JP5018491B2 - Preform manufacturing method - Google Patents

Preform manufacturing method Download PDF

Info

Publication number
JP5018491B2
JP5018491B2 JP2008006065A JP2008006065A JP5018491B2 JP 5018491 B2 JP5018491 B2 JP 5018491B2 JP 2008006065 A JP2008006065 A JP 2008006065A JP 2008006065 A JP2008006065 A JP 2008006065A JP 5018491 B2 JP5018491 B2 JP 5018491B2
Authority
JP
Japan
Prior art keywords
rare earth
quartz pipe
preform
earth element
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008006065A
Other languages
Japanese (ja)
Other versions
JP2009167048A (en
Inventor
徹也 春名
学 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008006065A priority Critical patent/JP5018491B2/en
Publication of JP2009167048A publication Critical patent/JP2009167048A/en
Application granted granted Critical
Publication of JP5018491B2 publication Critical patent/JP5018491B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)
  • Lasers (AREA)

Description

本発明は、コア部に希土類元素が添加された光ファイバを製造するのに好適なプリフォームを製造する方法に関するものである。
The present invention relates to a method of manufacturing a suitable preform to produce the fiber-optic which a rare earth element is added to the core unit.

希土類元素添加光ファイバは、コア部に希土類元素(例えばEr元素)が添加された光ファイバであって、光ファイバ増幅器における光増幅媒体として用いられる。一般に、光ファイバは、プリフォームの一端を加熱して線引することで製造される。また、このプリフォームを製造する方法は幾つかあるが、そのうちMCVD(Modified Chemical Vapor Deposition)法では、石英パイプの内部に原料ガスを導入するとともに該石英パイプを加熱して、原料ガスから生成されたガラス微粒子を石英パイプの内壁に堆積させて多孔質ガラス層を形成し、Clガス等のハロゲンガス雰囲気下で多孔質ガラス層を更に加熱して脱水・焼結し透明ガラスとする。   The rare earth element-added optical fiber is an optical fiber in which a rare earth element (for example, Er element) is added to a core portion, and is used as an optical amplification medium in an optical fiber amplifier. Generally, an optical fiber is manufactured by heating and drawing one end of a preform. There are several methods for manufacturing this preform. Among them, in the modified chemical vapor deposition (MCVD) method, a raw material gas is introduced into the quartz pipe and the quartz pipe is heated to produce the preform. The fine glass particles are deposited on the inner wall of the quartz pipe to form a porous glass layer, and the porous glass layer is further heated and dehydrated and sintered in a halogen gas atmosphere such as Cl gas to obtain a transparent glass.

希土類元素添加光ファイバを製造するためのプリフォームをMCVD法により製造する際には、上記の堆積工程と脱水工程との間に、希土類元素の塩化物を含む溶液を多孔質ガラスに含浸させる含浸工程が設けられる(特許文献1〜3を参照)。このようにして製造されるプリフォームにおいて、MCVD法により堆積・含浸・脱水・焼結された部分がコア部となり、石英パイプがクラッド部となる。   Impregnation in which porous glass is impregnated with a solution containing a rare earth element chloride between the deposition step and the dehydration step when a preform for manufacturing a rare earth element-doped optical fiber is manufactured by the MCVD method. A process is provided (see Patent Documents 1 to 3). In the preform manufactured in this way, the portion deposited, impregnated, dehydrated and sintered by the MCVD method becomes the core portion, and the quartz pipe becomes the cladding portion.

一方、希土類元素を含む多孔質ガラス層を石英パイプの内壁に形成して、Clガス等のハロゲンガス雰囲気下で多孔質ガラス層を加熱して脱水・焼結し透明ガラスとする方法も知られている(特許文献4を参照)。
特開平5−330842号公報 特開平6−298542号公報 特開平7−069666号公報 特開平9−025135号公報
On the other hand, a method is also known in which a porous glass layer containing a rare earth element is formed on the inner wall of a quartz pipe, and the porous glass layer is heated and dehydrated and sintered in a halogen gas atmosphere such as Cl gas to obtain transparent glass. (See Patent Document 4).
JP-A-5-330842 JP-A-6-298542 Japanese Patent Application Laid-Open No. 7-069666 Japanese Patent Laid-Open No. 9-025135

しかし、特許文献1〜3に開示されたプリフォーム製造方法では、堆積工程と脱水工程との間に設けられる含浸工程において含浸量を調整するために、多孔質ガラスの厚みに制約があり、それ故に、製造できるプリフォームサイズに制約があり、生産性が非常に低いという問題がある。   However, in the preform manufacturing methods disclosed in Patent Documents 1 to 3, the thickness of the porous glass is limited in order to adjust the amount of impregnation in the impregnation step provided between the deposition step and the dehydration step. Therefore, there is a problem that the preform size that can be manufactured is limited and the productivity is very low.

一方、特許文献4に開示されたプリフォーム製造方法では、希土類元素をガス状態で供給するので、生産性の点では問題がない。しかし、ガラス微粒子を堆積させて多孔質ガラス層を形成する堆積工程の際の加熱温度は、脱水工程の際の加熱温度より低いことが必要である。それ故、堆積工程の際に、希土類元素を含む有機系の原料ガスの酸化反応が十分に進まず、希土類元素が多孔質ガラス層に取り込まれない。   On the other hand, in the preform manufacturing method disclosed in Patent Document 4, since rare earth elements are supplied in a gas state, there is no problem in terms of productivity. However, the heating temperature in the deposition process in which the glass fine particles are deposited to form the porous glass layer needs to be lower than the heating temperature in the dehydration process. Therefore, during the deposition process, the oxidation reaction of the organic source gas containing the rare earth element does not sufficiently proceed, and the rare earth element is not taken into the porous glass layer.

特に、希土類元素とともにP元素が添加された多孔質ガラス層を形成するには、堆積工程の際の加熱温度は更に低いことが必要である。それ故、この場合には、熱源が不安定になって、添加物濃度や堆積速度が変動する、このことから、長手方向に均一なプルフォームを製造することが困難である、という問題もある。   In particular, in order to form a porous glass layer to which a P element is added together with a rare earth element, it is necessary that the heating temperature during the deposition process be further lower. Therefore, in this case, the heat source becomes unstable, the additive concentration and the deposition rate fluctuate, and there is a problem that it is difficult to produce a uniform pull foam in the longitudinal direction. .

本発明は、上記問題点を解消する為になされたものであり、希土類元素およびP元素が添加された光ファイバを製造するためのプリフォームを安定して効率よく製造することができるプリフォーム製造方法を提供することを目的とする。
The present invention has been made to solve the above-described problems, and is capable of stably and efficiently producing a preform for producing an optical fiber to which a rare earth element and a P element are added. an object of the present invention is to provide an mETHODS.

本発明に係るプリフォーム製造方法は、Pを含むガラスを石英パイプの内壁に堆積させる第1工程と、希土類元素を含みPを含まないガラスを石英パイプの内壁に堆積させる第2工程と、を備え、第1工程と第2工程とを交互に繰り返し行って、コア部に希土類元素が添加されたプリフォームを製造することを特徴とする。なお、第1工程において、Pを含むガラスを石英パイプの内壁に堆積させることを複数回繰返してもよい。また、第2工程において、希土類元素を含みPを含まないガラスを石英パイプの内壁に堆積させることを複数回繰返してもよい。 In the preform manufacturing method according to the present invention, the first step of depositing glass containing P 2 O 5 on the inner wall of the quartz pipe and the glass containing rare earth elements and not containing P 2 O 5 are deposited on the inner wall of the quartz pipe. And a second step, wherein the first step and the second step are alternately repeated to produce a preform in which a rare earth element is added to the core part. In the first step, the deposition of the glass containing P 2 O 5 on the inner wall of the quartz pipe may be repeated a plurality of times. In the second step, the deposition of the glass containing rare earth elements and not containing P 2 O 5 on the inner wall of the quartz pipe may be repeated a plurality of times.

本発明に係るプリフォーム製造方法は、希土類元素がEr元素であるのが好適であり、石英パイプにF元素が添加されているのも好適である。また、第1工程において石英パイプを温度1500℃以下で加熱し、第2工程において石英パイプを温度1800℃以上で加熱するのが好適である。   In the preform manufacturing method according to the present invention, the rare earth element is preferably an Er element, and it is also preferable that an F element is added to the quartz pipe. Further, it is preferable that the quartz pipe is heated at a temperature of 1500 ° C. or lower in the first step, and the quartz pipe is heated at a temperature of 1800 ° C. or higher in the second step.

本発明によれば、希土類元素およびP元素が添加された光ファイバを製造するためのプリフォームを安定して効率よく製造することができるプリフォーム製造方法を提供することができる。 According to the present invention, it is possible to provide a preform manufacturing how that can be efficiently produced a preform for manufacturing an optical fiber with a rare earth element and P element is added stably.

以下、添付図面を参照して、本発明を実施するための最良の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、一般的なMCVD法を説明する図である。MCVD法では、石英パイプ11の一端から内部に原料ガスを導入するとともに、該石英パイプ11をバーナ21により加熱する。このとき、石英パイプ11の一端から他端へ向けてバーナ21を移動させる。石英パイプ11にはF元素が添加されていてもよい。この加熱により原料ガスからガラス微粒子が生成され、そのガラス微粒子が石英パイプ11の内壁に堆積されて多孔質ガラス層12となる。バーナ21の移動によって多孔質ガラス層12が更に加熱されて脱水・焼結され透明ガラス13とされる。石英パイプ11の内部に導入される原料ガスには、例えば、SiClガス、Er(C1119ガス、AlClガス、POClガス、Heガス、OガスおよびClガスの何れかが必要に応じて含まれる。 FIG. 1 is a diagram for explaining a general MCVD method. In the MCVD method, a raw material gas is introduced from one end of the quartz pipe 11 and the quartz pipe 11 is heated by a burner 21. At this time, the burner 21 is moved from one end of the quartz pipe 11 toward the other end. F element may be added to the quartz pipe 11. By this heating, glass fine particles are generated from the raw material gas, and the glass fine particles are deposited on the inner wall of the quartz pipe 11 to form the porous glass layer 12. Due to the movement of the burner 21, the porous glass layer 12 is further heated, dehydrated and sintered to form the transparent glass 13. Examples of the raw material gas introduced into the quartz pipe 11 include SiCl 4 gas, Er (C 11 H 19 O 2 ) 3 gas, AlCl 3 gas, POCl 3 gas, He gas, O 2 gas, and Cl 2 gas. Is included as necessary.

図2は、実施例および比較例それぞれのプリフォーム製造方法の工程を示す図表である。比較例1,2では、第1〜11回のスス付け(バーナ21のトラバース)の全てにおいて、Er元素,AlおよびPを含むSiOからなるガラス微粒子を石英パイプ11の内壁に堆積させる工程(以下「EAP工程」という。)を行った。実施例1では、第1,5,9回それぞれにおいて、Er元素およびAlを含むSiOからなるガラス微粒子を石英パイプ11の内壁に堆積させる工程(以下「EA工程」という。)を行い、第2〜4,6〜8,10,11回それぞれにおいて、Pを含むSiOからなるガラス微粒子を石英パイプ11の内壁に堆積させる工程(以下「P工程」という。)を行った。また、実施例2では、第1,7,13回それぞれにおいてEA工程を行い、第2〜6,8〜12,14〜16回それぞれにおいてP工程を行った。 FIG. 2 is a chart showing the steps of the preform manufacturing method for each of the examples and comparative examples. In Comparative Examples 1 and 2, glass particles made of SiO 2 containing Er element, Al 2 O 3, and P 2 O 5 were used for the quartz pipe 11 in all of the first to 11th sooting (traverse of the burner 21). A process of depositing on the inner wall (hereinafter referred to as “EAP process”) was performed. In Example 1, in each of the first, fifth, and ninth times, a step of depositing glass fine particles made of SiO 2 containing Er element and Al 2 O 3 on the inner wall of the quartz pipe 11 (hereinafter referred to as “EA step”). And a step of depositing glass particles made of SiO 2 containing P 2 O 5 on the inner wall of the quartz pipe 11 (hereinafter referred to as “P step”) in the second to fourth, sixth to eighth, tenth and eleventh times. went. Moreover, in Example 2, the EA process was performed in each of the first, seventh and thirteenth times, and the P process was performed in each of the second to sixth, eighth to twelfth and fourteenth to sixteenth times.

なお、P工程は、Pを含むガラスを石英パイプの内壁に堆積させる第1工程に相当する。また、EA工程は、希土類元素を含みPを含まないガラスを石英パイプの内壁に堆積させる第2工程に相当する。 The P process corresponds to a first process of depositing glass containing P 2 O 5 on the inner wall of the quartz pipe. The EA step corresponds to a second step of depositing glass containing rare earth elements and not containing P 2 O 5 on the inner wall of the quartz pipe.

実施例1,2および比較例1,2の各工程において、バーナ21として酸水素バーナを用い、バーナ21の移動速度を120mm/minとした。比較例1,2それぞれのプリフォーム製造方法におけるEAP工程の条件は図3に示されている。EAP工程では、バーナ21による石英パイプ11の加熱温度は、比較例1では1500℃であり、比較例2では1200℃であった。実施例1,2それぞれのプリフォーム製造方法におけるEA工程の条件は図4に示されている。実施例1,2におけるEA工程では、バーナ21による石英パイプ11の加熱温度は1800℃であった。また、実施例1,2それぞれのプリフォーム製造方法におけるP工程の条件は図5に示されている。実施例1,2におけるP工程では、バーナ21による石英パイプ11の加熱温度は1100℃であった。   In each process of Examples 1 and 2 and Comparative Examples 1 and 2, an oxyhydrogen burner was used as the burner 21, and the moving speed of the burner 21 was set to 120 mm / min. The conditions of the EAP process in the preform manufacturing methods of Comparative Examples 1 and 2 are shown in FIG. In the EAP process, the heating temperature of the quartz pipe 11 by the burner 21 was 1500 ° C. in Comparative Example 1 and 1200 ° C. in Comparative Example 2. The conditions of the EA process in the preform manufacturing methods of Examples 1 and 2 are shown in FIG. In the EA process in Examples 1 and 2, the heating temperature of the quartz pipe 11 by the burner 21 was 1800 ° C. Moreover, the conditions of P process in each preform manufacturing method of Example 1, 2 are shown by FIG. In the P process in Examples 1 and 2, the heating temperature of the quartz pipe 11 by the burner 21 was 1100 ° C.

図6は、実施例および比較例それぞれのプリフォーム製造方法により製造されたプリフォームのコア部におけるP元素濃度,Al元素濃度およびEr元素濃度を纏めた図表である。比較例1では、P元素濃度は4.5wt%であり、Al元素濃度は1.0wt%であり、Er元素濃度は30wtppmであった。比較例2では、P元素濃度は4.3wt%であり、Al元素濃度は1.1wt%であり、Er元素濃度は100wtppmであった。実施例1では、P元素濃度は3.0wt%であり、Al元素濃度は0.9wt%であり、Er元素濃度は500wtppmであった。また、実施例2では、P元素濃度は5.8wt%であり、Al元素濃度は0.9wt%であり、Er元素濃度は2000wtppmであった。   FIG. 6 is a table summarizing the P element concentration, Al element concentration, and Er element concentration in the core portion of the preform manufactured by the preform manufacturing method of each of the examples and comparative examples. In Comparative Example 1, the P element concentration was 4.5 wt%, the Al element concentration was 1.0 wt%, and the Er element concentration was 30 wtppm. In Comparative Example 2, the P element concentration was 4.3 wt%, the Al element concentration was 1.1 wt%, and the Er element concentration was 100 wtppm. In Example 1, the P element concentration was 3.0 wt%, the Al element concentration was 0.9 wt%, and the Er element concentration was 500 wtppm. In Example 2, the P element concentration was 5.8 wt%, the Al element concentration was 0.9 wt%, and the Er element concentration was 2000 wtppm.

以上のように、比較例1,2では、Er元素,Al元素およびP元素を同時に添加する工程を一括で行っても、Er元素は高々100wtppm程度しか添加できない。これに対して、実施例1,2のように、Er元素添加する工程とP元素添加工程とを分けることで、Er元素およびP元素を共添加した希土類元素添加ファイバ用のガラスプリフォームを製造できることが分かる。   As described above, in Comparative Examples 1 and 2, even if the process of simultaneously adding the Er element, Al element, and P element is performed at a time, the Er element can be added only at most about 100 wtppm. On the other hand, as in Examples 1 and 2, a glass preform for a rare earth element-doped fiber in which an Er element and a P element are co-doped is manufactured by separating the Er element adding process and the P element adding process. I understand that I can do it.

また、実施例1,2では、Er元素添加する工程とP元素添加工程とを交互に行うので、生産性を高めることができる。また、これらを高温で処理することができるので熱源が安定化され、添加物濃度や堆積速度の変動が抑制されて、長手方向に均一なプルフォームを容易に製造することができる。   In Examples 1 and 2, since the Er element addition step and the P element addition step are alternately performed, productivity can be improved. Further, since these can be processed at a high temperature, the heat source is stabilized, fluctuations in additive concentration and deposition rate are suppressed, and a uniform uniform foam can be easily produced in the longitudinal direction.

図7は、本実施形態に係る光ファイバ増幅器30の構成図である。この図に示される光ファイバ増幅器30は、希土類元素添加光ファイバ31、励起光源32、光結合部33および光アイソレータ34を備える。   FIG. 7 is a configuration diagram of the optical fiber amplifier 30 according to the present embodiment. The optical fiber amplifier 30 shown in this figure includes a rare earth element-doped optical fiber 31, a pumping light source 32, an optical coupling portion 33, and an optical isolator 34.

希土類元素添加光ファイバ31はコア部とクラッド部とを備え、そのコア部は、P元素濃度が3wt%以上であり、Al元素濃度が0.3wt%以上であり、希土類元素濃度が500wtppm以上である。クラッド部は、コア部を取り囲み、コア部の屈折率より低い屈折率を有する。この希土類元素添加光ファイバ31は、上述したプリフォーム製造方法により製造されたプリフォームを線引することで得られる。コア部に添加される希土類元素はEr元素であるのが好適であり、また、クラッド部にF元素が添加されているのも好適である。希土類元素添加光ファイバ31は、波長範囲1560nm〜1625nmを含む波長範囲において利得を有するのが好適である。   The rare earth element-doped optical fiber 31 includes a core part and a cladding part. The core part has a P element concentration of 3 wt% or more, an Al element concentration of 0.3 wt% or more, and a rare earth element concentration of 500 wt ppm or more. is there. The clad portion surrounds the core portion and has a refractive index lower than that of the core portion. This rare earth element-doped optical fiber 31 is obtained by drawing a preform manufactured by the above-described preform manufacturing method. The rare earth element added to the core is preferably an Er element, and it is also preferable that an F element is added to the cladding. The rare earth element-doped optical fiber 31 preferably has a gain in a wavelength range including a wavelength range of 1560 nm to 1625 nm.

励起光源32は、希土類元素添加光ファイバ31のコア部に添加された希土類元素を励起し得る波長の励起光を出力する。光結合部33は、励起光源32から出力された励起光を希土類元素添加光ファイバ31に供給するとともに、希土類元素添加光ファイバ31から出力された信号光を入力して出射端1bへ出力する。光アイソレータ34は、入射端1aと希土類元素添加光ファイバ31との間に設けられ、順方向に光を通過させるが、逆方向には光を通過させない。   The pumping light source 32 outputs pumping light having a wavelength that can pump the rare earth element added to the core of the rare earth element-doped optical fiber 31. The optical coupling unit 33 supplies the pumping light output from the pumping light source 32 to the rare earth element-doped optical fiber 31, inputs the signal light output from the rare earth element added optical fiber 31, and outputs the signal light to the emission end 1b. The optical isolator 34 is provided between the incident end 1a and the rare earth element-doped optical fiber 31, and allows light to pass in the forward direction but does not allow light to pass in the reverse direction.

この光ファイバ増幅器31では、励起光源32から出力された励起光は、光結合部33を経て、希土類元素添加光ファイバ31に供給される。入射端1aに入力された信号光は、光アイソレータ34を経て希土類元素添加光ファイバ31に入力され、この希土類元素添加光ファイバ31において光増幅される。この光増幅された信号光は、光結合部33を経て出射端1bから外部へ出力される。この光ファイバ増幅器31は、広帯域で信号光を光増幅することができる。   In the optical fiber amplifier 31, the pumping light output from the pumping light source 32 is supplied to the rare earth element-doped optical fiber 31 through the optical coupling unit 33. The signal light input to the incident end 1 a is input to the rare earth element-doped optical fiber 31 through the optical isolator 34, and is optically amplified in the rare earth element doped optical fiber 31. The optically amplified signal light is output to the outside from the emission end 1b via the optical coupling unit 33. The optical fiber amplifier 31 can optically amplify signal light over a wide band.

一般的なMCVD法を説明する図である。It is a figure explaining the general MCVD method. 実施例および比較例それぞれのプリフォーム製造方法の工程を示す図表である。It is a graph which shows the process of the preform manufacturing method of an Example and each comparative example. 比較例1,2それぞれのプリフォーム製造方法におけるEAP工程の条件を示す図表である。It is a graph which shows the conditions of the EAP process in the preform manufacturing method of each of Comparative Examples 1 and 2. 実施例1,2それぞれのプリフォーム製造方法におけるEA工程の条件を示す図表である。It is a graph which shows the conditions of the EA process in the preform manufacturing method of each of Examples 1 and 2. 実施例1,2それぞれのプリフォーム製造方法におけるP工程の条件を示す図表である。It is a table | surface which shows the conditions of P process in the preform manufacturing method of each of Example 1,2. 実施例および比較例それぞれのプリフォーム製造方法により製造されたプリフォームのコア部におけるP元素濃度,Al元素濃度およびEr元素濃度を纏めた図表である。5 is a table summarizing P element concentration, Al element concentration and Er element concentration in a core portion of a preform manufactured by a preform manufacturing method of each of Examples and Comparative Examples. 本実施形態に係る光ファイバ増幅器1の構成図である。It is a block diagram of the optical fiber amplifier 1 which concerns on this embodiment.

符号の説明Explanation of symbols

11…石英パイプ、12…多孔質ガラス層、13…透明ガラス層、21…バーナ、30…光ファイバ増幅器、31…希土類元素添加光ファイバ、32…励起光源、33…光結合部、34…光アイソレータ。
DESCRIPTION OF SYMBOLS 11 ... Quartz pipe, 12 ... Porous glass layer, 13 ... Transparent glass layer, 21 ... Burner, 30 ... Optical fiber amplifier, 31 ... Rare earth element addition optical fiber, 32 ... Excitation light source, 33 ... Optical coupling part, 34 ... Light Isolator.

Claims (4)

を含むガラスを石英パイプの内壁に堆積させる第1工程と、希土類元素を含みPを含まないガラスを前記石英パイプの内壁に堆積させる第2工程と、を備え、
前記第1工程と前記第2工程とを交互に繰り返し行って、コア部に希土類元素が添加されたプリフォームを製造する、
ことを特徴とするプリフォーム製造方法。
Comprising a first step of depositing a glass containing P 2 O 5 to the inner wall of the quartz pipe, and a second step of depositing a glass containing no P 2 O 5 comprises a rare earth element to the inner wall of the quartz pipe, and
The first step and the second step are alternately repeated to produce a preform in which a rare earth element is added to the core part,
The preform manufacturing method characterized by the above-mentioned.
前記希土類元素がEr元素であることを特徴とする請求項1記載のプリフォーム製造方法。   The preform manufacturing method according to claim 1, wherein the rare earth element is an Er element. 前記石英パイプにF元素が添加されていることを特徴とする請求項1記載のプリフォーム製造方法。   The preform manufacturing method according to claim 1, wherein an element F is added to the quartz pipe. 前記第1工程において前記石英パイプを温度1500℃以下で加熱し、
前記第2工程において前記石英パイプを温度1800℃以上で加熱する、
ことを特徴とする請求項1記載のプリフォーム製造方法。
Heating the quartz pipe at a temperature of 1500 ° C. or lower in the first step;
Heating the quartz pipe at a temperature of 1800 ° C. or higher in the second step;
The preform manufacturing method according to claim 1.
JP2008006065A 2008-01-15 2008-01-15 Preform manufacturing method Expired - Fee Related JP5018491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008006065A JP5018491B2 (en) 2008-01-15 2008-01-15 Preform manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008006065A JP5018491B2 (en) 2008-01-15 2008-01-15 Preform manufacturing method

Publications (2)

Publication Number Publication Date
JP2009167048A JP2009167048A (en) 2009-07-30
JP5018491B2 true JP5018491B2 (en) 2012-09-05

Family

ID=40968693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006065A Expired - Fee Related JP5018491B2 (en) 2008-01-15 2008-01-15 Preform manufacturing method

Country Status (1)

Country Link
JP (1) JP5018491B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5937134A (en) * 1997-08-07 1999-08-10 Lucent Technologies Inc. Cladding pumped fiber lasers
US6560009B1 (en) * 2001-08-21 2003-05-06 Lucent Technologies Inc. Erbium doped fibers for extended L-band amplification
EP1708971B1 (en) * 2004-01-20 2015-06-10 Corning Incorporated Double clad optical fiber with rare earth metal doped glass core

Also Published As

Publication number Publication date
JP2009167048A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
US9151889B2 (en) Rare earth doped and large effective area optical fibers for fiber lasers and amplifiers
JP5746247B2 (en) Rare earth doped optical fiber
JP2599511B2 (en) Method for producing rare earth element doped quartz glass
JP5033719B2 (en) Optical fiber preform manufacturing method
CN112147738B (en) high-Raman-gain optical fiber capable of inhibiting stimulated Brillouin scattering effect and preparation method thereof
JP5018492B2 (en) Preform manufacturing method
US6474106B1 (en) Rare earth and alumina-doped optical fiber preform process
US7130513B2 (en) Glass-body-producing method and optical glass body and optical fiber
JP5018491B2 (en) Preform manufacturing method
JP2005514636A5 (en)
JP4875301B2 (en) Rare earth doped optical fiber preform manufacturing method
JP6794755B2 (en) Optical fiber
Saha et al. Vapor phase doping process for fabrication of rare earth doped optical fibers: Current status and future opportunities
AU2002249558B2 (en) A method of fabricating rare earth doped optical fibre
JP3810785B2 (en) Doped fiber, splicing method thereof, and optical amplifier
JP5400851B2 (en) Rare earth doped optical fiber
JP2011060854A (en) Optical fiber for amplification, and fiber laser device using the same
RU2627547C1 (en) Fiber lightguide for amplifying optical radiation in spectral area of 1500-1800 nm, method of its manufacture and broadband fiber amplifier
JP5607325B2 (en) Rare earth element-doped optical fiber preform manufacturing method
WO2010097872A1 (en) Optical fiber for optical amplification, and fiber laser
JP2013230961A (en) Optical fiber preform manufacturing method
JP2009224405A (en) Rare earth element-added optical fiber and method of manufacturing the same, and fiber laser
Wang et al. KW-level Yb-doped Aluminophosphosilicate Fiber by Chelate Precursor Doping Technique
Saha et al. Highly Efficient Yb-doped Laser Fiber Synthesized by Vapor-phase Doping Technique
JPH0990144A (en) Production of multicore optical fiber with addition of rare earth element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5018491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees