路15bの鋳造方向長さLz以外は、表1に示す通りとした。   As a result of studying the pressure loss on the drain side of the fixing plate 15 among the above problems, the inventors obtained the relationship shown in FIG. The specifications of the drainage channel that obtained the results of FIG. 2 were as shown in Table 1 except for the casting direction length Lz of the drainage channel 15b.

図2において、排水側の圧力損失増加代は、特許文献8の図2に示される排水流路構造(Lz/Lbp=0)に対して、1kgf/cm2以下とすることが望ましい。1kgf/cm2以下であれば、ポンプ能力の余力で流量を確保することが可能であるからである。また、鋳型銅板12の冷却水流路12bの深さを若干大きくすることによる圧力損失の低減で必要流量に対応できるからである。 In FIG. 2, the pressure loss increase margin on the drain side is desirably 1 kgf / cm 2 or less with respect to the drain flow path structure (Lz / Lbp = 0) shown in FIG. This is because if it is 1 kgf / cm 2 or less, the flow rate can be secured with the remaining capacity of the pump capacity. Further, the required flow rate can be accommodated by reducing the pressure loss by slightly increasing the depth of the cooling water passage 12b of the mold copper plate 12.

一方、1kg/cm2を超えると、例えば鋳型銅板12の冷却水流路12bの深さを4〜5mmも深くする必要があり、鋳片抜熱条件が大きく変化してしまうからである。 On the other hand, if it exceeds 1 kg / cm 2 , for example, it is necessary to make the depth of the cooling water flow path 12b of the mold copper plate 12 as deep as 4 to 5 mm, and the slab heat removal conditions will change greatly.

発明者等は、排水流路15bの鋳造方向長さLzと冷却水流路12bの下端から排水流路15bの上端までの距離Lbpの比(Lz/Lbp)で整理し、排水流路15bの鋳造方向長さLzを(B)式で規定できることを見出した。   The inventors arranged the ratio (Lz / Lbp) of the length Lz in the casting direction of the drainage channel 15b and the distance Lbp from the lower end of the cooling channel 12b to the upper end of the drainage channel 15b to cast the drainage channel 15b. It has been found that the direction length Lz can be defined by the equation (B).

Lz≦0.3×Lbp …(B)   Lz ≦ 0.3 × Lbp (B)

また、前記排水流路構造の場合、固定用プレート15を上方に延長する状態となり、メニスカス11と鋳型銅板12の上端12aまでの距離が長くなる。   In the case of the drainage channel structure, the fixing plate 15 is extended upward, and the distance between the meniscus 11 and the upper end 12a of the mold copper plate 12 is increased.

この場合、例えば鋳込初期に、オペレータによる鋳型内への溶鋼供給量の調整や、鋳型内溶鋼皮張り部除去において、湯面を目視で確認することが困難となる。その結果、鋳込初期の給湯調整が失敗し、溶鋼の鋳型上部へのオーバーフローや、皮張り残存による凝固不良に起因する操業支障が発生する可能性がある。   In this case, for example, in the initial stage of casting, it is difficult to visually check the molten metal surface in the adjustment of the amount of molten steel supplied into the mold by the operator and the removal of the molten steel skinned part in the mold. As a result, the hot water supply adjustment at the initial stage of casting fails, and there is a possibility that an operation trouble due to the overflow of molten steel to the upper part of the mold or the solidification failure due to the remaining skin coating may occur.

更に、固定用プレート15の排水流路15bの鋳造方向長さLzが長いと、特許文献7で開示された鋳型冷却水流路構造のように、固定用プレート15の剛性低下が懸念される。   Further, when the length Lz in the casting direction of the drainage flow path 15b of the fixing plate 15 is long, there is a concern that the rigidity of the fixing plate 15 is lowered as in the mold cooling water flow path structure disclosed in Patent Document 7.

以上より、固定用プレート15の排水流路15bの鋳造方向長さLzは、前記の(A)式と(B)式を満たす条件の範囲内で極力短い方がよい。   From the above, it is preferable that the casting direction length Lz of the drainage flow path 15b of the fixing plate 15 is as short as possible within the range of the conditions satisfying the expressions (A) and (B).

このような排水流路構造の場合、鋳型の幅方向片側或いは両側より給水室16に送水された冷却水は、固定用プレート15に設けられた給水流路15cを介して鋳型銅板12の冷却水流路12bに導かれ、鋳型銅板12を冷却する。   In the case of such a drainage channel structure, the cooling water fed to the water supply chamber 16 from one or both sides in the width direction of the mold is supplied to the cooling water flow of the mold copper plate 12 via the water supply channel 15 c provided in the fixing plate 15. Guided to the path 12b, the mold copper plate 12 is cooled.

鋳型銅板12を冷却した後の冷却排水は、鋳型銅板12の固定用プレート15に設けた入口部15aに流入した後、水平排水流路15d、排水流路15bを経て排水室14に導かれ、排水室14から排水され、兼用電磁コイル13の設置スペースとの干渉が解消できる。 The cooling drainage after cooling the mold copper plate 12 flows into the inlet portion 15a provided in the fixing plate 15 of the mold copper plate 12, and is then led to the drainage chamber 14 through the horizontal drainage channel 15d and the drainage channel 15b. The water is drained from the drainage chamber 14, and interference with the installation space of the dual-purpose electromagnetic coil 13 can be eliminated.

本発明の連続鋳造用鋳型設備は、上記の知見に基づいてなされたもので、以下のような構成となっている。   The mold equipment for continuous casting according to the present invention has been made based on the above knowledge and has the following configuration.

本発明の連続鋳造用鋳型設備は、
鋳型銅板11の背面側に固定用プレート15を接触状態で配置した鋳型と、
鋳型各長辺で2n個のティース部を有し、各ティース部はそれぞれ内側巻き線が施されると共に、これら2個のティース部をひとまとめにすべく、前記内側巻き線の背面側からさらに外側巻き線を施したn個の兼用電磁コイル13を備えている。
The casting equipment for continuous casting of the present invention is
A mold in which a fixing plate 15 is arranged in contact with the back side of the mold copper plate 11;
Each long side of the mold has 2n teeth portions, and each teeth portion is provided with an inner winding, and in order to unite these two teeth portions further from the back side of the inner winding. There are provided n number of electromagnetic coils 13 that are wound.

そして、この兼用電磁コイル13の下方位置に前記鋳型銅板12を冷却する冷却水の給水室16を、また、前記兼用電磁コイル13の上方位置に排水室14を、それぞれ前記固定用プレート15と接触させて配置している。   A cooling water supply chamber 16 for cooling the mold copper plate 12 is in contact with the fixing plate 15 at a position below the dual-purpose electromagnetic coil 13 and a drainage chamber 14 is in a position above the dual-purpose electromagnetic coil 13. It is arranged.

一方、鋳型銅板12の背面側には、前記給水室16に繋ぐ冷却水流路12bを鋳造方向に設けている。また、固定用プレート15には、前記冷却水流路12bを通過した後の冷却排水を、入口部15aから前記冷却水流路12bと直角の水平方向に設けた水平排水流路15dを介して前記排水室14に導く、鋳造方向の長さLz(mm)がLm<Lz≦0.3×Lbpを満たす排水流路15bを鋳造方向に設けている。 On the other hand, a cooling water flow path 12b connected to the water supply chamber 16 is provided on the back side of the mold copper plate 12 in the casting direction. In addition, the drainage of the cooling water after passing through the cooling water flow path 12b is passed through the fixing plate 15 via a horizontal drainage flow path 15d provided in a horizontal direction perpendicular to the cooling water flow path 12b from the inlet portion 15a. A drainage flow path 15b that leads to the chamber 14 and has a length Lz (mm) in the casting direction satisfying Lm <Lz ≦ 0.3 × Lbp is provided in the casting direction.

このような連続鋳造用鋳型設備において、メニスカス11から鋳型銅板12の上端12aまでの距離Lmは、前述の通り、上部へ磁束が逃げることによるメニスカス11での磁束密度低下を最小限とするため、極力小さくする必要がある。   In such a continuous casting mold facility, the distance Lm from the meniscus 11 to the upper end 12a of the mold copper plate 12 is, as described above, to minimize the decrease in magnetic flux density at the meniscus 11 due to the magnetic flux escaping upward. It is necessary to make it as small as possible.

一方、鋳型銅板12の上端12aまでの距離が小さすぎる場合、鋳型内への溶鋼供給量の変化によりメニスカス11が変化した場合、溶鋼17が鋳型銅板12の上部を超える可能性がある。その場合、溶鋼17が鋳型銅板12の上部に拘束して凝固シェルが破断する懸念がある。   On the other hand, when the distance to the upper end 12a of the mold copper plate 12 is too small, the molten steel 17 may exceed the upper part of the mold copper plate 12 when the meniscus 11 changes due to the change in the amount of molten steel supplied into the mold. In this case, there is a concern that the molten steel 17 is restrained on the upper part of the mold copper plate 12 and the solidified shell is broken.

よって、本発明においては、メニスカス11から鋳型銅板12の上端12aまでの距離Lmは50〜100mmとすることが望ましい。   Therefore, in the present invention, the distance Lm from the meniscus 11 to the upper end 12a of the mold copper plate 12 is preferably 50 to 100 mm.

また、万が一溶鋼17が鋳型銅板12の上部を越えた場合でも、溶鋼17が固着して拘束を発生させないことが肝要である。そこで、本発明では、鋳型銅板12の上部に鋳型銅板押さえ用板18を設置している。この鋳型銅板押さえ用板18は、上部に磁束が逃げないように非磁性体の材質であることが必要である。   Moreover, even if the molten steel 17 exceeds the upper part of the mold copper plate 12, it is important that the molten steel 17 adheres and does not generate any restraint. Therefore, in the present invention, the mold copper plate pressing plate 18 is installed on the upper part of the mold copper plate 12. The mold copper plate pressing plate 18 needs to be made of a non-magnetic material so that the magnetic flux does not escape upward.

本発明は上記した例に限らないことは勿論であり、各請求項に記載の技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。   It goes without saying that the present invention is not limited to the above-described examples, and the embodiments may be appropriately changed within the scope of the technical idea described in each claim.

以上の本発明は、連続鋳造であれば、湾曲型、垂直型など、どのような方式の連続鋳造用の鋳型であっても適用できる。   The above-described present invention can be applied to any type of continuous casting mold such as a curved type and a vertical type as long as it is continuous casting.

本発明の連続鋳造用鋳型を示す図面で、(a)は鋳型短辺側から見た側面図、(b)は(a)の矢視A−A図である。BRIEF DESCRIPTION OF THE DRAWINGS It is drawing which shows the casting_mold | template for continuous casting of this invention, (a) is the side view seen from the casting_mold | template short side, (b) is an arrow AA figure of (a). 固定用プレート内における排水側の圧力損失の一例を示す図である。It is a figure which shows an example of the pressure loss by the side of the waste_water | drain in the plate for fixation. (a)は特許文献4、5に示される電磁コイルの概要を示す図、(b)は特許文献8に示される電磁コイルの概要を示す図で、それぞれ紙面上方は平面方向から見た図、紙面下方は側面方向から見た図である。(A) is a figure which shows the outline | summary of the electromagnetic coil shown by patent document 4, 5, (b) is a figure which shows the outline | summary of the electromagnetic coil shown by patent document 8, The figure seen from the plane direction respectively on the paper surface, The lower side of the drawing is a view seen from the side.

符号の説明Explanation of symbols

11 メニスカス
12 鋳型銅板
12a 上端
12b 冷却水流路
13 兼用電磁コイル
14 排水室
15 固定用プレート
15a 冷却排水の入口
15b 排水流路
15d 水平排水流路
16 給水室
17 溶鋼
18 鋳型銅板押え用板
DESCRIPTION OF SYMBOLS 11 Meniscus 12 Mold copper plate 12a Upper end 12b Cooling water flow path 13 Combined electromagnetic coil 14 Drain chamber 15 Fixing plate 15a Cooling drain inlet 15b Drain flow path
15d Horizontal drainage channel 16 Water supply chamber 17 Molten steel 18 Mold copper plate presser plate

Claims (1)

鋳型長辺の背面側に配置した電磁コイルに直流電流又は2相以上の多相交流電流を通電することにより、鋳型内溶鋼に電磁ブレーキ又は電磁攪拌を選択的に作用させて鋼を連続鋳造する方法に用いる連続鋳造用鋳型設備であって、
鋳型銅板の背面側に固定用プレートを接触状態で配置した鋳型と、
鋳型各長辺で2n個(nは2以上の自然数)のティース部を有し、各ティース部はそれぞれ内側巻き線が施されると共に、これら2個のティース部をひとまとめにすべく、前記内側巻き線の外側からさらに外側巻き線を施したn個の電磁コイルを備え、
この電磁コイルの下方位置に前記鋳型銅板を冷却する冷却水の給水室を、また、前記電磁コイルの上方位置に排水室を、それぞれ前記固定用プレートと接触させて配置すると共に、前記鋳型銅板の背面側には、前記給水室に繋ぐ冷却水流路を鋳造方向に設ける一方、前記固定用プレートには、前記冷却水流路を通過した後の冷却排水を、入口部から前記冷却水流路と直角の水平方向に設けた水平排水流路を介して前記排水室に導く、鋳造方向の長さLz(mm)が下記式を満たす水流路を設け、
また、前記鋳型銅板の上部に、前記固定用プレートと同じ高さになるように、非磁性体の鋳型銅板押さえ用板を配置したことを特徴とする連続鋳造用鋳型設備。
Lm<Lz≦0.3×Lbp
ここで、Lmは溶鋼湯面位置(メニスカス)から鋳型銅板の上端までの距離(mm)、Lbpは鋳型銅板に設けた冷却水流路の下端から固定用プレートに設けた排水流路の上端までの距離(mm)である。
Continuously casting steel by selectively applying an electromagnetic brake or electromagnetic stirring to the molten steel in the mold by passing a direct current or multiphase alternating current of two or more phases to the electromagnetic coil placed on the back side of the long side of the mold A casting apparatus for continuous casting used in the method,
A mold in which a fixing plate is arranged in contact with the back side of the mold copper plate;
Each long side of the mold has 2n teeth (n is a natural number of 2 or more), and each of the teeth is wound on the inner side. Comprising n electromagnetic coils with outer windings applied from the outside of the windings;
A cooling water supply chamber for cooling the mold copper plate is disposed below the electromagnetic coil, and a drain chamber is disposed above the electromagnetic coil in contact with the fixing plate. On the back side, a cooling water flow path connected to the water supply chamber is provided in the casting direction. On the fixing plate, cooling drainage after passing through the cooling water flow path is perpendicular to the cooling water flow path from the inlet . leading to the discharge chamber through the horizontal drainage passage provided in the horizontal direction, setting a discharging water flow path casting direction length Lz to (mm) satisfies the following formula,
A continuous casting mold facility, wherein a non-magnetic mold copper plate pressing plate is disposed above the mold copper plate so as to be at the same height as the fixing plate.
Lm <Lz ≦ 0.3 × Lbp
Here, Lm is the distance (mm) from the molten steel surface position (meniscus) to the upper end of the casting copper plate, and Lbp is from the lower end of the cooling water passage provided on the casting copper plate to the upper end of the drainage passage provided on the fixing plate. Distance (mm).
JP2008131962A 2008-05-20 2008-05-20 Casting equipment for continuous casting Active JP5021560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131962A JP5021560B2 (en) 2008-05-20 2008-05-20 Casting equipment for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131962A JP5021560B2 (en) 2008-05-20 2008-05-20 Casting equipment for continuous casting

Publications (2)

Publication Number Publication Date
JP2009279600A JP2009279600A (en) 2009-12-03
JP5021560B2 true JP5021560B2 (en) 2012-09-12

Family

ID=41450623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131962A Active JP5021560B2 (en) 2008-05-20 2008-05-20 Casting equipment for continuous casting

Country Status (1)

Country Link
JP (1) JP5021560B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849172Y2 (en) * 1980-02-23 1983-11-10 新日本製鐵株式会社 Electromagnetic stirring device for continuous casting
JPS57154355A (en) * 1981-03-20 1982-09-24 Sumitomo Metal Ind Ltd Mold for continuous casting
JPS5945067A (en) * 1982-09-08 1984-03-13 Mitsubishi Heavy Ind Ltd Continuous casting device
JP2001300695A (en) * 2000-04-27 2001-10-30 Nippon Steel Corp Continuous casting mold for electromagnetic-stirring molten metal
JP3443109B2 (en) * 2001-05-31 2003-09-02 ジャパン・エンジニアリング・ネットワーク株式会社 Assembly mold for continuous casting
JP4073837B2 (en) * 2003-08-01 2008-04-09 新日本製鐵株式会社 Continuous casting mold and method for removing continuous casting mold
JP4568013B2 (en) * 2004-04-19 2010-10-27 新日本製鐵株式会社 Continuous casting mold
JP4356531B2 (en) * 2004-06-11 2009-11-04 住友金属工業株式会社 Steel continuous casting method and electromagnetic force control device for molten steel in mold
JP4769067B2 (en) * 2005-11-22 2011-09-07 新日本製鐵株式会社 Electromagnetic stirring mold for continuous casting

Also Published As

Publication number Publication date
JP2009279600A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP4967856B2 (en) Steel continuous casting method
JP5023990B2 (en) Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
JP2009513364A (en) Method and apparatus for electromagnetic confinement of molten metal in horizontal casting system
JP5776285B2 (en) Manufacturing method of continuous cast slab
JP6891821B2 (en) Continuous casting machine
JP5021560B2 (en) Casting equipment for continuous casting
CN111194247B (en) Casting mould equipment
CN105014029A (en) Slab continuous-casting electromagnetic stirrer capable of regulating magnetic field action area
JP4995144B2 (en) Casting equipment for continuous casting
JP5029324B2 (en) Steel continuous casting method
EP0964759B1 (en) Method and apparatus for electromagnetic confinement of molten metal
JP4519600B2 (en) Electromagnetic stirring coil
JP4769067B2 (en) Electromagnetic stirring mold for continuous casting
JP2005238276A (en) Electromagnetic-stirring casting apparatus
JP4591156B2 (en) Steel continuous casting method
JP4278423B2 (en) Molten metal continuous casting equipment
JP3257222B2 (en) Curved mold for continuous casting of metal
JP4910997B2 (en) Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
JP2626861B2 (en) Flow control device for molten steel in continuous casting mold
JP2000351048A (en) Method and apparatus for continuously casting metal
JP5124873B2 (en) Slab continuous casting method
JP6623826B2 (en) Electromagnetic force generator, continuous casting method and continuous casting machine
JPH0343931B2 (en)
JP3793384B2 (en) Molten metal flow control device
JP2007098398A (en) Apparatus for controlling fluidity of molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120614

R150 Certificate of patent or registration of utility model

Ref document number: 5021560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350