JP5018357B2 - Linear compression apparatus and control method thereof - Google Patents

Linear compression apparatus and control method thereof Download PDF

Info

Publication number
JP5018357B2
JP5018357B2 JP2007230628A JP2007230628A JP5018357B2 JP 5018357 B2 JP5018357 B2 JP 5018357B2 JP 2007230628 A JP2007230628 A JP 2007230628A JP 2007230628 A JP2007230628 A JP 2007230628A JP 5018357 B2 JP5018357 B2 JP 5018357B2
Authority
JP
Japan
Prior art keywords
voltage
current
displacement
phase angle
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007230628A
Other languages
Japanese (ja)
Other versions
JP2009062853A (en
Inventor
豊久 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2007230628A priority Critical patent/JP5018357B2/en
Publication of JP2009062853A publication Critical patent/JP2009062853A/en
Application granted granted Critical
Publication of JP5018357B2 publication Critical patent/JP5018357B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガス圧縮や蒸気圧縮あるいは冷凍機などに用いられるリニアモータで駆動されるリニア圧縮機およびその制御方法に関するもので、詳しくは、ピストンの位置を制御するリニア圧縮装置および制御するため、リニアモータのコイルのインダクタンスと逆起電力係数を測定するリニア圧縮装置の制御方法に関するものである。   The present invention relates to a linear compressor driven by a linear motor used for gas compression, vapor compression or a refrigerator, and a control method thereof, and more specifically, a linear compression device for controlling the position of a piston and a control method thereof. The present invention relates to a method for controlling a linear compression apparatus that measures the inductance and back electromotive force coefficient of a coil of a linear motor.

従来技術の制御方法に使われるインダクタンスの測定は、LCR回路において周波数を掃引しながらインピーダンスZ及び位相角θを測定、記録する測定工程と、測定工程で測定された位相角θを所定回数前の値と比較して位相角が所定の値に近づきつつあるか、又は遠ざかりつつあるかを判断する第1比較工程と、θの増減回数を計測し所定の値と比較して測定完了を判断する第2比較工程と、測定工程で測定、記録されたインピーダンスZ及び位相角θの測定値に数値演算を施して近似値を求める演算処理工程とを備えており、第2比較工程と、測定工程の動作回数を所定値と比較し、所定の値と等しければ演算処理工程で、測定工程で測定・記録された測定周波数と、インピーダンスZ及び位相角θの数値演算を施してインダクタンスL'の近似値を求めている。この場合、周波数fを0もしくは十分低い値に設定すると、インピーダンスZ及び位相角θを数1、数2の式を使い数値演算を施してインダクタンスL'の近似値が求められる(例えば、特許文献1)。

Figure 0005018357
The inductance used in the control method of the prior art is measured by measuring and recording the impedance Z and the phase angle θ while sweeping the frequency in the LCR circuit, and the phase angle θ measured in the measurement step a predetermined number of times before. A first comparison step for determining whether the phase angle is approaching a predetermined value or moving away from a value, and measuring the number of increases / decreases in θ and comparing it with a predetermined value to determine the completion of measurement. A second comparison step, and an arithmetic processing step for calculating an approximate value by performing a numerical operation on the measured values of impedance Z and phase angle θ measured and recorded in the measurement step. The second comparison step and the measurement step Is compared with a predetermined value, and if it is equal to the predetermined value, in the arithmetic processing step, the measurement frequency measured and recorded in the measurement step, the numerical calculation of the impedance Z and the phase angle θ are performed, and the inductance L ′ Seeking an approximate value. In this case, when the frequency f is set to 0 or a sufficiently low value, the impedance Z and the phase angle θ are numerically calculated using the equations (1) and (2) to obtain an approximate value of the inductance L ′ (for example, patent document) 1).
Figure 0005018357

数1において、ωは角速度で、円周率をπ(≒3.14)とするとω=2πfになる。

Figure 0005018357
In Equation 1, ω is an angular velocity, and ω = 2πf when the circumferential ratio is π (≈3.14).
Figure 0005018357

また、直流電圧Vdcを交流に変換し、交流を交流電動機へ供給するためのパワー半導体素子から構成されるインバータと、インバータの出力電圧の大きさと周波数を制御するための制御装置とから成る交流電動機の制御装置における交流電動機の定数測定方法において、インバータの1次周波数指令値ω及び1次電圧指令値VC1を基に単相交流励磁信号を出力し、この信号によりインバータを動作させて交流電動機を単相交流励磁し、1次周波数指令を積分した位相と交流電動機の電流検出値から電動機の有効パワー分電流Iqと、無効パワー分電流Idを演算し、次式VC1・Iqと、次式(Iq+Id)との比から交流電動機の1次及び2次の合成抵抗(r+r)を演算測定し、次式VC1・Idと、次式ω(Id+Iq)との比から、交流電動機の1次及び2次の合成もれインダクタンス(L+L)を演算測定する。即ち、数3により合成もれインダクタンス(L+L)を求める(例えば、特許文献2)。

Figure 0005018357
Further, an alternating current comprising an inverter composed of power semiconductor elements for converting the direct current voltage V dc into alternating current and supplying the alternating current to the alternating current motor, and a control device for controlling the magnitude and frequency of the output voltage of the inverter. In a constant measuring method for an AC motor in a motor control device, a single-phase AC excitation signal is output based on the primary frequency command value ω 1 and the primary voltage command value V C1 of the inverter, and the inverter is operated by this signal. The AC motor is single-phase AC excited, the effective power current Iq and the reactive power current Id of the motor are calculated from the phase obtained by integrating the primary frequency command and the current detection value of the AC motor, and the following formula V C1 · Iq , the following equation primary and secondary combined resistance of (Iq 2 + Id 2) from the ratio of the AC motor (r 1 + r 2) is calculated measured, and the following equation V C1 · Id, the following formula omega (I From the ratio of the 2 + Iq 2), calculates measured AC motor primary and secondary synthetic leakage inductance (L 1 + L 2). That is, the combined leakage inductance (L 1 + L 2 ) is obtained by Equation 3 (for example, Patent Document 2).
Figure 0005018357

また、従来技術のピストン位置制御したリニア圧縮機では、ピストンを往復運動させるリニアモータの電圧と電流を継続的に検出し、検出された電圧V、電流Iと、事前に測定されたコイルの電気抵抗Rから、リニアモータのインダクタンスLと逆起電力係数Cを含む式、即ち、速度v={(1/C)(V−L(dI/dt)−IR)}を使いピストンの速度を計算し、この速度を微分してピストンの加速度、積分して変位を計算し、さらにこれらの諸量を用いてピストンの上死点位置を計算し、変位センサを使わずにピストンの位置制御を行う(例えば、特許文献3)。
特許第2751285号報 特許第3284602号報 特許第3413658号報
Further, in the conventional linear compressor with piston position control, the voltage and current of the linear motor that reciprocates the piston are continuously detected, and the detected voltage V and current I are measured in advance and the coil electrical current measured in advance. From the resistor R, the piston speed is calculated using an equation including the linear motor inductance L and the counter electromotive force coefficient C, that is, the speed v = {(1 / C) (VL (dl / dt) -IR)}. Differentiating this speed, the piston acceleration is integrated to calculate the displacement, and using these quantities, the top dead center position of the piston is calculated, and the piston position is controlled without using the displacement sensor. (For example, patent document 3).
Japanese Patent No. 2751285 Patent No. 3284602 Japanese Patent No. 3413658

しかしながら、特許文献1のインダクタンスの測定方法では、リニアモータのような磁気回路において可動子あるいは回転子の速度により生じる逆起電力の影響が数1、数2に含まれていないため、リニアモータの実機運転状態相当のインダクタンスと逆起電力係数を測定できないと言う問題がある。   However, in the inductance measurement method of Patent Document 1, the influence of the counter electromotive force generated by the speed of the mover or the rotor in a magnetic circuit such as a linear motor is not included in the equations 1 and 2, so There is a problem that the inductance and back electromotive force coefficient corresponding to the actual machine operating state cannot be measured.

また、特許文献2の合成もれインダクタンスの測定方法は、交流電動機の磁気回路においても、交流電動機の回転子(可動子)の速度により生じる逆起電力の影響が数3に含まれていないため、リニアモータの実機運転状態相当のインダクタンスと逆起電力係数を測定できないと言う問題がある。   Further, in the method of measuring the combined leakage inductance of Patent Document 2, the influence of the counter electromotive force generated by the speed of the rotor (movable element) of the AC motor is not included in Equation 3 even in the magnetic circuit of the AC motor. There is a problem that the inductance and the back electromotive force coefficient corresponding to the actual operation state of the linear motor cannot be measured.

また、特許文献3では、リニアモータの電圧と電流を継続的に検出するとともに、遂次微分処理と積分処理を行う必要がある。この微分処理は、速度変化を微少時間で割って加速度を求めるため、速度変化に電気的ノイズが含まれると、このノイズ影響を受けて、加速度が不正確になり、正しいピストン変位が計算されず、ピストン位置が正しく制御されない問題がある。また、遂次微分処理と積分処理を行うため、制御装置には微分器と積分器を設ける必要があり、微分器と積分器をアナログ回路で実現すると回路構成が複雑になり、ディジタル回路で実現すると演算処理を行うプロセッサの負担が増大するとともに、コストが高くなる問題がある。   Further, in Patent Document 3, it is necessary to continuously detect the voltage and current of the linear motor, and to perform successive differentiation processing and integration processing. In this differentiation process, the speed change is divided by a small amount of time to obtain the acceleration. If the speed change includes electrical noise, the influence of this noise will cause the acceleration to be inaccurate and correct piston displacement will not be calculated. There is a problem that the piston position is not controlled correctly. In addition, in order to perform successive differentiation and integration processing, it is necessary to provide the controller with a differentiator and an integrator. If the differentiator and the integrator are realized with an analog circuit, the circuit configuration becomes complicated, which is realized with a digital circuit. This increases the burden on the processor that performs the arithmetic processing and increases the cost.

本発明は上記問題点に鑑みてなされたものであり、ピストンの位置検出器が不要で、演算処理を行うプロセッサの負担が小さく、電気ノイズの影響を受け難く、精度の高いピストン位置制御のできるコストの安いリニア圧縮装置およびその制御方法を提供することを目的とする。   The present invention has been made in view of the above problems, and does not require a piston position detector, reduces the burden on a processor that performs arithmetic processing, is hardly affected by electrical noise, and can perform highly accurate piston position control. An object of the present invention is to provide a low-cost linear compressor and a control method therefor.

上記課題を解決するため、請求項1に記載の発明は、可動子にピストンを配設した可動体とコイルとを有するリニアモータと、ピストンが往復動してガスを圧縮するシリンダー部と、を備えたリニア圧縮機と、リニアモータのコイルに電力を供給し、リニア圧縮機の可動体を正弦波又は正弦波状に往復動させる電源部と、を備えるリニア圧縮装置の制御方法であって、
前記電源部に送る正弦波又は正弦波状の基本波形を発生する基本波形発生手段により前記基本波形を発生する基本波形発生ステップと、
前記電力の電圧の測定と演算を行う電圧測定演算手段により、共通タイミングを基準に前記基本波形の周波数の1周期内の3つ以上の異なる前記電圧位相角に整数倍の2π(360°)を加えた位相角で、又は前記電圧の直流分が振幅に対して小さい場合は前記共通タイミングを基準に前記周波数の1周期内の2つ以上の異なる前記電圧位相角に整数倍の2πを加えた位相角で前記電圧を測定し、測定した該電圧値から電圧波形の電圧振幅と電圧位相角とを演算する電圧測定演算ステップと、
前記電力の電流の測定と演算を行う電流測定演算手段より、前記共通タイミングを基準に前記周波数の1周期内の3つ以上の異なる前記電流位相角に整数倍の2πを加えた位相角で、又は前記電流の直流分が振幅に対して小さい場合は前記共通タイミングを基準に前記周波数の1周期内の2つ以上の異なる前記電流位相角に整数倍の2πを加えた位相角で前記電流を測定し、測定した該電流値から電流波形の電流振幅と電流位相角とを演算する電流測定演算ステップと、
前記ピストンの変位の測定と演算を行う変位測定演算手段により前記共通タイミングを基準に前記周波数の1周期内の3つ以上の異なる前記変位位相角に整数倍の2πを加えた位相角で、又は前記変位の直流分が振幅に対して小さい場合は前記共通タイミングを基準に前記周波数の1周期内の2つ以上の異なる前記変位位相角に整数倍の2πを加えた位相角で前記変位を測定し、測定した該変位値から変位波形の変位振幅と変位位相角とを演算する変位測定演算ステップと、
前記電圧と前記電流と前記変位の測定値から得られた演算結果に基き演算するコイル演算手段により、前記電圧振幅と前記電圧位相角と、前記電流振幅と前記電流位相角と、前記変位振幅と前記変位位相角と、から前記コイルのインダクタンスと、前記コイルの逆起電力係数を演算するコイル演算ステップと、によって前記インダクタンスと前記逆起電力係数とを予め求め、
前記電源部の前記電力の電圧又は電流を制御する制御部を備え、
前記リニア圧縮装置の運転時に、前記制御部は、前記電源部に送る正弦波又は正弦波状の基本波形を発生させる基本波形発生手段と、共通タイミングを基準に前記基本波形の周波数の1周期内で3つ以上の異なる電圧位相角に整数倍の2πを加えた位相角で、又は前記電圧の直流分が振幅に対して小さい場合は前記共通タイミングを基準に前記基本波形の周波数の1周期内で2つ以上の異なる電圧位相角に整数倍の2πを加えた位相角で前記コイルを流れる電圧を測定し、測定した該電圧値から電圧波形の電圧振幅と電圧位相角を演算する電圧測定演算手段と、
前記共通タイミングを基準に前記周波数の1周期内で3つ以上の異なる電流位相角に整数倍の2πを加えた位相角で、又は前記電流の直流分が振幅に対して小さい場合は前記共通タイミングを基準に前記周波数の1周期内で2つ以上の異なる電流位相角に整数倍の2πを加えた位相角で前記コイルを流れる電流を測定し、測定した該電流値から電流波形の電流振幅と電流位相角を演算する電流測定演算手段と、
前記電圧測定演算手段により得られた前記電圧波形と、前記電流測定演算手段により得られた前記電流波形から前記可動体の変位波形を演算する変位波形演算手段と、
前記基本波形と、前記変位波形演算手段により得られた前記変位波形とを比較し前記基本波形を補正した動作信号を前記電源部に伝送する基本波形補正手段と、を備え、
前記コイル演算ステップで求めた前記インダクタンスと前記逆起電力係数により前記変位波形演算手段で前記変位波形を演算して前記可動体の位置を制御する、ことを特徴するリニア圧縮装置の制御方法である
In order to solve the above-mentioned problem, the invention described in claim 1 includes a linear motor having a movable body having a piston disposed on a mover and a coil, and a cylinder portion in which the piston reciprocates to compress gas. A control method of a linear compression apparatus comprising: a linear compressor provided; and a power supply unit that supplies electric power to a coil of the linear motor and reciprocates a movable body of the linear compressor in a sine wave or sine wave shape,
A basic waveform generating step of generating the basic waveform by a basic waveform generating means for generating a sine wave or a sine wave basic waveform to be sent to the power supply unit;
By means of voltage measurement calculation means for measuring and calculating the voltage of the power, 2π (360 °) which is an integral multiple of three or more different voltage phase angles within one period of the frequency of the basic waveform with reference to a common timing. When the DC component of the voltage is small relative to the amplitude with the added phase angle, 2π which is an integer multiple is added to two or more different voltage phase angles within one period of the frequency with reference to the common timing. A voltage measurement calculation step for measuring the voltage at a phase angle and calculating a voltage amplitude and a voltage phase angle of a voltage waveform from the measured voltage value;
From the current measurement calculation means for measuring and calculating the current of the electric power, with a phase angle obtained by adding 2π of an integer multiple to three or more different current phase angles within one period of the frequency based on the common timing, Alternatively, when the direct current component of the current is small with respect to the amplitude, the current is set at a phase angle obtained by adding 2π which is an integral multiple of two or more different current phase angles within one period of the frequency with reference to the common timing. A current measurement calculation step for measuring and calculating the current amplitude and current phase angle of the current waveform from the measured current value;
A phase angle obtained by adding an integral multiple of 2π to three or more different displacement phase angles within one period of the frequency with reference to the common timing by a displacement measurement calculation means for measuring and calculating the displacement of the piston; or When the DC component of the displacement is smaller than the amplitude, the displacement is measured at a phase angle obtained by adding 2π which is an integral multiple of two or more different displacement phase angles within one period of the frequency with reference to the common timing. A displacement measurement calculation step for calculating a displacement amplitude and a displacement phase angle of the displacement waveform from the measured displacement value;
By means of coil calculation means for calculating based on the calculation results obtained from the measured values of the voltage, the current and the displacement, the voltage amplitude, the voltage phase angle, the current amplitude, the current phase angle, and the displacement amplitude, From the displacement phase angle, the inductance of the coil and a coil calculation step of calculating a counter electromotive force coefficient of the coil, and obtaining the inductance and the counter electromotive force coefficient in advance,
A control unit that controls the voltage or current of the power of the power supply unit;
During operation of the linear compression device, the control unit generates a sine wave or a sine wave basic waveform to be sent to the power supply unit, and within one cycle of the frequency of the basic waveform based on a common timing. The phase angle is obtained by adding an integer multiple of 2π to three or more different voltage phase angles, or within one period of the frequency of the basic waveform with reference to the common timing when the DC component of the voltage is small relative to the amplitude. Voltage measurement calculation means for measuring a voltage flowing through the coil at a phase angle obtained by adding 2π which is an integer multiple to two or more different voltage phase angles, and calculating a voltage amplitude and a voltage phase angle of a voltage waveform from the measured voltage values When,
With the phase angle obtained by adding an integer multiple of 2π to three or more different current phase angles within one period of the frequency with reference to the common timing, or when the DC component of the current is small relative to the amplitude, the common timing The current flowing through the coil is measured at a phase angle obtained by adding an integer multiple of 2π to two or more different current phase angles within one period of the frequency, and the current amplitude of the current waveform is calculated from the measured current value. Current measurement calculation means for calculating a current phase angle;
A displacement waveform computing means for computing a displacement waveform of the movable body from the voltage waveform obtained by the voltage measurement computing means and the current waveform obtained by the current measurement computing means;
Comparing the basic waveform and the displacement waveform obtained by the displacement waveform calculating means, the basic waveform correcting means for transmitting the operation signal corrected the basic waveform to the power supply unit,
It is a control method for a linear compression device, wherein the displacement waveform is calculated by the displacement waveform calculation means based on the inductance obtained in the coil calculation step and the counter electromotive force coefficient, and the position of the movable body is controlled. .

請求項1に記載の発明では、基本波形発生ステップで所定の周波数で、所定の振幅の正弦波、又は、正弦波状の基本波形を発生させ、この基本波形に基づき電源部でリニア圧縮機のリニアモータに供給する電力の電圧と電流を実機運転状態に近い状態にしてリニアモータに供給し、可動体を正弦波、又は、正弦波状(略正弦波)に往復運動させる。次に、電圧測定演算ステップ、電流測定演算ステップ、変位測定演算ステップで、共通タイミングを基準に、それぞれ電圧、電流、変位を測定し、該測定値から電圧振幅と電圧位相角、電流振幅と電流位相角、変位振幅と変位位相角を演算し、該演算値からコイル演算ステップでインダクタンスと逆起電力係数を演算するので、実機運転状態に近い状態のリニアモータのコイルのインダクタンス値と逆起電力係数の値を求めることが可能で、従来技術の測定された電流を微分する必要がないので、位置検出器を用いず、電気ノイズの影響を受け難く、演算処理を行うプロセッサの負担が小さく、精度の高い位置制御が出来るリニア圧縮装置の制御方法を提供できる。   In the first aspect of the present invention, a sine wave having a predetermined amplitude or a sine wave-like basic waveform is generated at a predetermined frequency in the basic waveform generation step, and the linear compressor of the linear compressor is generated by the power supply unit based on the basic waveform. The voltage and current of the electric power supplied to the motor are supplied to the linear motor in a state close to the actual machine operating state, and the movable body is reciprocated in a sine wave or sine wave (substantially sine wave). Next, in the voltage measurement calculation step, current measurement calculation step, and displacement measurement calculation step, the voltage, current, and displacement are measured based on the common timing, respectively, and the voltage amplitude and voltage phase angle, and the current amplitude and current are measured from the measured values. Since the phase angle, displacement amplitude and displacement phase angle are calculated, and the inductance and counter electromotive force coefficient are calculated from the calculated values in the coil calculation step, the inductance value and counter electromotive force of the linear motor coil in a state close to the actual machine operating state It is possible to determine the value of the coefficient, and since there is no need to differentiate the measured current of the prior art, the position detector is not used, it is difficult to be affected by electrical noise, the burden on the processor that performs arithmetic processing is small, It is possible to provide a control method for a linear compression apparatus that can perform position control with high accuracy.

以下に本発明の実施形態を図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係わるリニア圧縮装置の制御方法に関する回路のブロック線図を示す。図1に基づき制御回路の構成を説明する。リニア圧縮装置1のリニアモータの制御回路1aは、リニア圧縮機2、電源部3、制御部4から構成される。リニア圧縮機2は、後述(図6)するようにコイル53a、53b、53cを有するリニアモータ50を備える。リニアモータ50の可動子55には、ロッド59を介してピストン58が接続されて可動体60が構成され、可動体60は両端側をコイルバネ71、72で弾性支持され、共振点を有する振動系が形成される。リニアモータ50を共振点近傍の周波数で運転することで、ピストン58によりガス又は蒸気が効率よく圧縮され、共振点近傍の周波数で運転することが好ましい。   FIG. 1 shows a block diagram of a circuit relating to a control method of a linear compression apparatus according to the present invention. The configuration of the control circuit will be described with reference to FIG. The linear motor control circuit 1 a of the linear compressor 1 includes a linear compressor 2, a power supply unit 3, and a control unit 4. The linear compressor 2 includes a linear motor 50 having coils 53a, 53b, and 53c as described later (FIG. 6). A piston 58 is connected to the mover 55 of the linear motor 50 via a rod 59 to form a movable body 60. The movable body 60 is elastically supported by coil springs 71 and 72 at both ends, and has a resonance point. Is formed. It is preferable to operate the linear motor 50 at a frequency near the resonance point by operating the linear motor 50 at a frequency near the resonance point so that the gas or steam is efficiently compressed by the piston 58.

制御部4の測定演算ステップは、基本波形発生手段5による基本波形発生ステップ5s、電圧測定演算手段6による電圧測定演算ステップ6s、電流測定演算手段7による電流測定演算ステップ7s、変位測定演算手段8による変位測定演算ステップ8s、コイル演算手段9によるコイル演算ステップ9sとから成る。まず、基本波形発生ステップ5sでは、制御部4で行われる各種処理のタイミングの基準を設定するために時計信号発生手段5bにより極めて短い一定時間間隔で基準となる時間信号を発生する。次いで、変位波形情報設定手段5cにより基本波形の周波数と振幅が所望の値に設定され、この波形情報と時間信号に基づき基準波形発生源5aは、正弦波又は略正弦波(以下、正弦波状)の基本波形u(t)と制御部4で行われる各種処理のタイミング信号とを発生し出力する。また、必要に応じて基本波形u(t)には、振幅分Uに所定の直流分Uを重ね合せることが出来る。 The measurement calculation step of the control unit 4 includes a basic waveform generation step 5 s by the basic waveform generation means 5, a voltage measurement calculation step 6 s by the voltage measurement calculation means 6, a current measurement calculation step 7 s by the current measurement calculation means 7, and a displacement measurement calculation means 8. Displacement measurement calculation step 8s by the coil calculation step 9 and coil calculation step 9s by the coil calculation means 9. First, in the basic waveform generation step 5s, a time signal serving as a reference is generated at a very short fixed time interval by the clock signal generation means 5b in order to set a timing reference for various processes performed by the control unit 4. Next, the frequency and amplitude of the basic waveform are set to desired values by the displacement waveform information setting means 5c. Based on this waveform information and time signal, the reference waveform generating source 5a is a sine wave or a substantially sine wave (hereinafter referred to as a sine wave). The basic waveform u (t) and timing signals for various processes performed by the control unit 4 are generated and output. Further, a predetermined direct current component U D can be superimposed on the amplitude component U O in the basic waveform u (t) as necessary.

電源部3は、制御部4から送られる正弦波又は正弦波状の基本波形によってリニアモータ50のコイル53a、53b、53cに供給する電力の電圧と電流を決定し、コイル53a、53b、53cに電力を供給する。この供給電力でリニアモータ50の可動子55がピストン58と一体となって、正弦波又は正弦波状に往復運動する。   The power supply unit 3 determines the voltage and current of power supplied to the coils 53a, 53b, and 53c of the linear motor 50 based on the sine wave or sine wave basic waveform sent from the control unit 4, and the power to the coils 53a, 53b, and 53c. Supply. With this supplied power, the mover 55 of the linear motor 50 is integrated with the piston 58 and reciprocates in a sine wave or sine wave shape.

以下に述べる電圧測定演算ステップ6s、電流測定演算ステップ7s、変位測定演算ステップ8sで測定された各々の測定値の出力は、各ステップ6s、7s、8sに対して前述した基準波形発生源5aのタイミング信号による共通タイミングを基準に処理される。   The output of each measured value measured in the voltage measurement calculation step 6s, the current measurement calculation step 7s, and the displacement measurement calculation step 8s described below is the output of the reference waveform generation source 5a described above for each step 6s, 7s, 8s. Processing is performed based on the common timing based on the timing signal.

電圧測定演算ステップ6sは、電圧測定手段6aによりコイル53a、53b、53cの両端の各電圧が測定され、次に電圧測定タイミング手段6dからの後述する測定タイミングの指令に基づき測定された各電圧値を電圧値出力手段6bにより出力し、電圧振幅電圧位相検出手段6cにより出力された各電圧値からコイル53a、53b、53cの両端の各電圧の電圧振幅Vと、共通タイミングを基準とした電圧位相角θを後述する演算式に基づき演算し、コイル演算手段9に伝達する。 In the voltage measurement calculation step 6s, the voltage measurement means 6a measures the voltages at both ends of the coils 53a, 53b and 53c, and then measures each voltage value measured based on a measurement timing command described later from the voltage measurement timing means 6d. Is output from the voltage value output means 6b, and the voltage amplitude V O of each voltage at both ends of the coils 53a, 53b, 53c from the voltage values output from the voltage amplitude voltage phase detection means 6c and the voltage based on the common timing calculated based on the arithmetic expression will be described later phase angle theta V, is transmitted to the coil calculating means 9.

電流測定演算ステップ7sは、電流測定手段7aによりコイル53a、53b、53cを流れる各電流が測定され、次に電流測定タイミング手段7dからの測定タイミングの指令に基づき測定された各電流値を電流値出力手段7bにより出力し、電流振幅電流位相検出手段7cにより出力された各電流値からコイル53a、53b、53cを流れる各電流の電流振幅IOと、共通タイミングを基準とした電流位相角θIを後述する演算式に基づき演算し、コイル演算手段9に伝達する。 In the current measurement calculation step 7s, each current flowing through the coils 53a, 53b, 53c is measured by the current measurement means 7a, and each current value measured based on the measurement timing command from the current measurement timing means 7d is converted into a current value. The current amplitude IO of each current flowing through the coils 53a, 53b, 53c from the current value output by the output means 7b and output from the current amplitude current phase detection means 7c, and the current phase angle θI based on the common timing are described later. Is calculated based on the arithmetic expression to be transmitted to the coil calculation means 9.

変位測定演算ステップ8sは、変位測定手段8aにより可動体60(図6)の変位(ピストン58、可動子55の変位と同じ)が測定され、次に変位測定タイミング手段8dからの所定のタイミングの指令に基づき測定された各変位値を変位値出力手段8bにより出力し、変位振幅変位位相検出手段8cにより出力された各変位値から可動体60の変位振幅Xと、共通タイミングを基準とした変位位相角θを後述する演算式に基づき演算し、コイル演算手段9に伝達する。 In the displacement measurement calculation step 8s, the displacement measuring means 8a measures the displacement of the movable body 60 (FIG. 6) (same as the displacement of the piston 58 and the movable element 55), and then at a predetermined timing from the displacement measurement timing means 8d. each displacement value measured on the basis of a command outputted by the displacement value output means 8b, a displacement amplitude X O of the movable body 60 from the respective displacement values output by displacement amplitude displacement phase detecting means 8c, relative to the common timing the displacement phase angle theta X calculated based on the arithmetic expression will be described later, is transmitted to the coil calculating means 9.

コイル演算ステップ9sは、電圧振幅電圧位相検出手段6cで演算された電圧振幅Vと電圧位相角θと、電流振幅電流位相検出手段7cで演算された電流振幅Iと電流位相角θと、変位振幅変位位相検出手段8cで演算された変位振幅Xと変位位相角θとから後述する演算式に基づきコイル53a、53b、53cの各インダクタンスLと、各逆起電力係数Cを算出してリニアモータのインダクタンスと逆起電力係数を求める制御方法の一連の処理を完了する。 The coil calculation step 9s includes a voltage amplitude V O and a voltage phase angle θ V calculated by the voltage amplitude voltage phase detection means 6c, and a current amplitude I O and a current phase angle θ I calculated by the current amplitude current phase detection means 7c. From the displacement amplitude X O and displacement phase angle θ X calculated by the displacement amplitude displacement phase detection means 8c, the inductances L and the counter electromotive force coefficients C of the coils 53a, 53b, 53c are calculated based on the calculation formula described later. A series of processes of the control method for calculating and calculating the inductance and back electromotive force coefficient of the linear motor is completed.

前述の共通タイミングは、基本波形又は、時間信号発生手段5bの時計信号を共通タイミングにしてもよく、あるいは各測定演算手段6a、7a、8aでの測定タイミングのうちいずれか一つのタイミングを共通タイミングにしてもよい。また、電圧振幅電圧位相検出手段6c、電流振幅電流位相検出手段7c、変位振幅変位位相検出手段8cは、後述のする演算機能の他に、多数のサイクルの同じ位相角に整数倍の2πを加えた位相角で測定された各々の測定値を平均化する処理機能を備えている。 The common timing may be the basic waveform or the clock signal of the time signal generation means 5b, or any one of the measurement timings of the measurement calculation means 6a, 7a, 8a may be the common timing. it may be. Further, the voltage amplitude voltage phase detection means 6c, current amplitude current phase detection means 7c, displacement amplitude displacement phase detection means 8c add an integer multiple of 2π to the same phase angle of many cycles in addition to the arithmetic function described later. A processing function is provided for averaging the measured values measured at different phase angles.

次に、リニアモータのインダクタンスと逆起電力係数を求めるリニア圧縮装置1の制御方法の作用についてコイル53aで説明する。コイル53b、53cの作用はコイル53aと同じである。   Next, the operation of the control method of the linear compression apparatus 1 for obtaining the inductance and the counter electromotive force coefficient of the linear motor will be described with reference to the coil 53a. The action of the coils 53b and 53c is the same as that of the coil 53a.

(直流分がある場合の制御方法)
図2は、共通タイミングを基準に1周期内でコイルの電圧波形v(t)の3つ以上の異なる測定タイミングに対応する位相角で測定されるコイルの電圧測定値から導かれる電圧振幅と電圧位相の演算式を説明する電圧ベクトル線図を示する。
(Control method when there is DC component)
FIG. 2 shows voltage amplitude and voltage derived from coil voltage measurement values measured at phase angles corresponding to three or more different measurement timings of the coil voltage waveform v (t) within one cycle with reference to the common timing. The voltage vector diagram explaining the computing equation of a phase is shown.

上記の直流分がある場合とは、コイル53aの電圧直流分と電流直流分、可動体の変位の直流分のうち少なくともいずれかが直流分を有することである。   The case where the DC component is present means that at least one of the DC component of voltage and current of the coil 53a and the DC component of displacement of the movable body has a DC component.

(基本波形発生ステップ)
基本波形発生ステップ5sでは、基本波形発生手段5により所定の周波数の正弦波あるいは正弦波状(略正弦波)に直流分が重ね合せた基本波形u(t)が発生される。例えば、基本波形u(t)は数4で示されることが好ましいが、以下に述べる作用は正弦波状(略正弦波)の場合にも適用できる。

Figure 0005018357
(Basic waveform generation step)
In the basic waveform generation step 5s, the basic waveform generation means 5 generates a basic waveform u (t) in which a direct current component is superimposed on a sine wave of a predetermined frequency or a sine wave (substantially sine wave). For example, the basic waveform u (t) is preferably expressed by Equation 4, but the operation described below can also be applied to a sine wave (substantially sine wave).
Figure 0005018357

数4で、tは時間、Uは基本波形の振幅、Uは基本波形の直流分、ωは角速度、πは円周率、fは所定の周波数、u(t)は時間tにおける基本波形である。所定の周波数は、可動体60と後述のコイルバネ71、72とガスバネと磁気バネとを合成した合成バネで形成される振動系の共振周波数の近傍の周波数が効率の関点から好ましい。 The number 4, t is time, basic in U O amplitude of the fundamental wave, U D is the DC component of the basic waveform, omega is angular velocity, [pi is pi, f is a predetermined frequency, u (t) is the time t It is a waveform. The predetermined frequency is preferably a frequency in the vicinity of the resonance frequency of the vibration system formed by a synthetic spring obtained by synthesizing the movable body 60, coil springs 71 and 72, which will be described later, a gas spring, and a magnetic spring.

(電圧測定演算ステップ)
コイル53a両端の測定される電圧波形v(t)は、数4で示される基本波形が正弦波であるので数5で示される。電圧測定演算ステップ6sでは、電圧測定タイミング手段6dからの共通タイミングを基準として、基本波形の周波数の1周期内で3つ以上の異なる測定タイミング、即ち3つ以上の異なる位相角で測定した電圧値から数5に示される電圧振幅Vと電圧位相θを求める。

Figure 0005018357
(Voltage measurement calculation step)
The voltage waveform v (t) measured at both ends of the coil 53a is expressed by Equation 5 because the basic waveform expressed by Equation 4 is a sine wave. In the voltage measurement calculation step 6s, with reference to the common timing from the voltage measurement timing means 6d, voltage values measured at three or more different measurement timings, that is, at three or more different phase angles within one period of the frequency of the basic waveform. To obtain the voltage amplitude V O and the voltage phase θ V shown in equation (5).
Figure 0005018357

数5で、Vは電圧振幅、θは共通タイミングを基準とした電圧位相角、Vは直流分である(図2)。 In Equation 5, V O is the voltage amplitude, θ V is the voltage phase angle based on the common timing, and V D is the direct current component (FIG. 2).

共通タイミングを基準とした1周期内の3つの異なる測定タイミングに対応する位相角の第1の位相角(θV1+θ)、第2の位相角(θV2+θ)、第3の位相角θ
測定された電圧をそれぞれV、V、Vとすると、第1の電圧位相角(θV1+θ)、第2の電圧位相角(θV2+θ)、第3の電圧位相角θVは、それぞれ2π(360°)を整数倍した位相角でも、それぞれの測定値V、V、Vの値は変わらないので、3つ以上の異なる測定タイミングは、1周期内に限定しなくてよく、1周期内で3つ以上の異なる測定タイミングに整数倍の周期を加えたタイミングで測定すればよい。即ち、P、Q、Rを整数とすると、3つ以上の異なる測定タイミングに対応する位相角に整数倍の2πを加えた第1の電圧位相角{(θV1+θ)+P(2π)}、第2の位電圧相角{(θV2+θ)+Q(2π)}、第3の電圧位相角{θ+R(2π)}で測定された各電圧値V、V、Vは、数5により数6で示さる。従って、数6の3元連立方程式を解くことで、未知数であった電圧振幅V、電圧位相角θ、直流分Vは数7に示され、電圧測定値から電圧振幅V、電圧位相角θ、直流分V 求めることができる。

Figure 0005018357
Figure 0005018357
A first phase angle (θ V1 + θ V ), a second phase angle (θ V2 + θ V ), and a third phase angle corresponding to three different measurement timings within one cycle with reference to the common timing If the voltages measured at θ V are V 1 , V 2 , and V 3 , respectively, the first voltage phase angle (θ V1 + θ V ), the second voltage phase angle (θ V2 + θ V ), and the third voltage Even if the phase angle θV is a phase angle obtained by multiplying 2π (360 °) by an integer, the values of the measured values V 1 , V 2 , and V 3 do not change, so that three or more different measurement timings are within one cycle. The measurement may be performed at a timing obtained by adding an integer multiple period to three or more different measurement timings within one period. That is, when P V , Q V , and R V are integers, a first voltage phase angle {(θ V1 + θ V ) + P V obtained by adding an integer multiple of 2π to a phase angle corresponding to three or more different measurement timings. (2π)}, second voltage phase angle {(θ V2 + θ V ) + Q V (2π)}, and each voltage value V measured at the third voltage phase angle {θ V + R V (2π)}. 1, V 2, V 3 is Ru indicated by the number 5 in 6. Accordingly, by solving the ternary simultaneous equations of Equation 6, the unknown voltage amplitude V O , voltage phase angle θ V , and DC component V D are shown in Equation 7, and the voltage amplitude V O , voltage phase angle theta V, can be determined DC component V D.
Figure 0005018357
Figure 0005018357

(電流測定演算ステップ)
電流測定演算ステップ7sは、電流測定タイミング手段7dからの共通タイミングを基準として、基本波形の周波数の1周期内で3つ以上の異なる測定タイミング、即ち3つ以上の異なる位相角で測定した電流値から数8に示される電流振幅Iと電流位相θを求める。

Figure 0005018357
(Current measurement calculation step)
The current measurement calculation step 7s is based on the common timing from the current measurement timing means 7d, and current values measured at three or more different measurement timings within one period of the frequency of the basic waveform, that is, at three or more different phase angles. To obtain the current amplitude I O and the current phase θ I shown in Eq.
Figure 0005018357

数8で、Iは電流振幅、θは共通タイミングを基準とした電流位相角、Iは直流分である。 In Equation 8, I O is the current amplitude, θ I is the current phase angle based on the common timing, and ID is the direct current component.

電圧測定演算ステップ6sと同様に、共通タイミングを基準とした1周期内の3つの異なる測定タイミングに対応する位相角に整数倍の2πを加えた第1の電流位相角{θI1+θ+P(2π)}、第2の電流位相角{θI2+θ+Q(2π)}、第3の電流位相角{θ+R(2π)}で測定された各電流値をそれぞれI、I、Iとすると、数8を使ってI、I、Iは数9で示され、数9の3元連立方程式を解くことで数10が求まり、電流定値から電流振幅I、電流位相角θ、直流分Iは数10により求めることができる。ここで、Pと、Qと、Rは整数である。

Figure 0005018357
Figure 0005018357
Similar to the voltage measurement calculation step 6s, the first current phase angle {θ I1 + θ I + P I) obtained by adding an integer multiple of 2π to the phase angle corresponding to three different measurement timings in one cycle with reference to the common timing. (2π)}, the second current phase angle {θ I2 + θ I + Q I (2π)}, and the third current phase angle {θ I + R I (2π)} are respectively measured as I 1 , Assuming I 2 and I 3 , I 1 , I 2 , and I 3 are expressed by Eq. 9 using Eq. 8, and Eq. 10 is obtained by solving the ternary simultaneous equations of Eq. 9, and the current amplitude I is determined from the current constant value. O 1 , current phase angle θ I , and direct current component ID can be obtained from Equation 10. Here, the P I, and Q I, the R I is an integer.
Figure 0005018357
Figure 0005018357

(変位測定演算ステップ)
変位測定演算ステップ8sは、変位測定タイミング手段8dからの共通タイミングを基準として、基本波形の周波数の1周期内で3つ以上の異なる測定タイミング、即ち3つ以上の異なる位相角で測定した変位値から数11に示される変位振幅Xと変位位相θを求める。

Figure 0005018357
(Displacement measurement calculation step)
The displacement measurement calculation step 8s is based on the common timing from the displacement measurement timing means 8d as a reference, and the displacement values measured at three or more different measurement timings, that is, at three or more different phase angles, within one period of the frequency of the basic waveform. The displacement amplitude X O and the displacement phase θ X shown in Equation 11 are obtained.
Figure 0005018357

数11で、Xは変位振幅、θは共通タイミングを基準とした電流位相角、Xは直流分である。電圧測定演算ステップ6sと同様に、共通タイミングを基準とした1周期内の3つの異なる測定タイミングに対応する位相角に整数倍の2πを加えた第1の変位位相角{θX1+θ+P(2π)}、第2の位変位相角{θX2+θ+Q(2π)}、第3の変位位相角{θ+R(2π)}で測定された各変位値をそれぞれX、X、Xとすると、数11を使ってX、X、Xは数12で示され、数12の3元連立方程式を解くことで数13が求まり、変位定値から変位振幅X、変位位相角θ、直流分Xは数13により求めることができる。ここで、Pと、Qと、Rは整数である。

Figure 0005018357
Figure 0005018357
In Equation 11, X O is the displacement amplitude, θ X is the current phase angle based on the common timing, and X D is the direct current component. Similar to the voltage measurement calculation step 6s, a first displacement phase angle {θ X1 + θ X + P () obtained by adding an integer multiple of 2π to a phase angle corresponding to three different measurement timings in one cycle with the common timing as a reference. 2π)}, the second displacement phase angle {θ X2 + θ X + Q (2π)}, and the third displacement phase angle {θ X + R (2π)}, X 1 and X 2 , respectively. , X 3 , X 1 , X 2 , X 3 are expressed by Equation 12 using Equation 11, and Equation 13 is obtained by solving the ternary simultaneous equations of Equation 12, and the displacement amplitude X O , The displacement phase angle θ X and the direct current component X D can be obtained from Equation 13. Here, P X , Q X , and R X are integers.
Figure 0005018357
Figure 0005018357

前述の各測定演算ステップ6s、7s、8sの測定タイミングは、共通の共通タイミングを基準としなければならないが、各ステップ6s、7s、8sで互いに同じでも又は異なってもよい。また、電圧、電流、変位の測定値は、それぞれ位相角度が微少量ずれたところの測定値を数7、数10、数13に代入して求めた電圧、電流、変位の振幅V、I、X、位相角θ、θ、θ、直流分V、I、X、は、位相角度がずれていない場合に対する差は微少量であるので、電圧の測定値は、位相角が微少量ずれところの測定値を使ってもよい。また、θV1=θI1=θX1=π、θV2=θI2=θX2=π/2にすると数7、数10、数13は簡単な式になる。 The measurement timing of each of the above-described measurement calculation steps 6s, 7s, and 8s must be based on a common common timing, but may be the same as or different from each other in each step 6s, 7s, and 8s. Further, the measured values of voltage, current, and displacement are obtained by substituting the measured values obtained by shifting the phase angle by a small amount into Equations (7), (10), and (13), and the amplitudes V O and I of the displacement. O, X O, the phase angle θ V, θ I, θ X , the DC component V D, I D, X D , is the difference for the case where the phase angle does not deviate is microcrystalline small amounts, measurements of voltage , it may be used measurements of where the phase angle is shifted by a small amount. Further, when θ V1 = θ I1 = θ X1 = π and θ V2 = θ I2 = θ X2 = π / 2, Equations 7, 10, and 13 become simple equations.

(コイル演算ステップ)
コイル演算ステップ9sは、電圧測定演算ステップ6sの電圧振幅Vと電圧位相角θ、電流測定演算ステップ7sの電流振幅Iと電流位相角θ、変位測定演算ステップ8sの変位振幅Xと変位位相角θの各々の演算値からコイル53aのインダクタンスLと逆起電力係数Cを求める。
(Coil calculation step)
The coil calculation step 9s includes a voltage amplitude V O and a voltage phase angle θ V of the voltage measurement calculation step 6s, a current amplitude I O and a current phase angle θ I of the current measurement calculation step 7s, and a displacement amplitude X O of the displacement measurement calculation step 8s. determining the inductance L and the back electromotive force coefficient C of the coil 53a from each of the calculated values of the displacement phase angle theta X and.

インダクタンスLと逆起電力係数Cの演算式は、次のように導入される。即ち、インダクタンスと逆起電力係数は、磁束の変化によって生じる係数であるので、電圧、電流、変位の各々の直流分は各々から減じてよい。この直流分を減じた電圧、電流、変位のベクトル表示の電圧V、電流I、変位Xは数14で示される。ここで、jは虚数単位で、eは2.718である。

Figure 0005018357
Calculation formulas for the inductance L and the counter electromotive force coefficient C are introduced as follows. That is, since the inductance and the counter electromotive force coefficient are coefficients generated by the change of the magnetic flux, each DC component of voltage, current, and displacement may be reduced from each. The voltage, current, and displacement vector display voltage V, current I, and displacement X obtained by subtracting the direct current component are expressed by the following equation (14). Here, j is an imaginary unit, and e is 2.718.
Figure 0005018357

図3は、図1のリニア圧縮装置1の基本波形発生手段5と電源部3とリニアモータ50のコイル53aとを接続した等価回路を示す。図中、L、Rはそれぞれコイル53aのインダクタンスと電気抵抗を示す。コイル53aの端子間の電圧V(t)は、可動子55が往復運動することによる逆起電力の影響を受け、コイル53aのインダクタンスLと逆起電力係数Cは、数15に示される。ここで、Nはコイル53aの巻数、Φはコイル53aが発生する磁束である。

Figure 0005018357
FIG. 3 shows an equivalent circuit in which the basic waveform generating means 5, the power supply unit 3, and the coil 53 a of the linear motor 50 of the linear compressor 1 of FIG. 1 are connected. In the figure, L and R respectively indicate the inductance and electric resistance of the coil 53a. The voltage V (t) between the terminals of the coil 53a is affected by the counter electromotive force due to the reciprocating motion of the mover 55, and the inductance L and the counter electromotive force coefficient C of the coil 53a are expressed by Equation 15. Here, N is the number of turns of the coil 53a, and Φ is the magnetic flux generated by the coil 53a.
Figure 0005018357

速度は変位と時間の関数であることから、磁束Φは、電流Iと変位Xの関数Φ(I,X)であり、電流Iと変位Xは時間の関数である。従って、磁束Φは電流の時間変化と可動子55の変位の時間変化、即ち速度の影響を受けるので、コイル53aの端子間の電圧Vは、数15を用い数16で示される。

Figure 0005018357
Since the speed is a function of displacement and time, the magnetic flux Φ is a function Φ (I, X) of the current I and the displacement X, and the current I and the displacement X are functions of time. Therefore, since the magnetic flux Φ is affected by the time change of the current and the time change of the displacement of the mover 55, that is, the speed, the voltage V between the terminals of the coil 53a is expressed by the following equation (16) using the equation (15).
Figure 0005018357

数14と数16により数17を得る。従って、コイル両端の電圧振幅Vと電圧位相θ、電流振幅Iと電流位相θ、可動体60、即ち、可動子55又はピストン58の変位振幅Xと変位位相θとからインダクタンスLと逆起電力係数Cは、数17から求めることができる。

Figure 0005018357
Equation 17 is obtained by Equation 14 and Equation 16. Accordingly, the inductance is obtained from the voltage amplitude V O and the voltage phase θ V , the current amplitude I O and the current phase θ I at both ends of the coil, the displacement amplitude X O and the displacement phase θ X of the movable body 60, that is, the movable element 55 or the piston 58. L and the counter electromotive force coefficient C can be obtained from Equation 17.
Figure 0005018357

コイル53aの電気抵抗Rが、インダクタンスLに比べて小さい場合は、電気抵抗は0と見なすことで、数17は数18で示される。

Figure 0005018357
When the electrical resistance R of the coil 53a is smaller than the inductance L, the electrical resistance is regarded as 0, and Expression 17 is expressed by Expression 18.
Figure 0005018357

尚、数3から数17は、直流分が0でも成立つ。   Note that Equations 3 to 17 hold even when the DC component is zero.

(直流分が振幅分に対して小さい場合の制御方法)
直流分が振幅分に対して小さい場合(振幅0を含む)は、測定前に、電源部3がリニアモータ50に供給する電力の電圧と電流を振幅分に対して小さくなるように電源部3で調整あるいは基本波形発生源5aの直流分を調整することで実現できる。また、後述するように(図6)、リニア圧縮機2の可動子55の中立位置は、コイル71、72の一端に配備したスペーサ73、74の厚さを調整することで確保でき、ピストン58の中立位置は、ピストン58の長さを調整することで確保できる。
(Control method when the DC component is smaller than the amplitude component)
When the direct current component is smaller than the amplitude component (including amplitude 0), the power source unit 3 is configured so that the voltage and current of the power supplied from the power source unit 3 to the linear motor 50 are smaller than the amplitude component before the measurement. Or by adjusting the direct current component of the basic waveform generating source 5a. Further, as will be described later (FIG. 6), the neutral position of the mover 55 of the linear compressor 2 can be secured by adjusting the thickness of the spacers 73 and 74 provided at one end of the coils 71 and 72. The neutral position can be secured by adjusting the length of the piston 58.

また、電源部3の出力にトランスを介在させてリニアモータ50のコイル53a、53b、53cに電力を供給することで、コイル端子間のコイル電圧と53a、53b、53cを流れる電流を0にすることができる。この場合は、可動体60の変位の直流分を振幅分に対して小さくなるように調整すればよい。   Further, by supplying power to the coils 53a, 53b, and 53c of the linear motor 50 with a transformer interposed in the output of the power supply unit 3, the coil voltage between the coil terminals and the current flowing through the 53a, 53b, and 53c are reduced to zero. be able to. In this case, what is necessary is just to adjust so that the direct-current component of the displacement of the movable body 60 may become small with respect to an amplitude component.

数4の直流分U、数6の直流分Vは、0と見なしてよいので基本波形u(t)と電圧波形v(t)はそれぞれ数19、数20で示され、電圧測定演算ステップ6sでは、電圧振幅と電圧位相角の2つの未知数を求めればよい。従って、共通タイミングを基準とした基本波形の周波数の1周期内の2つの異なる測定タイミングに対応する位相角に整数倍の2πを加えた第1の位電圧相角{(θV1+θ)+P(2π)}、第2の位電圧相角{θ+Q(2π)}で測定した電圧値V、Vより得られる数20の連立二元方程式を解くことで、電圧振幅Vと電圧位相θが求まる数21を得る。ここで、P、Qは整数である。

Figure 0005018357
Figure 0005018357
Figure 0005018357
Since the direct current component U D of Equation 4 and the direct current component V D of Equation 6 may be regarded as 0, the basic waveform u (t) and the voltage waveform v (t) are expressed by Equations 19 and 20, respectively. In step 6s, two unknowns, voltage amplitude and voltage phase angle, may be obtained. Accordingly, the first voltage phase angle {(θ V1 + θ V ) + P obtained by adding an integer multiple of 2π to the phase angle corresponding to two different measurement timings within one cycle of the frequency of the basic waveform with respect to the common timing. V (2π)} and the voltage amplitude by solving the number 20 simultaneous binary equations obtained from the voltage values V 1 and V 2 measured at the second voltage phase angle {θ V + Q V (2π)} Equation 21 is obtained, where V O and voltage phase θ V are obtained. Here, P V and Q V are integers.
Figure 0005018357
Figure 0005018357
Figure 0005018357

電流測定演算ステップ7sでは、数9のIを0と見なしてよいので電流波形i(t)は数22で示され、電流振幅と電流位相角の2つの未知数を求めればよい。即ち、共通タイミングを基準とした基本波形の周波数の1周期内の2つの異なる測定タイミングに対応する位相角に整数倍の2πを加えた第1の電流位相角{(θI1+θ)+P(2π)}、第2の電流位相角{θ+Q(2π)}で測定した電流値I、Iより得られる数22の連立二元方程式を解くことで、電流振幅Iと電流位相θが求まる数23を得る。ここで、P、Qは整数である。

Figure 0005018357
Figure 0005018357
In the current measurement calculation step 7s, since the ID of Formula 9 may be regarded as 0, the current waveform i (t) is expressed by Formula 22, and two unknowns of the current amplitude and the current phase angle may be obtained. That is, the first current phase angle {(θ I1 + θ I ) + P I obtained by adding an integer multiple of 2π to the phase angle corresponding to two different measurement timings within one period of the frequency of the basic waveform with respect to the common timing. (2π)} and the current amplitude I O by solving the simultaneous binary equation 22 given by the current values I 1 and I 2 measured at the second current phase angle {θ I + Q I (2π)}. And the equation (23) in which the current phase θ I is obtained. Here, P I and Q I are integers.
Figure 0005018357
Figure 0005018357

変位測定演算ステップ6sでは、数11のXを0と見なしてよいので変位波形x(t)は数24で示され、変位振幅と変位位相角を2つの未知数を求めればよい。即ち、共通タイミングを基準とした1周期内の2つの異なる測定タイミングに対応する位相角に整数倍の2πを加えた第1の変位位相角{(θX1+θ)+P(2π)}、第2の変位圧相角{θ+Q(2π)}で測定した変位値X、Xより得られる数24の連立二元方程式を解くことで、変位振幅Xと変位位相θが求まる数25を得る。ここで、P、Qは整数である。

Figure 0005018357
Figure 0005018357
In displacement measurement calculation step 6s, few because the X D of 11 may be regarded as 0 displacement waveform x (t) is indicated by the number 24, the displacement amplitude displacement phase angle may be obtained with two unknowns. That is, a first displacement phase angle {(θ X1 + θ X ) + P X (2π)} obtained by adding an integer multiple of 2π to a phase angle corresponding to two different measurement timings within one period with reference to the common timing. Solving the displacement amplitude X O and the displacement phase θ by solving the simultaneous binary equation 24 obtained from the displacement values X 1 and X 2 measured at the second displacement pressure phase angle {θ X + Q X (2π)} The number 25 from which I is obtained is obtained. Here, P X and Q X are integers.
Figure 0005018357
Figure 0005018357

上述の各測定演算ステップ6s、7s、8sの測定タイミングは、共通の共通タイミングを基準としなければならないが、各ステップで互いに同じでも又は異なってもよい。また、電圧、電流、変位の測定値は、それぞれ位相角が微少量ずれたところの測定値を数21、数23、数25に代入して求めた電圧、電流、変位の振幅V、I、X、位相角θ、θ、θ、直流分VD、D、D、は、位相角がずれていない場合に対する差は微少量であるので、電圧の測定値は、位相角度が微少量ずれところの測定値を使ってもよい。また、θV1=θI1=θX1をπ/2又はπにすると数21、数23、数25は簡単な式になる。 The measurement timings of the above-described measurement calculation steps 6s, 7s, and 8s must be based on a common common timing, but may be the same or different from each other in each step. The measured values of voltage, current, and displacement are obtained by substituting the measured values obtained by shifting the phase angle by a small amount into Equations (21), (23), and (25), and the amplitudes V O and I of the displacement. O, X O, the phase angle θ V, θ I, θ X , the DC component V D, I D, X D , is the difference for the case where the phase angle does not deviate is microcrystalline small amounts, measurements of voltage Alternatively, the measured value where the phase angle slightly deviates may be used. Further, when θ V1 = θ I1 = θ X1 is set to π / 2 or π, Equations 21, 23, and 25 become simple equations.

コイル演算9sでは、コイルの53aインダクタンスLと逆起電力係数Cを求める。即ち、電圧測定演算ステップ6sで数21により算出した電圧振幅Vと電圧位相角θと、電流測定演算ステップ7sで数23により算出した電流振幅Iと電流位相角θと、変位測定演算ステップ8sで数25により算出した変位振幅Xと変位位相角θを数17に代入してコイルのインダクタンスLと逆起電力係数Cが求まる。前述の数17と数18は直流分を取除いているので、直流分が振幅分に対して小さい場合にも成立つ。従って、コイルの電気抵抗Rを考慮する場合は数17を、電気抵抗Rを考慮しない場合は数18で演算すればよい。 In the coil calculation 9s, the coil 53a inductance L and the counter electromotive force coefficient C are obtained. That is, the voltage amplitude V O and the voltage phase angle θ V calculated by the equation 21 in the voltage measurement calculation step 6s, the current amplitude I O and the current phase angle θ I calculated by the equation 23 in the current measurement calculation step 7s, and the displacement measurement. inductance L and the back electromotive force coefficient C of the coil by substituting the displacement amplitude X O and displacement phase angle theta X calculated by the number 25 in the calculation step 8s number 17 is obtained. Since the above-described Equations 17 and 18 exclude the direct current component, this holds true even when the direct current component is smaller than the amplitude component. Therefore, the equation 17 is calculated when the electric resistance R of the coil is considered, and the equation 18 is calculated when the electric resistance R is not considered.

尚、インダクタンスと逆起電力係数を求める方法は、電圧、電流、変位の各測定手段6a、7a、8aにより測定された測定値を人が前述した各種の演算式を使いインダクタンスと逆起電力係数を算出してもよい。   The inductance and the counter electromotive force coefficient can be obtained by measuring the values measured by the voltage, current, and displacement measuring means 6a, 7a, and 8a using the above-described various arithmetic expressions. May be calculated.

次に、リニアモータのインダクタンスと逆起電力係数を求めるリニア圧縮装置1の制御方法の効果について説明する。   Next, the effect of the control method of the linear compressor 1 for obtaining the inductance and the counter electromotive force coefficient of the linear motor will be described.

制御部4の基本波形発生源5aにより、実機運転に対応する所定の周波数で、所定の振幅の正弦波、又は、正弦波状の基本波形を発生させ、この基本波形に基づき電源部3でリニアモータ50に供給する電力の電圧と電流を実機運転状態に近い状態にしてリニアモータ50に供給し、可動体60を正弦波、又は、正弦波状に往復運動させる。電圧測定演算ステップ6s、電流測定演算ステップ7s、変位測定演算ステップ8sで共通タイミングを基準に、各々のタイミング手段6d、7d、8dからの測定タイミングでコイル53aの電圧と、電流と、可動体60の変位との測定値を各々の出力手段6b、7b、8bにより出力する。出力された測定値から各々の検出手段6c、7c、8cにより得た演算値、即ち、電圧、電流、変位の各振幅と各位相角からコイル演算ステップ9sでインダクタンスと逆起電力係数を演算するので、実機運転状態に近い状態のリニアモータ50のコイル53a、53b、53cのインダクタンスと逆起電力係数を求めることが可能で、従来技術の測定された電流を微分する必要がないので、位置検出器を用いず、電気ノイズの影響を受け難く、演算処理を行うプロセッサの負担が小さく、精度の高い位置制御が出来るリニア圧縮装置1の制御方法を提供できる。   A basic waveform generating source 5a of the control unit 4 generates a sine wave having a predetermined amplitude or a sine wave basic waveform at a predetermined frequency corresponding to the actual machine operation, and the linear motor is generated by the power source unit 3 based on the basic waveform. The voltage and current of the electric power supplied to 50 are supplied to the linear motor 50 in a state close to the actual machine operating state, and the movable body 60 is reciprocated in a sine wave or sine wave shape. The voltage measurement operation step 6s, the current measurement calculation step 7s, and the displacement measurement calculation step 8s are based on the common timing, and the voltage and current of the coil 53a and the movable body 60 are measured at the measurement timing from each timing means 6d, 7d, 8d. The measured values of the displacements are output by the output means 6b, 7b, 8b. An inductance and a counter electromotive force coefficient are calculated in the coil calculation step 9s from the calculated values obtained by the detection means 6c, 7c, and 8c from the output measurement values, that is, the respective amplitudes and phase angles of voltage, current, and displacement. Therefore, the inductance and the counter electromotive force coefficient of the coils 53a, 53b, 53c of the linear motor 50 in a state close to the actual machine operating state can be obtained, and there is no need to differentiate the measured current of the prior art. Therefore, it is possible to provide a control method for the linear compression apparatus 1 that is not easily affected by electrical noise, has a small burden on a processor that performs arithmetic processing, and can perform highly accurate position control.

(直流分がある場合の制御方法の効果)
コイル53a、53b、53cに供給される電力の電圧、電流、ピストン58の変位のいずれかに直流分が含まれる場合、電圧測定演算ステップ6sの電圧の測定と、電流測定演算ステップ7sの電流の測定と、変位測定ステップ8sの変位の測定とが、共通タイミングを基準に基本波形の周波数の1周期内でそれぞれ3つ以上の異なる各々の位相角に整数倍の2πを加えた位相角で測定され、各々の測定演算手段6、7、8により求めた演算値からインダクタンスを演算することで、演算処理のプロセッサの負担が軽減される。さらに、3つ以上の異なる各位相角の測定点を増やし測定値を平均処理し演算することで、インダクタンスの値と逆起電力係数の値の精度が向上し、高い精度のピストン位置制御ができる。
(Effect of control method when there is DC component)
When the DC component is included in any of the voltage, current, and displacement of the piston 58 supplied to the coils 53a, 53b, 53c, the voltage measurement in the voltage measurement calculation step 6s and the current measurement in the current measurement calculation step 7s are performed. The measurement and the displacement measurement in the displacement measurement step 8s are measured at a phase angle obtained by adding an integer multiple of 2π to each of three or more different phase angles within one period of the frequency of the basic waveform with reference to the common timing. Then, by calculating the inductance from the calculated values obtained by the respective measurement calculation means 6, 7, and 8, the burden on the processor of the calculation processing is reduced. Furthermore, by increasing the number of measurement points at three or more different phase angles and averaging and calculating the measurement values, the accuracy of the inductance value and the back electromotive force coefficient value is improved, and high-precision piston position control is possible. .

また、制御部4の基本波形発生源5aにより、実機運転に対応する所定の周波数で、所定の振幅の正弦波、又は、正弦波状(略正弦波)の基本波形を発生させ、この基本波形を入力して電源部3からリニア圧縮機2のリニアモータ50に電力を供給することで、可動体60、即ち可動子55、ピストン58は所定の周波数で、所定の振幅の正弦波、又は、正弦波状に往復運動する。従って、コイル53a、53b、53cに供給される電力の電圧、電流と、ピストン58の変位のいずれかに直流分が含まれる場合、電圧測定演算ステップ6sの数7、電流測定演算ステップ7sの数10と、変位測定演算ステップ8sの数13と、コイル演算ステップ9sの数17とを使うことができるので、従来技術で使われる微分、積分を用いず演算することで、ノイズの影響を受け難く、精度の高い演算が可能になり、また、演算回路が簡単で、演算処理のプロセッサの負担も少なくなる。   Further, a basic waveform generating source 5a of the control unit 4 generates a sine wave having a predetermined amplitude or a sine wave (substantially sine wave) basic waveform at a predetermined frequency corresponding to the actual machine operation, and this basic waveform is generated. By inputting and supplying electric power from the power supply unit 3 to the linear motor 50 of the linear compressor 2, the movable body 60, that is, the movable element 55 and the piston 58 have a predetermined frequency and a predetermined amplitude, or a sine wave. Reciprocates in waves. Therefore, when the DC component is included in any of the voltage and current of the power supplied to the coils 53a, 53b, and 53c and the displacement of the piston 58, the number 7 of the voltage measurement calculation step 6s and the number of the current measurement calculation step 7s. 10 and the number 13 of the displacement measurement calculation step 8 s and the number 17 of the coil calculation step 9 s can be used. Therefore, the calculation is performed without using the differentiation and integration used in the prior art, so that it is hardly affected by noise. Highly accurate calculation is possible, the calculation circuit is simple, and the burden on the processor for calculation processing is reduced.

(直流分が振幅分に対して小さい場合の制御方法の効果)
コイル53a、53b、53cに供給される電力の電圧と電流の直流分が振幅分小さく、ピストン58の変位の直流分が振幅分に対して小さい場合、電圧、電流、変位の各々の直流分を0と見なすことで、電圧測定演算ステップ6sと、電流測定演算ステップ7sと、変位測定演算ステップ8sにおいて共通タイミングを基準に基本波形の周波数の1周期内で2つ以上の異なる位相角に整数倍の2πを加えた位相角で、それぞれ電圧、電流、変位を測定して、各々の検出手段6c、7c、8cにより電圧、電流、変位の各振幅と各位相角を演算で求めることができ、該演算値からインダクタンスと逆起電力係数を演算できる。従って、各々の測定演算ステップ6s、7s、8sでの処理数も減り、また各々の検出手段6c、7c、8cで使われる演算式が簡単になり、演算処理のプロセッサの負担が小さくなるさらに、2つ以上の異なる各位相角の測定点を増やし測定値を平均処理し演算することで、インダクタンスの値と逆起電力係数の値の精度が向上し、高い精度のピストン位置制御ができる。
(Effect of control method when DC component is smaller than amplitude component)
When the direct current component of the voltage and current supplied to the coils 53a, 53b, and 53c is small by the amplitude, and the direct current component of the displacement of the piston 58 is small relative to the amplitude component, the direct current components of the voltage, current, and displacement are reduced. By considering it as 0, the voltage measurement calculation step 6s, the current measurement calculation step 7s, and the displacement measurement calculation step 8s are integer multiples of two or more different phase angles within one period of the frequency of the basic waveform with reference to the common timing. The voltage, current, and displacement are respectively measured at the phase angle to which 2π is added, and the respective amplitudes and phase angles of the voltage, current, and displacement can be obtained by calculation by the detection means 6c, 7c, 8c, An inductance and a counter electromotive force coefficient can be calculated from the calculated values. Therefore, the number of processes in each measurement calculation step 6s, 7s, 8s is reduced, the calculation formula used in each detection means 6c, 7c, 8c is simplified, and the burden on the processor of the calculation process is further reduced. By increasing the measurement points of two or more different phase angles and averaging and calculating the measurement values, the accuracy of the inductance value and the counter electromotive force coefficient value is improved, and the piston position can be controlled with high accuracy.

また、可動体60は所定の周波数で、所定の振幅の正弦波、又は、正弦波状に往復運動する従って、コイル53a、53b、53cに供給される電力の電圧と電流の直流分が振幅分小さい、ピストン58の変位の直流分が振幅分に対して小さくい場合は、電圧、電流、変位の各々の直流分を0と見なすることで、電圧測定演算ステップ6sの数21、電流測定演算ステップ7sの数23と、変位測定演算ステップ8sの数25と、コイル演算ステップ9sの数17を使うことができるので、従来技術で使われる微分、積分を用いず演算することで、ノイズの影響を受け難く、精度の高い演算が可能になり、また、演算回路が簡単で、演算処理のプロセッサの負担も少なくなる。   In addition, the movable body 60 reciprocates at a predetermined frequency with a predetermined amplitude of a sine wave or a sine wave. Therefore, the DC voltage of the power and current supplied to the coils 53a, 53b, and 53c is smaller by the amplitude. When the direct current component of the displacement of the piston 58 is smaller than the amplitude component, the direct current components of the voltage, current, and displacement are regarded as 0, so that the number 21 of the voltage measurement calculation step 6s, the current measurement calculation Since the number 23 of the step 7 s, the number 25 of the displacement measurement calculation step 8 s, and the number 17 of the coil calculation step 9 s can be used, the influence of noise can be obtained by performing the calculation without using the differentiation and integration used in the prior art. The calculation circuit can be performed with high accuracy, the calculation circuit is simple, and the load on the processor for calculation processing is reduced.

(コイルの電気抵抗について)
一般にコイルの電気抵抗は、コイルのインダクタンスに比べて小さく設計されるので、インダクタンスLと逆起電力係数Cは数18を使うことが出来るので、数18は数17より簡単になり、演算処理するプロセッサの負担が軽減される。
(About the electrical resistance of the coil)
In general, the electrical resistance of the coil is designed to be smaller than the inductance of the coil. Therefore, since the inductance L and the counter electromotive force coefficient C can be used in the equation 18, the equation 18 is simpler than the equation 17 and is processed. The burden on the processor is reduced.

尚、図4は、従来行われているインダクタンス測定の回路図である。図4に示すように、供試体であるコイル15が交流電流源17に接続され、コイル15には電圧計18と電流計16が設けられている。図中、Lはコイル15のインダクタンス、Rはコイル15の電気抵抗を示す。図4に示す測定回路で使われるインピーダンスを求める従来の式は数26に示される。ここでVは電圧、Iは電流、Rはコイルの電気抵抗、fは周波数、πは円周率である。

Figure 0005018357
FIG. 4 is a circuit diagram of inductance measurement performed conventionally. As shown in FIG. 4, a coil 15 as a specimen is connected to an alternating current source 17, and a voltmeter 18 and an ammeter 16 are provided in the coil 15. In the figure, L represents the inductance of the coil 15, and R represents the electrical resistance of the coil 15. A conventional equation for obtaining the impedance used in the measurement circuit shown in FIG. Here, V is a voltage, I is a current, R is an electric resistance of the coil, f is a frequency, and π is a circular ratio.
Figure 0005018357

次に、ピストンの位置制御したリニア圧縮装置について説明する。   Next, a linear compression device in which the position of the piston is controlled will be described.

図5は、本発明に係わるピストン位置制御したリニア圧縮装置の制御回路のブロック線図を示す。図5の回路は、基本的には図1の回路と同じであり、図1と異なる点について説明すると、図5のリニア圧縮装置10の制御回路10aは、図1の変位波形測定手段8aとコイル演算手段9が取除かれ、新たに演算式特定手段11と、変位波形演算手段12と、基本波形補正手段13とが加わり構成される。   FIG. 5 shows a block diagram of a control circuit of a linear compressor with piston position control according to the present invention. The circuit of FIG. 5 is basically the same as the circuit of FIG. 1 and will be described with respect to differences from FIG. 1. The control circuit 10a of the linear compression apparatus 10 of FIG. The coil calculation means 9 is removed, and a calculation formula specifying means 11, a displacement waveform calculation means 12, and a basic waveform correction means 13 are newly added.

図1の制御回路1aと図5の制御回路10aは、ディジタル回路やアナログ回路又はディジタル回路とアナログ回路を組合せた回路で実現できる。各種の演算式は、ディジタル回路の場合はマイクロプロセッサとソフトウェアとで所望の演算式が実現でき、アナログ回路の場合は加算器、正弦発生器、掛算器、割算器を組合わせて実現できる。電源部3は、インバータ又はパワーアンプでよい。   The control circuit 1a in FIG. 1 and the control circuit 10a in FIG. 5 can be realized by a digital circuit, an analog circuit, or a circuit combining a digital circuit and an analog circuit. Various arithmetic expressions can be realized by a microprocessor and software in the case of a digital circuit, and can be realized by combining an adder, a sine generator, a multiplier, and a divider in the case of an analog circuit. The power supply unit 3 may be an inverter or a power amplifier.

ピストン58を位置制御したリニア圧縮装置10の作用について図5に基きコイル53aで説明する。コイル53b、53cの作用もコイル53aと同じである。   The operation of the linear compression apparatus 10 in which the position of the piston 58 is controlled will be described with reference to FIG. The operation of the coils 53b and 53c is the same as that of the coil 53a.

(直流分がある場合)
リニアモータ50のコイル53aの電圧と、電流と、ピストン58の変位のうち少なくとも1つに直流分がある場合、基本波形発生手段5と、電圧測定演算手段6と、電流測定演算手段7により、図1に示されるインピーダンスと逆起電力係数の測定法の直流分がある場合の変位測定演算ステップ8sを除き、基本波形発生ステップ5sと、電圧測定演算ステップ6sと、電流測定演算ステップ7sとで使われる同じ演算式に基づき同じ処理がなされる。電圧、電流のそれぞれの測定タイミングは、電圧測定タイミング手段6d、電流測定タイミング7dからの共通タイミングを基準に基本波形の周波数の1周期内の3つ以上の異なるそれぞれの測定タイミングに対応するそれぞれの位相角に整数倍の(2π)を加えた位相角で電圧、電流の各測定値が出力される。
(When there is a direct current component)
When at least one of the voltage and current of the coil 53a of the linear motor 50 and the displacement of the piston 58 has a direct current component, the basic waveform generation means 5, the voltage measurement calculation means 6 and the current measurement calculation means 7 The basic waveform generation step 5s, the voltage measurement calculation step 6s, and the current measurement calculation step 7s, except for the displacement measurement calculation step 8s when there is a direct current component of the impedance and counter electromotive force coefficient measurement method shown in FIG. The same processing is performed based on the same arithmetic expression used. The voltage and current measurement timings correspond to three or more different measurement timings within one period of the frequency of the basic waveform with reference to the common timing from the voltage measurement timing means 6d and the current measurement timing 7d. Each measured value of voltage and current is output at a phase angle obtained by adding an integral multiple (2π) to the phase angle.

演算式特定手段11では、変位波形演算手段12により演算されるピストン58の変位x(t)の演算式の諸量、即ち電圧振幅V、電圧位相角θ、電流振幅I、電流位相角θ、インダクタンスL、逆起電力係数C、電気抵抗Rが定数として設定される。 In the arithmetic expression specifying means 11, various quantities of the arithmetic expression of the displacement x (t) of the piston 58 calculated by the displacement waveform calculating means 12, that is, the voltage amplitude V O , the voltage phase angle θ V , the current amplitude I O , and the current phase. The angle θ I , the inductance L, the counter electromotive force coefficient C, and the electric resistance R are set as constants.

変位波形演算手段12で使われる変位x(t)の演算式は、以下のように導かれる。図3のコイル53aの等価回路においてコイル電圧v(t)とコイル電流i(t)と、変位x(t)の関係は数27で示される。

Figure 0005018357
The calculation formula of the displacement x (t) used in the displacement waveform calculation means 12 is derived as follows. In the equivalent circuit of the coil 53a in FIG. 3, the relationship between the coil voltage v (t), the coil current i (t), and the displacement x (t) is expressed by Equation 27.
Figure 0005018357

数27で、Lはインダクタンス、Rはコイル53aの電気抵抗、Cは逆起電力係数である。数27と、前述の数5のv(t)、V=0と、数8のi(t)、I=0から求めた速度dx(t)/dtを時間tで積分して数28で示される変位x(t)が得られる。数28のx(t)には積分と微分の項は含まれない。

Figure 0005018357
In Equation 27, L is an inductance, R is an electric resistance of the coil 53a, and C is a counter electromotive force coefficient. Integrating the speed dx (t) / dt obtained from Equation 27, v (t) and V D = 0 of Equation 5 above, i (t) of Equation 8, and I D = 0 over time t A displacement x (t) indicated by 28 is obtained. The integral and derivative terms are not included in x (t) of Equation 28.
Figure 0005018357

数28において、V、θは数7で、I、θは数10で、L、Cは数17又は数18で、Xは数13で示され、これらの定数は事前に前述した図1に示される各ステップ6s、7s、8s、9sにより測定演算される。また電気抵抗Rは抵抗計で事前に測定される。 In Equation 28, V O and θ V are in Equation 7, I O and θ I are in Equation 10, L and C are in Equation 17 or Equation 18, X D is shown in Equation 13, and these constants are given in advance. The measurement is calculated by the steps 6s, 7s, 8s, and 9s shown in FIG. The electrical resistance R is measured in advance with an ohmmeter.

変位波形演算手段12では、数28の特定された変位式に基づき変位波形が演算される。   The displacement waveform calculation means 12 calculates a displacement waveform based on the specified displacement equation of Equation 28.

基本波形補正手段13では、変位波形演算手段12で演算された変位波形x(t)に相当した電圧波形を基本波形発生源5aで発生された基本波形u(t)と比較し偏差値を算出し、基本波形u(t)を補正して電源部3へ偏差信号(動作信号)を伝達する。   The basic waveform correcting means 13 compares the voltage waveform corresponding to the displacement waveform x (t) calculated by the displacement waveform calculating means 12 with the basic waveform u (t) generated by the basic waveform generation source 5a and calculates a deviation value. Then, the basic waveform u (t) is corrected and a deviation signal (operation signal) is transmitted to the power supply unit 3.

電源部3では、偏差信号に基づきリニアモータ50に供給する電力の電圧値と電流値を決定し、リニアモータ50に電力を供給すると、リニアモータ50のコイル53a、53b、53cに交番磁界が発生し、可動子55の永久磁石56aの磁束と作用し合い可動子55を基本波形に対応する所望の振幅の正弦波または正弦波状に往復運動させるようにピストン58の変位の位置がフィードバック制御され、圧縮空間70のガスが圧縮される。   The power supply unit 3 determines the voltage value and current value of the power supplied to the linear motor 50 based on the deviation signal, and when power is supplied to the linear motor 50, an alternating magnetic field is generated in the coils 53a, 53b, and 53c of the linear motor 50. The position of the displacement of the piston 58 is feedback-controlled so as to interact with the magnetic flux of the permanent magnet 56a of the mover 55 and to reciprocate the mover 55 in a sine wave or sine wave having a desired amplitude corresponding to the basic waveform. The gas in the compression space 70 is compressed.

(直流分が振幅に対して小さい場合)
この場合、電圧、電流の測定タイミングは、電圧測定タイミング手段6d、電流測定タイミング7dからの共通タイミングを基準に基本波形の周波数の1周期内の2つ以上の異なるそれぞれの測定タイミングに対応するそれぞれの位相角に整数倍の(2π)を加えた位相角で測定値が出力される。また、図5の位置制御回路では、図1に示されるインピーダンスと逆起電力係数の測定法の直流分が振幅に対して小さい場合の変位測定演算ステップ8sを除き、基本波形発生ステップ5sと、電圧測定演算ステップ6sと、電流測定演算ステップ7sとで使われる同じ演算式に基づき同じ処理がなされる。
(When DC component is small relative to amplitude)
In this case, the voltage and current measurement timings correspond to two or more different measurement timings within one period of the frequency of the basic waveform with reference to the common timing from the voltage measurement timing means 6d and the current measurement timing 7d. The measured value is output at a phase angle obtained by adding an integral multiple (2π) to the phase angle. Further, in the position control circuit of FIG. 5, the basic waveform generation step 5s, except for the displacement measurement calculation step 8s when the DC component of the impedance and counter electromotive force coefficient measurement method shown in FIG. The same processing is performed based on the same calculation formula used in the voltage measurement calculation step 6s and the current measurement calculation step 7s.

変位波形演算手段12で使われる変位x(t)の演算式は、数28の変位の直流分Xを取除いた数29になる。

Figure 0005018357
Displacement calculation equation of the displacement x (t) used in the waveform calculating means 12 will number 29 Remove the DC component X D of displacement of the number 28.
Figure 0005018357

数29において、前述したように、V、θは数21で、I、θは数23で、L、Cは数17又は数18で示され、これらの定数は事前に前述した各ステップ6s、7s、8s、9sにより測定演算される。また電気抵抗Rも事前に測定され、演算式特定手段11でこれらの諸量が定数として特定される。次に、変位波形演算手段12により数29に基づき変位波形x(t)が演算されると、前述の直流分がある場合と同じようにピストン58の位置がフィードバック制御される。 In Equation 29, as described above, V O and θ V are expressed by Equation 21, I O and θ I are expressed by Equation 23, L and C are expressed by Equation 17 or Equation 18, and these constants are described above in advance. The measurement is calculated by each step 6s, 7s, 8s, 9s. The electric resistance R is also measured in advance, and these quantities are specified as constants by the arithmetic expression specifying means 11. Next, when the displacement waveform x (t) is calculated based on the equation 29 by the displacement waveform calculation means 12, the position of the piston 58 is feedback-controlled as in the case where there is a direct current component.

(リニア圧縮機について)
図6は、図1および図5に示されるリニア圧縮機2の断面図である。リニア圧縮機2は、圧力容器69と、圧力容器69内周面に固定されたリニアモータ50と、リニアモータ50の可動子55に配設されたピストン58と、ピストン58が往復運動してガスを圧縮する圧縮空間70を形成するシリンダー部65とから構成される。
(About linear compressor)
FIG. 6 is a cross-sectional view of the linear compressor 2 shown in FIGS. 1 and 5. The linear compressor 2 includes a pressure vessel 69, a linear motor 50 fixed to the inner peripheral surface of the pressure vessel 69, a piston 58 disposed on a mover 55 of the linear motor 50, and a piston 58 reciprocatingly moving the gas. And a cylinder portion 65 that forms a compression space 70 for compressing.

圧力容器69は、胴筒69aの一端に鏡板69bが気密に固着され、他端はシリンダー部65のシリンダーブロック66のフランジ部66aが気密に固着される。   In the pressure vessel 69, the end plate 69b is airtightly fixed to one end of the barrel 69a, and the flange portion 66a of the cylinder block 66 of the cylinder portion 65 is airtightly fixed to the other end.

リニアモータ50は、胴筒69aの内周面に固定された固定子51と、固定子51で発生する磁束により駆動される可動子55とから構成される。固定子51は、ホルダ54aを備え胴筒62aの周方向に巻かれたコイル53aと、コイル53aの軸方向の両端に多数枚の磁性鋼板52aを積層したコア52と、2つのコア52の外側に設けられホルダ54b、54cを備え胴筒69aの周方向に巻かれたコイル53b、53cとから構成される。   The linear motor 50 includes a stator 51 fixed to the inner peripheral surface of the barrel 69 a and a mover 55 that is driven by a magnetic flux generated by the stator 51. The stator 51 is provided with a holder 54a, a coil 53a wound in the circumferential direction of the barrel 62a, a core 52 in which a plurality of magnetic steel plates 52a are laminated at both axial ends of the coil 53a, and the outer sides of the two cores 52. Provided with holders 54b and 54c and coils 53b and 53c wound in the circumferential direction of the barrel 69a.

可動子55は、帽子形状のホルダ57の円筒中央に固定され円筒の永久磁石56aと、永久磁石56aの両端に設けた非磁性材のスペーサ56bと、スペーサ55bを介して固定された磁性材のヨーク56c、56dと、ヨーク56cの端部に設けたバネホルダ56eとから構成される。ロッドホルダ61は、ホルダ57の閉じた内側に設けられ、ロッド59はロッドホルダ61の中心部の孔を通って一端がナット62で固定され、他端がピストン58が固定される。ピストン58と可動子55はロッド59を介し一体となって可動体60が構成される。   The mover 55 is made of a cylindrical permanent magnet 56a fixed to the center of the hat-shaped holder 57, a non-magnetic spacer 56b provided at both ends of the permanent magnet 56a, and a magnetic material fixed via the spacer 55b. The yokes 56c, 56d and a spring holder 56e provided at the end of the yoke 56c are configured. The rod holder 61 is provided on the closed inner side of the holder 57, and the rod 59 passes through a hole at the center of the rod holder 61, and one end is fixed with a nut 62, and the other end is fixed with a piston 58. The piston 58 and the mover 55 are integrated with each other via a rod 59 to form a movable body 60.

シリンダー部65は、シリンダーブロック66とシリンダーライナ67から構成され、リンダーブロック66は大筒部66bと、大筒部66bの両端に設けられたフランジ部66aと、ロッド59が貫通する小筒部66cとからなる。シリンダーライナ67は大筒部66bの内周面に装着され、一端部には、ガスが流出入する配管68aを備えたヘッド68が設けられ、ヘッド68はフランジ部66aに気密に固着される。ヘッド68とシリンダーライナ67とピストン58とでガスが圧縮される圧縮空間70が形成される。   The cylinder portion 65 is composed of a cylinder block 66 and a cylinder liner 67. The Linder block 66 is composed of a large tube portion 66b, flange portions 66a provided at both ends of the large tube portion 66b, and a small tube portion 66c through which the rod 59 passes. Become. The cylinder liner 67 is mounted on the inner peripheral surface of the large cylinder portion 66b, and a head 68 having a pipe 68a through which gas flows in and out is provided at one end, and the head 68 is airtightly fixed to the flange portion 66a. The head 68, the cylinder liner 67, and the piston 58 form a compression space 70 in which gas is compressed.

ピストン58はシリンダーライナ67に対して所定の微少間隙を持って摺動可能に外接し、ロッド59は小筒部66cの孔に対し間隙をもって装着される。ホルダ57は、小筒部66cの外周面に対し微少間隙を持って摺動可能に内接している。   The piston 58 is slidably circumscribed with a predetermined minute gap with respect to the cylinder liner 67, and the rod 59 is attached to the hole of the small cylinder portion 66c with a gap. The holder 57 is slidably inscribed with a small gap with respect to the outer peripheral surface of the small tube portion 66c.

可動子55の両端には、コイルバネ71、72が設けられ、コイルバネ71、72と永久磁石56aの磁気バネとピストン58の往復運動によって生じるガスバネとを合成した合成バネと、可動体60の質量とで振動系が形成される。また、可動子55は、コア52の内周面に対し所定の間隙を保ち、停止状態で永久磁石55aの軸方向の中間位置と2つのコア52の中間位置とが合うようにコイルバネ71、72の端部に設けたスペーサ73,74で調整され、この状態でピストン58は中立位置に配置されようピストン58のヘッド側の長さが調整される。このように調整されることで、前述の共通タイミングを基準に基本波形の周波数の1周期内の2つ又は3つ以上の異なるそれぞれの測定タイミングに対応するそれぞれの位相角に整数倍の(2π)を加えた位相角で電圧、電流、変位の測定と演算が可能になる。   Coil springs 71, 72 are provided at both ends of the mover 55, a combined spring in which the coil springs 71, 72, the magnetic spring of the permanent magnet 56 a and the gas spring generated by the reciprocating motion of the piston 58, and the mass of the movable body 60 A vibration system is formed. Further, the mover 55 maintains a predetermined gap with respect to the inner peripheral surface of the core 52, and the coil springs 71 and 72 so that the intermediate position in the axial direction of the permanent magnet 55a and the intermediate position of the two cores 52 are aligned in the stopped state. The length of the piston 58 on the head side is adjusted so that the piston 58 is disposed at the neutral position in this state. By adjusting in this way, each phase angle corresponding to each of two or three or more different measurement timings within one period of the frequency of the basic waveform with reference to the common timing is an integer multiple (2π ) Can be used to measure and calculate voltage, current, and displacement.

リニアモータ50のコイル53a、53b、53cのインダクタンスと逆起電力係数を測定する場合は、鏡板69bの中央に一点鎖線で示される変位センサ75が配設され、可動体60の変位(ピストン58および可動子55の変位)が測定される。リニア圧縮機2のピストン58を位置制御する場合には、変位センサ75を配設しなくてよい。   When measuring the inductances and back electromotive force coefficients of the coils 53a, 53b, 53c of the linear motor 50, a displacement sensor 75 indicated by a one-dot chain line is disposed at the center of the end plate 69b, and the displacement of the movable body 60 (piston 58 and The displacement of the mover 55 is measured. When the position of the piston 58 of the linear compressor 2 is controlled, the displacement sensor 75 need not be provided.

リニア圧縮機2は、例えばスターリング冷凍機などに使用され、圧力容器69は、例えばヘリウムが充填され、リニアモータ50に正弦波又は正弦波状の電圧を印加することで、固定子51に交番磁束が発生され、この交番磁束で可動子55がピストン58と一体になって往復運動することで、圧縮空間70内でヘリウムの圧縮と膨張が繰返され配管68a内を往復流動する。また、図6には示していないが、ヘッド68に吸入弁と吐出弁を配備したリニア圧縮機は、スプリット型のパルス管冷凍機やGM冷凍機などに使用される。   The linear compressor 2 is used, for example, in a Stirling refrigerator, and the pressure vessel 69 is filled with, for example, helium. By applying a sine wave or sinusoidal voltage to the linear motor 50, an alternating magnetic flux is applied to the stator 51. The alternating magnetic flux causes the mover 55 to reciprocate integrally with the piston 58, so that the compression and expansion of helium are repeated in the compression space 70 to reciprocate in the pipe 68a. Although not shown in FIG. 6, a linear compressor in which a suction valve and a discharge valve are provided in the head 68 is used for a split-type pulse tube refrigerator, a GM refrigerator, or the like.

次に、ピストン58を位置制御したリニア圧縮装置10の効果について説明する。   Next, the effect of the linear compression apparatus 10 that controls the position of the piston 58 will be described.

リニアモータ50のコイル53a、53b、53cに正弦波、又は、正弦波状の電力を供給することで、可動子55にピストン58を備えた可動体60は、正弦波、又は、正弦波状の往復運動をする。従って、共通タイミングを基準に基本波形の周波数の1周期内で3つ以上の異なるタイミングに相当する位相角に整数倍の2πを加えた位相角で、電圧と、電流とを測定して得られた測定値と、実機運転と近い状態で求めたコイル53a、53b、53cのインダクタンスと逆起電力係数の測定値とを使って、従来技術の演算式に含まれる微分と積分を用いずにピストン58の変位波形を演算して求めことが出来る。この演算で求めた変位波形と基本波形とを比較し基本波形補正手段13により基本波形を補正した偏差信号(動作信号)に基づき電源部3でコイル53a、53b、53cに供給する電力の電圧と位相を決定してリニアモータ50を駆動して、ピストン58の位置をフィードバック制御するので、ピストン58の位置検出器が不要で、演算処理を行うプロセッサの負担が小さく、電気ノイズの影響を受け難く、精度の高いピストン位置制御のできるコストの安いリニア圧縮装置10を提供できる。 By supplying sine wave or sine wave power to the coils 53a, 53b, 53c of the linear motor 50, the movable body 60 having the piston 58 on the mover 55 is reciprocated in a sine wave or sine wave form. do. Therefore, it is obtained by measuring the voltage and current at a phase angle obtained by adding an integer multiple of 2π to a phase angle corresponding to three or more different timings within one period of the frequency of the basic waveform with reference to the common timing. Using the measured values and the measured values of the inductances of the coils 53a, 53b, 53c and the counter electromotive force coefficient obtained in the state close to the actual machine operation, without using the differentiation and integration included in the arithmetic expression of the prior art. can be Ru determined by calculating the displacement waveform of 58. Based on a deviation signal (operation signal) obtained by comparing the displacement waveform obtained by this calculation with the basic waveform and correcting the basic waveform by the basic waveform correcting means 13, the voltage of the power supplied to the coils 53a, 53b, 53c by the power source unit 3 Since the phase is determined and the linear motor 50 is driven to feedback control the position of the piston 58, the position detector of the piston 58 is unnecessary, the burden on the processor that performs the arithmetic processing is small, and it is not easily affected by electrical noise. Thus, the low-cost linear compressor 10 that can perform highly accurate piston position control can be provided.

リニアモータ50のコイル53a、53b、53cに供給される電力の電圧の直流分が電圧振幅分小さく、電流の直流分が振幅分に対して小さく、ピストン58の変位の直流分が振幅分に対して小さくするように事前に電源部の電圧と電流、そしてリニア圧縮機2の可動子55及びピストン58の位置を調整することで、共通タイミングを基準に基本波形の周波数の1周期内で2つ以上の異なるタイミングに相当する位相角に整数倍の2πを加えた位相角で、電圧と、電流とを測定して、各々の測定された測定値に基づき可動体60の変位波形を、従来技術の演算式に含まれる微分と積分を用いずに演算し、この演算で得られた変位波形を前述と同じようにフィードバックし可動体60の位置制御を行っている。従って、ピストン58の位置検出器が不要で、演算処理を行うプロセッサの負担が小さく、且つ電気ノイズの影響を受け難く、精度の高いピストン位置制御のできるコストの安いリニア圧縮装置10を提供できる。さらに、プロセッサの処理数が減少するのでプロセッサの負担が減少する。 Coil 53a of the linear motor 50, 53b, a DC component voltage amplitude amount small fence of the power of the voltage supplied to 53c, small DC component of the current with respect to the amplitude component, the DC component of the displacement of the piston 58 to the amplitude component On the other hand, by adjusting the voltage and current of the power supply unit and the positions of the mover 55 and the piston 58 of the linear compressor 2 in advance so as to be small, the frequency is reduced to 2 within one period of the frequency of the basic waveform with reference to the common timing. A voltage and current are measured at a phase angle obtained by adding 2π which is an integer multiple to a phase angle corresponding to two or more different timings, and a displacement waveform of the movable body 60 is conventionally calculated based on each measured value. The calculation is performed without using differentiation and integration included in the calculation formula of the technology, and the displacement waveform obtained by this calculation is fed back in the same manner as described above to control the position of the movable body 60. Therefore, it is possible to provide a low-cost linear compression apparatus 10 that does not require a position detector for the piston 58, is lightly burdened by a processor that performs arithmetic processing, is not easily affected by electrical noise, and can perform highly accurate piston position control. Furthermore, since the number of processes of the processor is reduced, the burden on the processor is reduced.

また、リニアモータ50のコイル53a、53b、53cに供給される電力の電圧の直流分が振幅分小さいく、電流の直流分が振幅分に対して小さく、ピストン58の変位の直流分が振幅分に対して小さい場合、実機運転態に近い状態で測定演算して求めたコイル53a、53b、53cのインダクタンス値と逆起電力係数値を使って、ピストン58の変位波形を演算して求め、フィードバックし可動体60の位置制御を行うことで、ピストン58の変位波形の精度が高くなり、精度の高いピストン位置制御したリニア圧縮装置
10が可能になる。
Further, the direct current component of the power voltage supplied to the coils 53a, 53b, and 53c of the linear motor 50 is small in amplitude, the direct current component in current is small relative to the amplitude component, and the direct current component of the displacement of the piston 58 is the amplitude component. If it is smaller than the actual machine operating state, it is obtained by calculating the displacement waveform of the piston 58 using the inductance values of the coils 53a, 53b, 53c and the back electromotive force coefficient value obtained by measurement and calculation in a state close to the actual operating state, and feedback. By controlling the position of the movable body 60, the accuracy of the displacement waveform of the piston 58 is increased, and the linear compression device 10 with a highly accurate piston position control can be realized.

以降では、実施例のインダクタンスと逆起電力係数を求めるリニア圧縮装置1の制御方法と、ピストンを位置制御したリニア圧縮装置10の妥当性を検証した検証試験結果について、図7を参照して説明する。図7は、図6とは異なる寸法諸元で構成されたリニア圧縮機にインダクタンスと逆起電力係数を求めるリニア圧縮装置1の制御方法と、ピストン位置制御を適用した検証試験結果を示す図である。図中、横軸は時間tを示し、縦軸は電圧、電流、変位を示す。図中、(1)が供給電圧の実測値、(2)が供給電圧の演算値、(3)が供給電流の実測値、(4)が供給電流の演算値、(5)がピストン変位の実測値、(6)がピストン変位の演算値の各波形をそれぞれ示す。供給電圧の周波数は29Hzで、ほぼピストン変位の共振周波数に近い。   Hereinafter, the control method of the linear compressor 1 for obtaining the inductance and the counter electromotive force coefficient of the embodiment and the verification test result verifying the validity of the linear compressor 10 whose position is controlled by the piston will be described with reference to FIG. To do. FIG. 7 is a diagram showing a control method of the linear compressor 1 for obtaining the inductance and the counter electromotive force coefficient in a linear compressor having dimensions different from those in FIG. 6 and a verification test result in which piston position control is applied. is there. In the figure, the horizontal axis indicates time t, and the vertical axis indicates voltage, current, and displacement. In the figure, (1) is the measured value of the supply voltage, (2) is the calculated value of the supplied voltage, (3) is the measured value of the supplied current, (4) is the calculated value of the supplied current, and (5) is the piston displacement. Measured value, (6) shows each waveform of the calculated value of piston displacement. The frequency of the supply voltage is 29 Hz, which is close to the resonance frequency of the piston displacement.

図7から判るように、供給電圧の実測値の(1)と供給電圧の演算値の(2)、又、供給電流の実測値の(3)と供給電流の演算値の(4)のそれぞれの波形は良く一致していおり、ピストン変位の実測値の(5)、ピストン変位の演算値の(6)は、波形がほぼ重なっており精度よく演算される。   As can be seen from FIG. 7, (1) of the measured value of the supply voltage and (2) of the calculated value of the supply voltage, (3) of the measured value of the supplied current and (4) of the calculated value of the supplied current, respectively. The waveforms of (5) of the measured value of the piston displacement and (6) of the calculated value of the piston displacement substantially overlap with each other and are calculated with high accuracy.

本発明に係わるリニア圧縮装置の制御方法に関する制御回路のブロック線図を示す。The block diagram of the control circuit regarding the control method of the linear compressor concerning this invention is shown. コイルの電圧測定値から導かれる電圧振幅と電圧位相の演算式を説明する電圧ベクトル線図を示す。The voltage vector diagram explaining the calculation formula of the voltage amplitude and voltage phase which are derived | led-out from the voltage measurement value of a coil is shown. 図1のリニア圧縮装置の基本波形発生手段と電源部とリニアモータのコイルとを接続した等価回路を示す。2 shows an equivalent circuit in which a basic waveform generating means, a power supply unit, and a coil of a linear motor of the linear compression device of FIG. 1 are connected. 従来技術のインダクタンス測定回路を示す。1 shows a prior art inductance measurement circuit. ピストン位置制御したリニア圧縮装置の制御回路のブロック線図を示す。The block diagram of the control circuit of the linear compressor which carried out piston position control is shown. 図1および図5に示されるリニア圧縮機を示す。Fig. 6 shows the linear compressor shown in Figs. 1 and 5. 本発明のインダクタンスと逆起電力係数を求めるリニア圧縮装置の制御方法とピストンの位置制御の検証試験結果を示す。The control method of the linear compressor which calculates | requires the inductance and back electromotive force coefficient of this invention, and the verification test result of piston position control are shown.

符号の説明Explanation of symbols

1、10 リニア圧縮装置
2 リニア圧縮機
3 電源部
4 制御部
5 基本波形発生手段
5s 基本波形発生ステップ
6 電圧測定演算手段
6s 電圧測定演算ステップ
7 電流測定演算手段
7s 電流測定演算ステップ
8 変位測定演算手段
8s 変位測定演算ステップ
9 コイル演算手段
9s コイル演算ステップ
12 変位波形演算手段
13 基本波形補正手段
50 リニアモータ
53a、53b、53c コイル
55 可動子
58 ピストン
60 可動体
65 シリンダー部
DESCRIPTION OF SYMBOLS 1, 10 Linear compressor 2 Linear compressor 3 Power supply part 4 Control part 5 Basic waveform generation means 5s Basic waveform generation step 6 Voltage measurement calculation means 6s Voltage measurement calculation step 7 Current measurement calculation means 7s Current measurement calculation step 8 Displacement measurement calculation Means 8s Displacement measurement calculation step 9 Coil calculation means 9s Coil calculation step 12 Displacement waveform calculation means 13 Basic waveform correction means 50 Linear motor 53a, 53b, 53c Coil 55 Movable element 58 Piston 60 Movable body 65 Cylinder part

Claims (1)

可動子にピストンを配設した可動体とコイルとを有するリニアモータと、前記ピストンが往復動してガスを圧縮するシリンダー部と、を備えたリニア圧縮機と、
前記リニアモータの前記コイルに電力を供給し、前記リニア圧縮機の前記可動体を正弦波又は正弦波状に往復動させる電源部と、
を備えるリニア圧縮装置の制御方法であって、
前記電源部に送る正弦波又は正弦波状の基本波形を発生する基本波形発生手段により前記基本波形を発生する基本波形発生ステップと、
前記電力の電圧の測定と演算を行う電圧測定演算手段により、共通タイミングを基準に前記基本波形の周波数の1周期内の3つ以上の異なる前記電圧位相角に整数倍の2π(360°)を加えた位相角で、又は前記電圧の直流分が振幅に対して小さい場合は前記共通タイミングを基準に前記周波数の1周期内の2つ以上の異なる前記電圧位相角に整数倍の2πを加えた位相角で前記電圧を測定し、測定した該電圧値から電圧波形の電圧振幅と電圧位相角とを演算する電圧測定演算ステップと、
前記電力の電流の測定と演算を行う電流測定演算手段より、前記共通タイミングを基準に前記周波数の1周期内の3つ以上の異なる前記電流位相角に整数倍の2πを加えた位相角で、又は前記電流の直流分が振幅に対して小さい場合は前記共通タイミングを基準に前記周波数の1周期内の2つ以上の異なる前記電流位相角に整数倍の2πを加えた位相角で前記電流を測定し、測定した該電流値から電流波形の電流振幅と電流位相角とを演算する電流測定演算ステップと、
前記ピストンの変位の測定と演算を行う変位測定演算手段により前記共通タイミングを基準に前記周波数の1周期内の3つ以上の異なる前記変位位相角に整数倍の2πを加えた位相角で、又は前記変位の直流分が振幅に対して小さい場合は前記共通タイミングを基準に前記周波数の1周期内の2つ以上の異なる前記変位位相角に整数倍の2πを加えた位相角で前記変位を測定し、測定した該変位値から変位波形の変位振幅と変位位相角とを演算する変位測定演算ステップと、
前記電圧と前記電流と前記変位の測定値から得られた演算結果に基き演算するコイル演算手段により、前記電圧振幅と前記電圧位相角と、前記電流振幅と前記電流位相角と、前記変位振幅と前記変位位相角と、から前記コイルのインダクタンスと、前記コイルの逆起電力係数を演算するコイル演算ステップと、によって前記インダクタンスと前記逆起電力係数とを予め求め、
前記電源部の前記電力の電圧又は電流を制御する制御部を備え、
前記リニア圧縮装置の運転時に、前記制御部は、前記電源部に送る正弦波又は正弦波状の基本波形を発生させる基本波形発生手段と、共通タイミングを基準に前記基本波形の周波数の1周期内で3つ以上の異なる電圧位相角に整数倍の2πを加えた位相角で、又は前記電圧の直流分が振幅に対して小さい場合は前記共通タイミングを基準に前記基本波形の周波数の1周期内で2つ以上の異なる電圧位相角に整数倍の2πを加えた位相角で前記コイルを流れる電圧を測定し、測定した該電圧値から電圧波形の電圧振幅と電圧位相角を演算する電圧測定演算手段と、
前記共通タイミングを基準に前記周波数の1周期内で3つ以上の異なる電流位相角に整数倍の2πを加えた位相角で、又は前記電流の直流分が振幅に対して小さい場合は前記共通タイミングを基準に前記周波数の1周期内で2つ以上の異なる電流位相角に整数倍の2πを加えた位相角で前記コイルを流れる電流を測定し、測定した該電流値から電流波形の電流振幅と電流位相角を演算する電流測定演算手段と、
前記電圧測定演算手段により得られた前記電圧波形と、前記電流測定演算手段により得られた前記電流波形から前記可動体の変位波形を演算する変位波形演算手段と、
前記基本波形と、前記変位波形演算手段により得られた前記変位波形とを比較し前記基本波形を補正した動作信号を前記電源部に伝送する基本波形補正手段と、を備え、
前記コイル演算ステップで求めた前記インダクタンスと前記逆起電力係数により前記変位波形演算手段で前記変位波形を演算して前記可動体の位置を制御する、ことを特徴するリニア圧縮装置の制御方法
A linear motor including a linear motor having a movable body having a piston disposed on a mover and a coil, and a cylinder portion in which the piston reciprocates to compress gas;
A power source for supplying electric power to the coil of the linear motor and reciprocating the movable body of the linear compressor in a sine wave or sine wave;
A control method for a linear compression apparatus comprising:
A basic waveform generating step of generating the basic waveform by a basic waveform generating means for generating a sine wave or a sine wave basic waveform to be sent to the power supply unit;
By means of voltage measurement calculation means for measuring and calculating the voltage of the power, 2π (360 °) which is an integral multiple of three or more different voltage phase angles within one period of the frequency of the basic waveform with reference to a common timing. When the DC component of the voltage is small relative to the amplitude with the added phase angle, 2π which is an integer multiple is added to two or more different voltage phase angles within one period of the frequency with reference to the common timing. A voltage measurement calculation step for measuring the voltage at a phase angle and calculating a voltage amplitude and a voltage phase angle of a voltage waveform from the measured voltage value;
From the current measurement calculation means for measuring and calculating the current of the electric power, with a phase angle obtained by adding 2π of an integer multiple to three or more different current phase angles within one period of the frequency based on the common timing, Alternatively, when the direct current component of the current is small with respect to the amplitude, the current is set at a phase angle obtained by adding 2π which is an integral multiple of two or more different current phase angles within one period of the frequency with reference to the common timing. A current measurement calculation step for measuring and calculating the current amplitude and current phase angle of the current waveform from the measured current value;
A phase angle obtained by adding an integral multiple of 2π to three or more different displacement phase angles within one period of the frequency with reference to the common timing by a displacement measurement calculation means for measuring and calculating the displacement of the piston; or When the DC component of the displacement is smaller than the amplitude, the displacement is measured at a phase angle obtained by adding 2π which is an integral multiple of two or more different displacement phase angles within one period of the frequency with reference to the common timing. A displacement measurement calculation step for calculating a displacement amplitude and a displacement phase angle of the displacement waveform from the measured displacement value;
By means of coil calculation means for calculating based on the calculation results obtained from the measured values of the voltage, the current and the displacement, the voltage amplitude, the voltage phase angle, the current amplitude, the current phase angle, and the displacement amplitude, From the displacement phase angle, the inductance of the coil and a coil calculation step of calculating a counter electromotive force coefficient of the coil, and obtaining the inductance and the counter electromotive force coefficient in advance,
A control unit that controls the voltage or current of the power of the power supply unit;
During operation of the linear compression device, the control unit generates a sine wave or a sine wave basic waveform to be sent to the power supply unit, and within one cycle of the frequency of the basic waveform based on a common timing. The phase angle is obtained by adding an integer multiple of 2π to three or more different voltage phase angles, or within one period of the frequency of the basic waveform with reference to the common timing when the DC component of the voltage is small relative to the amplitude. Voltage measurement calculation means for measuring a voltage flowing through the coil at a phase angle obtained by adding 2π which is an integer multiple to two or more different voltage phase angles, and calculating a voltage amplitude and a voltage phase angle of a voltage waveform from the measured voltage values When,
With the phase angle obtained by adding an integer multiple of 2π to three or more different current phase angles within one period of the frequency with reference to the common timing, or when the DC component of the current is small relative to the amplitude, the common timing The current flowing through the coil is measured at a phase angle obtained by adding an integer multiple of 2π to two or more different current phase angles within one period of the frequency, and the current amplitude of the current waveform is calculated from the measured current value. Current measurement calculation means for calculating a current phase angle;
A displacement waveform computing means for computing a displacement waveform of the movable body from the voltage waveform obtained by the voltage measurement computing means and the current waveform obtained by the current measurement computing means;
Comparing the basic waveform and the displacement waveform obtained by the displacement waveform calculating means, the basic waveform correcting means for transmitting the operation signal corrected the basic waveform to the power supply unit,
A control method for a linear compression device, wherein the displacement waveform calculation means calculates the displacement waveform based on the inductance and the counter electromotive force coefficient obtained in the coil calculation step to control the position of the movable body.
JP2007230628A 2007-09-05 2007-09-05 Linear compression apparatus and control method thereof Expired - Fee Related JP5018357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007230628A JP5018357B2 (en) 2007-09-05 2007-09-05 Linear compression apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007230628A JP5018357B2 (en) 2007-09-05 2007-09-05 Linear compression apparatus and control method thereof

Publications (2)

Publication Number Publication Date
JP2009062853A JP2009062853A (en) 2009-03-26
JP5018357B2 true JP5018357B2 (en) 2012-09-05

Family

ID=40557662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007230628A Expired - Fee Related JP5018357B2 (en) 2007-09-05 2007-09-05 Linear compression apparatus and control method thereof

Country Status (1)

Country Link
JP (1) JP5018357B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1001388A2 (en) * 2010-05-05 2011-12-27 Whirlpool Sa resonant linear compressor piston control system, resonant linear compressor piston control method and resonant linear compressor
JP7174490B2 (en) * 2019-12-26 2022-11-17 株式会社ツインバード Free piston Stirling refrigerator

Also Published As

Publication number Publication date
JP2009062853A (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP4229909B2 (en) Vibration electric motor control method for small electrical equipment
JP5562333B2 (en) Position detector for moving magnet linear motor
BRPI1103776B1 (en) system and method of stroke control and resonant frequency operation of a resonant linear motor
CN104426447B (en) Method and apparatus for determining the pole wheel position of electronic commutation motor
JPH0919191A (en) Positioning method for rotor in rotational motor or linear motor
US20140139155A1 (en) Method and device for controlling a reluctance electric machine
CN104316876B (en) Method for rapidly obtaining three-phase 12/8 pole SRM magnetic linkage characteristics with consideration on mutual inductance coupling
Hamouda et al. Accurate magnetic characterization based model development for switched reluctance machine
JP5018357B2 (en) Linear compression apparatus and control method thereof
Lecointe et al. Five methods of stator natural frequency determination: case of induction and switched reluctance machines
Keyvannia et al. Analytical modeling of variable-reluctance tubular resolver based on magnetic equivalent circuit and conformal mapping
EP1988436B1 (en) Vibration state detecting method at machining stage of work and/or tool
CN104052347B (en) For controling the control device and method of induction machine
JP2005257432A (en) Evaluation testing apparatus for pm motor
JP2000270534A (en) Dynamic characteristics measuring device for linear motor
CN102955862A (en) State measurement method for permanent magnet synchronous motor
US11831261B2 (en) Method and device for calibrating a controller of an electric machine
JP2008196320A (en) Control method of linear compressor
JP2015227826A (en) Position detecting device
CN110661383B (en) Sensor device for an electric machine, method for operating a sensor device
JPH11336661A (en) Control unit for liner motor driven reciprocating mechanism
JP2013127409A (en) Waveform measuring instrument
Reinholz et al. Sensor Fusion of Self-Sensed Measurements for Position Control of a Constant Air-Gap Solenoid
US20080297170A1 (en) Dynamic inductance measurement of electric motor
JP2006296136A (en) Linear motor control system and stirling refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R151 Written notification of patent or utility model registration

Ref document number: 5018357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees