JP5021111B2 - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP5021111B2
JP5021111B2 JP2000098019A JP2000098019A JP5021111B2 JP 5021111 B2 JP5021111 B2 JP 5021111B2 JP 2000098019 A JP2000098019 A JP 2000098019A JP 2000098019 A JP2000098019 A JP 2000098019A JP 5021111 B2 JP5021111 B2 JP 5021111B2
Authority
JP
Japan
Prior art keywords
battery case
battery
insulating resin
sealing
resin gasket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000098019A
Other languages
Japanese (ja)
Other versions
JP2001283795A (en
Inventor
憲男 鈴木
靖 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000098019A priority Critical patent/JP5021111B2/en
Publication of JP2001283795A publication Critical patent/JP2001283795A/en
Application granted granted Critical
Publication of JP5021111B2 publication Critical patent/JP5021111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発電要素を収容した電池ケースの開口周縁部を封口板の絶縁樹脂ガスケットと共に内方にかしめ加工することにより、電池ケースの開口部が密閉状態に閉塞されてなる密閉型電池に関するものである。
【0002】
【従来の技術】
近年では、AV機器あるいはパソコンや携帯型通信機器などの電気機器のポータブル化やコードレス化が急速に促進されており、これらの電気機器の駆動用電源としては、従来においてニッケルカドミウム電池やニッケル水素電池が主に用いられていたが、近年では、急速充電が可能でエネルギ密度が高く、且つ高い安全性を有するリチウムイオン二次電池に代表される非水電解液(有機溶媒系電解液)二次電池が主流になりつつある。これらの電池では、高エネルギ密度や負荷特性に優れた密閉型とすることが促進されている。
【0003】
上記のような密閉型電池における電池ケースの開口部の封口に際しては、封口体と電池ケースの開口部とをレーザー溶接により密閉する方法や、封口体の絶縁樹脂ガスケットを介して電池ケースの開口部をかしめることによって封口する方法が主に採用されている。特に、後者の封口方法を採用する密閉型電池では、封口体の絶縁ガスケットと電池ケースとのシール性を高めて電解液の漏液を確実に防止する必要がある。従来の密閉型電池における一般的な封口構造は、図3の縦断面図に示すような構成になっている。
【0004】
すなわち、封口板2、正電極を兼ねる金属キャップ3、安全弁(図示せず)および絶縁樹脂ガスケット7を組み立ててなる封口体1は、負極を兼ねる有底筒状の金属製電池ケース8の開口部から内部に挿入されて、電池ケース8の周面適所に設けた内方へ凹む支持用環状溝9によって電池ケース8内部に突出形成された支持段部10上に載置され、この状態において、電池ケース8の開口周縁部を絶縁樹脂ガスケット7と共に内方にかしめ加工することにより、ポリプロピレンまたはナイロンなどの弾性を有する樹脂からなる絶縁樹脂ガスケット7が、かしめ加工時の圧縮変形に対する復元力で封口板2および電池ケース8にそれぞれ密着して、電池ケース8の開口部を液密に封止する封口構造になっている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記封口構造では、特に電池ケース8と絶縁樹脂ガスケット7との間のシール性が悪く、電解液の耐漏液性が低い欠点がある。これは、電池ケース8と絶縁樹脂ガスケット7との接触面積を可及的に大きくすることを目的として、電池ケース8の開口先端部8aを径方向内方側に比較的大きく入り込ませて電池ケース8の開口周縁部で絶縁樹脂ガスケット7を抱き込む状態にかしめ加工していることにより、かしめ加工時における絶縁樹脂ガスケット7が最も高い圧縮率で圧縮される2箇所の圧縮ポイントA,B間における電池ケース8と絶縁樹脂ガスケット7との沿面距離が長くなることから、電池ケース8における両圧縮ポイントA,B間の部分に変形や撓みが生じ易いためであると思われる。
【0006】
さらには、両圧縮ポイントA,Bを直線で結ぶ圧縮線CLが電池ケース8自体の缶軸心SLに対し傾いた状態でかしめ加工されることにより、絶縁樹脂ガスケット7がかしめ加工時に効果的に圧縮変形されないことに起因して、両圧縮ポイント間A,B間における電池ケース8と絶縁樹脂ガスケット7との密着度が不十分となることも耐漏液性の低下を招く一因であると思われる。
【0007】
上記のように電解液の耐漏液性が低い密閉型電池では、使用に伴って電池ケース8と絶縁樹脂ガスケット7との間のシール性が低下していくと、電池ケース8と絶縁樹脂ガスケット7との間を伝って電解液が電池ケース8の外部に漏れ出す。特に非水電解液電池では、電池性能の劣化をきたすだけでなく、漏液した電解液によって使用中の電気機器や充電器などの機器の損傷を招くなどの不具合が生じる。
【0008】
そこで、本発明は、上記従来の課題に鑑みてなされたもので、封口体の絶縁樹脂ガスケットを介して電池ケースの開口部をかしめ封口するものにおいて、高いシール性を有して電解液の耐漏液性が高い封口構造を有する密閉型電池を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は、有底筒状の電池ケース内に電極群および電解液が収容され、前記電池ケースの開口部に、前記電極群に接続された封口板と前記封口板に密接され、周縁部にガス放出孔を有する金属キャップと、前記封口板と前記金属キャップに挟持された安全弁からなる封口体が挿入された状態で、前記電池ケースの開口周縁部が前記封口体の絶縁樹脂ガスケットと共に内方にかしめ加工されることによって前記開口部が閉塞されてなる密閉型電池において、前記かしめ加工によって前記絶縁樹脂ガスケットが最も高い圧縮力で圧縮変形されている2箇所の圧縮ポイントを直線で結んだ圧縮線が、前記電池ケースの缶軸心に平行に位置し、且つ前記圧縮線が、前記封口体を支持するための支持段部を前記電池ケースの内部に突出形成する支持用環状溝の溝底および前記ガス放出孔に対し前記電池ケースの径方向外方に位置するよう設定されていることを特徴とする。
【0010】
この密閉型電池では、かしめ加工時における絶縁樹脂ガスケットの最も圧縮率が高い2箇所の圧縮ポイントを直線で結ぶ圧縮線が、電池ケース自体の缶軸心に対し平行な状態において、電池ケースの開口周縁部を内方へかしめ加工して製作されるので、弾性を有する絶縁樹脂ガスケットが、かしめ加工時に全体にわたりほぼ均等、且つ効果的に圧縮変形されて、その大きな復元力で電池ケースの内周面に密着するので、シール性が格段に向上する。さらに、2箇所の圧縮ポイント間の電池ケースと絶縁樹脂ガスケットとの沿面距離は従来電池に比較して短くなることから、電池ケースにおける両圧縮ポイント間の部分に変形や撓みが生じ難くなり、且つ両圧縮ポイント間での電池ケースと絶縁樹脂ガスケットとが十分な密着度で密着する。これにより、電解液の耐漏液性が格段に向上して、電池性能の劣化や使用中の電気機器または充電器などの損傷を確実に防止できる。
【0011】
【発明の実施の形態】
以下、本発明の好ましい実施の形態について図面を参照しながら説明する。図1(a)は本発明の一実施の形態に係る密閉型電池であるニッケル水素電池を示す縦断面図であり、同図において、図3と同一若しくは同等のものには同一の符号を付してある。負極を兼ねる有底筒状の金属製電池ケース8内には、これの底部に負極集電体11が敷設され、この負極集電体11の上方に、正電極と負電極とがセパレータを介在して積層し、巻き回されてなる電極群12が収容され、この電極群12の上方部に正極集電体13が配置されている。なお、電池ケース8内には、電極群12と共に発電要素を構成する電解液が注入されている。
【0012】
電池ケース8における正極集電体13の配置箇所の上方部には、内方へ凹む支持用環状溝9が周面に形成されて、この支持用環状溝9によって電池ケース8内部に支持段部10が突出形成されている。なお、支持段部10は、絶縁樹脂ガスケット14を介して正極集電体13に下方から支持されている。支持段部10上には、封口板2、正電極を兼ねる金属キャップ3、安全弁17および絶縁樹脂ガスケット7によって組み立てられた封口体1が、電池ケース8の開口部から挿入して載置支持されている。封口板2は、正極集電体導電部18を介して正極集電体13に電気的接続されているとともに、金属キャップ3に電気的接続状態に密接されている。金属キャップ3には、安全弁17が開いたときに電池ケース8内部のガスを外部放出するためのガス排出孔19が設けられている。絶縁樹脂ガスケット7は、ポリプロピレンまたはナイロンなどの弾性を有する樹脂からなり、表面全体にシール材が塗着されている。
【0013】
図1(b)は同図(a)のC部の拡大図を示す。この密閉型電池の封口構造は、封口体1の構造自体は従来と同様であるが、2箇所の圧縮ポイントA,Bを直線で結ぶ圧縮線CLが電池ケース8の缶軸心SLに対し平行になるよう設定して電池ケース8のかしめ加工が行われている。したがって、電池ケース8の開口先端8aは、電池ケース8の支持段部10上での圧縮ポイントBに対し電池ケース8の缶軸心SLと平行な線(圧縮線CL)上に位置する。また、電池ケース8の支持用環状溝9の溝底は、上記圧縮線CLに対し電池ケース8の径方向内方に位置するよう設定されている。
【0014】
図2は上記密閉型電池における封口工程を工程順に示した概略工程図である。先ず、(a)に示すように、電池ケース8内には、負極集電体11、電極群12および正極集電体13などが収容される。続いて、(b)に示すように、電池ケース8内にガイド支持体21を開口部から挿入して固定した状態において、電池ケース8をその缶軸心SL回りに回転させながら、その電池ケース8の所定の外面に溝付けローラ20を押し付けて、電池ケース8に支持用環状溝9を形成する。
【0015】
さらに、図1に示した封口体1を電池ケース8内に挿入して支持段部10上に載置した状態において、(c)に示すように、例えば三つ割りの支持金型22の支持突部を支持用環状溝9内に挿入して支持金型22で電池ケース8をチャッキングしながら、かしめ金型23における所定の湾曲形状となった加工用凹所23aを電池ケース8の開口端部に押し付けて電池ケース8の開口周縁部を内方にかしめ加工する。最後に、(d)に示すように、支持部材24を電池ケース8における支持用環状溝9の周辺の外周面に当てがった状態において、サイジング用金型27を電池ケース8のかしめ加工部分に押し付けて支持用環状溝9を押し潰し、電池ケース8の高さ寸法を所定値に調整するとともに、同図に図示を省略している電池ケース8と絶縁樹脂ガスケット7との圧着を図る。
【0016】
上記封口工程を経て電池ケース8の開口部が封口された密閉型電池を、温度が−10°C〜65°Cで、湿度が95%の試験条件下において30日間保存したときの漏液不良の発生の耐漏液性試験を行った。その結果を表1に示す。
【0017】
【表1】

Figure 0005021111
すなわち、図3に示した封口構造を有する従来電池では、28日目に30個の何れにも電解液の漏液が発生したのに対し、上記実施の形態の密閉型電池では、28日が経った時点でも30個のうちのいずれにも漏液が発生せず、極めて高い耐漏液性を有していることが確認できた。
【0018】
このような高い耐漏液性が得られたのは、図1(b)に示すように、2箇所の圧縮ポイントA,Bを直線で結ぶ圧縮線CLが、電池ケース8自体の缶軸心SLに対し平行な状態において、電池ケース8の開口周縁部が内方へかしめ加工されたことにより、絶縁樹脂ガスケット7が、かしめ加工時に全体にわたりほぼ均等、且つ効果的に圧縮変形されて、その大きな復元力で電池ケース8の内周面および封口板2に密着して、シール性が格段に向上した結果によるものと思われる。さらに、かしめ加工時における絶縁樹脂ガスケット7の最も圧縮率が高い2箇所の圧縮ポイントA,B間の電池ケース8と絶縁樹脂ガスケット7との沿面距離が従来に比較して短くなることから、電池ケース8における両圧縮ポイントA,B間の部分に変形や撓みが生じ難く、且つ両圧縮ポイント間A,B間での電池ケース8と絶縁樹脂ガスケット7とが十分な密着度で密着していることも耐漏液性の向上に寄与しているものと思われる。したがって、この密閉型電池では、電解液の漏液を極力抑制できるので、漏液に起因する電池性能の劣化や使用中の電気機器または充電器などが損傷されるのを未然に防止することがてきる。
【0019】
【発明の効果】
以上のように、本発明の密閉型電池によれば、かしめ加工時における絶縁樹脂ガスケットの最も圧縮率が高い2箇所の圧縮ポイントを直線で結ぶ圧縮線が、電池ケース自体の缶軸心に対し平行な状態において、電池ケースの開口周縁部が内方へかしめ加工されて製作されたものであるから、弾性を有する絶縁樹脂ガスケットが、かしめ加工時に全体にわたりほぼ均等、且つ効果的に圧縮変形されて、その大きな復元力で電池ケースの内周面に密着するので、絶縁樹脂ガスケットと電池ケース間のシール性が格段に向上する。さらに、2箇所の圧縮ポイント間の電池ケースと絶縁樹脂ガスケットとの沿面距離は従来電池に比較して短くなることから、電池ケースにおける両圧縮ポイント間の部分に変形や撓みが生じ難くなり、且つ両圧縮ポイント間での電池ケースと絶縁樹脂ガスケットとが十分な密着度で密着する。これにより、電解液の耐漏液性が格段に向上して、電池性能の劣化や使用中の電気機器または充電器などの損傷などを未然に防止できる。
【図面の簡単な説明】
【図1】(a)は本発明の一実施の形態に係る密閉型電池を示す縦断面図、(b)は(a)のC部の拡大図。
【図2】(a)〜(d)は同上の密閉型電池の封口工程を示す概略工程図。
【図3】従来の密閉型電池における封口構造を示す縦断面図。
【符号の説明】
1 封口体
7 絶縁樹脂ガスケット
8 電池ケース
9 支持用環状溝
10 支持段部
12 電極群
A,B 圧縮ポイント
SL 電池ケースの缶軸心
CL 圧縮線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealed battery in which an opening peripheral portion of a battery case containing a power generation element is caulked inward together with an insulating resin gasket of a sealing plate so that the opening of the battery case is closed in a sealed state. It is.
[0002]
[Prior art]
In recent years, portable and cordless electronic devices such as AV devices, personal computers, and portable communication devices have been rapidly promoted. Conventionally, nickel cadmium batteries and nickel metal hydride batteries have been used as power sources for driving these electric devices. However, in recent years, non-aqueous electrolyte (organic solvent electrolyte) secondary typified by lithium-ion secondary batteries that can be rapidly charged, have high energy density, and high safety Batteries are becoming mainstream. In these batteries, it is promoted to be a sealed type excellent in high energy density and load characteristics.
[0003]
When sealing the opening of the battery case in the sealed battery as described above, a method of sealing the sealing body and the opening of the battery case by laser welding, or an opening of the battery case via an insulating resin gasket of the sealing body A method of sealing by caulking is mainly adopted. In particular, in a sealed battery that employs the latter sealing method, it is necessary to improve the sealing performance between the insulating gasket of the sealing body and the battery case to reliably prevent leakage of the electrolyte. A general sealing structure in a conventional sealed battery is configured as shown in a longitudinal sectional view of FIG.
[0004]
That is, the sealing body 1 formed by assembling the sealing plate 2, the metal cap 3 also serving as the positive electrode, the safety valve (not shown), and the insulating resin gasket 7 is an opening of the bottomed cylindrical metal battery case 8 also serving as the negative electrode. Inserted into the inside of the battery case 8 and placed on the support step 10 formed to protrude inside the battery case 8 by the supporting annular groove 9 provided in a suitable place on the peripheral surface of the battery case 8, and in this state, By crimping the peripheral edge of the opening of the battery case 8 together with the insulating resin gasket 7, the insulating resin gasket 7 made of an elastic resin such as polypropylene or nylon is sealed with a restoring force against compressive deformation during the caulking process. The sealing structure is in close contact with the plate 2 and the battery case 8 to seal the opening of the battery case 8 in a liquid-tight manner.
[0005]
[Problems to be solved by the invention]
However, the sealing structure has the disadvantage that the sealing performance between the battery case 8 and the insulating resin gasket 7 is particularly poor and the leakage resistance of the electrolyte is low. The purpose of this is to increase the contact area between the battery case 8 and the insulating resin gasket 7 as much as possible, and to make the opening tip 8a of the battery case 8 relatively large inward in the radial direction so that the battery case 8 Since the insulating resin gasket 7 is embraced at the peripheral edge of the opening 8, the insulating resin gasket 7 is crimped at the highest compression rate between the two compression points A and B during the caulking process. This is probably because the creepage distance between the battery case 8 and the insulating resin gasket 7 is long, and therefore, deformation and deflection are likely to occur in the portion between the compression points A and B in the battery case 8.
[0006]
Further, the insulating resin gasket 7 is effectively squeezed by caulking with the compression line CL connecting the compression points A and B being inclined with respect to the can axis SL of the battery case 8 itself. Insufficient adhesion between the battery case 8 and the insulating resin gasket 7 between the two compression points A and B due to the fact that they are not compressed and deformed seems to be one factor that causes a decrease in leakage resistance. It is.
[0007]
As described above, in a sealed battery with low leakage resistance of the electrolyte, when the sealing performance between the battery case 8 and the insulating resin gasket 7 decreases with use, the battery case 8 and the insulating resin gasket 7 are used. And the electrolyte leaks out of the battery case 8. In particular, in a non-aqueous electrolyte battery, not only does the battery performance deteriorate, but the leaked electrolyte causes problems such as damage to electric devices and chargers in use.
[0008]
Accordingly, the present invention has been made in view of the above-described conventional problems, and has a high sealing property and a leakage resistance of an electrolyte solution in which an opening of a battery case is caulked and sealed through an insulating resin gasket of a sealing body. An object of the present invention is to provide a sealed battery having a sealing structure with high liquidity.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an electrode group and an electrolytic solution housed in a bottomed cylindrical battery case, and a sealing plate connected to the electrode group and the sealing member at an opening of the battery case. A battery cap that is in close contact with a plate and has a gas discharge hole in a peripheral portion, and a sealing body that includes a sealing plate and a safety valve sandwiched between the metal cap and the opening peripheral portion of the battery case is the sealing portion In the sealed battery in which the opening is closed by caulking inward with the body insulating resin gasket, the insulating resin gasket is compressed and deformed with the highest compressive force by the caulking. A compression line connecting the compression points with a straight line is positioned in parallel to the can axis of the battery case, and the compression line has a support step for supporting the sealing body of the battery case. Characterized in that it is configured to a groove bottom and the gas discharge holes of the supporting annular groove protruded part located radially outwardly of the battery case.
[0010]
In this sealed battery, in the state in which the compression line connecting the two compression points with the highest compression rate of the insulating resin gasket at the time of caulking is a straight line parallel to the can axis of the battery case itself, Since the peripheral edge is caulked inwardly, the insulating resin gasket having elasticity is compressed and deformed almost uniformly and effectively throughout the caulking process, and the inner circumference of the battery case is greatly restored. Since it adheres closely to the surface, the sealing performance is greatly improved. Furthermore, since the creepage distance between the battery case and the insulating resin gasket between the two compression points is shorter than that of the conventional battery, deformation or bending is less likely to occur in the portion between the two compression points in the battery case, and The battery case and the insulating resin gasket are in close contact with each other between the compression points. As a result, the leakage resistance of the electrolytic solution is remarkably improved, and it is possible to reliably prevent the battery performance from being deteriorated and the electric device or charger being used from being damaged.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1A is a longitudinal sectional view showing a nickel metal hydride battery which is a sealed battery according to an embodiment of the present invention. In FIG. 1, the same or equivalent parts as those in FIG. It is. In the bottomed cylindrical metal battery case 8 that also serves as the negative electrode, a negative electrode current collector 11 is laid at the bottom thereof, and a positive electrode and a negative electrode are interposed above the negative electrode current collector 11 with a separator interposed therebetween. Then, the electrode group 12 formed by stacking and winding is accommodated, and the positive electrode current collector 13 is disposed above the electrode group 12. In the battery case 8, an electrolyte that constitutes a power generation element together with the electrode group 12 is injected.
[0012]
A support annular groove 9 that is recessed inward is formed on the peripheral surface of the battery case 8 above the location where the positive electrode current collector 13 is disposed, and a support step is formed inside the battery case 8 by the support annular groove 9. 10 is protrudingly formed. The support step 10 is supported by the positive electrode current collector 13 from below via an insulating resin gasket 14. On the support step portion 10, the sealing body 1 assembled by the sealing plate 2, the metal cap 3 also serving as a positive electrode, the safety valve 17 and the insulating resin gasket 7 is inserted and supported through the opening of the battery case 8. ing. The sealing plate 2 is electrically connected to the positive electrode current collector 13 via the positive electrode current collector conductive portion 18 and is in close contact with the metal cap 3 in an electrically connected state. The metal cap 3 is provided with a gas discharge hole 19 for discharging the gas inside the battery case 8 to the outside when the safety valve 17 is opened. The insulating resin gasket 7 is made of an elastic resin such as polypropylene or nylon, and a sealing material is applied to the entire surface.
[0013]
FIG.1 (b) shows the enlarged view of the C section of the same figure (a). The sealing structure of this sealed battery is the same as that of the conventional sealing body 1, but the compression line CL connecting the two compression points A and B with a straight line is parallel to the can axis SL of the battery case 8. The battery case 8 is caulked by setting so as to be. Therefore, the opening tip 8 a of the battery case 8 is located on a line (compression line CL) parallel to the can axis SL of the battery case 8 with respect to the compression point B on the support step portion 10 of the battery case 8. Further, the bottom of the supporting annular groove 9 of the battery case 8 is set to be located radially inward of the battery case 8 with respect to the compression line CL.
[0014]
FIG. 2 is a schematic process diagram showing the sealing process in the sealed battery in order of process. First, as shown in (a), a negative electrode current collector 11, an electrode group 12, a positive electrode current collector 13, and the like are accommodated in the battery case 8. Subsequently, as shown in (b), in a state where the guide support 21 is inserted and fixed in the battery case 8 from the opening, the battery case 8 is rotated while rotating around the can axis SL. The grooved roller 20 is pressed against a predetermined outer surface 8 of the battery 8 to form the supporting annular groove 9 in the battery case 8.
[0015]
Further, in the state where the sealing body 1 shown in FIG. 1 is inserted into the battery case 8 and placed on the support step portion 10, as shown in FIG. The protrusion 23 is inserted into the support annular groove 9 and the battery case 8 is chucked by the support mold 22, and the processing recess 23 a having a predetermined curved shape in the caulking mold 23 is opened in the battery case 8. The opening edge of the battery case 8 is crimped inward by pressing against the end. Finally, as shown in (d), in the state where the support member 24 is applied to the outer peripheral surface around the support annular groove 9 in the battery case 8, the sizing die 27 is caulked in the battery case 8. The support annular groove 9 is crushed to adjust the height dimension of the battery case 8 to a predetermined value, and the battery case 8 and the insulating resin gasket 7 not shown in FIG.
[0016]
Leakage failure when a sealed battery in which the opening of the battery case 8 is sealed through the sealing step is stored for 30 days under the test conditions of a temperature of −10 ° C. to 65 ° C. and a humidity of 95%. A liquid leakage resistance test was conducted. The results are shown in Table 1.
[0017]
[Table 1]
Figure 0005021111
That is, in the conventional battery having the sealing structure shown in FIG. 3, leakage of the electrolyte occurred in any of 30 batteries on the 28th day, whereas in the sealed battery of the above embodiment, 28 days Even after that time, no leakage occurred in any of the 30 pieces, and it was confirmed that they had extremely high leakage resistance.
[0018]
As shown in FIG. 1B, such a high leakage resistance is obtained because the compression line CL connecting the two compression points A and B with a straight line is the can axis SL of the battery case 8 itself. The insulating resin gasket 7 is substantially uniformly and effectively compressed and deformed throughout the entire caulking process by the caulking process of the opening peripheral edge of the battery case 8 in the inward direction. This is considered to be due to the result that the sealing property is greatly improved by the close contact with the inner peripheral surface of the battery case 8 and the sealing plate 2 by the restoring force. Further, since the creeping distance between the battery case 8 and the insulating resin gasket 7 between the two compression points A and B having the highest compressibility of the insulating resin gasket 7 at the time of caulking is reduced as compared with the conventional battery. The portion between the compression points A and B in the case 8 is hardly deformed or bent, and the battery case 8 and the insulating resin gasket 7 are in close contact with each other between the compression points A and B with sufficient adhesion. This also seems to contribute to the improvement of the leakage resistance. Therefore, in this sealed battery, since leakage of the electrolyte can be suppressed as much as possible, it is possible to prevent deterioration of the battery performance due to the leakage and damage to the electric device or charger in use. Come.
[0019]
【Effect of the invention】
As described above, according to the sealed battery of the present invention, the compression line that connects the two compression points with the highest compression rate of the insulating resin gasket at the time of caulking is straight to the can axis of the battery case itself. In the parallel state, the opening peripheral edge of the battery case is produced by caulking inward, so that the insulating resin gasket having elasticity is almost uniformly and effectively compressed and deformed throughout the caulking process. Thus, the sealing force between the insulating resin gasket and the battery case is remarkably improved. Furthermore, since the creepage distance between the battery case and the insulating resin gasket between the two compression points is shorter than that of the conventional battery, deformation or bending is less likely to occur in the portion between the two compression points in the battery case, and The battery case and the insulating resin gasket are in close contact with each other between the compression points. As a result, the leakage resistance of the electrolytic solution is remarkably improved, and it is possible to prevent deterioration of battery performance and damage to an electric device or a charger in use.
[Brief description of the drawings]
FIG. 1A is a longitudinal sectional view showing a sealed battery according to an embodiment of the present invention, and FIG. 1B is an enlarged view of a portion C in FIG.
FIGS. 2A to 2D are schematic process diagrams showing a sealing process of the sealed battery according to the embodiment.
FIG. 3 is a longitudinal sectional view showing a sealing structure in a conventional sealed battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sealing body 7 Insulating resin gasket 8 Battery case 9 Supporting annular groove 10 Supporting step part 12 Electrode group A, B Compression point SL Battery case can axis CL Compression line

Claims (1)

有底筒状の電池ケース内に電極群および電解液が収容され、前記電池ケースの開口部に、前記電極群に接続された封口板と前記封口板に密接され、周縁部にガス放出孔を有する金属キャップと、前記封口板と前記金属キャップに挟持された安全弁からなる封口体が挿入された状態で、前記電池ケースの開口周縁部が前記封口体の絶縁樹脂ガスケットと共に内方にかしめ加工されることによって前記開口部が閉塞されてなる密閉型電池において、
前記かしめ加工によって前記絶縁樹脂ガスケットが最も高い圧縮力で圧縮変形されている2箇所の圧縮ポイントを直線で結んだ圧縮線が、前記電池ケースの缶軸心に平行に位置し、且つ前記圧縮線が、前記封口体を支持するための支持段部を前記電池ケースの内部に突出形成する支持用環状溝の溝底および前記ガス放出孔に対し前記電池ケースの径方向外方に位置するよう設定されていることを特徴とする密閉型電池。
An electrode group and an electrolytic solution are accommodated in a bottomed cylindrical battery case, and an opening portion of the battery case is in close contact with the sealing plate connected to the electrode group and the sealing plate, and a gas discharge hole is provided in a peripheral portion. The battery case has a metal cap, and a sealing body made of a safety valve sandwiched between the sealing plate and the metal cap is inserted, and the peripheral edge of the opening of the battery case is caulked inward together with the insulating resin gasket of the sealing body. In the sealed battery in which the opening is closed by
A compression line connecting two compression points where the insulating resin gasket is compressed and deformed with the highest compressive force by the caulking process is located in parallel to the can axis of the battery case, and the compression line Is set to be positioned radially outward of the battery case with respect to the groove bottom of the support annular groove that protrudes and forms the inside of the battery case and the gas discharge hole for supporting the sealing body. A sealed battery characterized by being made.
JP2000098019A 2000-03-31 2000-03-31 Sealed battery Expired - Fee Related JP5021111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000098019A JP5021111B2 (en) 2000-03-31 2000-03-31 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000098019A JP5021111B2 (en) 2000-03-31 2000-03-31 Sealed battery

Publications (2)

Publication Number Publication Date
JP2001283795A JP2001283795A (en) 2001-10-12
JP5021111B2 true JP5021111B2 (en) 2012-09-05

Family

ID=18612563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000098019A Expired - Fee Related JP5021111B2 (en) 2000-03-31 2000-03-31 Sealed battery

Country Status (1)

Country Link
JP (1) JP5021111B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4393791B2 (en) * 2003-05-20 2010-01-06 パナソニック株式会社 Sealed battery
JP5368345B2 (en) 2010-03-09 2013-12-18 日立ビークルエナジー株式会社 Non-aqueous electrolyte cylindrical battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09259845A (en) * 1996-03-21 1997-10-03 Shin Kobe Electric Mach Co Ltd Cylindrical sealed battery, and manufacture thereof
JP3469470B2 (en) * 1998-07-10 2003-11-25 三洋ジ−エスソフトエナジー株式会社 Cylindrical batteries and capacitors

Also Published As

Publication number Publication date
JP2001283795A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
KR100882916B1 (en) Secondary battery
US5571632A (en) Nonaqueous electrolyte solution secondary cell and method for producing the same
KR102029406B1 (en) Rechargeable battery
CN111418082A (en) Secondary battery
JPH0346754A (en) Battery
EP3537496A1 (en) Battery can for a battery
US20040142237A1 (en) Alkaline storage battery and method
KR20040022716A (en) Cylindrical type lithium secondary battery and the fabrication method of the same
JP5322511B2 (en) Cylindrical sealed battery
JP5159076B2 (en) Cylindrical storage battery and manufacturing method thereof
KR20100002633A (en) The cylindrical storage battery
JP4128694B2 (en) Secondary battery cap assembly and manufacturing method thereof
JP2002208380A (en) Battery and its manufacturing method
JP2002298832A (en) Sealed battery and its liquid injection hole sealing method
JP5021111B2 (en) Sealed battery
JP2008243811A (en) Battery
JPH09293529A (en) Cylindrical sealed storage battery and manufacture thereof
JP4522123B2 (en) Cylindrical battery and manufacturing method thereof
JP4079563B2 (en) Storage battery and manufacturing method thereof
JP2002343316A (en) Secondary battery and manufacturing method
KR101264461B1 (en) Cap assembly and rechargeable battery using this same and assembly method of cap assembly
CN117099256A (en) secondary battery
KR20080057629A (en) Electorde assembly and cylinder type secondary battery using the same
JP3588249B2 (en) Alkaline storage battery and method for manufacturing the same
KR101329876B1 (en) Rechargeable battery comprising electrode tab with elasticity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101001

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees