JP5018807B2 - Decryption device - Google Patents

Decryption device Download PDF

Info

Publication number
JP5018807B2
JP5018807B2 JP2009044174A JP2009044174A JP5018807B2 JP 5018807 B2 JP5018807 B2 JP 5018807B2 JP 2009044174 A JP2009044174 A JP 2009044174A JP 2009044174 A JP2009044174 A JP 2009044174A JP 5018807 B2 JP5018807 B2 JP 5018807B2
Authority
JP
Japan
Prior art keywords
value
correction
calculation unit
row
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009044174A
Other languages
Japanese (ja)
Other versions
JP2010200126A (en
Inventor
義孝 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2009044174A priority Critical patent/JP5018807B2/en
Publication of JP2010200126A publication Critical patent/JP2010200126A/en
Application granted granted Critical
Publication of JP5018807B2 publication Critical patent/JP5018807B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Error Detection And Correction (AREA)

Description

本願開示は、一般に復号化装置に関し、詳しくは低密度パリティーチェック符号を復号化する装置に関する。   The present disclosure generally relates to a decoding apparatus, and more particularly to an apparatus for decoding a low density parity check code.

ネットワークや放送などのデータ通信において誤り訂正技術が一般的に使用されている。
誤り訂正技術は、受信したデータの符号ビットにおいて誤りが生じても、受信側だけで送信したデータを推定し、復元することが可能である。誤り訂正技術を使用することで、伝送路上の外乱の影響で生じた符号ビットの誤りを訂正することができる。
Error correction techniques are generally used in data communications such as networks and broadcasts.
The error correction technique can estimate and restore data transmitted only on the receiving side even if an error occurs in the sign bit of the received data. By using an error correction technique, it is possible to correct an error of a code bit generated due to the influence of disturbance on the transmission path.

誤り訂正能力が良い手法として、ターボ符号と呼ばれる手法が開発され使用されている。ターボ符号と同等か、それ以上の性能を引き出すことができる手法として、近年、低密度パリティーチェック(LDPC)符号が検討され、様々なところで研究が行われている。LDPC符号の復号手法は、非特許文献1及び2に開示されている。   As a technique having a good error correction capability, a technique called a turbo code has been developed and used. In recent years, a low density parity check (LDPC) code has been studied as a technique capable of extracting performance equal to or higher than that of a turbo code, and research is being conducted in various places. Non-patent literatures 1 and 2 disclose LDPC code decoding techniques.

LDPC符号を用いることにより高性能な誤り訂正が可能となるが、LDPC符号を復号化するには大量な計算が必要となる。そのような大量な計算を実行する復号化装置では消費電力が大きくなるという問題がある。また大量な計算を実行するために回路規模が大きくなるという問題がある。   Although the use of the LDPC code enables high-performance error correction, a large amount of calculation is required to decode the LDPC code. A decoding device that performs such a large amount of calculation has a problem that power consumption increases. Moreover, there is a problem that the circuit scale becomes large in order to execute a large amount of calculations.

国際公開第WO2007/007801号パンフレットInternational Publication No. WO2007 / 007801 Pamphlet 特開2008−48207号公報JP 2008-48207 A 特開2004−343170号公報JP 2004-343170 A 特開2003−198383号公報JP 2003-198383 A

Jinghu Chen at al, ”Reduced-Complexity Decoding of LDPC Codes”, IEEE Transactions on communications, 2005 vol.53.No.8 p1288-1289Jinghu Chen at al, “Reduced-Complexity Decoding of LDPC Codes”, IEEE Transactions on communications, 2005 vol.53.No.8 p1288-1289 松本渉,阪井塁,吉田英夫,「巡回近似MINアルゴリズム」,電子情報通信学会技術研究報告RCS,無線通信システム,RCS2005-40, Vol.105, No.196, pp. 1-6Matsumoto Wataru, Sakai Atsushi, Yoshida Hideo, “Circular Approximation MIN Algorithm”, IEICE Technical Report RCS, Wireless Communication System, RCS2005-40, Vol.105, No.196, pp. 1-6

以上を鑑みると、低密度パリティーチェック符号化された受信信号の復号化において消費電力を削減した復号化装置が望まれる。また回路規模を削減することが望まれる。   In view of the above, there is a demand for a decoding device that reduces power consumption in decoding received signals that have been subjected to low-density parity check encoding. It is also desirable to reduce the circuit scale.

伝送路を介して受信した低密度パリティーチェック符号化された受信信号を復号する復号化装置は、前記受信信号を入力として列処理を実行する列演算部と、δ−minアルゴリズムに基づく行処理において前記伝送路の雑音の分散を含めることにより対数尤度比を受信信号から求める際に雑音の分散の値を特定の値にしたアルゴリズムにおいて、前記伝送路の状態を入力とし、前記伝送路の状態に応じた補正値を有する補正項により補正を行う行処理を実行する行演算部とを含み、前記伝送路の状態に応じて前記伝送路の状態に応じた補正値とゼロとの何れかの値を選択し、前記行処理で使用する前記補正項を前記選択された値に設定することを特徴とする。   A decoding device that decodes a low-density parity check-encoded received signal received via a transmission line includes: a column calculation unit that performs column processing using the received signal as input; and row processing based on a δ-min algorithm In an algorithm in which a logarithmic likelihood ratio is obtained from a received signal by including the noise variance of the transmission channel, and the noise variance value is set to a specific value, the state of the transmission channel is used as an input, and the state of the transmission channel A row calculation unit that performs a row process for performing correction using a correction term having a correction value corresponding to the correction value, and according to the state of the transmission line, either a correction value according to the state of the transmission line or zero A value is selected, and the correction term used in the row processing is set to the selected value.

また、伝送路を介して受信した低密度パリティーチェック符号化された受信信号を復号する復号化装置は、前記受信信号から算出された対数尤度比を入力として列処理を実行する列演算部と、演算された補正値を有する補正項により補正を行うδ−minアルゴリズムによる行処理を行う行演算部とを含み、前記伝送路の状態に応じて前記補正値とゼロとの何れかの値を選択し、前記行処理で使用する前記補正項を前記選択された値に設定することを特徴とする。   Further, a decoding device that decodes a low-density parity check-encoded received signal received via a transmission path includes: a column calculation unit that executes a column process with a log likelihood ratio calculated from the received signal as an input; A row calculation unit that performs row processing according to a δ-min algorithm that performs correction using a correction term having a calculated correction value, and sets any one of the correction value and zero according to the state of the transmission path. Selecting, and setting the correction term used in the row processing to the selected value.

本願開示の少なくとも1つの実施例によれば、伝送路の状態に応じてゼロ値を補正値として選択するので、選択されない補正値の計算が不要となり、補正値計算回路での消費電力を削減することが可能となる。また、選択されない補正値の計算が不要となるために、補正値計算に用いるテーブルのサイズを削減することが可能となる。   According to at least one embodiment of the present disclosure, since a zero value is selected as a correction value according to the state of the transmission line, calculation of an unselected correction value is unnecessary, and power consumption in the correction value calculation circuit is reduced. It becomes possible. In addition, since it is not necessary to calculate correction values that are not selected, it is possible to reduce the size of a table used for correction value calculation.

復号化装置の第1の実施例の構成を示す図である。It is a figure which shows the structure of the 1st Example of a decoding apparatus. セレクタの構成例を示す図である。It is a figure which shows the structural example of a selector. 最小値計算部の構成の一例を示す図である。It is a figure which shows an example of a structure of the minimum value calculation part. 行演算部の行処理を示すフローチャートである。It is a flowchart which shows the line process of a line calculating part. 動作制御部及びセレクタで用いる閾値の設定を説明するための図である。It is a figure for demonstrating the setting of the threshold value used with an operation control part and a selector. 復号化装置の第2の実施例の構成を示す図である。It is a figure which shows the structure of the 2nd Example of a decoding apparatus.

以下に、本発明の実施例を添付の図面を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

LDPC符号を復号化する際の計算量を削減する手法として、幾つかの手法が提案されている。誤り訂正能力の劣化が大きいが、演算量の削減が大きい手法として、min-sum BP(Belief-Propagation)法がある。このMin-sum BP法の特性を改善する手法として、offset min-sum BP法等の手法が提案されているが、最適な変数を設定する必要があり、この設定が難しいという問題がある。そこで、min-sum BP法ほどには誤り訂正能力の劣化がなく、変数を決定する必要がない手法も提案されている。   Several methods have been proposed as methods for reducing the amount of calculation when decoding an LDPC code. There is a min-sum BP (Belief-Propagation) method as a method that greatly reduces the error correction capability but greatly reduces the amount of calculation. As a method for improving the characteristics of the Min-sum BP method, a method such as the offset min-sum BP method has been proposed. However, it is necessary to set an optimal variable, and there is a problem that this setting is difficult. Therefore, a method has been proposed in which the error correction capability is not deteriorated as much as the min-sum BP method and a variable need not be determined.

LDPC符号化された受信信号を復号する基本的なアルゴリズムでは、受信信号の確率的な信頼度情報である対数尤度比LLR(Log Likelihood Ratio)を算出しながら繰り返し演算を行うことにより、復号を行う。具体的には、伝送路を介して受信した低密度パリティーチェック符号化された受信信号を復号する復号化装置において、受信信号から対数尤度比を算出し、列演算部が対数尤度比を入力として列処理を実行する。また行処理部が行処理を実行する。これら列処理と行処理とを繰り返し、LLRを算出し更新していくことにより復号化処理を行なう。このようなアルゴリズムとしては、sum-productアルゴリズムが知られている。またsum-productアルゴリズムの行処理を近似したmin-sumアルゴリズム、更には、行処理用のLLRの絶対値の最小値を補正項により最適値に補正することによりmin-sumアルゴリズムよりも性能を向上させたδ−minアルゴリズムが知られている。   In a basic algorithm for decoding an LDPC-encoded received signal, decoding is performed by repeatedly performing a logarithmic likelihood ratio LLR (Log Likelihood Ratio) that is probabilistic reliability information of the received signal. Do. Specifically, in a decoding apparatus that decodes a low-density parity check-encoded received signal received via a transmission path, a log likelihood ratio is calculated from the received signal, and the column operation unit calculates the log likelihood ratio. Perform column processing as input. The line processing unit executes line processing. These column processing and row processing are repeated, and decoding processing is performed by calculating and updating the LLR. A sum-product algorithm is known as such an algorithm. In addition, the min-sum algorithm that approximates the row processing of the sum-product algorithm, and further improves the performance over the min-sum algorithm by correcting the minimum value of the absolute value of the LLR for row processing to the optimum value using the correction term. A known δ-min algorithm is known.

非特許文献2に記載されるように、演算された補正値を有する補正項により補正を行うδ−minアルゴリズムの行演算部の式は、LLRの算出式が

Figure 0005018807
の場合、
Figure 0005018807
となる。ここで、Cは定数、yは受信信号、a,bは受信信号から求められる行演算部と列演算部の値で使用される確率の値、σは伝送路の雑音の分散の値である。また上記の演算された補正値とは、数1のmax関数の中にある2項目のmax関数の値(max(C−||a|−|b||/2,0))のことである。定数Cは、例えば、特許文献1に示されるように0.9であってよい。δ−minアルゴリズムは公知であり、その復号処理の具体的内容については、例えば特許文献1及び非特許文献2に詳しく記載されている。 As described in Non-Patent Document 2, the formula of the row calculation unit of the δ-min algorithm that performs correction using a correction term having a calculated correction value is an LLR calculation formula:
Figure 0005018807
in the case of,
Figure 0005018807
It becomes. Here, C is a constant, y is a received signal, a and b are values of probabilities used in the values of the row calculation unit and the column calculation unit obtained from the received signal, and σ 2 is a noise variance value of the transmission path. is there. The calculated correction value is the value (max (C− || a | − | b || 2, 0)) of the two items of the max function in the max function of Equation 1. is there. The constant C may be 0.9 as shown in Patent Document 1, for example. The δ-min algorithm is publicly known, and specific contents of the decoding process are described in detail in Patent Document 1 and Non-Patent Document 2, for example.

上記の手法を改良して、伝送路が時間においてほとんど変化しないような場合においては、受信信号と伝送路の状態を示す雑音の分散の値を特定の値として計算することで対数尤度比(LLR)に変換する演算量を少なくする手法が考えられる。この手法では、雑音の分散の値に関わらず受信信号からLLRの値が決まる。そこで、LDPC復号の行演算部で使用する補正項を求める際に伝送路の雑音の分散の値を使用することにより、LLRを計算した場合と同等になるようにする。LLRの計算を行うかわりに、LDPC符号の行演算部内の補正値を求めるために、伝送路の雑音の分散の値を使う必要があるが、LLRのようにビット単位で計算を行う必要がないため、演算量を削減する効果が得られる。   In the case where the transmission path is hardly changed in time by improving the above method, the log likelihood ratio (by calculating the variance value of noise indicating the state of the received signal and the transmission path as a specific value ( A method of reducing the amount of calculation to be converted into (LLR) is conceivable. In this method, the LLR value is determined from the received signal regardless of the noise variance value. Therefore, when the correction term used in the row calculation unit of LDPC decoding is obtained, the value of the noise variance of the transmission path is used so that the LLR is calculated. Instead of calculating the LLR, it is necessary to use the noise dispersion value of the transmission line in order to obtain the correction value in the row calculation unit of the LDPC code, but it is not necessary to perform the calculation in bit units as in the LLR. Therefore, the effect of reducing the amount of calculation can be obtained.

LLRの計算を簡略化した場合、上記の行演算部の式は、

Figure 0005018807
となる。この場合、補正値の算出の仕方が変更されるだけで、他の演算に関しては、非特許文献2と同様の演算で求めることができる。 When the calculation of LLR is simplified, the above equation for the row calculation unit is
Figure 0005018807
It becomes. In this case, only the method of calculating the correction value is changed, and other calculations can be obtained by the same calculation as in Non-Patent Document 2.

この場合、伝送路を介して受信した低密度パリティーチェック符号化された受信信号を復号する復号化装置において、列演算部が受信信号を入力として列処理を実行する。また行処理部が上記数3の行処理を実行する。この行処理は、δ−minアルゴリズムに基づく行処理において、伝送路の雑音の分散σを含めることにより、対数尤度比を受信信号から求める際に伝送路の雑音の分散σを特定の値(式1の場合にはσ=2)に置き換えたアルゴリズムである。具体的には、この行処理では、伝送路の状態σを入力とし、伝送路の状態に応じた補正値max(C×σ/2−||a|−|b||/2,0)を有する補正項により補正を行う。これら列処理と行処理とを繰り返し行うことで、スケーリングされたLLRを算出し更新していくことにより復号化処理を行なう。後程説明するように、復号化装置の実施例においては、伝送路の状態に応じて伝送路の状態に応じた補正値とゼロとの何れかの値を選択し、行処理で使用する補正項を、その選択値に設定する。 In this case, in a decoding device that decodes a low-density parity check-encoded received signal received via a transmission path, a column calculation unit performs column processing with the received signal as an input. Further, the row processing unit executes the row processing of the above formula 3. This line process, in the row processing based on the [delta]-min algorithm, by including the variance sigma 2 of the noise of the transmission path, certain variance sigma 2 of the noise of the transmission path when obtaining the log likelihood ratio from the received signal The algorithm is replaced with a value (σ 2 = 2 in the case of Equation 1). Specifically, in this row processing, the transmission path state σ 2 is input, and a correction value max (C × σ 2 / 2− || a | − | b || / 2) corresponding to the transmission path state. Correction is performed with a correction term having 0). By repeating these column processing and row processing, the scaled LLR is calculated and updated to perform decoding processing. As will be described later, in the embodiment of the decoding apparatus, a correction term used in row processing is selected by selecting either a correction value or zero according to the state of the transmission path according to the state of the transmission path. Is set to the selected value.

図1は、検査行列の行方向において行と列の交差する要素が1である箇所が3である場合の復号化装置の第1の実施例の構成を示す図である。図1の復号化装置10は、列演算部11、行演算部12、及びRAM13を含む。列演算部11は、受信信号を受け取り、列処理演算を実行し、列処理演算の結果をRAM13に格納する。行演算部12は、RAM13に格納された値a,bに基づいて、数3の行処理演算を実行し、行処理演算の結果をRAM13に格納する。この列処理と行処理とを繰り返すことにより、列演算部11から復号結果(復号され且つ誤りが訂正された受信信号)が出力される。   FIG. 1 is a diagram illustrating a configuration of a first embodiment of a decoding apparatus in a case where a location where an element where a row and a column intersect is 1 is 3 in the row direction of the parity check matrix. The decoding device 10 in FIG. 1 includes a column calculation unit 11, a row calculation unit 12, and a RAM 13. The column calculation unit 11 receives the received signal, executes the column processing calculation, and stores the result of the column processing calculation in the RAM 13. Based on the values a and b stored in the RAM 13, the row calculation unit 12 executes the row processing calculation of Equation 3 and stores the result of the row processing calculation in the RAM 13. By repeating this column processing and row processing, the column calculation unit 11 outputs a decoding result (a reception signal that has been decoded and corrected for errors).

行演算部12は、動作制御部21、テーブル22、補正値計算部23、ゼロ出力部24、セレクタ25、最小値計算部26、補正演算部27を含む。テーブル22は、伝送路の状態として例えば伝送路の雑音の分散値σを受け取り、この分散値σに応じた値kを出力する。この値kは、前記数3中のC×σ/2に相当する。補正値計算部23は、RAM13から読み出した値a,bとテーブル22からの値kとに基づいて、max(−α×||a|−|b||+k,0)を計算する。ここでαは−1/2であり、補正値計算部23の計算値は、前記補正値max(C×σ/2−||a|−|b||/2,0)に等しい。 The row calculation unit 12 includes an operation control unit 21, a table 22, a correction value calculation unit 23, a zero output unit 24, a selector 25, a minimum value calculation unit 26, and a correction calculation unit 27. The table 22 receives, for example, the noise dispersion value σ 2 of the transmission line as the state of the transmission line, and outputs a value k corresponding to the dispersion value σ 2 . This value k is equivalent to C × σ 2/2 in the equation (3). The correction value calculation unit 23 calculates max (−α × || a | − | b || k, 0) based on the values a and b read from the RAM 13 and the value k from the table 22. Here, α is −1/2, and the calculated value of the correction value calculation unit 23 is equal to the correction value max (C × σ 2 / 2− || a | − | b || 2, 0).

セレクタ25は、伝送路の状態として例えば伝送路の雑音の分散値σを受け取り、伝送路の状態に応じて補正値計算部23の計算値(補正値)又は値0を選択して補正項tとして出力する。具体的には、伝送路の状態を示す値(雑音の大きさに応じた値)が所定の閾値よりも低く、伝送路の状態が良好である場合には、セレクタ25は0を選択する。また伝送路の状態を示す値(雑音の大きさに応じた値)が所定の閾値以上で、伝送路の状態が不良である場合には、セレクタ25は補正値計算部23の計算値(補正値)を選択する。これは、行演算部12の行処理演算(前記数3の演算)において、伝送路の状態が良好な場合には、補正項を用いなくとも(即ち補正値がゼロであっても)、復号処理は収束し、十分な誤り訂正能力を発揮するからである。 The selector 25 receives, for example, the noise dispersion value σ 2 of the transmission line as the state of the transmission line, selects the calculation value (correction value) or the value 0 of the correction value calculation unit 23 according to the state of the transmission line, and corrects the correction term. Output as t. Specifically, when the value indicating the state of the transmission path (the value corresponding to the magnitude of the noise) is lower than a predetermined threshold and the state of the transmission path is good, the selector 25 selects 0. In addition, when the value indicating the state of the transmission line (value corresponding to the magnitude of the noise) is equal to or greater than a predetermined threshold and the state of the transmission line is defective, the selector 25 calculates the correction value (correction value) of the correction value calculation unit 23. Value). This is because, in the row processing calculation of the row calculation unit 12 (the calculation of Equation 3), if the transmission path state is good, the decoding is not performed (that is, even if the correction value is zero). This is because the process converges and exhibits sufficient error correction capability.

図2は、セレクタ25の構成例を示す図である。セレクタ25は、比較器31と選択回路32とを含む。比較器31は、伝送路の状態を示す値と閾値とを受け取り、これら伝送路の状態を示す値と閾値とを比較し、比較結果に応じた信号レベルの選択信号を出力する。選択回路32は、選択信号の信号レベルに応じて補正値計算部23の出力計算値或いはゼロ出力部24の出力ゼロ値の何れかを選択する。   FIG. 2 is a diagram illustrating a configuration example of the selector 25. The selector 25 includes a comparator 31 and a selection circuit 32. The comparator 31 receives the value indicating the state of the transmission path and the threshold value, compares the value indicating the state of the transmission path with the threshold value, and outputs a selection signal having a signal level corresponding to the comparison result. The selection circuit 32 selects either the output calculation value of the correction value calculation unit 23 or the output zero value of the zero output unit 24 according to the signal level of the selection signal.

図1を再び参照し、最小値計算部26は、s=Min(|a|,|b|)を計算して出力する。補正演算部27は、最小値計算部26からの値sと補正項tとに基づいて、Max(s−t,0)を計算する。この計算値は、補正項tが補正値計算部23の計算値(補正値)に等しい場合、前記の数3の計算値となる。補正演算部27の計算結果を用いた値が行演算部12の出力として、RAM13に格納される。   Referring to FIG. 1 again, the minimum value calculation unit 26 calculates and outputs s = Min (| a |, | b |). The correction calculation unit 27 calculates Max (s−t, 0) based on the value s from the minimum value calculation unit 26 and the correction term t. This calculated value is the calculated value of Equation 3 when the correction term t is equal to the calculated value (corrected value) of the corrected value calculating unit 23. A value using the calculation result of the correction calculation unit 27 is stored in the RAM 13 as an output of the row calculation unit 12.

動作制御部21は、伝送路の状態として例えば伝送路の雑音の分散値σを受け取り、伝送路の状態に応じてテーブル22及び補正値計算部23の動作を制御する。具体的には、伝送路の状態を示す値(雑音の大きさに応じた値)が所定の閾値よりも低く、伝送路の状態が良好である場合には、動作制御部21はテーブル22及び補正値計算部23の動作を停止させる。また伝送路の状態を示す値(雑音の大きさに応じた値)が所定の閾値以上で、伝送路の状態が不良である場合には、動作制御部21はテーブル22及び補正値計算部23を動作させる。これは、伝送路の状態が良好な場合には補正項を用いないので、テーブル22及び補正値計算部23の動作は不要だからである。テーブル22と補正値計算部23との動作を停止させることにより、消費電力を削減することができる。なお行演算部12は、実際には多数設けられており、複数の行演算部12が同時並行的に動作する。従って、テーブル22と補正値計算部23との動作を停止させることによる消費電力削減の効果は大きい。 The operation control unit 21 receives, for example, the noise variance value σ 2 of the transmission line as the state of the transmission line, and controls the operation of the table 22 and the correction value calculation unit 23 according to the state of the transmission line. Specifically, when the value indicating the state of the transmission path (value corresponding to the magnitude of the noise) is lower than a predetermined threshold and the state of the transmission path is good, the operation control unit 21 includes the table 22 and The operation of the correction value calculation unit 23 is stopped. When the value indicating the state of the transmission line (value corresponding to the magnitude of noise) is equal to or greater than a predetermined threshold and the state of the transmission line is defective, the operation control unit 21 includes the table 22 and the correction value calculation unit 23. To work. This is because the correction term is not used when the state of the transmission path is good, and the operations of the table 22 and the correction value calculation unit 23 are unnecessary. By stopping the operation of the table 22 and the correction value calculator 23, the power consumption can be reduced. Note that a large number of row calculation units 12 are actually provided, and a plurality of row calculation units 12 operate simultaneously in parallel. Therefore, the effect of reducing the power consumption by stopping the operation of the table 22 and the correction value calculation unit 23 is great.

図3は、最小値計算部26の構成の一例を示す図である。最小値計算部26は、比較器33を含む。比較器33は、伝送路の状態を示す値(例えば雑音電力)と閾値とを受け取り、これら伝送路の状態を示す値と閾値とを比較し、比較結果に応じた信号レベルの動作制御信号を出力する。この動作制御信号の信号レベル(例えばHIGH/LOW)に応じて、テーブル22と補正値計算部23との動作が制御される。   FIG. 3 is a diagram illustrating an example of the configuration of the minimum value calculation unit 26. The minimum value calculation unit 26 includes a comparator 33. The comparator 33 receives a value (for example, noise power) indicating the state of the transmission path and a threshold, compares the value indicating the state of the transmission path with the threshold, and outputs an operation control signal having a signal level corresponding to the comparison result. Output. The operations of the table 22 and the correction value calculation unit 23 are controlled according to the signal level (for example, HIGH / LOW) of the operation control signal.

図4は、行演算部12の行処理を示すフローチャートである。ステップS1で、行演算部12のセレクタ25により、閾値よりも伝送路の雑音の分散が小さいか否かを判断する。閾値よりも伝送路の雑音の分散が小さい場合、ステップS2で、行演算部12のセレクタ25により、補正項tとして0を出力する。また伝送路の雑音の分散が閾値以上である場合、ステップS3で、行演算部12のテーブル22により、伝送路の雑音の分散に応じた最適値kを出力する。更にステップS4で、行演算部12の補正値計算部23により補正値を算出し、セレクタ25によりこの補正値を補正項tとして選択して出力する。最後にステップS5で、行演算部12の補正演算部27が、補正項tを用いて更新値Max(s−t,0)を算出する。   FIG. 4 is a flowchart showing the row processing of the row calculation unit 12. In step S1, the selector 25 of the row calculation unit 12 determines whether or not the noise variance of the transmission line is smaller than the threshold value. If the noise variance of the transmission line is smaller than the threshold value, 0 is output as the correction term t by the selector 25 of the row calculation unit 12 in step S2. If the noise variance of the transmission line is greater than or equal to the threshold value, an optimum value k corresponding to the noise variance of the transmission line is output from the table 22 of the row calculation unit 12 in step S3. Further, in step S4, a correction value is calculated by the correction value calculation unit 23 of the row calculation unit 12, and this correction value is selected as a correction term t by the selector 25 and output. Finally, in step S5, the correction calculation unit 27 of the row calculation unit 12 calculates the update value Max (s−t, 0) using the correction term t.

なお動作制御部21及びセレクタ25への入力である伝送路の状態を示す指標としては、伝送路の雑音の分散値σに限定されるものではない。例えばCNR(搬送波対雑音比)等を伝送路の状態を示す指標として用いてよい。またテーブル22の代りに、例えば入力値に基づいて出力値を計算する演算回路を用いてもよい。 Note that the index indicating the state of the transmission path that is an input to the operation control unit 21 and the selector 25 is not limited to the noise dispersion value σ 2 of the transmission path. For example, CNR (carrier-to-noise ratio) or the like may be used as an index indicating the state of the transmission path. Further, instead of the table 22, for example, an arithmetic circuit that calculates an output value based on an input value may be used.

図5は、動作制御部21及びセレクタ25で用いる閾値の設定を説明するための図である。図5のグラフは、伝送路の状態を横軸に示し、復号化装置10により受信信号を復号・訂正した後の信号のエラー確率を縦軸に示す。特性曲線41は補正項tが0の場合、即ち伝送路の状態が良好でありセレクタ25がゼロ出力部24の出力0を選択した場合に、復号化装置10により得られる復号信号のエラー確率の値を、各伝送路の状態の値に対して示したものである。また特性曲線42は補正項tが0でない場合、即ち伝送路の状態が不良でありセレクタ25が補正値計算部23の計算した補正値を選択した場合に、復号化装置10により得られる復号信号のエラー確率の値を、各伝送路の状態の値に対して示したものである。   FIG. 5 is a diagram for explaining setting of threshold values used in the operation control unit 21 and the selector 25. The graph of FIG. 5 shows the state of the transmission path on the horizontal axis, and the vertical axis shows the error probability of the signal after the decoding apparatus 10 decodes and corrects the received signal. The characteristic curve 41 shows the error probability of the decoded signal obtained by the decoding apparatus 10 when the correction term t is 0, that is, when the transmission path state is good and the selector 25 selects the output 0 of the zero output unit 24. The values are shown for the value of the state of each transmission line. In the characteristic curve 42, when the correction term t is not 0, that is, when the state of the transmission path is bad and the selector 25 selects the correction value calculated by the correction value calculation unit 23, the decoded signal obtained by the decoding apparatus 10 is obtained. The error probability values are shown for the state values of the respective transmission lines.

水平方向に延びる点線43が、あるエラー確率の値を示しており、このエラー確率の値が復号化装置10に必要な性能である。伝送路の状態が良好な場合と不良な場合とを含めた広い範囲の伝送路の状態に対して、復号化装置10の復号化信号のエラー確率が、点線43の示す必要な性能を上回る必要がある。図5のグラフで縦軸のエラー確率は上側が高く下側が低いので、点線43より下側でエラーが少なく、必要な性能を上回ることになる。そのためには、例えば垂直方向に延びる点線44で示す値に閾値を設定すればよい。この場合、閾値を示す点線44の右側では特性曲線41が使用され、閾値を示す点線44の左側では特性曲線42が使用される。従って、広い範囲の伝送路の状態に対して必要性能を満たしながら、最大限の電力削減効果を発揮することができる。   A dotted line 43 extending in the horizontal direction indicates a certain error probability value, and this error probability value is performance required for the decoding apparatus 10. The error probability of the decoded signal of the decoding apparatus 10 needs to exceed the required performance indicated by the dotted line 43 with respect to a wide range of transmission path states including cases where the transmission path state is good and bad. There is. In the graph of FIG. 5, since the error probability on the vertical axis is higher on the upper side and lower on the lower side, the error is less below the dotted line 43 and exceeds the required performance. For this purpose, for example, a threshold value may be set to a value indicated by a dotted line 44 extending in the vertical direction. In this case, the characteristic curve 41 is used on the right side of the dotted line 44 indicating the threshold value, and the characteristic curve 42 is used on the left side of the dotted line 44 indicating the threshold value. Therefore, the maximum power reduction effect can be exhibited while satisfying the required performance for a wide range of transmission path conditions.

なお図5において、閾値を示す点線44の右側では特性曲線41を使用するので、点線44の右側の領域に対しては、分散値σに応じた値kをテーブル22に格納しておく必要がない。従って、常に特性曲線42を使用する構成、即ち常に0でない補正項tを使用する構成に比較して、テーブル22のサイズを小さくすることができる。前述のように行演算部12は多数設けられているので、テーブル22のサイズ削減(メモリ回路規模削減)による回路規模削減の効果は大きい。 In FIG. 5, since the characteristic curve 41 is used on the right side of the dotted line 44 indicating the threshold value, a value k corresponding to the variance value σ 2 needs to be stored in the table 22 for the area on the right side of the dotted line 44. There is no. Therefore, the size of the table 22 can be reduced as compared with the configuration in which the characteristic curve 42 is always used, that is, the configuration in which the correction term t that is not always 0 is used. As described above, since a large number of row calculation units 12 are provided, the effect of reducing the circuit scale by reducing the size of the table 22 (reducing the memory circuit scale) is great.

図6は、図1と同様の検査行列を持つ際の復号化装置の第2の実施例の構成を示す図である。図6の復号化装置10Aは、列演算部11A、行演算部12A、及びRAM13Aを含む。列演算部11Aは、受信信号から求めた対数尤度比LLRを受け取り、列処理演算を実行し、列処理演算の結果をRAM13Aに格納する。行演算部12Aは、RAM13Aに格納された値a,bに基づいて、数2の行処理演算を実行し、行処理演算の結果をRAM13Aに格納する。この列処理と行処理とを繰り返すことにより、列演算部11から復号結果(復号され且つ誤りが訂正された受信信号)が出力される。   FIG. 6 is a diagram illustrating the configuration of a second embodiment of the decoding device having the same parity check matrix as FIG. The decoding device 10A in FIG. 6 includes a column calculation unit 11A, a row calculation unit 12A, and a RAM 13A. The column calculation unit 11A receives the log likelihood ratio LLR obtained from the received signal, executes the column processing calculation, and stores the result of the column processing calculation in the RAM 13A. Based on the values a and b stored in the RAM 13A, the row calculation unit 12A executes the row processing calculation of Formula 2 and stores the result of the row processing calculation in the RAM 13A. By repeating this column processing and row processing, the column calculation unit 11 outputs a decoding result (a reception signal that has been decoded and corrected for errors).

行演算部12Aは、動作制御部21、定数出力部22A、補正値計算部23A、ゼロ出力部24、セレクタ25、最小値計算部26、補正演算部27を含む。図6において、図1と同一の構成要素は同一の番号で参照し、その説明は適宜省略する。   The row calculation unit 12A includes an operation control unit 21, a constant output unit 22A, a correction value calculation unit 23A, a zero output unit 24, a selector 25, a minimum value calculation unit 26, and a correction calculation unit 27. In FIG. 6, the same components as those in FIG. 1 are referred to by the same numerals, and a description thereof will be omitted as appropriate.

定数出力部22Aは、定数値kを出力する。この値kは、前記数2中のCに相当する。補正値計算部23Aは、RAM13Aから読み出した値a,bと定数出力部22Aからの値kとに基づいて、max(−α’×||a|−|b||+k,0)を計算する。ここでα’は−1/2であり、補正値計算部23の計算値は、補正値max(C−||a|−|b||/2,0)に等しい。   The constant output unit 22A outputs a constant value k. This value k corresponds to C in Equation 2 above. The correction value calculation unit 23A calculates max (−α ′ × || a | − | b || + k, 0) based on the values a and b read from the RAM 13A and the value k from the constant output unit 22A. To do. Here, α ′ is −1/2, and the calculated value of the correction value calculation unit 23 is equal to the correction value max (C− || a | − | b || 2, 0).

セレクタ25は、伝送路の状態として例えば伝送路の雑音の分散値σを受け取り、伝送路の状態に応じて補正値計算部23の計算値(補正値)又は値0を選択して補正項tとして出力する。最小値計算部26は、s=Min(|a|,|b|)を計算して出力する。補正演算部27は、最小値計算部26からの値sと補正項tとに基づいて、Max(s−t,0)を計算する。この計算値は、補正項tが補正値計算部23の計算値(補正値)に等しい場合、前記の数2の計算値となる。セレクタ25、最小値計算部26、及び補正演算部27の動作は、第1の実施例の場合と同様である。補正演算部27の計算結果は、行演算部12Aの出力として、RAM13Aに格納される。 The selector 25 receives, for example, the noise dispersion value σ 2 of the transmission line as the state of the transmission line, selects the calculation value (correction value) or the value 0 of the correction value calculation unit 23 according to the state of the transmission line, and corrects the correction term. Output as t. The minimum value calculation unit 26 calculates and outputs s = Min (| a |, | b |). The correction calculation unit 27 calculates Max (s−t, 0) based on the value s from the minimum value calculation unit 26 and the correction term t. This calculated value is the calculated value of Formula 2 when the correction term t is equal to the calculated value (corrected value) of the corrected value calculating unit 23. The operations of the selector 25, the minimum value calculator 26, and the correction calculator 27 are the same as in the first embodiment. The calculation result of the correction calculation unit 27 is stored in the RAM 13A as the output of the row calculation unit 12A.

動作制御部21は、伝送路の状態として例えば伝送路の雑音の分散値σを受け取り、伝送路の状態に応じて補正値計算部23Aの動作を制御する。具体的には、伝送路の状態を示す値(雑音の大きさに応じた値)が所定の閾値よりも低く、伝送路の状態が良好である場合には、動作制御部21は補正値計算部23Aの動作を停止させる。また伝送路の状態を示す値(雑音の大きさに応じた値)が所定の閾値以上で、伝送路の状態が不良である場合には、動作制御部21は補正値計算部23Aを動作させる。補正値計算部23Aの動作を停止させることにより、消費電力を削減することができる。なお行演算部12Aは、実際には多数設けられており、複数の行演算部12Aが同時並行的に動作する。従って、補正値計算部23Aの動作を停止させることによる消費電力削減の効果は大きい。 The operation control unit 21 receives, for example, the noise dispersion value σ 2 of the transmission line as the state of the transmission line, and controls the operation of the correction value calculation unit 23A according to the state of the transmission line. Specifically, when the value indicating the state of the transmission line (value corresponding to the magnitude of noise) is lower than a predetermined threshold and the state of the transmission line is good, the operation control unit 21 calculates a correction value. The operation of the unit 23A is stopped. If the value indicating the state of the transmission line (value corresponding to the magnitude of noise) is equal to or greater than a predetermined threshold and the state of the transmission line is defective, the operation control unit 21 operates the correction value calculation unit 23A. . Power consumption can be reduced by stopping the operation of the correction value calculation unit 23A. Note that a large number of row calculation units 12A are actually provided, and a plurality of row calculation units 12A operate simultaneously in parallel. Therefore, the effect of reducing power consumption by stopping the operation of the correction value calculation unit 23A is great.

以上、本発明を実施例に基づいて説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載の範囲内で様々な変形が可能である。   As mentioned above, although this invention was demonstrated based on the Example, this invention is not limited to the said Example, A various deformation | transformation is possible within the range as described in a claim.

10 復号化装置
11 列演算部
12 行演算部
13 RAM
21 動作制御部
22 テーブル
23 補正値計算部
24 ゼロ出力部
25 セレクタ
26 最小値計算部
27 補正演算部
DESCRIPTION OF SYMBOLS 10 Decoding apparatus 11 Column calculating part 12 Row calculating part 13 RAM
21 Operation Control Unit 22 Table 23 Correction Value Calculation Unit 24 Zero Output Unit 25 Selector 26 Minimum Value Calculation Unit 27 Correction Operation Unit

Claims (5)

伝送路を介して受信した低密度パリティーチェック符号化された受信信号を復号する復号化装置であって、
前記受信信号を入力として列処理を実行する列演算部と、
δ−minアルゴリズムに基づく行処理において前記伝送路の雑音の分散を含めることにより対数尤度比を受信信号から求める際に雑音の分散の値を特定の値にしたアルゴリズムにおいて、前記伝送路の状態を入力とし、前記伝送路の状態に応じた補正値を有する補正項により補正を行う行処理を実行する行演算部と
を含み、前記伝送路の状態に応じて前記伝送路の状態に応じた補正値とゼロとの何れかの値を選択し、前記行処理で使用する前記補正項を前記選択された値に設定することを特徴とする復号化装置。
A decoding device that decodes a low-density parity check-encoded received signal received via a transmission line,
A column operation unit that performs column processing with the received signal as an input;
In a line processing based on the δ-min algorithm, when the logarithmic likelihood ratio is obtained from the received signal by including the noise variance of the transmission channel, an algorithm in which the value of the noise variance is a specific value is used. And a row operation unit that executes a row process for performing correction using a correction term having a correction value corresponding to the state of the transmission line, and according to the state of the transmission line according to the state of the transmission line. A decoding apparatus, wherein either a correction value or zero is selected, and the correction term used in the row processing is set to the selected value.
前記行演算部は前記補正値を求める回路を含み、前記選択された値がゼロである場合に、前記回路の動作を停止することを特徴とする請求項1記載の復号化装置。   The decoding apparatus according to claim 1, wherein the row calculation unit includes a circuit for obtaining the correction value, and stops the operation of the circuit when the selected value is zero. 前記回路は前記伝送路の状態を入力として前記補正値を出力するテーブルを含むことを特徴とする請求項2記載の復号化装置。   3. The decoding apparatus according to claim 2, wherein the circuit includes a table for inputting the state of the transmission path and outputting the correction value. 伝送路を介して受信した低密度パリティーチェック符号化された受信信号を復号する復号化装置であって、
前記受信信号から算出された対数尤度比を入力として列処理を実行する列演算部と、
演算された補正値を有する補正項により補正を行うδ−minアルゴリズムによる行処理を行う行演算部と
を含み、前記伝送路の状態に応じて前記補正値とゼロとの何れかの値を選択し、前記行処理で使用する前記補正項を前記選択された値に設定することを特徴とする復号化装置。
A decoding device that decodes a low-density parity check-encoded received signal received via a transmission line,
A column calculation unit that executes a column process with the log likelihood ratio calculated from the received signal as an input;
A row calculation unit that performs row processing by a δ-min algorithm that performs correction using a correction term having a calculated correction value, and selects either the correction value or zero according to the state of the transmission path And the correction term used in the row processing is set to the selected value.
前記行演算部は前記補正値を演算する回路を含み、前記選択された値がゼロである場合に、前記回路の動作を停止することを特徴とする請求項4記載の復号化装置。   5. The decoding apparatus according to claim 4, wherein the row calculation unit includes a circuit that calculates the correction value, and stops the operation of the circuit when the selected value is zero.
JP2009044174A 2009-02-26 2009-02-26 Decryption device Expired - Fee Related JP5018807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009044174A JP5018807B2 (en) 2009-02-26 2009-02-26 Decryption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009044174A JP5018807B2 (en) 2009-02-26 2009-02-26 Decryption device

Publications (2)

Publication Number Publication Date
JP2010200126A JP2010200126A (en) 2010-09-09
JP5018807B2 true JP5018807B2 (en) 2012-09-05

Family

ID=42824353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009044174A Expired - Fee Related JP5018807B2 (en) 2009-02-26 2009-02-26 Decryption device

Country Status (1)

Country Link
JP (1) JP5018807B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10256838B2 (en) 2015-05-08 2019-04-09 Kabushiki Kaisha Toshiba Decoding apparatus, decoding method, and computer program product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7542972B2 (en) 2020-03-17 2024-09-02 池上通信機株式会社 Method for adaptively scaling correction values in decoding and decoder therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8132080B2 (en) * 2005-07-13 2012-03-06 Mitsubishi Electric Corporation Communication apparatus and decoding method
JP4341639B2 (en) * 2006-05-15 2009-10-07 住友電気工業株式会社 Decoding device and decoding program
JP2008219528A (en) * 2007-03-05 2008-09-18 Keio Gijuku Device and program for detecting ldpc code

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10256838B2 (en) 2015-05-08 2019-04-09 Kabushiki Kaisha Toshiba Decoding apparatus, decoding method, and computer program product

Also Published As

Publication number Publication date
JP2010200126A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
US10998922B2 (en) Turbo product polar coding with hard decision cleaning
US8347194B2 (en) Hierarchical decoding apparatus
US11108498B2 (en) Receiving apparatus and decoding method thereof
EP2204984B1 (en) Broadcast receiver and method for optimizing a scale factor for a log-likelihood mapper
KR101718543B1 (en) Apparatus and method for decoding using improved bit-flipping algorithm for low density parity check code and recording medium for the same
US20120185750A1 (en) Decoding device and decoding method for decoding data encoded by ldpc
KR101599336B1 (en) Method and Apparatus for decoding Low-Density Parity-Check code
JP5091996B2 (en) Error correction decoder, memory controller and receiver
KR20090126829A (en) Iterative decoding method and iterative decoding apparatus
CN105763203B (en) Multi-element LDPC code decoding method based on hard reliability information
US20120226954A1 (en) Error correction decoder and storage apparatus
US9793924B1 (en) Method and system for estimating an expectation of forward error correction decoder convergence
US9231620B2 (en) Iterative decoding device and related decoding method for irregular low-density parity-check code capable of improving error correction performance
JP4551740B2 (en) Low density parity check code decoder and method
JP5018807B2 (en) Decryption device
US20170222659A1 (en) Power improvement for ldpc
JP2009159037A (en) Receiving apparatus
KR102045438B1 (en) Method and Apparatus for Decoding of Low-density parity-check
US8607132B1 (en) Matching signal dynamic range for turbo equalization system
JP5385944B2 (en) Decoder
WO2012042786A1 (en) Decoding device and decoding method
KR101412171B1 (en) Apparatus and method for decoding ldpc code
JP2008153874A (en) Soft decision decoding apparatus, soft decision decoding method, and soft decision decoding program
JP7038910B2 (en) Decoding device, control circuit and storage medium
CN102136842B (en) Decoder and decoding method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees