JP5017764B2 - Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same - Google Patents

Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP5017764B2
JP5017764B2 JP2004033623A JP2004033623A JP5017764B2 JP 5017764 B2 JP5017764 B2 JP 5017764B2 JP 2004033623 A JP2004033623 A JP 2004033623A JP 2004033623 A JP2004033623 A JP 2004033623A JP 5017764 B2 JP5017764 B2 JP 5017764B2
Authority
JP
Japan
Prior art keywords
separator
secondary battery
inorganic filler
weight
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004033623A
Other languages
Japanese (ja)
Other versions
JP2005071979A (en
Inventor
聡 中島
康 宇佐見
一任 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Plastics Inc filed Critical Mitsubishi Chemical Corp
Priority to JP2004033623A priority Critical patent/JP5017764B2/en
Publication of JP2005071979A publication Critical patent/JP2005071979A/en
Application granted granted Critical
Publication of JP5017764B2 publication Critical patent/JP5017764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は、非水系電解液二次電池用セパレータ及びそれを用いた非水系電解液二次電池に関するものである。   The present invention relates to a separator for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.

詳しくは、本発明は、無機フィラーを含有するセパレータ中に含有される特定の不純物を減らすことにより、これらの不純物が原因で生じる微少短絡の形成や集電体の腐食などを抑制し、サイクル特性等の電池性能に優れた二次電池を実現する非水系電解液二次電池用セパレータと、このセパレータを用いた非水系電解液二次電池に関するものである。   Specifically, the present invention reduces the number of specific impurities contained in the separator containing the inorganic filler, thereby suppressing the formation of micro short circuits and corrosion of the current collector caused by these impurities, and the cycle characteristics. The present invention relates to a separator for a non-aqueous electrolyte secondary battery that realizes a secondary battery with excellent battery performance, and a non-aqueous electrolyte secondary battery using this separator.

電気製品の軽量化、小型化に伴ない高いエネルギー密度を持ち且つ軽量な非水電解液二次電池であるリチウム二次電池が広い分野で使用されている。リチウム二次電池は、コバルト酸リチウムに代表されるリチウム化合物などの正極活物質を含有する活物質層を集電体上に形成させた正極と、黒鉛などに代表されるリチウムの吸蔵・放出が可能な炭素材料などの負極活物質を含有する活物質層を集電体上に形成させた負極と、LiPF6等のリチウム塩等の電解質を通常非プロトン性の非水系溶媒に溶解した非水電解液と、高分子多孔質膜からなるセパレータとから主として構成される。 Lithium secondary batteries, which are non-aqueous electrolyte secondary batteries having high energy density and light weight with the reduction in weight and size of electrical products, are used in a wide range of fields. A lithium secondary battery has a positive electrode in which an active material layer containing a positive electrode active material such as a lithium compound typified by lithium cobaltate is formed on a current collector, and occlusion / release of lithium typified by graphite. A non-aqueous solution in which an active material layer containing a negative electrode active material such as a carbon material is formed on a current collector and an electrolyte such as a lithium salt such as LiPF 6 dissolved in a normal aprotic non-aqueous solvent It is mainly composed of an electrolytic solution and a separator made of a polymer porous membrane.

リチウム二次電池で使用されるセパレータには、両極間のイオン伝導を妨げないこと、電解液を保持できること、電解液に対して耐性を有すること、などの要件を満たすことが求められ、主としてポリエチレンやポリプロピレンからなる高分子多孔質膜が用いられている。   Separators used in lithium secondary batteries are required to satisfy requirements such as not impeding ion conduction between both electrodes, being able to hold an electrolytic solution, and having resistance to an electrolytic solution. A porous polymer membrane made of polypropylene or polypropylene is used.

従来、高分子多孔質膜を製造する方法としては、例えば以下の手法が公知技術として知られている。
(1) 高分子材料に後工程で容易に抽出除去可能な可塑剤を加えて成形を行い、その後可塑剤を適当な溶媒で除去して多孔化する抽出法(特開平7−029563号公報)。
(2) 結晶性高分子材料を成形した後、構造的に弱い非晶部分を選択的に延伸して微細孔を形成する延伸法(特開平7−304110号公報)。
(3) 高分子材料に無機フィラーを加えて成形を行い、その後の延伸操作により高分子材料と無機フィラーとの界面を剥離させて微細孔を形成する界面剥離法(特開平7−149937号公報)。
Conventionally, as a method for producing a polymer porous membrane, for example, the following methods are known as known techniques.
(1) An extraction method in which a plasticizer that can be easily extracted and removed in a subsequent process is added to a polymer material, and then molded, and then the plasticizer is removed with a suitable solvent to make it porous (Japanese Patent Laid-Open No. 7-029563) .
(2) A stretching method in which after forming a crystalline polymer material, a structurally weak amorphous portion is selectively stretched to form micropores (Japanese Patent Laid-Open No. 7-304110).
(3) An interfacial exfoliation method in which an inorganic filler is added to a polymer material, molding is performed, and the interface between the polymer material and the inorganic filler is exfoliated by a subsequent stretching operation to form micropores (Japanese Patent Laid-Open No. 7-149937) ).

高分子多孔質膜を得る方法として上述の(1)の抽出法は、大量の廃液を処理する必要があり、環境・経済性の両面において問題がある。また抽出工程で発生する膜の収縮のために均等な膜を得ることが難しく、歩留まりなど生産性においても問題がある。(2)の延伸法は、延伸前の結晶相・非晶相の構造制御のために、長時間の熱処理が必要であり、生産性の面で問題がある。   As a method for obtaining a polymer porous membrane, the extraction method (1) described above requires treatment of a large amount of waste liquid, and has problems in both environmental and economic aspects. Further, it is difficult to obtain a uniform film due to the contraction of the film generated in the extraction process, and there is a problem in productivity such as yield. The stretching method (2) requires a long-time heat treatment for controlling the structure of the crystalline phase and the amorphous phase before stretching, which is problematic in terms of productivity.

これに対して、(3)の界面剥離法は、廃液の発生などはなく、環境・経済性の両面において優れた方法である。また、高分子材料と無機フィラーとの界面は延伸操作により容易に剥離することができるため、熱処理などの前処理を必要とせずに高分子多孔質膜を得ることができ、生産性の面でも優れた手法である。
特開平7−029563号公報 特開平7−304110号公報 特開平7−149937号公報
On the other hand, the interfacial peeling method (3) has no waste liquid and is excellent in both environmental and economic aspects. In addition, since the interface between the polymer material and the inorganic filler can be easily peeled off by a stretching operation, a polymer porous membrane can be obtained without the need for pretreatment such as heat treatment. It is an excellent method.
JP 7-029563 A JP-A-7-304110 JP-A-7-149937

しかしながら、(3)の界面剥離法によって得られる高分子多孔質膜を二次電池のセパレータとして適用した場合、電池性能、特に高温でのサイクル特性の低下を引き起こすことが多く、このため、界面剥離法による従来の高分子多孔質膜を二次電池のセパレータとして実用化することが難しかった。   However, when the polymer porous membrane obtained by the interfacial exfoliation method of (3) is applied as a separator for a secondary battery, it often causes a decrease in battery performance, particularly cycle characteristics at high temperatures. It has been difficult to put a conventional polymer porous membrane by the method into practical use as a separator for a secondary battery.

従って、本発明は、環境・経済性及び生産性に優れた界面剥離法によって得られた高分子多孔質膜で構成されたセパレータを非水系電解液二次電池に適用した場合であっても、サイクル特性等の電池性能に優れた非水系電解液二次電池を実現することを目的とする。   Therefore, the present invention is a case where a separator composed of a porous polymer membrane obtained by an interface peeling method excellent in environment, economy, and productivity is applied to a non-aqueous electrolyte secondary battery, An object is to realize a non-aqueous electrolyte secondary battery excellent in battery performance such as cycle characteristics.

本発明(請求項1)の非水系電解液二次電池用セパレータは、無機フィラーを含有する高分子多孔質膜で構成された非水系電解液二次電池用セパレータであって、該高分子多孔質膜が、熱可塑性樹脂膜100重量部に対して無機フィラーを40〜300重量部含有する熱可塑性樹脂膜であり、セパレータ中に含有されるハロゲン元素が10ppm以下で且つ、鉄元素が100ppm以下であることを特徴とする。 The separator for a non-aqueous electrolyte secondary battery according to the present invention (invention 1) is a separator for a non-aqueous electrolyte secondary battery composed of a polymer porous membrane containing an inorganic filler, and the polymer porous The material film is a thermoplastic resin film containing 40 to 300 parts by weight of an inorganic filler with respect to 100 parts by weight of the thermoplastic resin film, the halogen element contained in the separator is 10 ppm or less, and the iron element is 100 ppm or less. It is characterized by being.

本発明(請求項2)の非水系電解液二次電池用セパレータは、無機フィラーを含有する高分子多孔質膜で構成された非水系電解液二次電池用セパレータであって、該高分子多孔質膜が、熱可塑性樹脂膜100重量部に対して無機フィラーを40〜300重量部含有する熱可塑性樹脂膜であり、セパレータ中に含有される塩素元素が10ppm以下で且つ、鉄元素が100ppm以下であることを特徴とする。 The separator for a non-aqueous electrolyte secondary battery of the present invention (Claim 2) is a separator for a non-aqueous electrolyte secondary battery composed of a porous polymer membrane containing an inorganic filler, and the polymer porous The material film is a thermoplastic resin film containing 40 to 300 parts by weight of an inorganic filler with respect to 100 parts by weight of the thermoplastic resin film, the chlorine element contained in the separator is 10 ppm or less, and the iron element is 100 ppm or less. It is characterized by being.

本発明(請求項)の非水系電解液二次電池は、リチウムイオンを吸蔵・放出可能な正極、リチウムイオンを吸蔵・放出可能な負極、電解質を非水溶媒中に含有する電解液、及びセパレータを有する非水系電解液二次電池において、セパレータとして、このような本発明のセパレータを用いたことを特徴とする。 The non-aqueous electrolyte secondary battery of the present invention (Claim 6 ) includes a positive electrode capable of inserting and extracting lithium ions, a negative electrode capable of inserting and extracting lithium ions, an electrolytic solution containing an electrolyte in a non-aqueous solvent, and In the non-aqueous electrolyte secondary battery having a separator, the separator according to the present invention is used as the separator.

本発明者等は、界面剥離法によって得られる高分子多孔質膜では、無機フィラーがそのままフィルム中に残ることから、主に無機フィラー中に同伴されてフィルム中に混入する不純物の影響に着目して鋭意検討した結果、セパレータに含まれる特定の不純物を所定量以下に抑えることにより、電池性能の低下、特に高温でのサイクル特性の低下を抑制できることを見出し、本発明に至った。   In the porous polymer membrane obtained by the interfacial exfoliation method, the present inventors pay attention to the influence of impurities that are mainly entrained in the inorganic filler and mixed in the film because the inorganic filler remains in the film as it is. As a result of extensive studies, the inventors have found that by suppressing the specific impurities contained in the separator to a predetermined amount or less, it is possible to suppress a decrease in battery performance, in particular, a decrease in cycle characteristics at high temperatures, and the present invention has been achieved.

即ち、後述する比較例2に示すように、従来の界面剥離法で用いられる無機フィラーとして工業的に製造されているものの多くが、自然採石を原料として調製されることから、ハロゲン元素、鉄元素といった不純物を含み、この結果、従来の界面剥離法で製造された高分子多孔質膜は不純物としてハロゲン元素や鉄元素を含むものとなる。本発明者らは、このような、主に無機フィラーに同伴されて不可避的に持ち込まれていたセパレータ中の不純物元素に着目し、これらがセパレータに含有されることによって引き起こされる影響を検討し、不純物のうち、特にハロゲン元素と鉄元素が電池性能に悪影響を及ぼすことを見出した。   That is, as shown in Comparative Example 2 to be described later, since many of the industrially manufactured inorganic fillers used in the conventional interfacial peeling method are prepared using natural quarrying as a raw material, halogen elements, iron elements As a result, the polymer porous film manufactured by the conventional interface peeling method contains a halogen element or an iron element as impurities. The present inventors pay attention to the impurity elements in the separator that have been inevitably brought along with the inorganic filler, and consider the effects caused by the inclusion of these in the separator. Of the impurities, it has been found that particularly halogen elements and iron elements adversely affect battery performance.

セパレータ中に含有されるハロゲン元素と鉄元素が電池性能の低下をもたらすメカニズムの詳細は明らかではないが、まず、鉄元素については、セパレータから電解液中にFeが溶出すると、これが負極表面で析出して微少な短絡が形成される結果、充放電効率の低下やサイクル特性劣化が起こるものと考えられる。また、ハロゲン元素については、セパレータから電解液中にハロゲン元素が溶出すると、電池の外缶や、集電体の腐食が促進され、これにより電池性能の低下をもたらすことが考えられる。   The details of the mechanism by which the halogen element and iron element contained in the separator cause a decrease in battery performance are not clear, but for iron element, first, when Fe elutes from the separator into the electrolyte, it is deposited on the negative electrode surface. As a result, it is considered that a small short circuit is formed, resulting in a decrease in charge / discharge efficiency and deterioration in cycle characteristics. As for the halogen element, if the halogen element is eluted from the separator into the electrolytic solution, corrosion of the outer can of the battery or the current collector is promoted, which may lead to a decrease in battery performance.

なお、セパレータを構成する高分子多孔質膜に含有されるハロゲン元素及び鉄元素は、主に無機フィラーに含有されて不可避的に持ち込まれるものが多く、従って、本発明のセパレータは、界面剥離法により製造された無機フィラーを含有する高分子多孔質膜より構成されるセパレータに対して好適に適用されるが、本発明は、上述の如く、セパレータから電解液中に溶出する不純物に起因する電池性能の低下を防止するものであり、従って、界面剥離法により製造された高分子多孔質膜よりなるセパレータに限らず、他の方法で製造された高分子多孔質膜よりなるセパレータにも有効であることは言うまでもない。   The halogen element and the iron element contained in the polymer porous membrane constituting the separator are mostly contained in the inorganic filler and are inevitably brought in. Therefore, the separator of the present invention is an interface peeling method. The present invention is preferably applied to a separator composed of a porous polymer membrane containing an inorganic filler manufactured by the method described above, but the present invention is a battery that is caused by impurities eluted from the separator into the electrolyte as described above. Therefore, it is effective not only for separators made of polymer porous membranes manufactured by the interfacial peeling method but also for separators made of polymer porous membranes manufactured by other methods. Needless to say.

後述の実施例及び比較例の結果からも明らかなように、本発明によれば、無機フィラーを含有する高分子多孔質膜で構成された、ハロゲン元素と鉄元素含有量が少ない非水系電解液二次電池用セパレータにより、電池性能、特に高温でのサイクル特性に優れ、性能の安定した非水系電解液二次電池が提供される。   As is apparent from the results of Examples and Comparative Examples described later, according to the present invention, the non-aqueous electrolyte solution is composed of a porous polymer membrane containing an inorganic filler and has a low content of halogen elements and iron elements. The separator for a secondary battery provides a non-aqueous electrolyte secondary battery that is excellent in battery performance, in particular, cycle characteristics at high temperatures, and has stable performance.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[本発明のセパレータの不純物含有量]
本発明の非水系電解液二次電池用セパレータは、無機フィラーを含有する高分子多孔質膜で構成されたセパレータであって、セパレータ中に含有されるハロゲン元素或いは塩素元素が10ppm以下で且つ、鉄元素が100ppm以下であることを特徴とする。
[Impurity content of separator of the present invention]
The separator for a non-aqueous electrolyte secondary battery of the present invention is a separator composed of a polymer porous membrane containing an inorganic filler, and the halogen element or chlorine element contained in the separator is 10 ppm or less, and The iron element is 100 ppm or less.

このセパレータ中のハロゲン元素及び鉄元素の含有濃度は次のような方法で定量することができ、後述の実施例及び比較例では、下記(i)、(ii)の方法で、セパレータを構成する高分子多孔質膜中のハロゲン元素と鉄元素を定量した。   The content of halogen element and iron element in the separator can be quantified by the following method, and in the examples and comparative examples described later, the separator is configured by the following methods (i) and (ii). Halogen and iron elements in the polymer porous membrane were quantified.

(i) セパレータ中のハロゲン元素の定量
試料(セパレータを構成する高分子多孔質膜)2gに純水25mlを添加して15分間超音波抽出する。超音波抽出には、例えば、シャープ(株)製超音波洗浄機「UT-104 SILENT SONIC」(出力は中程度)を用いることができる。その後、抽出液を濾過し、濾液を測定溶液としてイオンクロマトグラフィーにてハロゲン元素を定量する。
(i) Determination of halogen element in separator 25 ml of pure water is added to 2 g of a sample (polymer porous membrane constituting the separator) and subjected to ultrasonic extraction for 15 minutes. For the ultrasonic extraction, for example, an ultrasonic cleaner “UT-104 SILENT SONIC” manufactured by Sharp Corporation (medium output) can be used. Thereafter, the extract is filtered, and the halogen element is quantified by ion chromatography using the filtrate as a measurement solution.

(ii) セパレータ中の鉄元素の定量
試料(セパレータを構成する高分子多孔質膜)5gに三菱化学(株)製36%EL用塩酸10mlと純水20mlを添加して30分間煮沸抽出を行う。その後、抽出液を濾過し、濾液を測定溶液としてICP発光分析装置にてFeを定量する。
(ii) Determination of iron element in the separator 10 ml of 36% EL hydrochloric acid manufactured by Mitsubishi Chemical Corporation and 20 ml of pure water are added to 5 g of the sample (polymer porous membrane constituting the separator), and boiling extraction is performed for 30 minutes. . Thereafter, the extract is filtered, and Fe is quantified with an ICP emission spectrometer using the filtrate as a measurement solution.

本発明のセパレータは、このようにして測定されるセパレータ中のハロゲン元素、特に塩素元素の含有量の上限が10ppm以下、好ましくは8ppm以下、更に好ましくは5ppm以下である。ハロゲン元素、特に塩素元素の含有量がこの上限値を超えると、電解液中に溶出したCl等のハロゲン元素により電池缶や集電体の腐食が促進されやすくなり、電池性能低下の原因となる。   In the separator of the present invention, the upper limit of the content of halogen element, particularly chlorine element, in the separator thus measured is 10 ppm or less, preferably 8 ppm or less, more preferably 5 ppm or less. If the content of halogen elements, particularly chlorine elements, exceeds this upper limit, corrosion of battery cans and current collectors is likely to be accelerated by halogen elements such as Cl eluted in the electrolytic solution, leading to deterioration of battery performance. .

また、本発明のセパレータは、このようにして測定されるセパレータ中の鉄元素の含有量の上限が100ppm以下、好ましくは80ppm以下、更に好ましくは70ppm以下である。塩素元素の含有量が、この上限値を超えると、電解液中に溶出したFeが負極表面に析出して微少短絡が形成されやすくなり、充放電効率の低下やサイクル特性劣化の原因となる。   In the separator of the present invention, the upper limit of the iron element content in the separator thus measured is 100 ppm or less, preferably 80 ppm or less, more preferably 70 ppm or less. When the content of the chlorine element exceeds this upper limit value, Fe eluted in the electrolytic solution is deposited on the negative electrode surface and a minute short circuit is likely to be formed, resulting in a decrease in charge / discharge efficiency and cycle characteristic deterioration.

セパレータ中のハロゲン元素及び鉄元素の含有量の下限は特に制限はないが、ハロゲン元素及び鉄元素の含有量を過度に低くすることは、後述の如く、セパレータ中のハロゲン元素及び鉄元素の含有量を低減するための無機フィラーの精製等の工程数が徒に多くなり、また、高分子多孔質膜の製造も困難となる一方で、ハロゲン元素及び鉄元素の含有量は、上記上限値を下回っていれば、電池性能を確保することができることから、セパレータ中のハロゲン元素、特に塩素元素の含有量については、下限は5ppm程度、鉄元素の含有量については下限は50ppm程度であれば許容される。   The lower limit of the content of the halogen element and the iron element in the separator is not particularly limited, but excessively lowering the content of the halogen element and the iron element includes the inclusion of the halogen element and the iron element in the separator as described later. While the number of steps such as refining the inorganic filler to reduce the amount increases and the production of the polymer porous membrane becomes difficult, the content of halogen element and iron element has the above upper limit. If lower, battery performance can be ensured, so the lower limit for the content of halogen elements, especially chlorine element in the separator is about 5 ppm, and the lower limit for the content of iron elements is about 50 ppm. Is done.

[本発明のセパレータの構成成分及び物性等]
本発明のセパレータを構成する高分子多孔質膜の基材樹脂としては、通常、熱可塑性樹脂が用いられる。熱可塑性樹脂としては、後述する無機フィラーが均等に分散されうるものであれば特に限定されることはないが、例えば、ポリオレフィン樹脂、フッ素樹脂、ポリスチレン等のスチレン系樹脂、ABS樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、アクリル樹脂、ポリアミド樹脂、アセタール樹脂、ポリカーボネート樹脂などが挙げられる。これらの中でも、耐熱性、耐溶剤性、可撓性のバランスに優れていることから、特に好ましいのはポリオレフィン樹脂である。ポリオレフィン樹脂としては、例えば、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン又は1−デセン等のモノオレフィン重合体や、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン又は1−デセンと4−メチル−1−ペンテン又は酢酸ビニル等の他のモノマーとの共重合体等を主成分とするものが挙げられ、具体的には、低密度ポリエチレン、線状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、結晶性エチレン−プロピレンブロック共重合体、ポリブテン、エチレン−酢酸ビニル共重合体等が挙げられる。本発明においては、上記ポリオレフィン樹脂の中でも高密度ポリエチレン又はポリプロピレンを用いるのが好ましい。上記ポリオレフィン樹脂等の熱可塑性樹脂は1種を単独で用いても2種以上を混合して用いても良い。
[Constituent Components and Physical Properties of the Separator of the Present Invention]
As the base resin for the polymer porous membrane constituting the separator of the present invention, a thermoplastic resin is usually used. The thermoplastic resin is not particularly limited as long as the inorganic filler described later can be uniformly dispersed. For example, polyolefin resin, fluororesin, styrene resin such as polystyrene, ABS resin, vinyl chloride resin. , Vinyl acetate resin, acrylic resin, polyamide resin, acetal resin, polycarbonate resin and the like. Among these, polyolefin resin is particularly preferable because of its excellent balance of heat resistance, solvent resistance, and flexibility. Examples of the polyolefin resin include monoolefin polymers such as ethylene, propylene, 1-butene, 1-hexene, 1-octene or 1-decene, ethylene, propylene, 1-butene, 1-hexene, 1-octene or The main component is a copolymer of 1-decene and another monomer such as 4-methyl-1-pentene or vinyl acetate. Specifically, low-density polyethylene, linear low-density polyethylene, Examples thereof include high-density polyethylene, polypropylene, crystalline ethylene-propylene block copolymer, polybutene, and ethylene-vinyl acetate copolymer. In the present invention, it is preferable to use high density polyethylene or polypropylene among the polyolefin resins. The above thermoplastic resins such as polyolefin resins may be used alone or in combination of two or more.

このような熱可塑性樹脂の重量平均分子量は、下限が通常5万以上、中でも10万以上、上限が通常50万以下、好ましくは40万以下、更に好ましくは30万以下、中でも20万以下程度であれば良い。この上限を超えると、充填剤添加による流動性の低下に加えて樹脂の溶融粘度が高くなるため溶融成形が困難となる。また、成形物が得られた場合であっても、充填剤が樹脂中に均等に分散されず、界面剥離による孔形成が不均一となるため、好ましくない。この下限を下回ると、機械的強度が低下するため好ましくない。   The weight average molecular weight of such a thermoplastic resin is such that the lower limit is usually 50,000 or more, especially 100,000 or more, and the upper limit is usually 500,000 or less, preferably 400,000 or less, more preferably 300,000 or less, especially 200,000 or less. I just need it. When this upper limit is exceeded, melt molding becomes difficult because the melt viscosity of the resin increases in addition to the decrease in fluidity due to the addition of filler. Further, even when a molded product is obtained, the filler is not evenly dispersed in the resin, and pore formation due to interfacial peeling becomes nonuniform, which is not preferable. Below this lower limit, the mechanical strength decreases, which is not preferable.

本発明に係る高分子多孔質膜に含まれる無機フィラーの種類は、セパレータ中のハロゲン元素及び鉄元素含有量を本発明で限定する値以下に抑えることができるものであれば、特に限定されることはなく、一般的な無機フィラーを用いることができるが、電解液との反応性が低いもの、中でもリチウム二次電池で用いられるカーボネート系有機電解液を分解しない性質を有するものが好ましい。そのような無機フィラーとしては、難水溶性の硫酸塩、アルミナ等が挙げられるが、例えば硫酸バリウムやアルミナが好適に用いられ、特に硫酸バリウムが好適に用いられる。ここに云う難水溶性とは、25℃の水に対する溶解度が5mg/l以下であることを指す。   The kind of the inorganic filler contained in the polymer porous membrane according to the present invention is particularly limited as long as the content of the halogen element and the iron element in the separator can be suppressed to not more than the values limited in the present invention. However, general inorganic fillers can be used, but those having low reactivity with the electrolyte, particularly those having the property of not decomposing the carbonate-based organic electrolyte used in the lithium secondary battery are preferable. Examples of such inorganic fillers include sparingly water-soluble sulfates and aluminas. For example, barium sulfate and alumina are preferably used, and barium sulfate is particularly preferably used. “Slightly water-soluble” as used herein means that the solubility in water at 25 ° C. is 5 mg / l or less.

一般に充填剤として用いられることの多い炭酸カルシウムなどの炭酸塩や酸化チタン、シリカなどは、後述するようにリチウム二次電池の非水電解液成分の分解を招くため好ましくない。ここで有機電解液成分の分解とは、1M LiPFのEC/EMC=3:7(体積比)の混合非水溶媒溶液よりなる電解液に、電解液1ml当たり充填剤を0.5gの比率で添加して85℃、72時間保持した後の電解液中のリチウムイオンの濃度が0.75mmol/g以下に減少することと定義する。リチウムイオンの量はイオンクロマト法により測定される。なお、72時間の保持中に電解液は外気に接しないように密閉容器に入れる必要がある。これは空気中の水分と反応して電解液成分の分解が進むためである。 In general, carbonates such as calcium carbonate, titanium oxide, silica, and the like that are often used as fillers are not preferable because they cause decomposition of the non-aqueous electrolyte components of the lithium secondary battery, as will be described later. Here, decomposition of the organic electrolyte component is a ratio of 0.5 g of filler per 1 ml of electrolyte in an electrolyte solution composed of a mixed nonaqueous solvent solution of EC / EMC = 3: 7 (volume ratio) of 1M LiPF 6 It is defined that the concentration of lithium ions in the electrolytic solution after being added at 85 ° C. and held for 72 hours is reduced to 0.75 mmol / g or less. The amount of lithium ions is measured by ion chromatography. In addition, it is necessary to put electrolyte solution in an airtight container so that it may not contact external air during 72 hours holding | maintenance. This is because decomposition of the electrolyte component proceeds by reacting with moisture in the air.

下表に電解液(1M LiPF/(EC+EMC)(3:7,容量比))に各種充填剤を上述の条件下で添加して保持した結果を示す。充填剤を添加しなかった電解液のイオン組成と比較して硫酸バリウムやアルミナは殆ど組成の変化が見られず、本発明における無機フィラーとして好適なことが分かる。これに対して炭酸カルシウムや炭酸リチウムなどの炭酸塩、或いはシリカや酸化チタンはリチウムイオンの著しい減少やフッ酸生成によるフッ素イオンの増加が見られ、本発明における無機フィラーとして好ましくないことが分かる。 The table below shows the results of holding various fillers added to the electrolyte solution (1M LiPF 6 / (EC + EMC) (3: 7, volume ratio)) under the above conditions. Compared with the ionic composition of the electrolytic solution to which no filler was added, barium sulfate and alumina showed almost no change in composition, indicating that they are suitable as inorganic fillers in the present invention. On the other hand, carbonates such as calcium carbonate and lithium carbonate, or silica and titanium oxide show a significant decrease in lithium ions and an increase in fluorine ions due to the generation of hydrofluoric acid, indicating that they are not preferred as the inorganic filler in the present invention.

Figure 0005017764
Figure 0005017764

上記無機フィラーの粒径としては、平均粒径の下限が通常0.1μm以上、好ましくは0.3μm以上、更に好ましくは0.5μm以上で、上限が通常10μm以下、好ましくは5μm以下、更に好ましくは2μm以下である。平均粒径が10μmを超えると、延伸で形成される孔の径が大きくなりすぎ、延伸破断やフィルム強度の低下を招いて好ましくない。また、平均粒径が0.1μmより小さいとフィラーが凝集しやすくなるため、基材樹脂に均等にフィラーを分散させることが難しくなる。   As the particle size of the inorganic filler, the lower limit of the average particle size is usually 0.1 μm or more, preferably 0.3 μm or more, more preferably 0.5 μm or more, and the upper limit is usually 10 μm or less, preferably 5 μm or less, more preferably. Is 2 μm or less. If the average particle diameter exceeds 10 μm, the diameter of the holes formed by stretching becomes too large, which is not preferable because it causes stretching breakage and a decrease in film strength. On the other hand, if the average particle size is smaller than 0.1 μm, the filler tends to aggregate, so that it is difficult to uniformly disperse the filler in the base resin.

本発明においては、上記条件に適合する無機フィラーであれば1種を単独で用いることもでき、2種以上を混合して用いることもできる。   In this invention, if it is an inorganic filler which adapts to the said conditions, 1 type can also be used independently and 2 or more types can also be mixed and used.

本発明に係る高分子多孔質膜中の上記無機フィラーの配合量は、下限が熱可塑性樹脂100重量部に対して通常40重量部以上、好ましくは50重量部以上、中でも60重量部以上、より好ましくは100重量部以上であり、上限が熱可塑性樹脂100重量部に対して通常300重量部以下、好ましくは200重量部以下、より好ましくは150重量部以下である。高分子多孔質膜中の熱可塑性樹脂100重量部に対する無機フィラーの配合量が40重量部未満であると連通孔を形成することが難しく、セパレータとしての機能を発現することが困難となる。また、300重量部を超えるとフィルム成形時の粘度が高くなり加工性に劣るばかりでなく、多孔化のための延伸時にフィルム破断を生じるため好ましくない。なお、本発明においては、多孔質膜の作製の際に配合した無機フィラーは、実質的に成形された多孔質膜中に残るため、上記の無機フィラーの配合量範囲は、多孔質膜中の無機フィラー含有量範囲となる。   The blending amount of the inorganic filler in the polymer porous membrane according to the present invention is such that the lower limit is usually 40 parts by weight or more, preferably 50 parts by weight or more, more preferably 60 parts by weight or more, relative to 100 parts by weight of the thermoplastic resin. Preferably, it is 100 parts by weight or more, and the upper limit is usually 300 parts by weight or less, preferably 200 parts by weight or less, more preferably 150 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. When the blending amount of the inorganic filler with respect to 100 parts by weight of the thermoplastic resin in the polymer porous membrane is less than 40 parts by weight, it is difficult to form a communication hole, and it becomes difficult to express a function as a separator. On the other hand, if it exceeds 300 parts by weight, not only the viscosity at the time of film forming becomes high and the processability is inferior, but also the film breaks during stretching for making it porous, which is not preferable. In the present invention, since the inorganic filler blended in the production of the porous film remains in the substantially shaped porous film, the blending amount range of the inorganic filler is within the range of the porous film. It becomes an inorganic filler content range.

無機フィラーとしては、熱可塑性樹脂への分散性を高めるために表面処理剤により表面処理されているものを用いることもできる。この表面処理としては、熱可塑性樹脂がポリオレフィン樹脂の場合、例えばステアリン酸等の脂肪酸又はその金属塩、或いはポリシロキサンやシランカップリング剤による処理が挙げられる。   As the inorganic filler, one that has been surface-treated with a surface treatment agent in order to enhance dispersibility in the thermoplastic resin can also be used. As the surface treatment, when the thermoplastic resin is a polyolefin resin, for example, a treatment with a fatty acid such as stearic acid or a metal salt thereof, polysiloxane, or a silane coupling agent can be given.

本発明に係る高分子多孔質膜の成形時には、前記熱可塑性樹脂との相溶性を有する低分子量化合物を添加しても良い。この低分子量化合物は熱可塑性樹脂の分子間に入り込み、分子間の相互作用を低下させると共に結晶化を阻害し、その結果、シート成形時の樹脂組成物の延伸性を向上させる。また、低分子量化合物は熱可塑性樹脂と無機フィラーとの界面接着力を適度に高めて、延伸による孔の粗大化を防止する作用を奏すると共に、熱可塑性樹脂と無機フィラーとの界面接着力を高めることでフィルムからの無機フィラーの脱落を防止する作用を奏する。   At the time of molding the porous polymer membrane according to the present invention, a low molecular weight compound having compatibility with the thermoplastic resin may be added. This low molecular weight compound enters between the molecules of the thermoplastic resin, lowers the interaction between molecules and inhibits crystallization, and as a result, improves the stretchability of the resin composition during sheet molding. In addition, the low molecular weight compound moderately increases the interfacial adhesive force between the thermoplastic resin and the inorganic filler, prevents the pores from becoming coarse due to stretching, and increases the interfacial adhesive force between the thermoplastic resin and the inorganic filler. It has the effect | action which prevents the drop-off | omission of the inorganic filler from a film.

この低分子量化合物としては分子量200〜3000のものが好適に用いられ、より好ましくは200〜1000のものが用いられる。この低分子量化合物の分子量が3000を超えると低分子量化合物が熱可塑性樹脂の分子間に入りにくくなるため、延伸性の向上効果が不充分となる。また、分子量が200未満では、相溶性は上がるが、低分子量化合物が高分子多孔質膜表面に析出する、いわゆるブルーミングが起こりやすくなり、膜性状の悪化やブロッキングを起こしやすくなり好ましくない。   As this low molecular weight compound, those having a molecular weight of 200 to 3000 are suitably used, and those having a molecular weight of 200 to 1000 are more preferably used. When the molecular weight of the low molecular weight compound exceeds 3000, the low molecular weight compound is difficult to enter between the molecules of the thermoplastic resin, so that the effect of improving stretchability is insufficient. On the other hand, when the molecular weight is less than 200, the compatibility is improved, but so-called blooming, in which a low molecular weight compound is precipitated on the surface of the polymer porous membrane, is likely to occur, and the membrane properties are easily deteriorated and blocking is not preferable.

低分子量化合物としては、熱可塑性樹脂がポリオレフィン樹脂の場合、脂肪族炭化水素又はグリセライドなどが好ましく使われる。特に、ポリオレフィン樹脂がポリエチレンの場合は、流動パラフィンや低融点ワックスが好ましく用いられる。   As the low molecular weight compound, when the thermoplastic resin is a polyolefin resin, an aliphatic hydrocarbon or glyceride is preferably used. In particular, when the polyolefin resin is polyethylene, liquid paraffin or low melting point wax is preferably used.

本発明に係る高分子多孔質膜の成膜材料としての樹脂組成物における、上記低分子量化合物の配合量は、下限が熱可塑性樹脂100重量部に対し通常1重量部以上、好ましくは5重量部以上であり、上限が熱可塑性樹脂100重量部に対し通常20重量部以下、好ましくは15重量部以下である。低分子量化合物の配合量が熱可塑性樹脂100重量部に対して1重量部未満であると、低分子量化合物を配合することによる上記効果が十分に得られず、また20重量部を超えると熱可塑性樹脂の分子間の相互作用を低下させ過ぎて、十分な強度が得られなくなる。また、シート成形時に発煙が生じたり、スクリュー部分での滑りが生じて、安定なシート成形が難しくなる。   In the resin composition as a film forming material for the polymer porous membrane according to the present invention, the lower molecular weight compound is added at a lower limit of usually 1 part by weight or more, preferably 5 parts by weight with respect to 100 parts by weight of the thermoplastic resin. The upper limit is usually 20 parts by weight or less, preferably 15 parts by weight or less, relative to 100 parts by weight of the thermoplastic resin. When the blending amount of the low molecular weight compound is less than 1 part by weight with respect to 100 parts by weight of the thermoplastic resin, the above effect by blending the low molecular weight compound cannot be sufficiently obtained, and when it exceeds 20 parts by weight, the thermoplasticity The interaction between the molecules of the resin is reduced too much and sufficient strength cannot be obtained. In addition, smoke generation occurs during sheet forming, and slipping occurs at the screw portion, making it difficult to form a stable sheet.

本発明に係る高分子多孔質膜の成膜材料としての樹脂組成物には、更に必要に応じて熱安定剤等の他の添加剤を添加することができる。上記添加剤としては、公知のものであれば特に制限されず用いられる。これらの添加剤の配合量は、樹脂組成物の全量に対して、通常0.05〜1重量%である。   If necessary, other additives such as a heat stabilizer can be added to the resin composition as a film forming material for the polymer porous membrane according to the present invention. The additive is not particularly limited as long as it is a known additive. The compounding quantity of these additives is 0.05-1 weight% normally with respect to the whole quantity of a resin composition.

本発明に係る高分子多孔質膜の多孔度は、高分子多孔質膜の空孔率の下限として通常30%以上、好ましくは40%以上、更に好ましくは50%以上であり、上限として通常80%以下、好ましくは70%以下、更に好ましくは65%以下、特に好ましくは60%以下である。空孔率が30%未満であるとイオンの透過性が充分でなく、セパレータとしての機能を果たすことができず、好ましくない。また、空孔率が80%を超えると、フィルムの実強度が低くなるため、電池作成時の破断や活物質による突き抜けと短絡が生じ、好ましくない。   The porosity of the polymer porous membrane according to the present invention is usually 30% or more, preferably 40% or more, more preferably 50% or more as the lower limit of the porosity of the polymer porous membrane, and usually 80 as the upper limit. % Or less, preferably 70% or less, more preferably 65% or less, and particularly preferably 60% or less. If the porosity is less than 30%, the ion permeability is not sufficient, and the function as a separator cannot be achieved. On the other hand, if the porosity exceeds 80%, the actual strength of the film is lowered, which is not preferable because breakage or short-circuiting due to the active material and short-circuiting occur during battery production.

なお、高分子多孔質膜の空孔率とは、以下の計算式によって算出される値である。
空孔率Pv(%)=100×(1−w/〔ρ・S・t〕)
S:高分子多孔質膜の面積
t:高分子多孔質膜の厚み
w:高分子多孔質膜の重さ
ρ:高分子多孔質膜の真比重
The porosity of the polymer porous membrane is a value calculated by the following calculation formula.
Porosity Pv (%) = 100 × (1−w / [ρ · S · t])
S: Area of polymer porous membrane t: Thickness of polymer porous membrane w: Weight of polymer porous membrane ρ: True specific gravity of polymer porous membrane

なお、高分子多孔質膜を構成する成分i(樹脂やフィラーなど)のブレンド重量をWi、比重をρiとすると、真比重ρは以下の式で求められる(式中でΣは全ての成分の和を表す。)。
ρ=ΣWi/Σ(Wi/ρi)
If the blend weight of the component i (resin, filler, etc.) constituting the polymer porous membrane is Wi and the specific gravity is ρi, the true specific gravity ρ can be obtained by the following formula (where Σ is the sum of all components) Represents the sum).
ρ = ΣWi / Σ (Wi / ρi)

本発明に係る高分子多孔質膜の厚みの上限値は、通常100μm以下、中でも50μm以下、好ましくは40μm以下であり、下限値は、通常5μm以上、好ましくは10μm以上である。厚みが5μm未満であると、実強度が低いため、電池の作成時の破断や活物質による突き抜けと短絡が生じ、好ましくない。また、厚みが100μmを超えるとセパレータの電気抵抗が高くなるため、電池の容量が低下し、好ましくない。厚みを5〜100μmの範囲とすることにより、良好なイオン透過性を有するセパレータとすることができる。   The upper limit value of the thickness of the polymer porous membrane according to the present invention is usually 100 μm or less, particularly 50 μm or less, preferably 40 μm or less, and the lower limit value is usually 5 μm or more, preferably 10 μm or more. If the thickness is less than 5 μm, the actual strength is low, and therefore, it is not preferable because breakage at the time of producing the battery, punch-through due to the active material, and short circuit occur. Moreover, since the electrical resistance of a separator will become high when thickness exceeds 100 micrometers, the capacity | capacitance of a battery falls and it is unpreferable. By setting the thickness in the range of 5 to 100 μm, a separator having good ion permeability can be obtained.

また、本発明に係る高分子多孔質膜は、ガーレー透気度の下限値が20秒/100cc以上、特に100秒/100cc以上で、上限値が500秒/100cc以下、特に300秒/100cc以下であることが好ましい。ガーレー透気度がこの下限値を下回る場合は、空孔率が高すぎるか厚みが薄すぎることが多く、前述の通りフィルムの実強度が低くなって電池作成時の破断や活物質による突き抜けと短絡が生じて好ましくない。この上限値を超える場合は、イオンの透過性が充分でなく、セパレータとしての機能を果たすことができず、好ましくない。なお、ガーレー透気度は、JIS P8117に準拠して測定され、1.22kPa圧で100ccの空気が膜を透過する秒数を示す。   Further, the porous polymer membrane according to the present invention has a lower limit value of Gurley permeability of 20 seconds / 100 cc or more, particularly 100 seconds / 100 cc or more, and an upper limit value of 500 seconds / 100 cc or less, particularly 300 seconds / 100 cc or less. It is preferable that When the Gurley permeability is below this lower limit, the porosity is often too high or the thickness is too thin, and as described above, the actual strength of the film is low, and breakage during battery creation and penetration by active material A short circuit occurs, which is not preferable. When the upper limit is exceeded, ion permeability is not sufficient, and the function as a separator cannot be achieved, which is not preferable. The Gurley air permeability is measured according to JIS P8117, and indicates the number of seconds that 100 cc of air passes through the membrane at a pressure of 1.22 kPa.

[セパレータの製造方法]
次に、本発明のセパレータの製造方法を説明するが、それに先立ち、無機フィラーを含有する高分子多孔質膜よりなるセパレータの一般的な製造方法について説明する。
[Manufacturing method of separator]
Next, a method for producing a separator of the present invention will be described. Prior to that, a general method for producing a separator made of a polymer porous membrane containing an inorganic filler will be described.

<一般的なセパレータの製造方法>
無機フィラーを含有する高分子多孔質膜の製造方法としては特に制限はなく、下記の抽出法(1)、延伸法(2)、及び界面剥離法(3)が挙げられるが、特に好ましいのは界面剥離法である。
(1) 抽出法:高分子材料と、無機フィラーと、後工程で溶媒抽出除去が可能な可塑剤とを混合してなる樹脂組成物を溶融し、これを押出成形などの成形法により膜状に成形した後、これを溶媒で処理して可塑剤を除去することにより、多孔化する。
(2) 延伸法:結晶性高分子材料に無機フィラーを混合してなる樹脂組成物を溶融し、これを押出成形などの成形法により膜状に成形した後、延伸することにより、構造的に弱い非晶部分を切断することにより微細孔を形成する。
(3) 界面剥離法:高分子材料に無機フィラーを混合してなる樹脂組成物を溶融し、これを押出成形などの成形法により膜状に成形した後、延伸することにより、高分子材料と無機フィラーとの界面を剥離させて微細孔を形成する。
<General separator manufacturing method>
The method for producing the porous polymer membrane containing the inorganic filler is not particularly limited, and examples include the following extraction method (1), stretching method (2), and interfacial peeling method (3). Interfacial peeling method.
(1) Extraction method: Melting a resin composition obtained by mixing a polymer material, an inorganic filler, and a plasticizer that can be removed by solvent extraction in a later step, and forming this into a film by a molding method such as extrusion molding Then, it is made porous by treating it with a solvent to remove the plasticizer.
(2) Stretching method: A resin composition obtained by mixing a crystalline polymer material with an inorganic filler is melted, formed into a film by a molding method such as extrusion, and then structurally stretched. Micropores are formed by cutting weak amorphous parts.
(3) Interfacial peeling method: A resin composition obtained by mixing a polymer material with an inorganic filler is melted, formed into a film by a molding method such as extrusion molding, and then stretched to obtain a polymer material. Fine pores are formed by peeling the interface with the inorganic filler.

上記製造方法のうち、抽出法では、成形の際に無機フィラーを高分子材料側に選択的に含有させることは難しく、可塑剤部分に含有された無機フィラーが抽出時に可塑剤と共に除去されてしまうため、界面剥離法に比較すると効率的でない。また、延伸法においては、高分子材料に無機フィラーを含有させると、非晶部分以外に高分子材料と無機フィラー界面でも延伸による開孔が生じるため、本質的に界面剥離法と異ならなくなる。従って、本発明では界面剥離法を採用することが好ましい。   Among the above production methods, in the extraction method, it is difficult to selectively contain an inorganic filler on the polymer material side during molding, and the inorganic filler contained in the plasticizer portion is removed together with the plasticizer during extraction. Therefore, it is not efficient as compared with the interface peeling method. In addition, in the stretching method, when an inorganic filler is contained in the polymer material, pores are formed by stretching at the interface between the polymer material and the inorganic filler in addition to the amorphous portion, so that it is essentially not different from the interface peeling method. Therefore, in the present invention, it is preferable to employ the interfacial peeling method.

なお、高分子多孔質膜の製造は、より具体的には、次のような方法で行われる。   The production of the polymer porous membrane is more specifically performed by the following method.

まず、無機フィラーと熱可塑性樹脂、及び必要に応じて添加される低分子量化合物や酸化防止剤等の添加剤の所定量を配合し、溶融混練することにより樹脂組成物を調製する。ここで上記樹脂組成物はヘンシェルミキサー等によって予備混合を行い、しかる後に通常用いられる一軸スクリュー押出機、二軸スクリュー押出機、ミキシングロール又は二軸混練機等を用いて調製しても良く、或いは予備混練を省略して直接上記押出機等で樹脂組成物を調製しても良い。   First, a resin composition is prepared by blending a predetermined amount of an inorganic filler, a thermoplastic resin, and additives such as a low molecular weight compound and an antioxidant that are added as necessary, and melt-kneading. Here, the resin composition may be preliminarily mixed with a Henschel mixer or the like, and thereafter prepared using a commonly used single screw extruder, twin screw extruder, mixing roll, twin screw kneader, or the like, or The pre-kneading may be omitted and the resin composition may be directly prepared with the above extruder or the like.

次いで、上記樹脂組成物をシート成形する。シート成形は通常用いられるTダイによるTダイ法や円形ダイによるインフレーション法により行うことができる。   Next, the resin composition is formed into a sheet. Sheet forming can be performed by a T-die method using a commonly used T-die or an inflation method using a circular die.

次いで、成形されたシートの延伸を行う。該延伸には、シートの引き取り方向(MD)に延伸する縦一軸延伸、テンター延伸機等により横方向(TD)に延伸する横一軸延伸、MDへの一軸延伸後引き続きテンター延伸機等によりTDに延伸する逐次二軸延伸法、又は縦方向及び横方向を同時に延伸する同時二軸延伸法がある。上記一軸延伸はロール延伸により行うことができる。上記延伸は、シートを構成する樹脂組成物が所定の延伸倍率に容易に延伸でき、かつ樹脂組成物が融解して孔を閉塞させ連通性を失わせることのない任意の温度で行うことができるが、好ましくは樹脂の融点−70℃〜樹脂の融点−5℃の温度範囲で延伸される。延伸倍率は必要とされる孔径や強度に応じて任意に設定されるが、好ましくは少なくとも一軸方向に1.2倍以上の延伸を行う。   Next, the formed sheet is stretched. For the stretching, longitudinal uniaxial stretching for stretching in the sheet take-up direction (MD), transverse uniaxial stretching for stretching in the transverse direction (TD) with a tenter stretching machine, etc., uniaxial stretching to MD, followed by TD with a tenter stretching machine, etc. There is a sequential biaxial stretching method in which stretching is performed, or a simultaneous biaxial stretching method in which the longitudinal direction and the transverse direction are simultaneously stretched. The uniaxial stretching can be performed by roll stretching. The stretching can be performed at any temperature at which the resin composition constituting the sheet can be easily stretched to a predetermined stretching ratio, and the resin composition does not melt and block the pores to lose the connectivity. However, it is preferably stretched in the temperature range of the melting point of the resin—70 ° C. to the melting point of the resin—5 ° C. The stretching ratio is arbitrarily set according to the required pore diameter and strength, but preferably, stretching is performed at least 1.2 times in a uniaxial direction.

<本発明のセパレータの製造方法>
次に、ハロゲン元素含有量又は塩素元素含有量が10ppm以下で、鉄元素含有量が100ppm以下の本発明のセパレータを製造する方法について説明する。
<The manufacturing method of the separator of this invention>
Next, a method for producing the separator of the present invention having a halogen element content or a chlorine element content of 10 ppm or less and an iron element content of 100 ppm or less will be described.

本発明のセパレータを構成する高分子多孔質膜は、具体的には、上述した従来の一般的な高分子多孔質膜と同様な方法で製造されるが、本発明においては、このようにして製造されるセパレータ中のハロゲン元素又は塩素元素含有量を10ppm以下とすると共に鉄元素含有量を100ppm以下とするために、高分子多孔質膜の製造原料中に含まれて高分子多孔質膜中に持ち込まれる不純物や、高分子多孔質膜の製造工程で高分子多孔質膜中に混入する不純物を次のような方法で低減する。   Specifically, the polymer porous membrane constituting the separator of the present invention is produced by the same method as the conventional general polymer porous membrane described above. In order to make the halogen element or chlorine element content in the separator to be produced 10 ppm or less and the iron element content 100 ppm or less, it is contained in the raw material for producing the polymer porous film in the polymer porous film. Impurities introduced into the polymer porous film and impurities mixed in the polymer porous film in the polymer porous film manufacturing process are reduced by the following method.

[1] ハロゲン元素及び鉄元素含有量が低減された無機フィラーを用いて高分子多孔質膜を製造する。 [1] A porous polymer membrane is produced using an inorganic filler with a reduced content of halogen elements and iron elements.

前述の如く、通常、無機フィラーは自然鉱石を原料として製造されるため、必然的に鉄やハロゲン元素などの不純物が、例えば鉄であれば数百ppm、ハロゲン元素であれば数十ppm程度不可避的に混入してくる。このため、製造された無機フィラーについて、精製、水洗などの工程を経て上述の不純物を低減する。或いは、無機フィラーの製造工程に化学合成を組み入れることにより、無機フィラーの不純物量を低減する。なお、化学合成を組み込まれる場合、合成途中でハロゲン化物が生成するような工程は最終製品にハロゲン元素が多量に残存するため、好ましくない。   As described above, since inorganic fillers are usually produced using natural ore as a raw material, inevitably impurities such as iron and halogen elements are inevitable, for example, several hundred ppm for iron and several tens of ppm for halogen elements. Mixed in. For this reason, about the manufactured inorganic filler, the above-mentioned impurities are reduced through processes, such as refining and water washing. Alternatively, the amount of impurities in the inorganic filler is reduced by incorporating chemical synthesis into the manufacturing process of the inorganic filler. When chemical synthesis is incorporated, a process in which a halide is generated during the synthesis is not preferable because a large amount of halogen element remains in the final product.

自然鉱石を原料として製造された無機フィラーを水洗する場合、例えば20〜100℃程度の高い水中に投入して攪拌するなどの方法を採用することができる。この場合、洗浄水中には硫酸や硝酸などのハロゲン元素及び鉄を含まない薬剤を添加して洗浄効果を高めるようにしても良い。洗浄水の酸の濃度は1〜20重量%が好ましい。薬剤を添加した水で洗浄する場合は、最後に更に純水で仕上げ洗浄することが好ましい。   In the case of washing the inorganic filler produced using natural ore as a raw material, for example, it is possible to employ a method of stirring in high water at about 20 to 100 ° C. In this case, chemicals not containing halogen elements such as sulfuric acid and nitric acid and iron may be added to the cleaning water to enhance the cleaning effect. The acid concentration of the washing water is preferably 1 to 20% by weight. When washing with water to which a chemical is added, it is preferable to finish and wash with pure water at the end.

また、自然鉱石を原料として製造される無機フィラーを精製する方法としては、例えば、粉砕した鉱石を空気中や水中で比重の違いによって分離する方法を採用することができる。   In addition, as a method for purifying an inorganic filler produced using natural ore as a raw material, for example, a method of separating pulverized ore in air or water based on a difference in specific gravity can be employed.

また、化学合成工程を組み入れる場合には、例えば、硫酸バリウムフィラーの場合であれば、原料鉱石である重晶石を還元培焼して得られる硫化バリウムを硫酸ナトリウム又は硫酸と反応させることにより製造することができる。また、アルミナフィラーであれば原料鉱石であるボーキサイトに水酸化ナトリウムを加えてアルミン酸ナトリウムとし、これを加水分解して水酸化アルミニウムを沈殿させ、これを高温焼成して製造することもできる。   In addition, in the case of incorporating a chemical synthesis step, for example, in the case of a barium sulfate filler, it is produced by reacting barium sulfide obtained by reducing and firing barite as a raw material ore with sodium sulfate or sulfuric acid. can do. Moreover, if it is an alumina filler, it can also manufacture by adding sodium hydroxide to bauxite which is a raw material ore to make sodium aluminate, hydrolyzing it and precipitating aluminum hydroxide, and baking this at high temperature.

無機フィラーは、このように、水洗又は精製、或いは化学合成工程を組み込むことにより、これを配合して製造された高分子多孔質膜よりなるセパレータ中のハロゲン元素又は塩素元素含有量と鉄元素含有量が、前述の本発明で規定する上限値以下となるように、不純物含有量を低減する。   Inorganic fillers thus contain halogen element or chlorine element content and iron element content in separators made of polymer porous membranes that are manufactured by incorporating water washing or purification, or by incorporating chemical synthesis process. The impurity content is reduced so that the amount is not more than the upper limit value defined in the present invention.

この無機フィラーの不純物含有量は、従って、高分子多孔質膜への無機フィラー配合量によっても異なり、無機フィラー配合量が少ない場合には、無機フィラーの不純物含有量は比較的多くても良く、また、無機フィラー配合量が多い場合には、無機フィラーの不純物含有量は極力少なくする必要がある。   Therefore, the impurity content of the inorganic filler varies depending on the amount of the inorganic filler added to the polymer porous membrane, and when the amount of the inorganic filler is small, the impurity content of the inorganic filler may be relatively large. Moreover, when there are many inorganic filler compounding quantities, it is necessary to reduce the impurity content of an inorganic filler as much as possible.

本発明では、前述した無機フィラー配合量、即ち、熱可塑性樹脂100重量部に対して40〜300重量部、好ましくは60〜200重量部、より好ましくは100〜150重量部の無機フィラー配合量において、無機フィラーのハロゲン元素又は塩素元素含有量の上限が通常30ppm以下、好ましくは20ppm以下、より好ましくは15ppm以下で、鉄元素含有量の上限が通常300ppm以下、好ましくは200ppm以下、より好ましくは100ppm以下となるように不純物含有量を低減することが好ましい。無機フィラーの不純物含有量の下限は、前述のセパレータ中の不純物含有量の下限と同様の理由から、ハロゲン元素又は塩素元素含有量7ppm程度、鉄元素含有量70ppm程度である。   In the present invention, the inorganic filler compounding amount described above, that is, 40 to 300 parts by weight, preferably 60 to 200 parts by weight, more preferably 100 to 150 parts by weight with respect to 100 parts by weight of the thermoplastic resin. The upper limit of the halogen element or chlorine element content of the inorganic filler is usually 30 ppm or less, preferably 20 ppm or less, more preferably 15 ppm or less, and the upper limit of the iron element content is usually 300 ppm or less, preferably 200 ppm or less, more preferably 100 ppm. It is preferable to reduce the impurity content so as to be as follows. The lower limit of the impurity content of the inorganic filler is about 7 ppm for the halogen element or chlorine element and about 70 ppm for the iron element for the same reason as the lower limit of the impurity content in the separator.

なお、無機フィラー中のハロゲン元素及び鉄元素の含有濃度は、前述のセパレータ(高分子多孔質膜)中の不純物含有濃度と同様に次のような方法で定量することができ、後述の実施例及び比較例では、下記(iii)、(iv)の方法で無機フィラー中のハロゲン元素と鉄元素を定量した。   The halogen element and iron element concentration in the inorganic filler can be quantified by the following method in the same manner as the impurity concentration in the separator (polymer porous membrane) described above. And in the comparative example, the halogen element and the iron element in the inorganic filler were quantified by the following methods (iii) and (iv).

(iii) 無機フィラー中のハロゲン元素の定量
試料(無機フィラー)2gに、純水25mlを添加して15分間超音波抽出する。超音波抽出には、例えば、シャープ(株)製超音波洗浄機「UT-104 SILENT SONIC」(出力は中程度)を用いることができる。その後、抽出液を濾過し、濾液を測定溶液としてイオンクロマトグラフィーにてハロゲン元素を定量する。
(iii) Determination of halogen element in inorganic filler To 2 g of sample (inorganic filler), 25 ml of pure water is added and ultrasonically extracted for 15 minutes. For the ultrasonic extraction, for example, an ultrasonic cleaner “UT-104 SILENT SONIC” manufactured by Sharp Corporation (medium output) can be used. Thereafter, the extract is filtered, and the halogen element is quantified by ion chromatography using the filtrate as a measurement solution.

(iv) 無機フィラー中の鉄元素の定量
試料(無機フィラー)5gに、三菱化学(株)製36%EL用塩酸10mlと純水20mlを添加して30分間煮沸抽出を行う。その後、抽出液を濾過し、濾液を測定溶液としてICP発光分析装置にてFeを定量する。
(iv) Determination of iron element in inorganic filler To 5 g of a sample (inorganic filler), 10 ml of 36% EL hydrochloric acid manufactured by Mitsubishi Chemical Corporation and 20 ml of pure water are added, followed by boiling extraction for 30 minutes. Thereafter, the extract is filtered, and Fe is quantified with an ICP emission spectrometer using the filtrate as a measurement solution.

なお、セパレータに含まれる無機フィラー中の不純物含有量も、上記と同様の方法で測定することができる。この場合には、セパレータを構成する高分子多孔質膜のマトリックス樹脂を高温で焼き、採取される灰分より無機フィラーを分取し、上記と同様の定量を行えば良い。   The impurity content in the inorganic filler contained in the separator can also be measured by the same method as described above. In this case, the matrix resin of the polymer porous membrane constituting the separator is baked at a high temperature, the inorganic filler is separated from the collected ash, and the same quantification as described above may be performed.

[2] 高分子多孔質膜の基材樹脂として、ハロゲン元素及び鉄元素含有量が低減された樹脂を用いる。 [2] As the base resin for the polymer porous membrane, a resin having a reduced content of halogen element and iron element is used.

高分子多孔質膜の基材樹脂として用いる熱可塑性樹脂には、その重合反応工程において、触媒由来の塩素元素が4〜5ppm程度混入する恐れがある。   The thermoplastic resin used as the base resin of the polymer porous membrane may contain about 4 to 5 ppm of chlorine element derived from the catalyst in the polymerization reaction step.

従って、熱可塑性樹脂の製造時に例えば触媒活性を上げる、反応時間を長くする、或いは反応温度を上げるなどの方法で、少ない触媒使用量で重合を行い、熱可塑性樹脂中に残存する触媒量を低減して触媒由来の不純物を低減する。   Therefore, during the production of thermoplastic resins, for example, by increasing the catalyst activity, increasing the reaction time, or increasing the reaction temperature, polymerization is performed with a small amount of catalyst used, and the amount of catalyst remaining in the thermoplastic resin is reduced. Thus, impurities derived from the catalyst are reduced.

本発明のセパレータの製造においては、上記[1]及び[2]の不純物低減方法のいずれを採用しても良く、これらを共に採用して高分子多孔質膜を製造しても良いが、セパレータ中のハロゲン元素及び鉄元素は、主として無機フィラーに由来することから、少なくとも上記[1]の不純物低減方法を採用することが好ましい。   In the production of the separator of the present invention, any of the above-mentioned methods [1] and [2] for reducing impurities may be employed, and both may be employed to produce a polymer porous membrane. Since the halogen element and iron element therein are mainly derived from the inorganic filler, it is preferable to employ at least the impurity reduction method of [1] above.

[非水系電解液二次電池]
次に、上述のような本発明の非水系電解液二次電池用セパレータを用いる本発明の非水系電解液二次電池について説明する。本発明の非水系電解液二次電池は、リチウムイオンを吸蔵・放出可能な正極、リチウムイオンを吸蔵・放出可能な負極、電解質を非水溶媒中に含有する電解液、及びセパレータを有する。
[Non-aqueous electrolyte secondary battery]
Next, the non-aqueous electrolyte secondary battery of the present invention using the above-described separator for a non-aqueous electrolyte secondary battery of the present invention will be described. The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode capable of inserting and extracting lithium ions, a negative electrode capable of inserting and extracting lithium ions, an electrolytic solution containing an electrolyte in a non-aqueous solvent, and a separator.

本発明の非水系電解液二次電池に使用される電解液の非水系溶媒としては、非水系電解液二次電池の溶媒として公知の任意のものを用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等のアルキレンカーボネート;ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、エチルメチルカーボネート等のジアルキルカーボネート(ジアルキルカーボネートのアルキル基は、炭素数1〜4のアルキル基が好ましい);テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル;ジメトキシエタン、ジメトキシメタン等の鎖状エーテル;γ−ブチロラクトン、γ−バレロラクトン等の環状カルボン酸エステル;酢酸メチル、プロピオン酸メチル、プロピオン酸エチル等の鎖状カルボン酸エステルなどが挙げられる。これらは1種を単独で用いても良く、2種類以上を併用しても良い。   As the non-aqueous solvent of the electrolyte used in the non-aqueous electrolyte secondary battery of the present invention, any known solvent can be used as the solvent for the non-aqueous electrolyte secondary battery. For example, alkylene carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate; dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, and ethyl methyl carbonate (the alkyl group of the dialkyl carbonate is an alkyl having 1 to 4 carbon atoms) A cyclic ether such as tetrahydrofuran and 2-methyltetrahydrofuran; a chain ether such as dimethoxyethane and dimethoxymethane; a cyclic carboxylic acid ester such as γ-butyrolactone and γ-valerolactone; methyl acetate, methyl propionate and propion Examples thereof include chain carboxylic acid esters such as ethyl acid. These may be used alone or in combination of two or more.

非水系電解液の溶質であるリチウム塩としては、任意のものを用いることができる。例えば、LiClO、LiPF及びLiBF等の無機リチウム塩;LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBF(CF、LiBF(C、LiBF(CFSO及びLiBF(CSO等の含フッ素有機リチウム塩などが挙げられる。これらのうち、LiPF、LiBF、LiCFSO、LiN(CFSO又はLiN(CSO、特にLiPF又はLiBFが好ましい。なお、リチウム塩についても1種を単独で用いても良く、2種以上を併用しても良い。 Arbitrary things can be used as lithium salt which is a solute of nonaqueous system electrolyte. For example, inorganic lithium salts such as LiClO 4 , LiPF 6 and LiBF 4 ; LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiPF 4 (CF 3) 2, LiPF 4 (C 2 F 5) 2, LiPF 4 (CF 3 SO 2) 2, LiPF 4 (C 2 F 5 SO 2) 2, LiBF 2 (CF 3) 2, LiBF 2 (C 2 F 5) 2, LiBF 2 (CF 3 SO 2) 2 and LiBF 2 (C 2 F 5 SO 2) 2 , etc. the fluorine-containing organic Examples include lithium salts. Of these, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 or LiN (C 2 F 5 SO 2 ) 2 , particularly LiPF 6 or LiBF 4 are preferred. In addition, about lithium salt, 1 type may be used independently and 2 or more types may be used together.

これらのリチウム塩の非水系電解液中の濃度の下限値としては、通常0.5mol/l以上、中でも0.75mol/l以上、上限値としては、通常2mol/l以下、中でも1.5mol/l以下である。リチウム塩の濃度がこの上限値を超えると非水系電解液の粘度が高くなり、電気伝導率も低下する。また、下限値を下回ると電気伝導率が低くなるので、上記濃度範囲内で非水系電解液を調製することが好ましい。   The lower limit of the concentration of these lithium salts in the non-aqueous electrolyte is usually 0.5 mol / l or more, especially 0.75 mol / l or more, and the upper limit is usually 2 mol / l or less, especially 1.5 mol / l. l or less. When the concentration of the lithium salt exceeds this upper limit value, the viscosity of the nonaqueous electrolytic solution increases and the electrical conductivity also decreases. Moreover, since electrical conductivity will become low if less than a lower limit, it is preferable to prepare a non-aqueous electrolyte within the said concentration range.

なお、本発明に係る非水系電解液には、必要に応じて他の有用な成分、例えば従来公知の過充電防止剤、脱水剤、脱酸剤、高温保存後の容量維持特性やサイクル特性を改善するための助剤等の各種の添加剤を含有させても良い。   The non-aqueous electrolyte solution according to the present invention has other useful components as required, for example, conventionally known overcharge inhibitors, dehydrating agents, deoxidizing agents, capacity maintenance characteristics and cycle characteristics after high-temperature storage. You may contain various additives, such as an auxiliary agent for improving.

高温保存後の容量維持特性やサイクル特性を改善するための助剤としては、ビニレンカーボネート、フルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、フェニルエチレンカーボネート及びエリスリタンカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物等のカルボン酸無水物;エチレンサルファイト、1,3−プロパンスルトン、1,4−ブタンスルトン、メタンスルホン酸メチル、ブサルファン、スルホラン、スルホレン、ジメチルスルホン、テトラメチルチウラムモノスルフィド等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン、N−メチルスクシイミド等の含窒素化合物;ヘプタン、オクタン、シクロヘプタン等の炭化水素化合物などが挙げられる。非水系電解液がこれらの助剤を含有する場合、その濃度は、通常0.1〜5重量%である。   Auxiliaries for improving capacity maintenance characteristics and cycle characteristics after high temperature storage include carbonate compounds such as vinylene carbonate, fluoroethylene carbonate, trifluoropropylene carbonate, phenylethylene carbonate and erythritan carbonate; succinic anhydride, anhydrous glutar Carboxylic acid anhydrides such as acid, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, phenylsuccinic anhydride; Sulfur containing ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone, methyl methanesulfonate, busulfan, sulfolane, sulfolene, dimethyl sulfone, tetramethylthiuram monosulfide, etc. Compound; Nitrogen-containing compound such as 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone, N-methylsuccinimide; Examples thereof include hydrocarbon compounds such as heptane, octane, and cycloheptane. When the non-aqueous electrolyte contains these auxiliaries, the concentration is usually 0.1 to 5% by weight.

正極は、通常、正極活物質とバインダーを含有する活物質層を集電体上に形成させたものが用いられる。   As the positive electrode, a material in which an active material layer containing a positive electrode active material and a binder is usually formed on a current collector is used.

正極活物質としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等のリチウム遷移金属複合酸化物材料などのリチウムを吸蔵及び放出可能な材料が挙げられる。これらは1種を単独で用いても、複数種を併用しても良い。   Examples of the positive electrode active material include materials capable of inserting and extracting lithium, such as lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide. These may be used individually by 1 type, or may use multiple types together.

バインダーとしては、電極製造時に使用する溶媒や電解液、電池使用時に用いる他の材料に対して安定な材料であれば、特に限定されない。その具体例としてはポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、EPDM(エチレン−プロピレン−ジエン三元共重合体)、SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等が挙げられる。これらは1種を単独で用いても、複数種を併用しても良い。   The binder is not particularly limited as long as it is a material that is stable with respect to the solvent and electrolyte used during electrode production and other materials used during battery use. Specific examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, EPDM (ethylene-propylene-diene terpolymer), SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), Examples thereof include fluororubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, and nitrocellulose. These may be used individually by 1 type, or may use multiple types together.

正極活物質層中のバインダーの割合は、下限値が通常0.1重量%以上、好ましくは1重量%以上、より好ましくは5重量%以上であり、上限値が通常80重量%以下、好ましくは60重量%以下、より好ましくは40重量%以下、更に好ましくは10重量%以下である。バインダーの割合が少ないと、活物質を十分に保持できないので、正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させることがあり、逆に多すぎると電池容量や導電性を下げることになる。   As for the ratio of the binder in the positive electrode active material layer, the lower limit is usually 0.1% by weight or more, preferably 1% by weight or more, more preferably 5% by weight or more, and the upper limit is usually 80% by weight or less, preferably 60% by weight or less, more preferably 40% by weight or less, and still more preferably 10% by weight or less. If the proportion of the binder is small, the active material cannot be sufficiently retained, so that the mechanical strength of the positive electrode is insufficient, and the battery performance such as cycle characteristics may be deteriorated. On the contrary, if the amount is too large, the battery capacity and conductivity are lowered. It will be.

正極活物質層は、通常、導電性を高めるため導電剤を含有する。導電剤としては、天然黒鉛、人造黒鉛等の黒鉛の微粒子や、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素微粒子等等の炭素質材料を挙げることができる。これらは1種を単独で用いても、複数種を併用しても良い。正極活物質層中の導電剤の割合は、下限値が通常0.01重量%以上、好ましくは0.1重量%以上、更に好ましくは1重量%以上であり、上限値が通常50重量%以下、好ましくは30重量%以下、更に好ましくは15重量%以下である。導電剤の割合が少ないと導電性が不十分になることがあり、逆に多すぎると電池容量が低下することがある。   The positive electrode active material layer usually contains a conductive agent in order to increase conductivity. Examples of the conductive agent include carbonaceous materials such as graphite fine particles such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon fine particles such as needle coke. These may be used individually by 1 type, or may use multiple types together. The ratio of the conductive agent in the positive electrode active material layer is such that the lower limit is usually 0.01% by weight or more, preferably 0.1% by weight or more, more preferably 1% by weight or more, and the upper limit is usually 50% by weight or less. , Preferably 30% by weight or less, more preferably 15% by weight or less. If the proportion of the conductive agent is small, the conductivity may be insufficient, and conversely if too large, the battery capacity may be reduced.

正極活物質層には、その他、増粘剤等の通常の活物質層の添加剤を含有させることができる。   In addition, the positive electrode active material layer can contain additives for a normal active material layer such as a thickener.

増粘剤は電極製造時に使用する溶媒や電解液、電池使用時に用いる他の材料に対して安定な材料であれば、特に限定されない。その具体例としては、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。これらは1種を単独で用いても、複数種を併用しても良い。   The thickener is not particularly limited as long as it is a material that is stable with respect to the solvent and electrolyte used during electrode production and other materials used during battery use. Specific examples thereof include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein. These may be used individually by 1 type, or may use multiple types together.

正極の集電体には、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等が使用される。   Aluminum, stainless steel, nickel-plated steel or the like is used for the current collector of the positive electrode.

正極は、前述の正極活物質とバインダーと導電剤、必要に応じて添加されるその他の添加剤とを溶媒でスラリー化したものを集電体に塗布して乾燥することにより形成することができる。スラリー化のために用いる溶媒としては、通常はバインダーを溶解する有機溶剤が使用される。例えば、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン,N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等が用いられるがこれらに限定されない。これらは1種を単独で用いても、複数種を併用しても良い。また、水に分散剤、増粘剤等を加えてSBR等のラテックスで活物質をスラリー化することもできる。   The positive electrode can be formed by applying a slurry obtained by slurrying the above-described positive electrode active material, a binder, a conductive agent, and other additives added as necessary with a solvent onto a current collector, and drying the positive electrode active material. . As the solvent used for slurrying, an organic solvent that dissolves the binder is usually used. For example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran and the like are used, but not limited thereto. These may be used individually by 1 type, or may use multiple types together. Moreover, a dispersing agent, a thickener, etc. can be added to water, and an active material can also be slurried with latex, such as SBR.

このようにして形成される正極活物質層の厚さは、通常10〜200μm程度である。なお、塗布・乾燥によって得られた活物質層は、活物質の充填密度を上げるために、ローラープレス等により圧密化するのが好ましい。   Thus, the thickness of the positive electrode active material layer formed is about 10-200 micrometers normally. The active material layer obtained by coating and drying is preferably consolidated by a roller press or the like in order to increase the packing density of the active material.

負極は、通常、負極活物質とバインダーを含有する活物質層を集電体上に形成させたものが用いられる。   As the negative electrode, a material in which an active material layer containing a negative electrode active material and a binder is usually formed on a current collector is used.

負極活物質としては様々な熱分解条件での有機物の熱分解物や人造黒鉛、天然黒鉛等のリチウムを吸蔵・放出可能な炭素質材料;酸化錫、酸化珪素等のリチウムを吸蔵・放出可能な金属酸化物材料;リチウム金属;種々のリチウム合金などを用いることができる。これらの負極活物質は、1種を単独で用いても良く、2種類以上を混合して用いても良い。   As a negative electrode active material, a carbonaceous material capable of occluding / releasing lithium such as organic pyrolysate, artificial graphite and natural graphite under various pyrolysis conditions; capable of occluding / releasing lithium such as tin oxide and silicon oxide Metal oxide material; lithium metal; various lithium alloys can be used. These negative electrode active materials may be used individually by 1 type, and may mix and use 2 or more types.

バインダーとしては、電極製造時に使用する溶媒や電解液、電池使用時に用いる他の材料に対して安定な材料であれば、特に限定されない。その具体例としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等を挙げることができる。これらは1種を単独で用いても、複数種を併用しても良い。   The binder is not particularly limited as long as it is a material that is stable with respect to the solvent and electrolyte used during electrode production and other materials used during battery use. Specific examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, styrene / butadiene rubber, isoprene rubber, and butadiene rubber. These may be used individually by 1 type, or may use multiple types together.

負極活物質層中の上述のバインダーの割合は、下限値が通常0.1重量%以上、好ましくは1重量%以上、より好ましくは5重量%以上であり、上限値が通常80重量%以下、好ましくは60重量%以下、より好ましくは40重量%以下、更に好ましくは10重量%以下である。バインダーの割合が少ないと、活物質を十分に保持できないので負極の機械的強度が不足し、サイクル特性等の電池性能を悪化させることがあり、逆に多すぎると電池容量や導電性を下げることになる。   The ratio of the binder in the negative electrode active material layer is such that the lower limit is usually 0.1% by weight or more, preferably 1% by weight or more, more preferably 5% by weight or more, and the upper limit is usually 80% by weight or less. Preferably it is 60 weight% or less, More preferably, it is 40 weight% or less, More preferably, it is 10 weight% or less. If the ratio of the binder is small, the active material cannot be sufficiently retained, so that the negative electrode mechanical strength may be insufficient, and the battery performance such as cycle characteristics may be deteriorated. become.

負極活物質層は、通常、導電性を高めるため導電剤を含有する。導電剤としては、天然黒鉛、人造黒鉛等の黒鉛の微粒子や、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素微粒子等等の炭素質材料を挙げることができる。これらは1種を単独で用いても、複数種を併用しても良い。負極活物質層中の導電剤の割合は、下限値が通常0.01重量%以上、好ましくは0.1重量%以上、更に好ましくは1重量%以上であり、上限値が通常50重量%以下、好ましくは30重量%以下、更に好ましくは15重量%以下である。導電剤の割合が少ないと導電性が不十分になることがあり、逆に多すぎると電池容量が低下することがある。   The negative electrode active material layer usually contains a conductive agent in order to increase conductivity. Examples of the conductive agent include carbonaceous materials such as graphite fine particles such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon fine particles such as needle coke. These may be used individually by 1 type, or may use multiple types together. As for the ratio of the conductive agent in the negative electrode active material layer, the lower limit is usually 0.01% by weight or more, preferably 0.1% by weight or more, more preferably 1% by weight or more, and the upper limit is usually 50% by weight or less. , Preferably 30% by weight or less, more preferably 15% by weight or less. If the proportion of the conductive agent is small, the conductivity may be insufficient, and conversely if too large, the battery capacity may be reduced.

負極活物質層には、その他、増粘剤等の通常の活物質層の添加剤を含有させることができる。   In addition, the negative electrode active material layer may contain additives for a normal active material layer such as a thickener.

増粘剤は電極製造時に使用する溶媒や電解液、電池使用時に用いる他の材料に対して安定な材料であれば、特に限定されない。その具体例としては、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。これらは1種を単独で用いても、複数種を併用しても良い。   The thickener is not particularly limited as long as it is a material that is stable with respect to the solvent and electrolyte used during electrode production and other materials used during battery use. Specific examples thereof include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein. These may be used individually by 1 type, or may use multiple types together.

負極の集電体には、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等が使用される。   Copper, nickel, stainless steel, nickel-plated steel, or the like is used for the negative electrode current collector.

負極は、前述の負極活物質とバインダーと導電剤、必要に応じて添加されるその他の添加剤とを溶媒でスラリー化したものを集電体に塗布して乾燥することにより形成することができる。   The negative electrode can be formed by applying a slurry obtained by slurrying the above-described negative electrode active material, a binder, a conductive agent, and other additives added as necessary with a solvent onto a current collector, and then drying the negative electrode active material. .

スラリー化する溶媒としては、通常はバインダーを溶解する有機溶剤が使用される。例えば、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン,N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等が用いられるがこれらに限定されない。これらは1種を単独で用いても、複数種を併用しても良い。また、水に分散剤、増粘剤等を加えてSBR等のラテックスで活物質をスラリー化することもできる。   As the solvent for forming a slurry, an organic solvent that dissolves the binder is usually used. For example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran and the like are used, but not limited thereto. These may be used individually by 1 type, or may use multiple types together. Moreover, a dispersing agent, a thickener, etc. can be added to water, and an active material can also be slurried with latex, such as SBR.

このようにして形成される負極活物質層の厚さは、通常、10〜200μm程度である。なお、塗布・乾燥によって得られた活物質層は、活物質の充填密度を上げるために、ローラープレス等により圧密化するのが好ましい。   Thus, the thickness of the negative electrode active material layer formed is about 10-200 micrometers normally. The active material layer obtained by coating and drying is preferably consolidated by a roller press or the like in order to increase the packing density of the active material.

本発明のリチウム二次電池は、上述した正極と、負極と、非水系電解液と、本発明のセパレータとを、適切な形状に組み立てることにより製造される。更に、必要に応じて外装ケース等の他の構成要素を用いることも可能である。   The lithium secondary battery of the present invention is manufactured by assembling the positive electrode, the negative electrode, the non-aqueous electrolyte, and the separator of the present invention into an appropriate shape. Furthermore, other components such as an outer case can be used as necessary.

その電池形状は特に制限されず、一般的に採用されている各種形状の中から、その用途に応じて適宜選択することができる。一般的に採用されている形状の例としては、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ、シート電極及びセパレータを積層したラミネートタイプなどが挙げられる。また、電池を組み立てる方法も特に制限されず、目的とする電池の形状に合わせて、通常用いられている各種方法の中から適宜選択することができる。   The battery shape is not particularly limited, and can be appropriately selected from various commonly used shapes according to the application. Examples of commonly used shapes include a cylinder type with a sheet electrode and separator spiral, an inside-out cylinder type with a combination of pellet electrode and separator, a coin type with a stack of pellet electrode and separator, and a sheet Examples include a laminate type in which electrodes and separators are laminated. The method for assembling the battery is not particularly limited, and can be appropriately selected from various commonly used methods according to the shape of the target battery.

以上、本発明のリチウム二次電池の一般的な実施形態について説明したが、本発明のリチウム二次電池は上記実施形態に制限されるものではなく、その要旨を越えない限りにおいて、各種の変形を加えて実施することが可能である。   The general embodiment of the lithium secondary battery of the present invention has been described above. However, the lithium secondary battery of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist thereof. Can be implemented.

本発明のリチウム二次電池の用途は特に限定されず、公知の各種の用途に用いることが可能である。具体例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、照明器具、玩具、ゲーム機器、時計、ストロボ、カメラ等の小型機器、及び、電気自動車、ハイブリッド自動車等の大型機器を挙げることができる。   The use of the lithium secondary battery of the present invention is not particularly limited, and can be used for various known uses. Specific examples include notebook computers, pen input computers, mobile computers, electronic book players, mobile phones, mobile faxes, mobile copy, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, minidiscs, and transceivers. , Electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, motors, lighting equipment, toys, gaming devices, small devices such as watches, strobes and cameras, and large devices such as electric vehicles and hybrid vehicles Can be mentioned.

以下に、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples as long as the gist thereof is not exceeded.

〔実施例1〕
<高分子多孔質膜の製造>
高密度ポリエチレン〔三井化学社製「HI−ZEX7000FP」、重量平均分子量:20万、密度;0.956g/cm3、メルトフローレート;0.04g/10min〕100重量部、軟質ポリプロピレン〔出光石油化学社製「PER R110E」、重量平均分子量:33万〕15.6重量部、硬化ひまし油〔豊国製油社製「HY−CASTOR OIL」、分子量938〕9.4重量部、無機フィラーとして硫酸バリウム〔堺化学社製「B−55」平均粒径0.66μm〕187.5重量部を配合して溶融混練し、得られた樹脂組成物を温度210℃でインフレーション成形を行い原反シートを得た。原反シートの厚みは平均105μmであった。次に、得られた原反シートを70℃でシート長手方向(MD)に1.31倍、次いで110℃で幅方向(TD)に2.95倍の逐次延伸を行い、膜厚25μm、空孔率60%、ガーレー透気度110秒/100ccの高分子多孔質膜を得た(なお、ガーレー透気度は、JIS P8117に準じてB型ガーレーデンソーメーター(東洋精機製作所製)を使用して測定した。)。得られた高分子多孔質膜と無機フィラーとして用いた硫酸バリウムに含有されるハロゲン(Cl)とFeを前述の定量方法に従って、それぞれ定量した結果は、表2に示す通りであった。
[Example 1]
<Manufacture of polymer porous membrane>
High density polyethylene [“HI-ZEX7000FP” manufactured by Mitsui Chemicals, Inc., weight average molecular weight: 200,000, density: 0.956 g / cm 3 , melt flow rate: 0.04 g / 10 min], 100 parts by weight, soft polypropylene [Idemitsu Petrochemical "PER R110E", weight average molecular weight: 330,000, 15.6 parts by weight, hydrogenated castor oil [HY-CASTOR OIL, molecular weight 938, manufactured by Toyokuni Oil Co., Ltd., 9.4 parts by weight, barium sulfate [硫酸] “B-55” manufactured by Kagaku Co., Ltd., average particle size 0.66 μm] 187.5 parts by weight was blended and melt-kneaded, and the resulting resin composition was subjected to inflation molding at a temperature of 210 ° C. to obtain a raw sheet. The thickness of the original fabric sheet was 105 μm on average. Next, the obtained raw sheet was sequentially stretched at 70 ° C. in the sheet longitudinal direction (MD) by 1.31 times, and then at 110 ° C. in the width direction (TD) by 2.95 times to obtain a film thickness of 25 μm, A porous polymer membrane having a porosity of 60% and a Gurley air permeability of 110 seconds / 100 cc was obtained (Gurley air permeability was measured using a B-type Gurley Densometer (Toyo Seiki Seisakusho) according to JIS P8117). Measured). Table 2 shows the results of quantification of halogen (Cl) and Fe contained in the obtained polymer porous membrane and barium sulfate used as an inorganic filler according to the above-described quantification method.

<電解液の調製>
乾燥アルゴン雰囲気下、エチレンカーボネートとエチルメチルカーボネートとの混合物(容量比3:7)に、十分に乾燥したLiPFを1.0モル/リットルの割合となるように溶解して電解液とした。
<Preparation of electrolyte>
Under a dry argon atmosphere, a sufficiently dried LiPF 6 was dissolved in a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7) so as to have a ratio of 1.0 mol / liter to obtain an electrolytic solution.

<正極の作製>
正極活物質としてLiCoOを用い、LiCoO85重量部にカーボンブラック6重量部及びポリフッ化ビニリデン(呉羽化学社製商品名「KF−1000」)9重量部を加えて混合し、N−メチル−2−ピロリドンで分散し、スラリー状とした。これを、正極集電体である厚さ20μmのアルミニウム箔の片面に均一に塗布し、乾燥後、プレス機により正極活物質層の密度が3.0g/cmになるようにプレスして正極とした。
<Preparation of positive electrode>
LiCoO 2 was used as the positive electrode active material, and 6 parts by weight of carbon black and 9 parts by weight of polyvinylidene fluoride (trade name “KF-1000” manufactured by Kureha Chemical Co., Ltd.) were added to 85 parts by weight of LiCoO 2 and mixed. Disperse with 2-pyrrolidone to form a slurry. This was uniformly applied to one side of a 20 μm-thick aluminum foil as a positive electrode current collector, dried, and then pressed by a press machine so that the density of the positive electrode active material layer was 3.0 g / cm 3. It was.

<負極の作製>
負極活物質として天然黒鉛粉末を用い、天然黒鉛粉末94重量部にポリフッ化ビニリデン6重量部を混合し、N−メチル−2−ピロリドンで分散させてスラリー状とした。これを負極集電体である厚さ18μmの銅箔の片面に均一に塗布し、乾燥後、プレス機により負極活物質層の密度が1.5g/cmになるようにプレスして負極とした。
<Production of negative electrode>
Using natural graphite powder as a negative electrode active material, 94 parts by weight of natural graphite powder was mixed with 6 parts by weight of polyvinylidene fluoride, and dispersed with N-methyl-2-pyrrolidone to form a slurry. This was uniformly applied to one side of a 18 μm-thick copper foil as a negative electrode current collector, dried, and then pressed by a pressing machine so that the density of the negative electrode active material layer was 1.5 g / cm 3. did.

<電池の組立>
上記高分子多孔質膜をセパレータとして、上記電解液、正極及び負極と共に用いて2032型コインセルを作製した。即ち、正極導電体を兼ねるステンレス鋼製の缶体に直径12.5mmの円盤状に打ち抜いて電解液を含浸させた正極を収容し、その上に電解液を含浸させた直径18.8mmのセパレータを介して直径12.5mmの円盤状に打ち抜いて電解液を含浸させた負極を載置した。この缶体と負極導電体を兼ねる封口板とを、絶縁用のガスケットを介してかしめて密封することによりコイン型電池を作製した。ここで電池部材への電解液の含浸は、各部材を電解液に2分間浸漬することより行った。
<Battery assembly>
A 2032 type coin cell was produced using the porous polymer membrane as a separator together with the electrolytic solution, positive electrode and negative electrode. That is, a stainless steel can that also serves as a positive electrode conductor is accommodated with a positive electrode impregnated with an electrolyte by punching into a disk shape having a diameter of 12.5 mm, and a separator having a diameter of 18.8 mm impregnated with the electrolyte A negative electrode impregnated with an electrolyte by punching into a disk shape having a diameter of 12.5 mm was placed. The can body and a sealing plate serving also as a negative electrode conductor were caulked and sealed via an insulating gasket to produce a coin-type battery. Here, the impregnation of the battery member with the electrolytic solution was performed by immersing each member in the electrolytic solution for 2 minutes.

<電池の評価>
25℃において0.2C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする、以下同様)に相当する定電流で充電終止電圧4.2V、放電終止電圧3Vで充放電を3サイクル行って安定させ、4サイクル目を0.5Cに相当する電流で充電終止電圧4.2Vまで充電し、充電電流値が0.05Cに相当する電流値になるまで充電を行う4.2V−定電流定電圧充電(CCCV充電)(0.05Cカット)後、0.2Cに相当する定電流値で3V放電を行った。さらに、60℃で充放電電流値が2Cに相当する定電流で充電終止電圧4.2V、放電終止電圧3Vで充放電を100サイクル行い、各サイクル時の放電容量の変化を調べた。結果を表2に示した。
<Battery evaluation>
At a constant current corresponding to 0.2 C at 25 ° C. (the rated capacity due to the discharge capacity at 1 hour rate is 1 C, and the same applies hereinafter), the charge end voltage is 4.2 V and the discharge end voltage is 3 V. Charge and discharge are stabilized by 3 cycles, and the 4th cycle is charged to a charge end voltage of 4.2 V with a current corresponding to 0.5 C, and charged until the charge current value reaches a current value corresponding to 0.05 C. After 4.2V-constant current constant voltage charge (CCCV charge) (0.05C cut), 3V discharge was performed at a constant current value corresponding to 0.2C. Furthermore, 100 cycles of charge / discharge were performed at a constant current corresponding to a charge / discharge current value of 2C at 60 ° C. with a charge end voltage of 4.2 V and a discharge end voltage of 3 V, and changes in the discharge capacity at each cycle were examined. The results are shown in Table 2.

〔実施例2〕
無機フィラーとして硫酸バリウム〔堺化学社製「BA」平均粒径8μm〕を使用したこと以外は実施例1と同様にして、膜厚30μm、空孔率68%、ガーレー透気度50秒/100ccの高分子多孔質膜を得た。得られた高分子多孔質膜と無機フィラーとして用いた硫酸バリウムに含有されるハロゲン(Cl)とFeを、前述の定量方法に従ってそれぞれ定量した結果は、表2に示す通りであった。
[Example 2]
A film thickness of 30 μm, a porosity of 68%, and a Gurley air permeability of 50 seconds / 100 cc were the same as in Example 1 except that barium sulfate (“BA” average particle diameter of 8 μm manufactured by Sakai Chemical Co., Ltd.) was used as the inorganic filler. A porous polymer membrane was obtained. Table 2 shows the results of quantification of halogen (Cl) and Fe contained in the obtained polymer porous membrane and barium sulfate used as an inorganic filler according to the above-described quantification method.

この高分子多孔質膜をセパレータとして用いたこと以外は、実施例1と同様にしてコイン型電池を組み立て、同様に評価を行って、結果を表2に示した。   A coin-type battery was assembled and evaluated in the same manner as in Example 1 except that this polymer porous membrane was used as a separator, and the results are shown in Table 2.

〔実施例3〕
硫酸バリウム〔堺化学社製「BC」平均粒径10μm〕を5重量%硫酸で1時間抽出後濾過して純水で洗浄し、更に、純水中で30分間の超音波抽出後濾過して純水で洗浄した。この洗浄後の硫酸バリウムを120℃で1時間乾燥した後、更に、120℃で真空乾燥を12時間行った。以上の処理を行った硫酸バリウムを無機フィラーとして使用したこと以外は実施例1と同様にして膜厚34μm、空孔率67%、ガーレー透気度40秒/100ccの高分子多孔質膜を得た。得られた高分子多孔質膜と無機フィラーとして用いた硫酸バリウムに含有されるハロゲン(Cl)とFeを、前述の定量方法に従ってそれぞれ定量した結果は、表2に示す通りであった。
Example 3
Barium sulfate (“BC” manufactured by Sakai Chemical Co., Ltd., average particle size 10 μm) was extracted with 5% by weight sulfuric acid for 1 hour, filtered, washed with pure water, and further subjected to ultrasonic extraction for 30 minutes in pure water followed by filtration. Washed with pure water. The barium sulfate after washing was dried at 120 ° C. for 1 hour, and further vacuum dried at 120 ° C. for 12 hours. A polymer porous membrane having a film thickness of 34 μm, a porosity of 67%, and a Gurley permeability of 40 seconds / 100 cc was obtained in the same manner as in Example 1 except that barium sulfate subjected to the above treatment was used as an inorganic filler. It was. Table 2 shows the results of quantification of halogen (Cl) and Fe contained in the obtained polymer porous membrane and barium sulfate used as an inorganic filler according to the above-described quantification method.

この高分子多孔質膜をセパレータとして用いたこと以外は、実施例1と同様にしてコイン型電池を組み立て、同様に評価を行って、結果を表2に示した。   A coin-type battery was assembled and evaluated in the same manner as in Example 1 except that this polymer porous membrane was used as a separator, and the results are shown in Table 2.

〔比較例1〕
無機フィラーとして硫酸バリウム〔堺化学社製「B−1」平均粒径0.8μm〕を使用したこと以外は実施例1と同様にして、膜厚22μm、空孔率62%、ガーレー透気度100秒/100ccの高分子多孔質膜を得た。得られた高分子多孔質膜と無機フィラーとして用いた硫酸バリウムに含有されるハロゲン(Cl)とFeを、前述の定量方法に従ってそれぞれ定量した結果は、表2に示す通りであった。
[Comparative Example 1]
A film thickness of 22 μm, a porosity of 62%, and a Gurley air permeability were the same as in Example 1 except that barium sulfate (“B-1” average particle diameter 0.8 μm manufactured by Sakai Chemical Co., Ltd.) was used as the inorganic filler. A polymer porous membrane of 100 seconds / 100 cc was obtained. Table 2 shows the results of quantification of halogen (Cl) and Fe contained in the obtained polymer porous membrane and barium sulfate used as an inorganic filler according to the above-described quantification method.

この高分子多孔質膜をセパレータとして用いたこと以外は、実施例1と同様にしてコイン型電池を組み立て、同様に評価を行って、結果を表2に示した。   A coin-type battery was assembled and evaluated in the same manner as in Example 1 except that this polymer porous membrane was used as a separator, and the results are shown in Table 2.

〔比較例2〕
無機フィラーとして硫酸バリウム〔堺化学社製「BC」平均粒径10μm〕を使用したこと以外は実施例1と同様にして、膜厚33μm、空孔率66%、ガーレー透気度40秒/100ccの高分子多孔質膜を得た。得られた高分子多孔質膜と無機フィラーとして用いた硫酸バリウムに含有されるハロゲン(Cl)とFeを、前述の定量方法に従ってそれぞれ定量した結果は、表2に示す通りであった。
[Comparative Example 2]
The film thickness was 33 μm, the porosity was 66%, and the Gurley air permeability was 40 seconds / 100 cc in the same manner as in Example 1 except that barium sulfate (“BC” average particle diameter 10 μm manufactured by Sakai Chemical Co., Ltd.) was used as the inorganic filler. A porous polymer membrane was obtained. Table 2 shows the results of quantification of halogen (Cl) and Fe contained in the obtained polymer porous membrane and barium sulfate used as an inorganic filler according to the above-described quantification method.

この高分子多孔質膜をセパレータとして用いたこと以外は、実施例1と同様にしてコイン型電池を組み立て、同様に評価を行って、結果を表2に示した。   A coin-type battery was assembled and evaluated in the same manner as in Example 1 except that this polymer porous membrane was used as a separator, and the results are shown in Table 2.

Figure 0005017764
Figure 0005017764

表2よりセパレータについて、ハロゲン元素、特に塩素元素と鉄元素という、特定の不純物含有量を制限することにより、高温でのサイクル特性を改善することができることが分かる。
一般に、ハロゲンイオンは金属表面の不動態を溶解して金属酸化物を金属ハロゲン化物へ変える。金属ハロゲン化物は溶解し易いため腐食が進行する。よって塩化物イオンの結果に代表されるように、ハロゲン濃度が高いと缶や集電体の腐食が進行してサイクル特性などの電池特性が低下するものと考えられる。
従って、実施例1〜3の結果より、ハロゲン元素全般について制限することより、同様の発明の効果が奏されると考えられる。
From Table 2, it can be seen that the cycle characteristics at high temperatures can be improved by limiting the specific impurity content of the halogen element, particularly chlorine element and iron element, for the separator.
In general, halogen ions dissolve metal surface passivation and convert metal oxides into metal halides. Since metal halide is easily dissolved, corrosion proceeds. Therefore, as represented by the result of chloride ions, it is considered that when the halogen concentration is high, the corrosion of the can and the current collector proceeds and the battery characteristics such as the cycle characteristics deteriorate.
Therefore, from the results of Examples 1 to 3, it is considered that the same effects can be achieved by limiting the halogen elements in general.

本発明は、非水系電解液二次電池の性能、特に、サイクル特性の向上に有用である。   The present invention is useful for improving the performance of a non-aqueous electrolyte secondary battery, in particular, cycle characteristics.

Claims (5)

無機フィラーを含有する高分子多孔質膜で構成された非水系電解液二次電池用セパレータであって、該高分子多孔質膜が、熱可塑性樹脂膜100重量部に対して無機フィラーを40〜300重量部含有する熱可塑性樹脂膜であり、セパレータ中に含有されるハロゲン元素が10ppm以下で且つ、鉄元素が100ppm以下であることを特徴とする非水系電解液二次電池用セパレータ。 A separator for a non-aqueous electrolyte secondary battery composed of a polymer porous membrane containing an inorganic filler, wherein the polymer porous membrane contains 40 to 40 inorganic fillers per 100 parts by weight of a thermoplastic resin membrane. A separator for a non-aqueous electrolyte secondary battery , which is a thermoplastic resin film containing 300 parts by weight, wherein the halogen element contained in the separator is 10 ppm or less and the iron element is 100 ppm or less. 無機フィラーを含有する高分子多孔質膜で構成された非水系電解液二次電池用セパレータであって、該高分子多孔質膜が、熱可塑性樹脂膜100重量部に対して無機フィラーを40〜300重量部含有する熱可塑性樹脂膜であり、セパレータ中に含有される塩素元素が10ppm以下で且つ、鉄元素が100ppm以下であることを特徴とする非水系電解液二次電池用セパレータ。 A separator for a non-aqueous electrolyte secondary battery composed of a polymer porous membrane containing an inorganic filler, wherein the polymer porous membrane contains 40 to 40 inorganic fillers per 100 parts by weight of a thermoplastic resin membrane. A separator for a non-aqueous electrolyte secondary battery , which is a thermoplastic resin film containing 300 parts by weight, wherein the chlorine element contained in the separator is 10 ppm or less and the iron element is 100 ppm or less. 無機フィラーが、硫酸バリウム及びアルミナからなる群から選ばれたものを含むことを特徴とする請求項1又は2に記載の非水系電解液二次電池用セパレータ。   The separator for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the inorganic filler includes a material selected from the group consisting of barium sulfate and alumina. 無機フィラーが、1M LiPFのEC/EMC=3:7(体積比)の混合非水溶媒溶液よりなる電解液に、電解液1ml当たり該無機フィラーを0.5gの比率で添加して85℃、72時間保持した後の電解液中のリチウムイオンの濃度が0.75mmol/gを超えるものであることを特徴とする請求項1ないし3のいずれかに記載の非水系電解液二次電池用セパレータ。 An inorganic filler is added to an electrolytic solution composed of a mixed non-aqueous solvent solution of EC / EMC = 3: 7 (volume ratio) of 1M LiPF 6 at a ratio of 0.5 g per ml of the electrolytic solution, and 85 ° C. 4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the concentration of lithium ions in the electrolyte after holding for 72 hours exceeds 0.75 mmol / g. Separator. リチウムイオンを吸蔵・放出可能な正極、リチウムイオンを吸蔵・放出可能な負極、電解質を非水溶媒中に含有する電解液、及びセパレータを有する非水系電解液二次電池において、セパレータとして、請求項1ないしのいずれかに記載のセパレータを用いたことを特徴とする非水系電解液二次電池。 A non-aqueous electrolyte secondary battery having a positive electrode capable of inserting and extracting lithium ions, a negative electrode capable of inserting and extracting lithium ions, an electrolytic solution containing an electrolyte in a non-aqueous solvent, and a separator, as a separator. A non-aqueous electrolyte secondary battery using the separator according to any one of 1 to 4 .
JP2004033623A 2003-08-06 2004-02-10 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same Expired - Fee Related JP5017764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004033623A JP5017764B2 (en) 2003-08-06 2004-02-10 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003287904 2003-08-06
JP2003287904 2003-08-06
JP2004033623A JP5017764B2 (en) 2003-08-06 2004-02-10 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2005071979A JP2005071979A (en) 2005-03-17
JP5017764B2 true JP5017764B2 (en) 2012-09-05

Family

ID=34425217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004033623A Expired - Fee Related JP5017764B2 (en) 2003-08-06 2004-02-10 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5017764B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563008B2 (en) * 2002-08-14 2010-10-13 三菱化学株式会社 Lithium secondary battery separator and lithium secondary battery using the same
JP5260889B2 (en) * 2006-05-19 2013-08-14 パナソニック株式会社 Nonaqueous electrolyte secondary battery
KR20080080163A (en) * 2006-05-19 2008-09-02 마쯔시다덴기산교 가부시키가이샤 Nonaqueous electrolyte secondary battery
JP2008311221A (en) * 2007-05-14 2008-12-25 Sumitomo Chemical Co Ltd Laminated porous film
US8999585B2 (en) 2007-07-18 2015-04-07 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
JP2009205959A (en) * 2008-02-28 2009-09-10 Teijin Ltd Manufacturing method of nonaqueous electrolyte battery separator
JP5750511B2 (en) * 2011-09-09 2015-07-22 三菱樹脂株式会社 Battery separator and battery
JPWO2013069146A1 (en) * 2011-11-11 2015-04-02 ニッポン高度紙工業株式会社 Electrolytic capacitor separator and electrolytic capacitor
JP2013164972A (en) * 2012-02-10 2013-08-22 Mitsubishi Rayon Co Ltd Polymer for secondary battery electrode binder and manufacturing method thereof, electrode for secondary battery, and lithium ion secondary battery
JP2014123607A (en) * 2012-12-20 2014-07-03 Nippon Kodoshi Corp Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
CN105027325A (en) * 2013-03-21 2015-11-04 日本瑞翁株式会社 Slurry for lithium ion secondary battery porous film, production method therefor, separator for lithium ion secondary battery, and lithium ion secondary battery
JP2015133389A (en) * 2014-01-10 2015-07-23 ニッポン高度紙工業株式会社 Separator, and capacitor using the separator
JP6667051B2 (en) 2017-11-10 2020-03-18 旭化成株式会社 Power storage device separator and power storage device
JP6634543B2 (en) * 2017-11-28 2020-01-22 旭化成株式会社 Power storage device separator and method for manufacturing the same, and power storage device and method for manufacturing the same
KR20220039736A (en) * 2019-08-15 2022-03-29 도레이 카부시키가이샤 Battery separator and manufacturing method therefor
JPWO2023095885A1 (en) 2021-11-26 2023-06-01

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272762A (en) * 1994-03-31 1995-10-20 Sony Corp Nonaqueous electrolytic secondary battery
JPH08255615A (en) * 1995-03-20 1996-10-01 Nippondenso Co Ltd Non-aqueous electrolyte battery
JPH1143890A (en) * 1996-12-26 1999-02-16 Mitsubishi Paper Mills Ltd Nonwoven fabric, separator for battery and battery
JPH11185723A (en) * 1997-12-18 1999-07-09 Mitsubishi Chemical Corp Separator for battery and secondary battery using the same
JPH11204146A (en) * 1998-01-16 1999-07-30 Hitachi Maxell Ltd Organic electrolyte secondary battery and its manufacture
US6080507A (en) * 1998-04-13 2000-06-27 Celgard Inc. Trilayer battery separator
JP2000144074A (en) * 1998-11-11 2000-05-26 Nitto Denko Corp Windable insulating adhesive tape or sheet
JP4470248B2 (en) * 1999-11-10 2010-06-02 宇部興産株式会社 Battery separator
JP4470288B2 (en) * 2000-07-07 2010-06-02 宇部興産株式会社 Battery separator and lithium secondary battery using the same
JP2002008721A (en) * 2000-04-17 2002-01-11 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery
JP2002075460A (en) * 2000-06-13 2002-03-15 Shin Kobe Electric Mach Co Ltd Lithium secondary cell
JP5017748B2 (en) * 2001-05-23 2012-09-05 日油株式会社 Polymerizable compound, electrolyte for electrochemical device, and method for producing polymerizable compound
JP2003234127A (en) * 2001-12-06 2003-08-22 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and lithium secondary battery using the same
JP4563008B2 (en) * 2002-08-14 2010-10-13 三菱化学株式会社 Lithium secondary battery separator and lithium secondary battery using the same

Also Published As

Publication number Publication date
JP2005071979A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
US8597836B2 (en) Nonaqueous electrolyte solution secondary battery separator having filler and controlled impurities
CN110383566B (en) Additive for nonaqueous electrolyte solution, and electricity storage device
JP5221660B2 (en) Battery negative electrode and lithium ion battery using the same
JP5017764B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same
US20120141885A1 (en) Nonaqueous-electrolyte secondary battery
KR20150067049A (en) Conductive composition for rechargeable lithium battery, positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JP6304746B2 (en) Lithium ion secondary battery
JP2006269359A (en) Separator for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell
CN105990599A (en) Nonaqueous electrolyte secondary battery
JP4984372B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same
JP4929593B2 (en) Non-aqueous electrolyte secondary battery
JP5686928B2 (en) Electrochemical cell
KR101961365B1 (en) Negative electrode active material for lithium secondary battery and preparing method thereof
JP5206659B2 (en) Non-aqueous electrolyte secondary battery
JP4586374B2 (en) Non-aqueous electrolyte secondary battery
JP4586359B2 (en) Non-aqueous electrolyte secondary battery
JP2010146961A (en) Nonaqueous electrolytic liquid secondary battery and separator for the same
JP4474931B2 (en) Non-aqueous electrolyte secondary battery
JP4586375B2 (en) Non-aqueous electrolyte secondary battery
JP4931331B2 (en) Non-aqueous electrolyte secondary battery
JP2017126488A (en) Nonaqueous electrolyte solution for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4635432B2 (en) Non-aqueous electrolyte secondary battery
JP4407237B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP2017130418A (en) Nonaqueous electrolyte, nonaqueous electrolyte secondary battery, and method of manufacturing nonaqueous electrolyte secondary battery
KR101555833B1 (en) Electrode Assembly and Lithium Secondary Battery Comprising the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5017764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees