JP5019551B2 - Method for reducing dioxins contained in combustion exhaust gas from melting furnace - Google Patents

Method for reducing dioxins contained in combustion exhaust gas from melting furnace Download PDF

Info

Publication number
JP5019551B2
JP5019551B2 JP2001242844A JP2001242844A JP5019551B2 JP 5019551 B2 JP5019551 B2 JP 5019551B2 JP 2001242844 A JP2001242844 A JP 2001242844A JP 2001242844 A JP2001242844 A JP 2001242844A JP 5019551 B2 JP5019551 B2 JP 5019551B2
Authority
JP
Japan
Prior art keywords
combustion
exhaust gas
heat storage
temperature
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001242844A
Other languages
Japanese (ja)
Other versions
JP2003056986A (en
Inventor
久 岩間
昭行 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2001242844A priority Critical patent/JP5019551B2/en
Publication of JP2003056986A publication Critical patent/JP2003056986A/en
Application granted granted Critical
Publication of JP5019551B2 publication Critical patent/JP5019551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Chimneys And Flues (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、塩素系樹脂被覆材を含む電線屑などを含む金属を加熱溶解する金属溶解炉から排出される燃焼排ガス(以下適宜、排ガスと略記する)中のダイオキシン類を金属溶解炉内で低減し大気中に排出する溶解炉の燃焼排ガス中に含まれるダイオキシン類を低減する方法に関する。
【0002】
【従来の技術】
ダイオキシン類(ポリ塩化ジベンゾパラジオキシン(PCDDs)とポリ塩化ジベンゾフラン(PCDFs)の総称)は、その毒性および排出量の実態が明らかになるにつれ、大きな社会問題になってきており、特に都市ゴミ焼却炉におけるダイオキシン類の低減対策が緊急課題になっている。
【0003】
前記ダイオキシン類は、無機炭素、有機炭素、無機塩素などが銅やコバルトの存在下で300℃以上に加熱されると前記銅やコバルトが触媒となって容易に反応生成(デノボ合成)するため、銅などの金属溶解炉でも、金属原料に塩素系樹脂被覆材(例えば、塩素化ポリエチレン樹脂、塩化ビニル樹脂)などが付着した電線屑を用いる場合は、ダイオキシン類が生成し、排ガスと一緒に大気中に排出される。
【0004】
【発明が解決しようとする課題】
このため、金属溶解炉の排ガス中のダイオキシン類を低減するための施策が種々講じられており、例えば、炉から排出される排ガスに粉末活性炭を吹き込みダイオキシン類を吸着させバグフィルターで濾過する方法、排ガスをSOX で洗浄後ダイオキシン類を触媒により酸化分解する方法などがある。
しかし、このような従来法では、ダイオキシン類を低減するための処理設備が必要なため、スペース的にもコスト的にも不利であった。
【0005】
このようなことから、本発明者等は、前記電線屑などを含む金属原料を溶解する縦型連続溶解炉(シャフト炉)を用い、その排ガス中に含まれるダイオキシン類の低減について種々検討した。
検討対象とした前記シャフト炉は、図3、4に示すように、上部に金属原料装入扉21が設けられ、中間部に金属原料2を加熱溶融するためのバーナー群23が設けられ、下部に加熱溶融体4の出湯口5が設けられた縦型の連続溶解炉である。前記バーナー群23は、図4に示すように、複数のバーナー26が、その火炎が中心に向かうように炉壁内周に等間隔に配置されたもので、このようなバーナー群23はシャフト炉の上下方向の所定箇所に複数設けられている。
【0006】
前記シャフト炉により排ガス中に含まれるダイオキシン類を、金属溶解炉から排出される前に低減する方法を検討した結果、炉内温度を高め、かつ排ガス温度を低くすることにより、排ガス中のダイオキシン類を低減し得ることを知見し、さらに検討を重ねて、本発明を完成させるに至った。
【0007】
本発明の目的は、塩素系樹脂被覆材が付着した電線屑などを含む金属原料に用いた金属溶解炉から排出される排ガス中のダイオキシン類を前記金属溶解炉内で低減することにある。
【0008】
【課題を解決するための手段】
請求項1に記載の発明は、塩素系樹脂被覆材を含む電線屑等の材料を加熱溶解する縦型連続熔解炉からなる銅熔解炉において燃焼排ガス中のダイオキシン類を低減する方法であって、
燃料ノズルを備えたバーナー部と蓄熱体を収納した蓄熱室を有する蓄熱式バーナーを少なくとも2個具備し、前記各蓄熱式バーナーを、一方が燃焼動作のときに他方が排ガス排出動作を行うようにそれぞれ交互に切り替えて交番燃焼させ、
前記蓄熱式バーナーが非燃焼側のときには、前記銅熔解炉内の高温の燃焼排ガスを該蓄熱式バーナーの前記蓄熱室内を通過させて該蓄熱室内の蓄熱体と熱交換させることにより、前記燃焼排ガスを200℃以下に急速冷却して排出するとともに前記蓄熱体を昇温させ、
前記蓄熱式バーナーが燃焼側のときには、燃焼用補助ガスを該燃焼側の前記蓄熱室を通過させることにより、昇温された前記蓄熱体により前記燃焼用補助ガスを加温して供給して、燃焼ガスを効率的に燃焼させて前記銅熔解炉の炉内温度を850℃以上に維持し、
前記各蓄熱式バーナーの交番燃焼の周期を、前記非燃焼側の蓄熱式バーナーの蓄熱室を通過して排出される燃焼排ガスの温度が200℃を超えない範囲で切り替えることにより、銅熔解炉の燃焼排ガス中に含まれるダイオキシン類を低減する方法である。
【0012】
【発明の実態の形態】
本発明において、炉内温度を850℃以上に保持し、排ガスを200℃以下の温度に急速冷却して排出する理由は、炉内温度が850℃未満でも、排出ガスが200℃を超えても、炉内でダイオキシン類が多量に反応生成するためである。
【0013】
以下に、本発明を図を参照して具体的に説明する。
図1は、本発明の実施形態を示すシャフト炉内の縦断面説明図である。
このシャフト炉は、上部に金属原料装入扉1が設けられ、中間部に金属原料2を加熱溶融するための蓄熱式バーナー6が上下方向に複数設けられ、下部に加熱溶融体4の出湯口5が設けられた縦型連続溶解炉であり、金属原料装入扉1は断熱扉で構成されており、バーナー群3は複数の蓄熱式バーナー6で構成されている。
【0014】
前記断熱扉1は、例えば、〔鉄板/断熱材/鉄板〕から構成される。断熱扉1の開閉は、密閉性を考慮して、斜めにスライドする昇降式とするのが良い。
【0015】
バーナー群3(図1参照)を構成する複数の蓄熱式バーナー6は、例えば2組に分けられ、組毎に交互に燃焼(交番燃焼)する。
一方の蓄熱式バーナー6が非燃焼側のときは、蓄熱室10端部は排ガス出口となり、排ガスは蓄熱室10内の低温の蓄熱体9により200℃以下の温度に冷却され、同時に蓄熱体9は温度上昇する。前記排ガスは、低温の蓄熱体9に接触して直接熱交換するので急速に冷却される。
【0016】
前記一方の蓄熱式バーナー6が燃焼側のときは、燃焼用補助ガスはその蓄熱室10内の温度上昇した蓄熱体9により加温され、その結果、燃焼温度が上昇して炉内は低温領域でも850℃以上の温度に保持される。この間に蓄熱体9は外部から供給される燃焼用補助ガス(外気など)により冷却される。
【0017】
このようにして、シャフト炉内は850℃以上の高温に保持され、排ガスは200℃以下に急速冷却される。その結果、排ガスは、ダイオキシン類が反応生成する温度域T(850℃>T>200℃)を短時間で通過し、このためダイオキシン類の反応生成が防止され、シャフト炉から排出される排ガス中のダイオキシン類は低減される。
【0018】
蓄熱式バーナー6は、図2に示すように、燃料ノズル8を備えたバーナー部18と、蓄熱体9を収容した蓄熱室10からなる。
燃料ノズル8はその燃焼口13を炉の中央に向けて配され、蓄熱体9を収容した蓄熱室10はバルブ14により燃焼補助ガス供給口15と排ガス出口12とに連結され、この蓄熱式バーナー6が燃焼側のときは、燃料補助ガス供給口15からバルブ14を介して供給される燃焼用補助ガス(外気など)を燃料ガスに混合し、この混合体を燃料ノズル8にて燃焼して金属原料を溶解する。
一方この蓄熱式バーナー6が非燃焼側のときは、炉の内壁に開口した燃焼口17から排ガスを吸い込んで前記排ガスを蓄熱室10の蓄熱体9に接触させて冷却し、バルブ14を介して排ガス出口12から排出する。
図2で11は排出ガスの温度を測定するための熱電対である。
【0019】
本発明において、蓄熱体には、例えば、通常の石材、アルミナ、鉄などの熱容量の大きいセラミックスや金属の粒状物が使用できる。
蓄熱式バーナーの各組の燃焼周期は、排ガス温度が200℃を超えない範囲で適宜決定する。複数の蓄熱式バーナーを分ける組数は任意であるが、2〜3組が適当である。
【0020】
【実施例】
以下に、本発明を実施例により詳細に説明する。
(実施例1)
図1に示したシャフト炉(扉が〔鉄板/断熱材/鉄板〕からなる断熱扉)を用いて、電気銅(カソード)に銅ナゲット(塩素系樹脂被覆材が付着した銅線屑)を20重量%配合した電気銅原料を毎時40トンの速度で溶解し、この間に排ガスをサンプリングし,排ガス中に含まれるダイオキシン類の濃度を分析した。複数の蓄熱式バーナーは2組に分け、燃焼周期は排ガスの最高温度が190℃以下となる1分間とした。蓄熱体10には通常の粒状石材を用いた。
【0021】
(実施例2)
金属原料装入扉が鉄板からなる他は、図1に示したのと同じシャフト炉を用いて実施例と同じ方法で溶解し、排ガス中のダイオキシン類の濃度を調べた。
【0022】
(比較例1)
図3、4に示したシャフト炉を用い全バーナーを連続して燃焼させて、電気銅に銅ナゲットを20重量%配合した原料を毎時40トンの速度で溶解し、この間に排ガスをサンプリングし、排ガス中に含まれるダイオキシン類の濃度を分析した。結果を表1に示す。
表1には炉内の低温領域の温度および排ガス温度を併記した。
【0023】
【表1】

Figure 0005019551
【0024】
表1から明らかなように、本発明例のNo.1、2はいずれも、排ガス中のダイオキシン類の濃度が比較例(従来法、No.3)に較べて大幅に低減した。
これは、本発明例では、複数の蓄熱式バーナーを2組に分けて交番燃焼させて炉内温度を高温に、排ガス温度を低温に保持したためである。
本発明例のNo.1は、No.2より炉内温度が高くダイオキシン類の濃度がより低減したが、これは原料装入扉を断熱扉にして扉部分からの放熱を抑制したためである。なお、本発明の排ガスについてはCO、SOx、NOxなどの有害ガスも分析したが、いずれも許容値以下であった。
【0025】
【発明の効果】
以上に述べたように、本発明は、溶解炉内の温度を高温に保持し、かつ排ガスを低温に急速冷却して、炉内でのダイオキシン類の反応生成を防止する。従って、ダイオキシン類を低減させる処理設備が不要でありスペース的にもコスト的にも有利である。前記炉内の高温保持と排ガスの急速冷却は、原料の加熱溶融を複数の蓄熱式バーナーを数組に分けて交番燃焼させることにより容易に行える。前記原料装入扉を断熱扉とすることで扉部分からの放熱が抑制され炉内温度が上昇しダイオキシン類はさらに低減する。依って、工業上顕著な効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施形態を示すシャフト炉の縦断面説明図である。
【図2】本発明で用いる蓄熱式バーナーの縦断面説明図である。
【図3】従来のシャフト炉の縦断面説明図である。
【図4】図3に示したシャフト炉のa−a断面図である。
【符号の説明】
1 断熱扉からなる原料装入扉
2 原料
3 複数の蓄熱式バーナーからなるバーナー群
4 加熱溶融体
5 加熱溶融体の出湯口
6 蓄熱式バーナー
8 燃料ノズル
9 蓄熱体
10 蓄熱室
11 排出ガス温度を測定するための熱電対
12 排ガス出口
13 燃料ノズルの燃焼口
14 バルブ
15 燃焼補助ガス供給口
18 蓄熱式バーナーのバーナー部
21 鉄板からなる原料装入扉
23 複数の通常のバーナーからなるバーナー群
26 通常のバーナー[0001]
BACKGROUND OF THE INVENTION
The present invention reduces dioxins in combustion exhaust gas (hereinafter, abbreviated as exhaust gas as appropriate) discharged from a metal melting furnace that heats and melts metal including metal scraps containing chlorine-based resin coating materials in the metal melting furnace. The present invention relates to a method for reducing dioxins contained in combustion exhaust gas of a melting furnace discharged into the atmosphere.
[0002]
[Prior art]
Dioxins (a collective term for polychlorinated dibenzopararadioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs)) are becoming a major social problem as their toxicities and emissions become clear, especially in municipal waste incinerators. Measures to reduce dioxins in Japan are an urgent issue.
[0003]
When the dioxins are heated to 300 ° C. or higher in the presence of copper or cobalt such as inorganic carbon, organic carbon, inorganic chlorine, etc., the copper and cobalt are easily produced as a catalyst (de novo synthesis). Even in metal melting furnaces such as copper, when using wire scraps with chlorinated resin coating materials (for example, chlorinated polyethylene resin, vinyl chloride resin) attached to the metal raw material, dioxins are generated and the atmosphere is exhausted together with the exhaust gas. Discharged inside.
[0004]
[Problems to be solved by the invention]
For this reason, various measures for reducing dioxins in the exhaust gas of the metal melting furnace have been taken, for example, a method in which powdered activated carbon is blown into the exhaust gas discharged from the furnace and the dioxins are adsorbed and filtered with a bag filter, There is a method in which exhaust gas is washed with SO x and then dioxins are oxidized and decomposed with a catalyst.
However, such a conventional method is disadvantageous in terms of both space and cost because it requires a processing facility for reducing dioxins.
[0005]
For these reasons, the present inventors have made various studies on the reduction of dioxins contained in the exhaust gas using a vertical continuous melting furnace (shaft furnace) that melts the metal raw material including the wire scraps.
As shown in FIGS. 3 and 4, the shaft furnace to be studied is provided with a metal raw material charging door 21 in the upper part, and a burner group 23 for heating and melting the metal raw material 2 in the middle part. 2 is a vertical continuous melting furnace provided with a hot water outlet 5 for the heated melt 4. As shown in FIG. 4, the burner group 23 includes a plurality of burners 26 arranged at equal intervals on the inner periphery of the furnace wall so that the flames are directed toward the center. Are provided at predetermined locations in the vertical direction.
[0006]
As a result of studying a method for reducing dioxins contained in exhaust gas by the shaft furnace before being discharged from the metal melting furnace, the dioxins in the exhaust gas are increased by raising the furnace temperature and lowering the exhaust gas temperature. As a result of further study, the present invention has been completed.
[0007]
An object of the present invention is to reduce in the metal melting furnace dioxins in exhaust gas discharged from a metal melting furnace used for a metal raw material including wire scraps and the like to which a chlorinated resin coating material is attached.
[0008]
[Means for Solving the Problems]
The invention described in claim 1 is a method for reducing dioxins in combustion exhaust gas in a copper melting furnace comprising a vertical continuous melting furnace for heating and melting materials such as electric wire scraps containing a chlorine-based resin coating material,
At least two regenerative burners having a burner section equipped with a fuel nozzle and a regenerative chamber containing a regenerator so that each regenerative burner performs an exhaust gas discharge operation when one is in a combustion operation Switch alternately and burn alternately.
When the regenerative burner is on the non-combustion side, the high-temperature combustion exhaust gas in the copper melting furnace is passed through the heat storage chamber of the heat storage burner to exchange heat with the heat storage body in the heat storage chamber. Is rapidly cooled to 200 ° C. or lower and discharged, and the temperature of the heat storage body is increased.
When the regenerative burner is on the combustion side, by passing the auxiliary combustion gas through the heat storage chamber on the combustion side, the heated auxiliary gas is heated and supplied by the heated heat storage body, The combustion gas is efficiently burned to maintain the furnace temperature of the copper melting furnace at 850 ° C. or higher,
By switching the alternating combustion cycle of each regenerative burner within a range in which the temperature of the combustion exhaust gas discharged through the heat storage chamber of the non-combustion regenerative burner does not exceed 200 ° C. , This is a method for reducing dioxins contained in combustion exhaust gas.
[0012]
[Form of the present invention]
In the present invention, the temperature in the furnace is maintained at 850 ° C. or higher, and the exhaust gas is rapidly cooled to a temperature of 200 ° C. or lower and discharged, even if the temperature in the furnace is lower than 850 ° C. or the exhaust gas exceeds 200 ° C. This is because a large amount of dioxins are produced in the furnace.
[0013]
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIG. 1 is a longitudinal cross-sectional explanatory view in a shaft furnace showing an embodiment of the present invention.
This shaft furnace is provided with a metal raw material charging door 1 in the upper part, a plurality of regenerative burners 6 for heating and melting the metal raw material 2 in the middle part, and a hot water outlet of the heating melt 4 in the lower part. 5 is a vertical continuous melting furnace, the metal raw material charging door 1 is constituted by a heat insulating door, and the burner group 3 is constituted by a plurality of regenerative burners 6.
[0014]
The said heat insulation door 1 is comprised from [iron plate / heat insulating material / iron plate], for example. The opening and closing of the heat insulating door 1 is preferably an elevating type that slides obliquely in consideration of hermeticity.
[0015]
The plurality of regenerative burners 6 constituting the burner group 3 (see FIG. 1) are divided into, for example, two sets, and alternately burn (alternate combustion) for each set.
When one of the heat storage burners 6 is on the non-combustion side, the end of the heat storage chamber 10 becomes an exhaust gas outlet, and the exhaust gas is cooled to a temperature of 200 ° C. or less by the low temperature heat storage body 9 in the heat storage chamber 10. Rises in temperature. Since the exhaust gas contacts the low-temperature heat storage body 9 and directly exchanges heat, the exhaust gas is rapidly cooled.
[0016]
When the one heat storage burner 6 is on the combustion side, the combustion auxiliary gas is heated by the heat storage body 9 whose temperature in the heat storage chamber 10 has risen, and as a result, the combustion temperature rises and the furnace has a low temperature region. However, the temperature is maintained at 850 ° C. or higher. During this time, the heat accumulator 9 is cooled by auxiliary combustion gas (external air or the like) supplied from the outside.
[0017]
In this way, the inside of the shaft furnace is maintained at a high temperature of 850 ° C. or higher, and the exhaust gas is rapidly cooled to 200 ° C. or lower. As a result, the exhaust gas passes through the temperature range T (850 ° C.>T> 200 ° C.) where the dioxins react and generate in a short time, so that the reaction generation of dioxins is prevented and the exhaust gas discharged from the shaft furnace Dioxins are reduced.
[0018]
As shown in FIG. 2, the heat storage burner 6 includes a burner portion 18 having a fuel nozzle 8 and a heat storage chamber 10 in which a heat storage body 9 is accommodated.
The fuel nozzle 8 is arranged with its combustion port 13 facing the center of the furnace, and the heat storage chamber 10 containing the heat storage body 9 is connected to the combustion auxiliary gas supply port 15 and the exhaust gas outlet 12 by a valve 14, and this heat storage burner When 6 is on the combustion side, combustion auxiliary gas (outside air or the like) supplied from the fuel auxiliary gas supply port 15 through the valve 14 is mixed with fuel gas, and this mixture is burned at the fuel nozzle 8. Dissolve the metal raw material.
On the other hand, when the regenerative burner 6 is on the non-combustion side, exhaust gas is sucked from the combustion port 17 opened in the inner wall of the furnace, and the exhaust gas is brought into contact with the heat storage body 9 of the heat storage chamber 10 to be cooled. The exhaust gas is discharged from the exhaust gas outlet 12.
In FIG. 2, 11 is a thermocouple for measuring the temperature of the exhaust gas.
[0019]
In the present invention, as the heat storage body, for example, normal stone, alumina, iron, or other ceramics or metal particles having a large heat capacity can be used.
The combustion cycle of each set of regenerative burners is appropriately determined within a range where the exhaust gas temperature does not exceed 200 ° C. The number of sets for dividing the plurality of regenerative burners is arbitrary, but 2 to 3 sets are appropriate.
[0020]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
Using the shaft furnace shown in FIG. 1 (the door is a heat-insulating door made of [iron plate / heat insulating material / iron plate]), copper nugget (copper wire scrap with a chlorine-based resin coating material attached) 20 to copper (cathode). The electrolytic copper raw material blended by weight% was dissolved at a rate of 40 tons per hour, and during this time, the exhaust gas was sampled, and the concentration of dioxins contained in the exhaust gas was analyzed. The plurality of regenerative burners were divided into two groups, and the combustion cycle was set to 1 minute when the maximum temperature of the exhaust gas was 190 ° C. or less. A normal granular stone material was used for the heat storage body 10.
[0021]
(Example 2)
Except that the metal raw material charging door is made of an iron plate, the same shaft furnace as shown in FIG. 1 was used for dissolution in the same manner as in Example, and the concentration of dioxins in the exhaust gas was examined.
[0022]
(Comparative Example 1)
3 and 4, all the burners were burned continuously using a shaft furnace shown in FIG. 3, and a raw material containing 20% by weight of copper nugget in electrolytic copper was melted at a rate of 40 tons / hour, during which exhaust gas was sampled, The concentration of dioxins contained in the exhaust gas was analyzed. The results are shown in Table 1.
Table 1 also shows the temperature in the low temperature region in the furnace and the exhaust gas temperature.
[0023]
[Table 1]
Figure 0005019551
[0024]
As is apparent from Table 1, No. of the present invention example. In both Nos. 1 and 2, the concentration of dioxins in the exhaust gas was greatly reduced compared to the comparative example (conventional method, No. 3).
This is because in the example of the present invention, a plurality of regenerative burners were divided into two sets and alternately burned to maintain the furnace temperature at a high temperature and the exhaust gas temperature at a low temperature.
No. of the present invention example 1 is No. Although the furnace temperature was higher than 2 and the concentration of dioxins was further reduced, this was because the raw material charging door was used as a heat insulating door to suppress heat dissipation from the door portion. The exhaust gas of the present invention was also analyzed for harmful gases such as CO, SOx, NOx, etc., but all were below allowable values.
[0025]
【Effect of the invention】
As described above, the present invention keeps the temperature in the melting furnace at a high temperature and rapidly cools the exhaust gas to a low temperature to prevent the reaction production of dioxins in the furnace. Therefore, a treatment facility for reducing dioxins is unnecessary, which is advantageous in terms of space and cost. Maintaining the high temperature in the furnace and rapidly cooling the exhaust gas can be easily performed by heating and melting the raw material by alternately burning a plurality of regenerative burners in several sets. By making the raw material charging door a heat insulating door, heat radiation from the door portion is suppressed, the furnace temperature rises, and dioxins are further reduced. Therefore, there is an industrially significant effect.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a shaft furnace showing an embodiment of the present invention.
FIG. 2 is a longitudinal cross-sectional explanatory view of a regenerative burner used in the present invention.
FIG. 3 is a longitudinal sectional view of a conventional shaft furnace.
4 is a cross-sectional view of the shaft furnace shown in FIG. 3 taken along the line aa.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw material charging door which consists of heat insulation doors 2 Raw material 3 Burner group which consists of several thermal storage type burners 4 Heating melt 5 Outlet 6 of heated melt Thermal storage burner 8 Fuel nozzle 9 Thermal storage body 10 Thermal storage chamber 11 Exhaust gas temperature Thermocouple 12 for measurement Exhaust gas outlet 13 Combustion port 14 of fuel nozzle 15 Valve 15 Combustion auxiliary gas supply port 18 Burner portion 21 of regenerative burner Raw material charging door 23 made of iron plate Burner group 26 made of a plurality of ordinary burners Burner

Claims (1)

塩素系樹脂被覆材を含む電線屑等の材料を加熱溶解する縦型連続熔解炉からなる銅熔解炉において燃焼排ガス中のダイオキシン類を低減する方法であって、
燃料ノズルを備えたバーナー部と蓄熱体を収納した蓄熱室を有する蓄熱式バーナーを少なくとも2個具備し、前記各蓄熱式バーナーを、一方が燃焼動作のときに他方が排ガス排出動作を行うようにそれぞれ交互に切り替えて交番燃焼させ、
前記蓄熱式バーナーが非燃焼側のときには、前記銅熔解炉内の高温の燃焼排ガスを該蓄熱式バーナーの前記蓄熱室内を通過させて該蓄熱室内の蓄熱体と熱交換させることにより、前記燃焼排ガスを200℃以下に急速冷却して排出するとともに前記蓄熱体を昇温させ、
前記蓄熱式バーナーが燃焼側のときには、燃焼用補助ガスを該燃焼側の前記蓄熱室を通過させることにより、昇温された前記蓄熱体により前記燃焼用補助ガスを加温して供給して、燃焼ガスを効率的に燃焼させて前記銅熔解炉の炉内温度を850℃以上に維持し、
前記各蓄熱式バーナーの交番燃焼の周期を、前記非燃焼側の蓄熱式バーナーの蓄熱室を通過して排出される燃焼排ガスの温度が200℃を超えない範囲で切り替えることにより、銅熔解炉の燃焼排ガス中に含まれるダイオキシン類を低減する方法。
A method for reducing dioxins in combustion exhaust gas in a copper melting furnace comprising a vertical continuous melting furnace for heating and melting materials such as electric wire scrap containing a chlorine-based resin coating material,
At least two regenerative burners having a burner section equipped with a fuel nozzle and a regenerative chamber containing a regenerator so that each regenerative burner performs an exhaust gas discharge operation when one is in a combustion operation Switch alternately and burn alternately.
When the regenerative burner is on the non-combustion side, the high-temperature combustion exhaust gas in the copper melting furnace is passed through the heat storage chamber of the heat storage burner to exchange heat with the heat storage body in the heat storage chamber. Is rapidly cooled to 200 ° C. or lower and discharged, and the temperature of the heat storage body is increased.
When the regenerative burner is on the combustion side, by passing the auxiliary combustion gas through the heat storage chamber on the combustion side, the heated auxiliary gas is heated and supplied by the heated heat storage body, The combustion gas is efficiently burned to maintain the furnace temperature of the copper melting furnace at 850 ° C. or higher,
By switching the alternating combustion cycle of each regenerative burner within a range in which the temperature of the combustion exhaust gas discharged through the heat storage chamber of the non-combustion regenerative burner does not exceed 200 ° C. , A method to reduce dioxins contained in combustion exhaust gas.
JP2001242844A 2001-08-09 2001-08-09 Method for reducing dioxins contained in combustion exhaust gas from melting furnace Expired - Lifetime JP5019551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001242844A JP5019551B2 (en) 2001-08-09 2001-08-09 Method for reducing dioxins contained in combustion exhaust gas from melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001242844A JP5019551B2 (en) 2001-08-09 2001-08-09 Method for reducing dioxins contained in combustion exhaust gas from melting furnace

Publications (2)

Publication Number Publication Date
JP2003056986A JP2003056986A (en) 2003-02-26
JP5019551B2 true JP5019551B2 (en) 2012-09-05

Family

ID=19073055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001242844A Expired - Lifetime JP5019551B2 (en) 2001-08-09 2001-08-09 Method for reducing dioxins contained in combustion exhaust gas from melting furnace

Country Status (1)

Country Link
JP (1) JP5019551B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110585847A (en) * 2019-08-16 2019-12-20 无锡雷顿电器有限公司 Treatment method for controlling wet method to reduce concentration of dioxin and dust in industrial flue gas

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970733A (en) * 1982-10-18 1984-04-21 Nippon Steel Corp Reducing method of oxide of silicon or aluminum
JPS60133287A (en) * 1983-12-20 1985-07-16 古河電気工業株式会社 Method of controlling pressure in vertical type continuous melting furnace
JPS60146297U (en) * 1984-03-09 1985-09-28 川崎製鉄株式会社 insulation door device
JPS6226481A (en) * 1985-07-26 1987-02-04 中山 昌典 Metal melting furnace
JP3309657B2 (en) * 1995-08-22 2002-07-29 日本鋼管株式会社 Waste gasification and melting furnace
JPH11173529A (en) * 1997-12-05 1999-06-29 Rozai Kogyo Kaisha Ltd Heat storage catalytic method and device for treating exhaust gas
JPH11183034A (en) * 1997-12-19 1999-07-06 Nippon Steel Corp Rotary kiln furnace using regenerative switching combustion type burner and operating method
JP3496495B2 (en) * 1998-01-07 2004-02-09 Jfeエンジニアリング株式会社 Thermal recycling method and apparatus for combustible waste
JPH11221439A (en) * 1998-02-05 1999-08-17 Takuma Co Ltd Beat accumulation type dioxine decomposing and removing apparatus
JP2000105084A (en) * 1998-07-31 2000-04-11 Nkk Corp Exhaust gas treating method and apparatus for sintering machine
JP2000274650A (en) * 1999-03-29 2000-10-03 Ishikawajima Harima Heavy Ind Co Ltd Device and method for suppressing dioxin
JP2001027482A (en) * 1999-07-12 2001-01-30 Furukawa Electric Co Ltd:The Copper melting furnace
JP2001165578A (en) * 1999-12-03 2001-06-22 Chugai Ro Co Ltd Aluminum melting furnace
JP2001208338A (en) * 2000-01-31 2001-08-03 Chugai Ro Co Ltd Heat storage type combustor

Also Published As

Publication number Publication date
JP2003056986A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
RU2086869C1 (en) Method for continuous preliminary heating of charge materials for steel melting furnace and plant for realization of this method
CN100554448C (en) The manufacture method of reducing metal producing apparatus and reducing metal
WO2006035570A1 (en) Apparatus and method for heating treatment
BRPI0609774A2 (en) methods for processing a steel furnace powder and material containing iron and volatile metals, and for operating a channel induction furnace
CN108395906A (en) Plasma gasification melting furnace and the method that harmless treatment is carried out to hazardous solid waste using it
CN1539024A (en) Method for direct metal making by microwave energy
CN110860553A (en) Plasma synergistic resistance furnace fly ash treatment system and treatment method
CN102575305A (en) Molten metal producing device
JP5019551B2 (en) Method for reducing dioxins contained in combustion exhaust gas from melting furnace
CN211938376U (en) Fly ash treatment system of plasma synergistic resistance furnace
JP3751819B2 (en) Reduced iron or non-ferrous metal production facility, and reduced iron or non-ferrous metal production method
TW538217B (en) Method and equipment for treating exhaust gas
KR20110012301A (en) Apparatus for melting treatment of asbestos wastes
JP3527149B2 (en) Industrial waste treatment method
JP2002048317A (en) Interruption method for melting furnace and its apparatus
JP4210283B2 (en) Reduced iron or non-ferrous metal production facility, and reduced iron or non-ferrous metal production method
JP4216160B2 (en) Industrial waste treatment equipment
JP3830417B2 (en) Induction furnace
CN217570088U (en) Iron notch dust collection cover of large-scale closed direct current furnace grate
JP3727917B2 (en) Ultra high pyrolysis furnace
JPH1026336A (en) High-temperature heat exchanger for removing dioxin and combustion furnace device employing the same
JP3962178B2 (en) Hazardous material processing method and apparatus
JP3857089B2 (en) Ash melting treatment method and ash melting treatment apparatus
JPH11179129A (en) Method and apparatus for treating waste gas from electric furnace
JPS60103215A (en) Disposal of waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R151 Written notification of patent or utility model registration

Ref document number: 5019551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

EXPY Cancellation because of completion of term