JP5018055B2 - Method for producing positive electrode plate of lithium ion secondary battery and lithium ion secondary battery - Google Patents

Method for producing positive electrode plate of lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP5018055B2
JP5018055B2 JP2006335411A JP2006335411A JP5018055B2 JP 5018055 B2 JP5018055 B2 JP 5018055B2 JP 2006335411 A JP2006335411 A JP 2006335411A JP 2006335411 A JP2006335411 A JP 2006335411A JP 5018055 B2 JP5018055 B2 JP 5018055B2
Authority
JP
Japan
Prior art keywords
electrode plate
heat treatment
drying
positive electrode
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006335411A
Other languages
Japanese (ja)
Other versions
JP2008147114A (en
Inventor
健一 大嶋
彰 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006335411A priority Critical patent/JP5018055B2/en
Publication of JP2008147114A publication Critical patent/JP2008147114A/en
Application granted granted Critical
Publication of JP5018055B2 publication Critical patent/JP5018055B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池に使用される正極用電極板の製造方法に関し、特にその好適な熱処理に関するものである。   The present invention relates to a method for producing a positive electrode plate used in a lithium ion secondary battery, and more particularly to a suitable heat treatment thereof.

近年、民生用電子機器のポータブル化、コードレス化が急速に進んでいる。従来、これら電子機器の駆動用電源としての役割を、ニッケルーカドミウム電池、ニッケルー水素電池あるいは密閉型小型鉛蓄電池が担ってきたが、ポータブル化、コードレス化が進展し、定着するにしたがい、駆動用電源となる二次電池の高エネルギー密度化、小型軽量化の要望が強くなっている。また、近年は小型のパソコン、通信機器などの急速な市場の拡大に代表されるように高率充放電が可能な電池が要望されている。   In recent years, consumer electronic devices have become increasingly portable and cordless. Conventionally, nickel-cadmium batteries, nickel-hydrogen batteries, or sealed small lead-acid batteries have played a role as power sources for driving these electronic devices. There is a strong demand for higher energy density, smaller size, and lighter weight of secondary batteries as power sources. In recent years, there has been a demand for a battery that can be charged and discharged at a high rate as represented by the rapid market expansion of small personal computers and communication devices.

このような状況から、高率充放電電圧を示すリチウムコバルト複合酸化物、例えばLiCoO2を正極活物質に用いリチウムイオンの挿入、離脱を利用したリチウムイオン二次電池が主流になっている。   Under such circumstances, lithium ion secondary batteries using lithium cobalt composite oxide showing a high rate charge / discharge voltage, for example, LiCoO 2 as a positive electrode active material and utilizing insertion and detachment of lithium ions have become mainstream.

このような電池は、高率充放電を実現可能にするため、正極電極板と負極電極板の間にセパレータを介在して巻回したスパイラル構造とすることにより作成される。ここに使用される正極電極板は、効率充放電特性を得るために、正極電極板を製造する際に帯状のアルミニウム箔からなる正極集電体の両面に正極電極合剤を塗布、乾燥した後、熱処理炉にて結着剤の融点より高温(FEP系結着剤の場合の実施例300℃:15分間)で熱処理をして集電体と活物質合剤の結着力の向上を図ってきた(例えば特許文献1参照)。   Such a battery is produced by forming a spiral structure in which a separator is interposed between a positive electrode plate and a negative electrode plate in order to realize high rate charge / discharge. The positive electrode plate used here is obtained by applying and drying a positive electrode mixture on both surfaces of a positive electrode current collector made of a strip-shaped aluminum foil when producing the positive electrode plate in order to obtain efficient charge / discharge characteristics. In the heat treatment furnace, heat treatment is performed at a temperature higher than the melting point of the binder (Example of FEP binder: 300 ° C .: 15 minutes) to improve the binding force between the current collector and the active material mixture. (See, for example, Patent Document 1).

しかしプレス前の熱処理だけでは、熱処理工程以降の工程での水分の吸着や熱処理で分解しきれなかった合剤に含まれる増粘剤や界面活性剤の残渣の影響で電池性能が低下するため、プレス後長手方向に所定の幅に裁断してフープ状に巻き取った電極板を、さらに結着剤及び増粘剤の軟化点より高い250℃で乾燥炉にて8時間、熱処理を行うことにより正極電極板の増粘剤の残渣、吸着水分を分解させて、電極板抵抗を安定させ、電池性能の向上を図っている(例えば特許文献2参照)。
特開2001−216957号公報 特開2003−223899号公報
However, because only the heat treatment before pressing reduces battery performance due to the effects of thickeners and surfactant residues contained in the mixture that could not be decomposed by moisture adsorption or heat treatment in the steps after the heat treatment step, By performing heat treatment for 8 hours in a drying furnace at 250 ° C. higher than the softening point of the binder and thickener, the electrode plate cut into a predetermined width in the longitudinal direction after pressing and wound into a hoop shape The thickener residue and adsorbed moisture of the positive electrode plate are decomposed to stabilize the electrode plate resistance and improve battery performance (see, for example, Patent Document 2).
JP 2001-216957 A JP 2003-223899 A

しかし従来の技術では生産性向上のため熱処理時間の短縮化を図ると、増粘剤や界面活性剤の残渣の影響で電池性能が低下する課題があった。また、長手方向に裁断してフープ状に巻き取った電極板を乾燥炉にて250℃で8時間、乾燥を行うと、加熱によって前工程でのプレスによる残留応力が変化及び電極合剤中に含まれるバインダーの変質により、圧縮された電極板の厚みが復元されるため、フープ外周方向に外圧がかかり、外周部の電極板のアルミ箔が伸ばされ、フープの外周側と巻き芯側とで電極板1枚あたりの長さの相違が発生する。
However, in the conventional technology, when the heat treatment time is shortened to improve productivity, there is a problem that the battery performance is deteriorated due to the influence of the thickener or the residue of the surfactant. Moreover, when the electrode plate cut in the longitudinal direction and wound up in a hoop shape is dried at 250 ° C. for 8 hours in a drying furnace, the residual stress due to the press in the previous process is changed by heating and the electrode mixture is changed. As the thickness of the compressed electrode plate is restored due to the alteration of the binder contained, external pressure is applied in the hoop outer peripheral direction, the aluminum foil of the electrode plate on the outer peripheral portion is stretched, and the outer periphery side and the core side of the hoop A difference in length per electrode plate occurs.

また、裁断された電極板の幅方向の厚みが異なると、厚みの厚い方のアルミ箔が薄い側より張力がかかって伸ばされ、湾曲現象が発生する。このフープの外周側と巻き芯側との電極板1枚の長さの相違と湾曲現象により、次工程の正極電極板と負極電極板の間にセパレータを介在して巻回する工程にて巻きずれ不良やリードを溶着する際にリード位置がず
れる不良が発生し、不良ロスの増大と巻回工程の稼動率が低下していた。
Further, if the thickness of the cut electrode plate in the width direction is different, the thicker aluminum foil is stretched by tension from the thinner side, and a bending phenomenon occurs. Due to the difference in the length of one electrode plate between the outer peripheral side and the winding core side of this hoop and the bending phenomenon, the winding misalignment failure in the step of winding with a separator between the positive electrode plate and the negative electrode plate in the next step In addition, when the lead is welded, a defect in which the lead position is shifted occurs, and the defect loss increases and the operating rate of the winding process decreases.

本発明は、このような課題を解決して、熱処理工程の生産性の向上及び巻回工程での工程の安定化並びに電池性能の向上させることを目的としている。   An object of the present invention is to solve such problems and improve the productivity of the heat treatment process, stabilize the process in the winding process, and improve the battery performance.

上記課題を解決するため本発明は、アルミ箔集電体の両面に電極合剤を塗布して乾燥した正極用電極板を340℃〜400℃の範囲で60秒間以上300秒間以下、熱処理を行うことを特徴とする。   In order to solve the above-mentioned problems, the present invention performs a heat treatment on a positive electrode plate dried by applying an electrode mixture on both sides of an aluminum foil current collector in a range of 340 ° C. to 400 ° C. for 60 seconds to 300 seconds. It is characterized by that.

また前記熱処理した正極板を所定の厚みにプレスを行った後、長手方向に所定の幅に裁断を行い、さらにフープ状に巻き取った電極板を乾燥炉にて110℃〜200℃の範囲で4時間以上12時間以下で乾燥をすることを特徴とするものである。   In addition, after the heat-treated positive electrode plate is pressed to a predetermined thickness, it is cut into a predetermined width in the longitudinal direction, and the electrode plate wound up in a hoop shape is further heated in a range of 110 ° C. to 200 ° C. in a drying furnace. The drying is performed for 4 hours or more and 12 hours or less.

本発明の様に、アルミ箔集電体の両面に電極合剤を塗布して乾燥した正極用電極板を340℃〜400℃の範囲で60秒間以上300秒間以下、熱処理を行うことにより本熱処理工程にて、電極合剤中の活物質、導電剤、結着剤を除く添加物の残存を0.3%以下にすることができる。   As in the present invention, the heat treatment is performed by heat-treating the electrode plate for a positive electrode, which has been dried by applying an electrode mixture on both sides of an aluminum foil current collector, in a range of 340 ° C. to 400 ° C. for 60 seconds to 300 seconds. In the process, the remaining additive other than the active material, conductive agent, and binder in the electrode mixture can be made 0.3% or less.

その後、所定の厚みにプレスを行い、長手方向に所定の幅に裁断を行い、フープ状に巻き取った電極板を乾燥炉にて110℃〜200℃の範囲で4時間以上12時間以下、乾燥をすることにより、熱処理工程の生産性向上及び巻回工程の安定化と歩留まりの向上が図れる。   Thereafter, pressing to a predetermined thickness, cutting to a predetermined width in the longitudinal direction, and drying the electrode plate wound in a hoop shape in a drying furnace in the range of 110 ° C. to 200 ° C. for 4 hours or more and 12 hours or less is performed. By doing this, the productivity of the heat treatment process can be improved, the winding process can be stabilized, and the yield can be improved.

さらには、電池性能が向上したリチウムイオン二次電池を提供することができる。   Furthermore, a lithium ion secondary battery with improved battery performance can be provided.

本発明の第1の発明であるリチウムイオン二次電池正極用電極板の製造方法は、集電体の両面に活物質、導電剤、結着剤、増粘剤、界面活性剤からなる電極合剤を塗布し、乾燥することにより正極用電極板を作成する塗工乾燥工程と、前記電極板を340℃〜400℃の範囲で60秒間以上300秒間以下の間で熱処理を行う熱処理工程と、前記電極板を所定の厚みまでにプレスを行うプレス工程と、プレスされた電極板を長手方向に所定の幅に裁断を行って、フープ状に巻き取る裁断工程と、フープ状に巻き取った電極板を、乾燥炉にて110℃〜200℃の範囲で4時間以上12時間以下、乾燥をするフープ乾燥工程とを有し、電極板中の、活物質、導電材、結着材を除く残渣が重量比率で0.10%〜0.30%であることを特徴とするものである。
The method for producing a positive electrode plate for a lithium ion secondary battery according to the first aspect of the present invention comprises an electrode assembly comprising an active material, a conductive agent, a binder, a thickener, and a surfactant on both sides of a current collector. A coating drying step of creating a positive electrode plate by applying an agent and drying, a heat treatment step of performing a heat treatment in the range of 340 ° C. to 400 ° C. for 60 seconds to 300 seconds , A pressing step for pressing the electrode plate to a predetermined thickness, a cutting step for cutting the pressed electrode plate into a predetermined width in the longitudinal direction, and winding the electrode plate in a hoop shape; and an electrode wound in a hoop shape And a hoop drying step for drying the plate in a drying oven in the range of 110 ° C. to 200 ° C. for 4 hours or more and 12 hours or less, and the residue in the electrode plate excluding the active material, the conductive material, and the binder Is characterized by being 0.10% to 0.30% by weight It is intended.

このような製造法により製造された正極用電極板では、アルミ箔集電体の両面に電極合剤を塗布して乾燥した電極板を340℃〜400℃の範囲で60秒間以上300秒間以下、熱処理を行うことにより、本熱処理工程にて、電極合剤中の活物質、導電剤、結着剤を除く添加物の残存を0.3%以下にすることができる。また、アルミ箔の軟化の促進も補え、合剤と集電体との密着力も確保できる。   In the positive electrode plate manufactured by such a manufacturing method, the electrode plate coated with the electrode mixture on both surfaces of the aluminum foil current collector and dried is 340 ° C to 400 ° C in the range of 60 seconds to 300 seconds, By performing the heat treatment, it is possible to reduce the remaining amount of additives other than the active material, the conductive agent, and the binder in the electrode mixture to 0.3% or less in the heat treatment step. Moreover, the softening of the aluminum foil can be compensated for, and the adhesion between the mixture and the current collector can be secured.

本発明の第1の発明は、プレスによって圧縮された電極板の厚みが復元を抑制することができ、吸着水分も分解できる。この電極板の復元の抑制により、フープの外周側と巻き芯側の電極板1枚あたりの長さが均一化され、湾曲現象も抑制することが可能となる。ここで、乾燥時間を、12時間を越える時間、例えば20時間以上とすると乾燥工程の生産効率が低下することになる。
In the first invention of the present invention, the thickness of the electrode plate compressed by the press can suppress the restoration, and the adsorbed moisture can also be decomposed. By suppressing the restoration of the electrode plate, the length of the electrode plate on the outer peripheral side and the core side of the hoop is made uniform, and the bending phenomenon can be suppressed. Here, if the drying time exceeds 12 hours, for example, 20 hours or more, the production efficiency of the drying process is lowered.

本発明の第2の発明であるリチウムイオン二次電池は、本発明の製造方法により製造された正極電極板を用いたものであり、巻回工程の工程の安定化と電池性能を向上させることが可能となる。
The second lithium ion secondary battery, the inventor of the present invention has employed the positive electrode plates produced by the production method of the present invention, to improve the stability of the winding process of the step and battery performance Is possible.

以下、本発明の好ましい実施例について図面を参照しつつ詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施例に係る正極電極板の製造過程における工程図であり、同図において、工程順に練合工程1、塗工乾燥工程2、本製造法に係わる熱処理工程3、プレス工程4、裁断工程5、本発明に係わるフープ乾燥工程6を示す。   FIG. 1 is a process diagram in a manufacturing process of a positive electrode plate according to an embodiment of the present invention, in which a kneading process 1, a coating drying process 2, a heat treatment process 3 according to the manufacturing method, and a pressing process are performed in the order of steps. 4 shows a cutting process 5 and a hoop drying process 6 according to the present invention.

次に、上記電池用電極板の実施例の詳細について説明する。   Next, the detail of the Example of the said battery electrode plate is demonstrated.

(実施例1)
正極活物質はコバルト酸リチウムを100重量部に対して、導電剤としてアセチレンブラックを3重量部、結着剤としてFEPを主成分としたディスパージョンを固形分で4重量部とCMCを0.8重量部と界面活性剤0.2重量部加え、水30重量部を溶媒として混練してペースト状とした。この混練したペースト状活物質を、厚さ15μm、幅490mmの帯状の圧延アルミ箔からなる集電用芯材に塗工幅470mm、長手方向に塗工部560mmと未塗工部116mmの配置で連続的に間欠塗布を行い、その後に乾燥して固化させることにより電極合剤部を形成した。次に、塗工した裏面にも、ペースト状活物質を上述と同様の方式で間欠塗布した。
Example 1
The positive electrode active material is 100 parts by weight of lithium cobaltate, 3 parts by weight of acetylene black as a conductive agent, 4 parts by weight of a dispersion mainly composed of FEP as a binder, and 0.8% of CMC. Part by weight and 0.2 part by weight of a surfactant were added, and 30 parts by weight of water was kneaded as a solvent to obtain a paste. This kneaded paste-like active material is disposed on a current collecting core made of a strip-shaped rolled aluminum foil having a thickness of 15 μm and a width of 490 mm, with a coating width of 470 mm, a coating portion of 560 mm in the longitudinal direction, and an uncoated portion of 116 mm. The electrode mixture part was formed by performing intermittent application continuously and then drying and solidifying. Next, the pasty active material was intermittently applied to the coated back surface in the same manner as described above.

この塗工、乾燥済みの電極板を炉長10mの連続熱処理炉において熱処理を行った。熱処理条件としては、炉内の温度を340℃に設定を行い、処理速度を10m/min(炉内滞留時間60秒)にて行った。   This coated and dried electrode plate was subjected to heat treatment in a continuous heat treatment furnace having a furnace length of 10 m. As heat treatment conditions, the furnace temperature was set to 340 ° C., and the treatment speed was 10 m / min (furnace residence time 60 seconds).

熱処理後の電極板をロールプレス機によって所定の厚みになるまで圧縮成型を施して、電極板の厚みを0.147mmとした。圧延は定圧圧延方式で行い、加圧力は線圧1500kg/cmで2回圧延を行った。その後、長手方向に56.5mm幅に8列取りで裁断を行い、1列あたりリールに約700枚の電極板を巻き取った。   The electrode plate after the heat treatment was subjected to compression molding until a predetermined thickness was obtained with a roll press, so that the thickness of the electrode plate was 0.147 mm. The rolling was performed by a constant pressure rolling method, and the pressing force was rolled twice at a linear pressure of 1500 kg / cm. Then, it cut | judged by taking 8 rows by 56.5 mm width in a longitudinal direction, and wound about 700 electrode plates on the reel per row.

その後、バッチ乾燥炉にて裁断して巻き取った電極板フープを110℃で4時間、乾燥して正極電極板を作成した。   Thereafter, the electrode plate hoop cut and wound in a batch drying furnace was dried at 110 ° C. for 4 hours to prepare a positive electrode plate.

なお、乾燥時間4時間未満では正極フープ巻き芯部の表面温度が規定温度に達しなかった。   In addition, when the drying time was less than 4 hours, the surface temperature of the positive electrode hoop core portion did not reach the specified temperature.

(実施例2)
実施例1で用いた塗工、乾燥済みの電極板を実施例1と同様の炉長10mの連続熱処理炉において熱処理を行った。熱処理条件としては、炉内の温度を340℃に設定を行い、処理速度を2m/min(炉内滞留時間300秒)にて行った。
(Example 2)
The coated and dried electrode plate used in Example 1 was heat-treated in a continuous heat treatment furnace having a furnace length of 10 m as in Example 1. As heat treatment conditions, the temperature in the furnace was set to 340 ° C., and the treatment speed was 2 m / min (residence time in the furnace 300 seconds).

なお、2m/min(炉内滞留時間300秒)未満の速度は、熱処理工程の生産性が低下するため実施しなかった。   Note that a speed of less than 2 m / min (residence time in the furnace of 300 seconds) was not carried out because the productivity of the heat treatment process was lowered.

熱処理後に実施例1と同様の寸法でプレス、裁断を行い、1列あたりリールに約700枚の電極板を巻き取った。   After heat treatment, pressing and cutting were performed with the same dimensions as in Example 1, and about 700 electrode plates were wound on a reel per row.

その後、バッチ乾燥炉にて裁断して巻き取った電極板フープを110℃で4時間、乾燥して正極電極板を作成した。   Thereafter, the electrode plate hoop cut and wound in a batch drying furnace was dried at 110 ° C. for 4 hours to prepare a positive electrode plate.

(実施例3)
実施例1で用いた塗工、乾燥済みの電極板を、熱処理条件としては、炉内の温度を400℃に設定を行い、処理速度を10m/min(炉内滞留時間60秒)にて行った以外は実施例1と同様に熱処理した。
(Example 3)
As the heat treatment conditions for the coated and dried electrode plate used in Example 1, the furnace temperature was set to 400 ° C., and the treatment speed was 10 m / min (furnace residence time 60 seconds). A heat treatment was performed in the same manner as in Example 1 except that.

熱処理後の実施例1と同様の寸法でプレス、裁断を行い、1列あたりリールに約700枚の電極板を巻き取った。   Pressing and cutting were performed with the same dimensions as in Example 1 after the heat treatment, and about 700 electrode plates were wound on a reel per row.

その後、バッチ乾燥炉にて裁断して巻き取った電極板フープを110℃で4時間、乾燥して正極電極板を作成した。   Thereafter, the electrode plate hoop cut and wound in a batch drying furnace was dried at 110 ° C. for 4 hours to prepare a positive electrode plate.

(実施例4)
実施例1で用いた塗工、乾燥済みの電極板を、熱処理条件としては、炉内の温度を400℃に設定を行い、処理速度を2m/min(炉内滞留時間300秒)にて行った以外は実施例1と同様に熱処理した。
Example 4
As the heat treatment conditions for the coated and dried electrode plate used in Example 1, the furnace temperature was set to 400 ° C., and the treatment speed was 2 m / min (furnace residence time 300 seconds). A heat treatment was performed in the same manner as in Example 1 except that.

熱処理後の実施例1と同様の寸法でプレス、裁断を行い、1列あたりリールに約700枚の電極板を巻き取った。   Pressing and cutting were performed with the same dimensions as in Example 1 after the heat treatment, and about 700 electrode plates were wound on a reel per row.

その後、バッチ乾燥炉にて裁断して巻き取った電極板フープを110℃で4時間、乾燥して正極電極板を作成した。   Thereafter, the electrode plate hoop cut and wound in a batch drying furnace was dried at 110 ° C. for 4 hours to prepare a positive electrode plate.

(実施例5)
実施例1で用いた塗工、乾燥済みの電極板を実施例3と同様の熱処理条件(炉内温度:400℃、処理速度:10m/min(炉内滞留時間60秒))にて行った以外は実施例1と同様に熱処理した。
(Example 5)
The coated and dried electrode plate used in Example 1 was subjected to the same heat treatment conditions as in Example 3 (furnace temperature: 400 ° C., treatment rate: 10 m / min (furnace residence time 60 seconds)). Except for the above, heat treatment was performed in the same manner as in Example 1.

熱処理後の実施例1と同様の寸法でプレス、裁断を行い、1列あたりリールに約700枚の電極板を巻き取った。   Pressing and cutting were performed with the same dimensions as in Example 1 after the heat treatment, and about 700 electrode plates were wound on a reel per row.

その後、バッチ乾燥炉にて裁断して巻き取った電極板フープを200℃で12時間、乾燥して正極電極板を作成した。   Thereafter, the electrode plate hoop cut and wound in a batch drying furnace was dried at 200 ° C. for 12 hours to prepare a positive electrode plate.

なお乾燥時間が12時間を超過すると乾燥工程の生産効率が大幅に低下するため12時間を限度とした。   If the drying time exceeds 12 hours, the production efficiency of the drying process is greatly reduced, so 12 hours was the limit.

(比較例1)
次に比較例1として、実施例1同様に塗工、乾燥した電極板を、熱処理条件として、炉内の温度を300℃に設定を行い、処理速度を2m/min(炉内滞留時間300秒間)にて行った以外は実施例1と同様に熱処理した。
(Comparative Example 1)
Next, as Comparative Example 1, the electrode plate coated and dried in the same manner as in Example 1 was subjected to heat treatment conditions, the furnace temperature was set to 300 ° C., and the treatment speed was 2 m / min (furnace residence time 300 seconds). The heat treatment was performed in the same manner as in Example 1 except that the above was performed.

熱処理後の実施例1と同様の寸法でプレス、裁断を行い、1列あたりリールに約700枚の電極板を巻き取った。   Pressing and cutting were performed with the same dimensions as in Example 1 after the heat treatment, and about 700 electrode plates were wound on a reel per row.

その後、バッチ乾燥炉にて裁断して巻き取った電極板フープを110℃で4時間、乾燥して正極電極板を作成した。   Thereafter, the electrode plate hoop cut and wound in a batch drying furnace was dried at 110 ° C. for 4 hours to prepare a positive electrode plate.

(比較例2)
次に比較例2は比較例1と同様の条件で、塗工、熱処理、プレス、裁断を行い、リール上に巻き取ったフープをバッチ乾燥炉にて220℃で4時間、乾燥して正極電極板を作成した。
(Comparative Example 2)
Next, in Comparative Example 2, coating, heat treatment, pressing and cutting were performed under the same conditions as in Comparative Example 1, and the hoop wound on the reel was dried in a batch drying furnace at 220 ° C. for 4 hours to form a positive electrode A board was created.

(比較例3)
次に比較例3として、実施例1同様に塗工、乾燥した電極板を熱処理条件として、炉内の温度を420℃に設定を行い、処理速度を10m/min(炉内滞留時間60秒間)にて行った以外は実施例1と同様に熱処理した。
(Comparative Example 3)
Next, as Comparative Example 3, the electrode plate coated and dried in the same manner as in Example 1 was subjected to heat treatment conditions, the furnace temperature was set to 420 ° C., and the treatment speed was 10 m / min (furnace residence time 60 seconds). The heat treatment was performed in the same manner as in Example 1 except that the above was performed.

これをロールプレス機によって0.145mmの厚みになるまで圧縮成型を行ったが、プレス途中にてアルミ箔から塗工した合剤の離脱が多発したため、次工程へ移行できなかった。これは熱処理温を420℃にしたことにより、合剤中に含まれる結着剤(FEP)が分解したため、合剤とアルミ箔との密着強度が低下したよるものである。   This was compression-molded by a roll press machine until the thickness became 0.145 mm. However, since the mixture applied from the aluminum foil frequently occurred during the press, the process could not proceed to the next step. This is because the adhesive strength between the mixture and the aluminum foil was lowered because the binder (FEP) contained in the mixture was decomposed by setting the heat treatment temperature to 420 ° C.

(比較例4)
次に比較例4として、実施例1と同様に塗工、乾燥した電極板を熱処理条件として、炉内の温度を400℃に設定を行い、処理速度を12m/min(炉内滞留時間50秒間)にて行った以外は実施例1と同様に熱処理した。
(Comparative Example 4)
Next, as Comparative Example 4, the temperature in the furnace was set to 400 ° C. using the electrode plate coated and dried as in Example 1 as heat treatment conditions, and the treatment speed was 12 m / min (the residence time in the furnace was 50 seconds). The heat treatment was performed in the same manner as in Example 1 except that the above was performed.

熱処理後の実施例1と同様の寸法でプレス、裁断を行い、1列あたりリールに約700枚の電極板を巻き取った。   Pressing and cutting were performed with the same dimensions as in Example 1 after the heat treatment, and about 700 electrode plates were wound on a reel per row.

その後、バッチ乾燥炉にて裁断して巻き取った電極板フープを110℃で4時間、乾燥して正極電極板を作成した。   Thereafter, the electrode plate hoop cut and wound in a batch drying furnace was dried at 110 ° C. for 4 hours to prepare a positive electrode plate.

なお、実施例1〜5及び比較例1〜4の熱処理温度、滞留時間とフープ乾燥温度、時間の条件を表1に、また、上述の実施例1〜4と比較例1、4において熱処理後の電極合剤中の残渣量を熱分析法にて昇温して350℃に到達時の重量減少率にて測定を行った結果を表2に示す。
The heat treatment temperature, residence time and hoop drying temperature, and time conditions of Examples 1 to 5 and Comparative Examples 1 to 4 are shown in Table 1, and after the heat treatment in Examples 1 to 4 and Comparative Examples 1 and 4 described above. results residue content in the electrode mixture of the measurement was carried out weight loss upon reaching the temperature was elevated 350 ° C. by a heat analysis method shown in Table 2.

Figure 0005018055
Figure 0005018055

Figure 0005018055
Figure 0005018055

測定結果より実施例1の減少率は0.3%、実施例2は0.2%、実施例3は0.2%、実施例4は0.1%であった。それらに対し比較例1は0.6%、比較例4は0.4%で実施例に対して重量減少率が大きいことから活物質、導電剤、結着剤を除く、残渣が大きい結果になった。 From the measurement results, the reduction rate of Example 1 was 0.3%, Example 2 was 0.2%, Example 3 was 0.2%, and Example 4 was 0.1%. On the other hand, Comparative Example 1 is 0.6%, Comparative Example 4 is 0.4%, and the weight reduction rate is large compared to the Examples. Therefore, the active material, the conductive agent and the binder are excluded, and the residue is large. became.

次に実施例1、実施例5、比較例2についてのフープ乾燥後のフープ外周部から巻き芯部までの約700枚の電極板各1枚あたりの長さを評価した。その結果を表3に示す。   Next, the length of each of about 700 electrode plates from the outer periphery of the hoop after the hoop drying to the winding core for each of Example 1, Example 5, and Comparative Example 2 was evaluated. The results are shown in Table 3.

Figure 0005018055
Figure 0005018055

試験結果からフープの最外周部と最内周部の電極板1枚あたりの長さの差が比較例2は最大値と最小値の差(R)5.5mm、偏差2.4mmに対して、実施例1はR1.0mm、偏差0.3mm、実施例5はR2.5mm、偏差0.7mmとそれぞれフープ内の電極板長さバラツキが大幅に抑制された。   From the test results, the difference in length per electrode plate between the outermost peripheral portion and the innermost peripheral portion of the hoop is that the difference between the maximum value and the minimum value (R) is 5.5 mm and the deviation is 2.4 mm. In Example 1, R1.0 mm and deviation 0.3 mm, and in Example 5 R2.5 mm and deviation 0.7 mm, respectively, the variations in electrode plate length in the hoop were significantly suppressed.

次にフープ最外周部から4枚目、5枚目の電極板連続2枚分の長さの湾曲量を測定したところ、比較例2は湾曲量9.8mmに対して、実施例1、5の湾曲量はそれぞれ0.5mmと2.0mmでありフープ外周部の湾曲量が抑制された。これは乾燥温度を220℃から110℃〜200℃に下げたことにより、乾燥後の電極板厚みの復元が抑制でき、フープ外周部にかかる芯材の引張り力を抑制したためである。また巻回工程の歩留まりも実施例1,5はそれぞれ99.8%、99.4%であり比較例2の歩留まり97.8%より大幅に向上した。   Next, when the amount of bending of the length of the second and fourth electrode plates from the outermost peripheral portion of the hoop was measured, the comparative example 2 had a bending amount of 9.8 mm. The bend amounts were 0.5 mm and 2.0 mm, respectively, and the bend amount of the outer periphery of the hoop was suppressed. This is because by reducing the drying temperature from 220 ° C. to 110 ° C. to 200 ° C., the restoration of the electrode plate thickness after drying can be suppressed, and the tensile force of the core material applied to the outer periphery of the hoop is suppressed. In addition, the yield of the winding process was 99.8% and 99.4% in Examples 1 and 5, respectively, which was significantly improved from the yield of 97.8% in Comparative Example 2.

次に、電池性能を確認するために、実施例1〜5及び比較例1、2、4の正極電極板をそれぞれ同一条件で作成した負極電極板とセパレータとを巻回して、図2に示したリチウムイオン二次電池を作成し、電池特性の評価を行った。   Next, in order to confirm the battery performance, the positive electrode plates of Examples 1 to 5 and Comparative Examples 1, 2, and 4 prepared under the same conditions were wound with the separator and the separator shown in FIG. A lithium ion secondary battery was prepared and the battery characteristics were evaluated.

始めに本実施例で作成した、リチウムイオン二次電池の構造について説明する。   First, the structure of the lithium ion secondary battery created in this example will be described.

図2に本発明の一実施の形態に係わる円筒型リチウムイオン二次電池の縦断面図を例示する。   FIG. 2 illustrates a longitudinal sectional view of a cylindrical lithium ion secondary battery according to an embodiment of the present invention.

この電池の本発明に係わる正極側電極板12の端部の電極合剤部が形成されていないリード取付部に、アルミニウムからなる正極リード17が溶接により取り付けられている。一方、負極側電極板13は、例えば帯状の銅箔からなる集電用芯材の両面に、ペースト状活物質を正極電極板同様に間欠塗布して乾燥したのちに所定の厚みに圧延することによって電極合剤部を設け、これを所定長さのシート状に裁断することによって製作されている。   A positive electrode lead 17 made of aluminum is attached by welding to a lead attachment portion where the electrode mixture portion at the end of the positive electrode plate 12 according to the present invention is not formed. On the other hand, the negative electrode side electrode plate 13 is rolled to a predetermined thickness after intermittently applying and drying a paste-like active material on both sides of a current collecting core made of, for example, a strip-shaped copper foil, like the positive electrode plate. Is provided by providing an electrode mixture portion and cutting it into a sheet having a predetermined length.

耐有機電解液性のステンレス鋼板を加工して形成された電池ケース19内には、上述の
正極側電極板12および負極側電極板13をこれらの間に例えばポリエチレン製のセパレータ14を介在して積層した状態で渦巻き状に巻回してなる電極群11が収容され、上記正極リード17の他端部が封口板20にスポット溶接によって接続されているとともに、負極リード18の一端部がスポット溶接により電池ケース19の底部に接続されている。なお、電極群11の上下部にはそれぞれ絶縁リング21、22が設けられている。さらに電池ケース19内には、炭酸エチレンと炭酸ジエキルの等容積混合溶媒に六フッ化リン酸リチウム1モル/lの割合で溶解してなる非水電解液が注液され、続いて、安全弁23を設けた封口板20が、絶縁パッキング24を介在して電池ケース19の開口部にかしめ込まれたのちに、電池ケース19の開口部の周縁部を内方にかしめ加工することにより、開口部が密閉される。
In a battery case 19 formed by processing a stainless steel plate resistant to organic electrolyte, the above-described positive electrode plate 12 and negative electrode plate 13 are interposed with a separator 14 made of, for example, polyethylene between them. The electrode group 11 formed by spirally winding in a stacked state is accommodated, the other end of the positive electrode lead 17 is connected to the sealing plate 20 by spot welding, and one end of the negative electrode lead 18 is connected by spot welding. It is connected to the bottom of the battery case 19. Insulating rings 21 and 22 are provided above and below the electrode group 11, respectively. Further, in the battery case 19, a non-aqueous electrolyte solution dissolved in an equal volume mixed solvent of ethylene carbonate and dialkyl carbonate at a ratio of 1 mol / l lithium hexafluorophosphate is injected, and then the safety valve 23. After the sealing plate 20 provided with an insulating packing 24 is caulked into the opening of the battery case 19, the peripheral portion of the opening of the battery case 19 is caulked inward, thereby opening the opening. Is sealed.

次いで、実施例1〜5と比較例1、2、4においての電池性能について評価を行った。電池性能評価として、1430mAにて4.2Vまで充電した後、0℃の雰囲気で18Wの定ワット放電を評価した。結果を図3に示す。   Subsequently, the battery performance in Examples 1 to 5 and Comparative Examples 1, 2, and 4 was evaluated. As battery performance evaluation, after charging to 4.2 V at 1430 mA, 18 W constant watt discharge was evaluated in an atmosphere of 0 ° C. The results are shown in FIG.

図3において、101〜105のそれぞれが実施例1〜5のそれぞれの放電カーブであり、111、112および114のそれぞれが比較例1、比較例2および比較例4の放電カーブである。   In FIG. 3, 101 to 105 are discharge curves of Examples 1 to 5, and 111, 112, and 114 are discharge curves of Comparative Example 1, Comparative Example 2, and Comparative Example 4, respectively.

図3から明らかなように、実施例1〜5の放電カーブ101〜105の方が比較例1、4の放電カーブ114、115に比較して、初期の電圧ドロップが小さく、電池性能が良化している。一方、比較例1は初期の電圧ドロップが大きく、明らかに電池性能が劣化している。   As is clear from FIG. 3, the discharge curves 101 to 105 of Examples 1 to 5 are smaller in initial voltage drop than the discharge curves 114 and 115 of Comparative Examples 1 and 4, and the battery performance is improved. ing. On the other hand, in Comparative Example 1, the initial voltage drop is large, and the battery performance is clearly degraded.

比較例1は熱処理条件として、炉内の温度を300℃で処理速度を2m/min(炉内滞留時間600秒間)、最終電極板フープ乾燥を110℃で4時間にて乾燥を行っているため、熱処理後の添加物の残存率が0.6%あり、この添加物の残存が最終フープ乾燥工程にて分解が促進されないことが影響して電池の性能特性が劣化に至ったものである。   In Comparative Example 1, as the heat treatment conditions, the temperature in the furnace is 300 ° C., the processing speed is 2 m / min (residence time in the furnace 600 seconds), and the final electrode plate hoop drying is performed at 110 ° C. for 4 hours. The residual ratio of the additive after the heat treatment was 0.6%, and the performance characteristics of the battery deteriorated due to the fact that the residual additive did not promote decomposition in the final hoop drying step.

比較例4もそれぞれは熱処理条件として、炉内の温度を400℃で処理速度を12m/min(炉内滞留時間50秒間)を行い、最終電極板フープ乾燥を110℃で4時間にて乾燥を行っているが、熱処理時間が短いために熱処理後の残存率が0.4%であり、比較例1と同様、添加物の残存が最終フープ乾燥工程にて分解が促進されず、電池の性能特性が劣化に至ったものである。   Each of Comparative Examples 4 was also subjected to heat treatment conditions, the furnace temperature was 400 ° C., the treatment speed was 12 m / min (furnace residence time 50 seconds), and the final electrode plate hoop drying was performed at 110 ° C. for 4 hours. However, since the heat treatment time is short, the residual rate after heat treatment is 0.4%, and as in Comparative Example 1, the remaining of the additive is not accelerated in the final hoop drying step, and the battery performance The characteristics have been deteriorated.

本実施例1〜5では熱処理工程での熱処理条件の最適化により、電極合剤中の活物質、導電剤、結着剤を除く添加物の残存量を少量(0.3%以下)に分解できるため、最終のフープ乾燥温度を下げても、電池性能の確保ができ、かつ電極板の寸法バラツキが抑制でき、巻回工程の安定化及び歩留まり向上と熱処理工程の効率化が図れる。   In Examples 1 to 5, the remaining amount of the additive other than the active material, conductive agent, and binder in the electrode mixture is decomposed into a small amount (0.3% or less) by optimizing the heat treatment conditions in the heat treatment step. Therefore, even if the final hoop drying temperature is lowered, the battery performance can be ensured, the dimensional variation of the electrode plate can be suppressed, the winding process can be stabilized, the yield can be improved, and the heat treatment process can be made more efficient.

本発明に係るリチウムイオン二次電池用正極電極板を用いたリチウムイオン二次電池は、高容量で高信頼性を求められるポータブル電気機器用電源及び民生用電子機器の駆動用電源として有用である。   The lithium ion secondary battery using the positive electrode plate for a lithium ion secondary battery according to the present invention is useful as a power source for portable electric devices and a driving power source for consumer electronic devices that require high capacity and high reliability. .

本発明の実施例に係る正極電極板の製造過程における工程図The process figure in the manufacture process of the positive electrode plate which concerns on the Example of this invention. 本発明の実施例に係る円筒形リチウムイオン二次電池の縦断面図1 is a longitudinal sectional view of a cylindrical lithium ion secondary battery according to an embodiment of the present invention. 実施例での放電容量と電圧の関係を示す図The figure which shows the relationship between the discharge capacity and voltage in an Example

符号の説明Explanation of symbols

1 練合工程
2 塗工乾燥工程
3 熱処理工程
4 プレス工程
5 裁断工程
6 フープ乾燥工程
11 電極群
12 正極電極板
13 負極電極板
14 セパレータ
17 正極リード
18 負極リード
19 電池ケース
20 封口板
21 絶縁板
22 絶縁板
23 安全弁
24 絶縁ガスケット
DESCRIPTION OF SYMBOLS 1 Kneading process 2 Coating drying process 3 Heat treatment process 4 Pressing process 5 Cutting process 6 Hoop drying process 11 Electrode group
12 Positive electrode plate
13 Negative electrode plate
14 Separator
17 Positive lead
18 Negative lead 19 Battery case
20 Sealing plate
21 Insulating plate 22 Insulating plate 23 Safety valve
24 Insulation gasket

Claims (2)

集電体の両面に活物質、導電剤、結着剤、増粘剤、界面活性剤からなる電極合剤を塗布し、乾燥することにより正極用電極板を作成する塗工乾燥工程と、
前記電極板を340℃〜400℃の範囲で60秒間以上300秒間以下の間で熱処理を行う熱処理工程と、
前記電極板を所定の厚みまでにプレスを行うプレス工程と、
プレスされた電極板を長手方向に所定の幅に裁断を行って、フープ状に巻き取る裁断工程と、
フープ状に巻き取った電極板を、乾燥炉にて110℃〜200℃の範囲で4時間以上12時間以下、乾燥をするフープ乾燥工程とを有し、
電極板中の、活物質、導電材、結着材を除く残渣が重量比率で0.10%〜0.30%である、リチウムイオン二次電池正極用電極板の製造方法。
A coating and drying step in which an electrode mixture composed of an active material, a conductive agent, a binder, a thickener, and a surfactant is applied to both sides of the current collector, and a positive electrode plate is created by drying;
A heat treatment step of heat-treating the electrode plate in a range of 340 ° C. to 400 ° C. for 60 seconds to 300 seconds ;
A pressing step of pressing the electrode plate to a predetermined thickness;
Cutting the pressed electrode plate to a predetermined width in the longitudinal direction, and winding it in a hoop shape,
A hoop drying step of drying the electrode plate wound in a hoop shape in a drying furnace in a range of 110 ° C. to 200 ° C. for 4 hours to 12 hours,
The manufacturing method of the electrode plate for lithium ion secondary battery positive electrodes in which the residue except an active material, a electrically conductive material, and a binder in an electrode plate is 0.10%-0.30% by weight ratio .
請求項1に記載した製造方法により製造された正極電極板を用いたリチウムイオン二次電池。
A lithium ion secondary battery using a positive electrode plate manufactured by the manufacturing method according to claim 1 .
JP2006335411A 2006-12-13 2006-12-13 Method for producing positive electrode plate of lithium ion secondary battery and lithium ion secondary battery Expired - Fee Related JP5018055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335411A JP5018055B2 (en) 2006-12-13 2006-12-13 Method for producing positive electrode plate of lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335411A JP5018055B2 (en) 2006-12-13 2006-12-13 Method for producing positive electrode plate of lithium ion secondary battery and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2008147114A JP2008147114A (en) 2008-06-26
JP5018055B2 true JP5018055B2 (en) 2012-09-05

Family

ID=39607036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335411A Expired - Fee Related JP5018055B2 (en) 2006-12-13 2006-12-13 Method for producing positive electrode plate of lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5018055B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107851775A (en) * 2015-07-28 2018-03-27 Nec能源元器件株式会社 Electrode piece making method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915055B2 (en) * 2005-04-18 2012-04-11 パナソニック株式会社 Method for producing positive electrode plate for lithium secondary battery, and lithium secondary battery using positive electrode plate by this production method

Also Published As

Publication number Publication date
JP2008147114A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP4752574B2 (en) Negative electrode and secondary battery
EP2197069A1 (en) Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
JP5257700B2 (en) Lithium secondary battery
WO2011010421A1 (en) Rectangular nonaqueous electrolyte secondary battery and method for manufacturing same
KR101626190B1 (en) Activation method of secondary battery
US20170162912A1 (en) Lithium-ion secondary battery and manufacturing method thereof
JP6021508B2 (en) Electrode manufacturing method and battery manufacturing method
WO2015045719A1 (en) Positive electrode for stacked lithium ion secondary batteries
JP2016103338A (en) Manufacturing method for cathode for lithium ion secondary battery
CN102511105A (en) Flat nonaqueous secondary battery
JP2012174434A (en) Method for manufacturing battery
WO2011048769A1 (en) Flat secondary battery electrode group, method for manufacturing same, and flat secondary battery with flat secondary battery electrode group
JP3143951B2 (en) Non-aqueous electrolyte secondary battery
KR102265741B1 (en) Manufacturing method for secondary battery and secondary battery manufactured by the same
JP2001176491A (en) Nonaqueous electrolyte secondary battery
JP5296971B2 (en) Method for producing negative electrode for secondary battery
JP5838073B2 (en) Cylindrical wound battery
JP5018055B2 (en) Method for producing positive electrode plate of lithium ion secondary battery and lithium ion secondary battery
JP2009158142A (en) Charging method of nonaqueous secondary battery
JP2014192015A (en) Method for inspecting lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2004127799A (en) Positive electrode plate for battery, its manufacturing method, and secondary battery
JP2013089441A (en) Electrode group for battery and battery using the same
JP2001176490A (en) Nonaqueous electrolyte secondary battery
JPH07105970A (en) Non-aqueous secondary battery and its manufacture
JP2010062049A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090731

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees