JP5017647B2 - Water quality inspection apparatus and method - Google Patents

Water quality inspection apparatus and method Download PDF

Info

Publication number
JP5017647B2
JP5017647B2 JP2007050428A JP2007050428A JP5017647B2 JP 5017647 B2 JP5017647 B2 JP 5017647B2 JP 2007050428 A JP2007050428 A JP 2007050428A JP 2007050428 A JP2007050428 A JP 2007050428A JP 5017647 B2 JP5017647 B2 JP 5017647B2
Authority
JP
Japan
Prior art keywords
water
quality inspection
water quality
solar
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007050428A
Other languages
Japanese (ja)
Other versions
JP2008215885A (en
Inventor
洲さき敏伸
吉村知里
大村現
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Original Assignee
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC filed Critical Kobe University NUC
Priority to JP2007050428A priority Critical patent/JP5017647B2/en
Publication of JP2008215885A publication Critical patent/JP2008215885A/en
Application granted granted Critical
Publication of JP5017647B2 publication Critical patent/JP5017647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Catching Or Destruction (AREA)

Description

本発明は、太陽虫の生物活性度を測定することにより、水中の汚染物質の存在を検知する水質検査装置および方法に関する。   The present invention relates to a water quality inspection apparatus and method for detecting the presence of pollutants in water by measuring the biological activity of solar insects.

従来、水質検査、水質モニタリングのために生物活性度を指標として水中の毒性物質を評価することが行なわれており、たとえば、検査対象となる水(以下、検水と略称する。)が注入された水槽に金魚、コイ、フナ等の魚類に代表される水棲生物を飼育し、一定時間経過後のこれら水棲生物の挙動や致死率から水質異常を検知する水質検査システム、硝化菌、鉄酸化菌等を固定化した微生物膜を溶存酸素電極に装着したセンサーを用いて、上記微生物がそれぞれアンモニア、鉄を酸化する際に消費される溶存酸素を検出し、検水における溶存酸素の変化をモニタリングすることで毒性物質の混入を判定を行なう水質検査システム(特許文献1)が提案、実用化されている。   Conventionally, toxic substances in water have been evaluated for the purpose of water quality inspection and water quality monitoring using biological activity as an index. For example, water to be examined (hereinafter abbreviated as test water) is injected. Aquatic organisms such as goldfish, carp, and crucian fish in aquariums, and water quality inspection systems that detect abnormal water quality from the behavior and mortality of these aquatic organisms after a certain period of time, nitrifying bacteria, iron oxidizing bacteria Detecting dissolved oxygen consumed when the microorganisms oxidize ammonia and iron, respectively, and monitoring changes in dissolved oxygen in the sample water using a sensor with a microbial membrane fixed to the dissolved oxygen electrode. Therefore, a water quality inspection system (Patent Document 1) for determining the mixing of toxic substances has been proposed and put into practical use.

太陽虫の細胞は球形またはそれに近い形であり、細胞は単独の場合が多いが,群体を形成する種もある。特徴的に細胞から多数の軸足を放射状に出し、軸足の先端は針状に細くなっており、ほとんど動きはない。細胞の大きさはさまざまで,400倍でも小さく見えるものから100倍でかなり大きく見えるものまである。浮遊生活をすることはあまりなく,水草の間や水底の泥の上などで底生生活をし、極めて普通に見られる生物である。太陽虫は,肉質鞭毛虫門有軸仮足虫上綱太陽虫綱に属する生物の総称であって、アメーバとはかなり見た目が異なるが,アメーバに近い,単細胞の生物である。針のような軸足を多数放射状に伸ばしおり,これで捕食や移動をする。しかし,たまに軸足を動かす以外はほとんど動きがない。種類が多く,細胞表面は厚い寒天質基質でおおわれているもの,多数の小鱗片でおおわれているもの,有機質の孔のあるからでおおわれているもの,砂粒をつけているもの,殻などでおおわれておらず,収縮胞が目立つものなどいろいろある。
大部分淡水産で,海にすんでいるものはごくわずかである。
特公平7−85072号公報
Solar insect cells are spherical or close to their shape, and cells are often single, but some species form colonies. Characteristically, a large number of axial feet are emitted radially from the cell, and the tip of the axial foot is thin like a needle, and there is almost no movement. Cells vary in size, from those that appear small even at 400 times to those that appear quite large at 100 times. It is a very common creature that lives in a benthic environment between aquatic plants and on the bottom of mud. The solar worm is a general term for the organisms belonging to the flesculiophyta arbopodapodiata elegans, and is a single-celled organism close to amoeba, although it looks quite different from amoeba. A number of axial feet like needles are extended radially, and they prey and move. However, there is little movement except occasionally moving the foot. There are many types, and the cell surface is covered with a thick agar substrate, covered with many small scales, covered with organic pores, sanded, covered with shells, etc. There are many things that are not conspicuous and the constricted vesicles are conspicuous.
Most are freshwater products and very few live in the sea.
Japanese Patent Publication No. 7-85072

微生物を用いた水質検査システムにおいては、硝化菌、鉄酸化菌の餌であるアンモニアや鉄を供給する必要があり、また、pH調整のための緩衝液を供給して微生物の培養条件を整える必要がある。魚類を用いた水質検査システムにおいても、魚類の生存のためには餌を供給することが必要である。しかも、一般にそれらは感度が低く、検出にも相当の時間がかかり、その上装置が大型で高価であるという問題があった。   In water quality inspection systems using microorganisms, it is necessary to supply nitrifying bacteria and iron-oxidizing bacteria, ammonia and iron, and it is also necessary to adjust the culture conditions of microorganisms by supplying a buffer solution for pH adjustment There is. Even in a water quality inspection system using fish, it is necessary to supply food for the survival of fish. Moreover, in general, they have low sensitivity, take a considerable amount of time for detection, and have a problem that the apparatus is large and expensive.

本発明は、上記の解決すべき課題に鑑みてなされたものであり、迅速かつ高感度に環境中の毒性物質を検出することのできる簡便かつ低コストの水質検査装置および方法を提供することを目的とする。   The present invention has been made in view of the problems to be solved, and provides a simple and low-cost water quality inspection apparatus and method capable of detecting toxic substances in the environment quickly and with high sensitivity. Objective.

本発明者は、太陽虫の生物活性度を指標とすることで水質検査装置および方法が、極めて効率的、簡便に、安価に達成できることを見出し本発明を完成した。
つまり、本発明は以下からなる;
1.検水を、一端から給水し他端から排出するように構成した流水経路を形成し、該流水経路中に太陽虫を保持する検出槽を設けるとともに、その検出槽における太陽虫の生物活性度を指標として検水中への汚染物質の混入を検知する検知手段を設けたことを特徴とする水質検査装置。
2.前記太陽虫がタイヨウチュウ目、カゴメタイヨウチュウ目、キリオフリス目、スチコロンケ目、カラタイヨウチュウ目、ラブディオフリウス目から選ばれる前項1に記載の水質検査装置。
3.前記太陽虫がタイヨウチュウ属、オオタイヨウチュウ属、カラタイヨウチュウ属、トゲタイヨウチュウ属、カゴメタイヨウチュウ属、ハリタイヨウチュウ属から選ばれる前項1に記載の水質検査装置。
4.前記検知手段が、太陽虫の検出槽における底面からの遊離度を測定するように構成されることを特徴とするものである前項1〜3の何れか一に記載の水質検査装置。
5. 前記検知手段が、検出槽に保持される太陽虫の数を測定することである前項1〜3の何れか一に記載の水質検査装置。
6. 検水との接触後、所定の時間の洗浄よって、前記検出槽に保持される太陽虫の数を測定する前項5の水質検査装置。
7. 前記検出槽が、流入口と排出口を持つ光透過性のシャーレ状容器であり、容器の底部には太陽虫が底面との接触により付着可能であり、要時、容器底部に太陽虫を付着させてなる前項1〜6何れか一に記載の水質検査装置。
8. 前記流入口から前記検出槽に流入した検水をシャーレ状容器において底面に付着する太陽虫と接触させ、一定時間経過後、洗浄による太陽虫の付着数を測定する前項7に記載の水質検査装置。
9.太陽虫数の測定が、容器の下側から光を与え、顕微鏡検査で白く光る太陽虫をデジタル画像で画像解析装置に取り込みおこなわれる前項8に記載の水質検査装置。
10. 検水を流通させて検出槽に導く給水工程と、前記検出槽中に保持される太陽虫と前記検水を接触保持させる接触工程と、洗浄による太陽虫の遊離度を指標として検水中への汚染物質の混入を検知する検知工程とを有することを特徴とする水質検査方法。
11.前項1〜9の何れか一に記載の装置を使う水質検査方法。
12. 前記検出槽を15℃〜25℃に保持する前項10又は11の水質検査方法。
13.検出槽中に保持される太陽虫が、検査前30分以上前に検出槽に導入され底面への付着が安定している前項10〜12何れか一に記載の水質検査方法。
14.検出槽中に保持される太陽虫が、汽水条件下におかれる前項13に記載の水質検査方法。
15.検水が、自然水、上水、下水、土壌の流水である前項10〜14の何れか一に記載の水質検査方法。
16.汚染物質が、クロロホルム、ホルムアルデヒド、ジクロロメタン、ベンゼン、砒素イオン、水銀イオン、カドミウムイオン、鉛イオン、銅イオン、亜鉛イオンである前項10〜15何れか一に記載の水質検査方法。
The present inventor has found that the water quality test apparatus and method can be achieved extremely efficiently, simply and inexpensively by using the biological activity of solar insects as an indicator, and has completed the present invention.
That is, the present invention comprises:
1. A running water path configured to supply water from one end and discharge from the other end is formed, and a detection tank for holding the solar insect is provided in the flowing water, and the biological activity of the solar insect in the detection tank is set. A water quality inspection apparatus characterized in that a detection means for detecting contamination in the test water is provided as an index.
2. The water quality inspection apparatus according to the preceding item 1, wherein the solar worm is selected from the order of the order Coleoptera, Coleoptera, Kirifolis, Stycolonidae, Coleoptera, Rabbiofridius.
3. 2. The water quality inspection apparatus according to item 1 above, wherein the solar worm is selected from the group consisting of the genus Clevis, the genus Pleurotus, the genus Pleurotus, the genus Pleurotus, the genus Pleurotus, and the genus Pleurotus.
4). 4. The water quality inspection apparatus according to any one of items 1 to 3, wherein the detection unit is configured to measure a degree of liberation from a bottom surface of a solar insect detection tank.
5. The water quality inspection apparatus according to any one of the preceding items 1 to 3, wherein the detection means is to measure the number of solar insects held in the detection tank.
6). The water quality inspection apparatus according to 5 above, wherein the number of solar insects held in the detection tank is measured by washing for a predetermined time after contact with the test water.
7). The detection tank is a light-transmitting petri dish with an inlet and an outlet. Solar insects can adhere to the bottom of the container by contact with the bottom, and when necessary, solar insects adhere to the bottom of the container. 7. The water quality inspection apparatus according to any one of items 1 to 6 above.
8). 8. The water quality inspection apparatus according to item 7, wherein the test water flowing into the detection tank from the inlet is brought into contact with solar insects attached to the bottom surface in a petri dish-like container, and the number of attached solar insects by washing is measured after a predetermined time has elapsed. .
9. 9. The water quality inspection apparatus according to 8 above, wherein the number of solar insects is measured by applying light from the lower side of the container and taking in the image analysis apparatus the solar insects that shine white by microscopic inspection.
10. A water supply process for circulating the test water to the detection tank, a contact process for keeping the solar insect held in the detection tank in contact with the test water, and the liberty of the solar insect by washing as an index A water quality inspection method comprising: a detection step of detecting contamination.
11. A water quality inspection method using the apparatus according to any one of items 1 to 9.
12 12. The water quality inspection method according to item 10 or 11, wherein the detection tank is held at 15 ° C. to 25 ° C.
13. 13. The water quality inspection method according to any one of 10 to 12 above, wherein the solar insect held in the detection tank is introduced into the detection tank 30 minutes or more before the inspection and the adhesion to the bottom surface is stable.
14 14. The water quality inspection method according to item 13 above, wherein the solar insect held in the detection tank is placed under brackish water conditions.
15. 15. The water quality inspection method according to any one of the above items 10 to 14, wherein the test water is natural water, clean water, sewage, or running soil water.
16. 16. The water quality inspection method according to any one of items 10 to 15, wherein the pollutant is chloroform, formaldehyde, dichloromethane, benzene, arsenic ions, mercury ions, cadmium ions, lead ions, copper ions, or zinc ions.

本発明によれば、太陽虫を用いることにより、太陽虫は毒性物質に対して敏感であるとともに、培養が容易で、微生物同様、大量での取り扱いが可能であることから、高感度、迅速かつ簡便に毒性物質の検知を行うことが可能となった。さらに、太陽虫は、給餌およびpH調整が不要であるので、餌およびpH調整用に大量に消費されていた緩衝液が不要となり、コスト削減に貢献できるとともに、給餌および緩衝液供給に要する設備の設置が不要であるので、水質検査装置のシンプル化、小型化かつ低コスト化が図れるともに、ひいてはメンテナンスも容易となる。また、太陽虫の生物活性度を餌に関係無く把握できるという利点がある。また、太陽虫の生物活性度に基き毒性物質の存在を検知することから、溶存酸素量を生物活性度の指標とする場合に比べ、安全性と確実性が増大する。   According to the present invention, by using solar insects, solar insects are sensitive to toxic substances, easy to culture, and can be handled in large quantities like microorganisms. It has become possible to easily detect toxic substances. Furthermore, since solar insects do not require feeding and pH adjustment, a buffer solution that has been consumed in large quantities for feeding and pH adjustment is not required, which can contribute to cost reduction and facilities required for feeding and buffer supply. Since installation is not required, the water quality inspection device can be simplified, downsized and reduced in cost, and maintenance can be facilitated. Moreover, there exists an advantage that the biological activity of a solar insect can be grasped irrespective of a bait. In addition, since the presence of a toxic substance is detected based on the biological activity of the solar insect, safety and certainty are increased as compared with the case where the dissolved oxygen amount is used as an indicator of the biological activity.

本発明の水質検査装置は太陽虫の生物活性度が、検水中に汚染された汚染物質の影響を受けることをその基本的原理とする。本発明の水質検査装置において、太陽虫の生物活性度は、検出槽で測定される。検出槽には、太陽虫を維持させ、接触前の検出槽の太陽虫数を計数し、その後検出槽の一端から検水を導入し、一定時間(例えば、5〜30分間)接触させ、次いで検出槽の太陽虫数を計数し、その数の減少によって汚染物質の夾雑を検定する。
検出槽には、入り口と出口の少なくとも2つの口を有する。
The basic principle of the water quality inspection apparatus of the present invention is that the biological activity of solar insects is affected by contaminants contaminated in the test water. In the water quality inspection apparatus of the present invention, the biological activity of solar insects is measured in a detection tank. In the detection tank, solar insects are maintained, the number of solar insects in the detection tank before contact is counted, water is then introduced from one end of the detection tank, and contact is made for a certain time (for example, 5 to 30 minutes), then The number of solar worms in the detection tank is counted, and contamination of contaminants is tested by reducing the number.
The detection tank has at least two ports, an inlet and an outlet.

本発明の水質検査装置で用いる太陽虫は、生物学的分類によると、太陽虫綱に属する生物を広く適用できる。それらは、例えば、タイヨウチュウ目、カゴメタイヨウチュウ目、キリオフリス目、スチコロンケ目、カラタイヨウチュウ目、ラブディオフリウス目に属する生物であり、特にタイヨウチュウ属、オオタイヨウチュウ属、カラタイヨウチュウ属、トゲタイヨウチュウ属、カゴメタイヨウチュウ属、ハリタイヨウチュウ属等から選ばれる太陽虫が好適な指標生物となる。   According to the biological classification, the solar insects used in the water quality inspection apparatus of the present invention can be widely applied to organisms belonging to the solar insect class. They are, for example, organisms belonging to the order Lepidoptera, Lepidoptera, Kirifolis, Stycolonidae, Calliphores, Rabbiofurius, Solar insects selected from the genus Pleurotus genus, Pseudomonas genus, Pleurotus genus are suitable indicator organisms.

本発明の水質検査装置において太陽虫の生物活性度は、太陽虫の検出槽における底面への付着性(保持力性:底面に付着して離れにくいことを意味する)を意味し、安定に太陽虫が検出槽の底面に付着した状態から、検水導入によって、その付着性の低下で洗浄による底面からの遊離度を測定し、検水中の毒性物質の汚染度を評価するものである。遊離度は、検出槽に保持される太陽虫の数を測定することであり、安定に太陽虫が検出槽の底面に付着した状態から、検水との一定時間の接触後の洗浄による太陽虫の数の変化減少を指標にする。洗浄のための洗浄水は、太陽虫の安定化のための水溶液と同じでよく、例えば5〜20%汽水(例えば10W/W%食塩水)が例示される。洗浄水による流速は、太陽虫との接触面において、流速0.1〜5mm/sec、好ましくは0.5〜2mm/sec、より好ましくは0.8〜1.5mm/sec、流量0.5〜5ml/min、好ましくは1〜2 ml/min、より好ましくは1.2〜1.7ml/minである。   In the water quality inspection apparatus of the present invention, the biological activity of the solar insect means adhesion to the bottom surface of the solar insect detection tank (retaining power: means that it adheres to the bottom surface and is difficult to separate), and the sun is stable. From the state where the insects are attached to the bottom surface of the detection tank, by introducing test water, the degree of contamination from the bottom surface by measuring the degree of adherence is measured and the degree of contamination of toxic substances in the test water is evaluated. The liberty is to measure the number of solar insects held in the detection tank. From the state where the solar insects are stably attached to the bottom of the detection tank, the solar insects are washed by contact with the test water for a certain period of time. Use the decrease in the number of changes as an indicator. The washing water for washing may be the same as the aqueous solution for stabilizing solar insects, and examples thereof include 5 to 20% brackish water (for example, 10 W / W% saline). The flow rate by the washing water is a flow rate of 0.1 to 5 mm / sec, preferably 0.5 to 2 mm / sec, more preferably 0.8 to 1.5 mm / sec, and a flow rate of 0.5 to 5 ml / min, preferably 1 to 5 at the contact surface with the solar insect. 2 ml / min, more preferably 1.2 to 1.7 ml / min.

本発明の水質検査装置において、検出槽は流入口と排出口を持つ光透過性の平らな底面をもつシャーレ状容器であり、容器の底部には太陽虫が底面との接触により付着可能であり、要時、容器底面に太陽虫を付着させる。本発明においては、前記流入口から前記検出槽に流入した検水をシャーレ状容器において底面に付着する太陽虫と接触させ、一定時間経過後、洗浄し、太陽虫の付着数を測定することによって構成される水質検査装置を提供する。太陽虫数の測定は、容器の下側から光を与え、顕微鏡検査で白く光る太陽虫をデジタル画像で画像解析装置に取り込みおこなわれる。光は、可視光線、赤外線が利用できる。   In the water quality inspection apparatus of the present invention, the detection tank is a petri dish-like container having a light-transmitting flat bottom surface having an inlet and an outlet, and solar insects can adhere to the bottom of the container by contact with the bottom surface. When necessary, attach solar insects to the bottom of the container. In the present invention, the test water that has flowed into the detection tank from the inlet is brought into contact with the solar insects attached to the bottom surface in the petri dish-like container, washed after a certain period of time, and the number of solar insects attached is measured. Provided is a water quality inspection device configured. Measurement of the number of solar insects is performed by applying light from the lower side of the container and capturing the solar insects that shine white by microscopic inspection as a digital image into an image analysis apparatus. Visible light and infrared light can be used as the light.

本発明の水質検査方法は、検水を導入させて検出槽に導く給水工程と、前記検出槽中に保持される太陽虫と前記検水を接触保持させる接触工程と、洗浄水を導入させて太陽虫を底面から遊離させる洗浄工程と、太陽虫の遊離度を指標として検水中への汚染物質の混入を検知する検知工程とを有する。検知は、検水との接触前の太陽虫数と接触・洗浄後の太陽虫数との比較することで行われる。このような本発明の水質検査方法は、上述の水質検査装置を使うことで達成できる。   The water quality inspection method of the present invention includes introducing a test water into a detection tank, introducing a test water, contacting a solar insect held in the detection tank with the test water, and introducing cleaning water. A cleaning step for releasing the solar insects from the bottom surface, and a detection step for detecting contamination of the test water using the degree of liberation of the solar insects as an index. The detection is performed by comparing the number of solar worms before contact with the test water and the number of solar worms after contact / cleaning. Such a water quality inspection method of the present invention can be achieved by using the above-described water quality inspection apparatus.

本発明の水質検査方法は、太陽虫を付着させた検出槽を15℃〜25℃に保持することによって行われる。また、検出槽中に保持される太陽虫は、安定した付着状態にあることが測定値の信頼性のためには必要で、そのためには検査前30分好ましくは1時間以上前に検出槽に太陽虫が導入され底面への付着がなされていることが好ましい。さらに、検出槽中に保持される太陽虫が、汽水条件下におかれることが好ましい。これは、汽水であれば、塩分が通常の淡水よりも、少し多めの約5〜20%程度であることから、太陽虫にとって、より厳しい環境下におかれることになるが、下水や土壌滲出水などのように検水のイオン強度や浸透圧がある程度高い場合にも汚染物質の検知が可能となる。   The water quality inspection method of the present invention is performed by maintaining a detection tank to which solar insects are attached at 15 ° C to 25 ° C. In addition, it is necessary for the reliability of the measurement value that the solar insects held in the detection tank are in a stable adhesion state, and for that purpose, 30 minutes before the inspection, preferably 1 hour or more before the inspection. It is preferable that solar insects are introduced and adhered to the bottom surface. Furthermore, it is preferable that the solar insect held in the detection tank is placed under brackish water conditions. This is because brackish water has a salt content of about 5 to 20%, which is slightly higher than normal fresh water, so it will be placed in a more severe environment for solar insects. Contaminants can be detected even when the ionic strength or osmotic pressure of test water is high to some extent, such as water.

本発明の水質検査方法は、検水が、自然水、上水、下水、土壌の流水等が好適に対象となる。また、その毒性物質である汚染物質は、クロロホルム、ホルムアルデヒド、ジクロロメタン、ベンゼン、砒素イオン、水銀イオン、カドミウムイオン、鉛イオン、銅イオン、亜鉛イオン等が例示される。以下の実施例では代表的物質として水銀を使い検定したが、これはこれまでもっとも指標物質として汎用され、その結果の一般的予測性が高いものであるからであり、本発明がこの物質のみに限定されるものではない。   In the water quality inspection method of the present invention, natural water, clean water, sewage, running water of soil, and the like are suitable for the test water. Examples of the pollutants that are toxic substances include chloroform, formaldehyde, dichloromethane, benzene, arsenic ions, mercury ions, cadmium ions, lead ions, copper ions, and zinc ions. In the following examples, mercury was used as a representative substance and tested, but this is because it has been most widely used as an indicator substance so far, and the general predictability of the result is high. It is not limited.

実施例1
本発明装置の構成
図1に示すように、水質検出装置は、流入口と流出口をもつ検出槽を有し、その検出槽の底面は平面であり、検出槽の下方部から照明例えば落射照明ランプを照らし、その光を受けて光る検出槽の底面に付着する太陽虫は、顕微鏡によってとらえられビデオカメラによってデジタル映像として解析用パソコンに転送され例えば1〜2mmでの太陽虫数を計測する。測定は、例えば、左のフラスコから十分量の太陽虫が10%汽水(10W/W%食塩)条件下で検出槽に送られ、検出槽で約15〜30分間安定化させ、検査前太陽虫数を計数し、その後検水を左側から送り、室温(約15℃)で5〜30分間接触させた。その後、10%汽水で洗浄後(流速1mm/sec、流量1.5 ml/min)、洗浄時間に応じて経時的に太陽虫数を計数した。
Example 1
Configuration of the Invention Device As shown in FIG. 1, the water quality detection device has a detection tank having an inlet and an outlet, and the bottom surface of the detection tank is a flat surface. Solar insects that illuminate the lamp and adhere to the bottom of the detection tank that shines by receiving the light are captured by a microscope, transferred to a personal computer for analysis as a digital image by a video camera, and the number of solar insects at, for example, 1 to 2 mm 2 is measured. . For example, a sufficient amount of solar insects is sent from the left flask to the detection tank under 10% brackish water (10 W / W% salt) conditions and stabilized in the detection tank for about 15 to 30 minutes. The number was counted, and then test water was sent from the left side and contacted at room temperature (about 15 ° C.) for 5 to 30 minutes. Thereafter, after washing with 10% brackish water (flow rate 1 mm / sec, flow rate 1.5 ml / min), the number of solar insects was counted over time according to the washing time.

実施例2
ハリタイヨウチュウ(RAC)に対するHgの効果を、Olympus実体顕微鏡を用いて調べた。
HgCl2の3.6 mg/lを作って、RACと1:1で混合した。1〜2分で、軸足の収縮といった感じの比較的早い短縮が、軸足ごとにばらばらと生じて、5分くらいで全部が完全に短縮した。検査装置にセットして、還流させた。検水を導入して、細胞に到達する時間は6分であった。まず、細胞を10%汽水で洗浄し、その様子を、10秒間隔で録画した。Hgにより軸足が短縮すると、細胞は基底面に貼りついた。短時間で水流によって流れ去ることはない。しかし、時間が経つと、次第にはがれ落ちて、視野に存在する細胞の数は減少していった。
オオタイヨウチュウ(ACS)でも同様であった。
Example 2
The effect of Hg on pearl millet (RAC) was examined using an Olympus stereomicroscope.
3.6 mg / l of HgCl 2 was made and mixed 1: 1 with RAC. In 1 to 2 minutes, a relatively quick shortening of the feeling of contraction of the pivot foot occurred separately for each pivot foot, and in about 5 minutes, everything was completely shortened. It was set in the inspection device and refluxed. The time to reach the cells after introducing the test water was 6 minutes. First, the cells were washed with 10% brackish water, and the situation was recorded at 10 second intervals. When the stem was shortened by Hg, the cells adhered to the basal plane. It will not flow away in a short time. However, over time, it gradually fell off and the number of cells in the field of view decreased.
The same was true for the giant chrysanthemum (ACS).

実施例3
RACに及ぼすHgCl2の影響を本発明の装置を使い検討した。検水には、HgCl2不含の10%汽水(コントロール)、HgCl2を0.1mg/L含有10%汽水、HgCl2を1mg/L含有10%汽水を使った。RACと各検水の接触を各検水の約800 ulを導入しておこなった。接触は約30分行い、その後10%汽水で洗浄した(流速1mm/sec、流量1.5 ml/min)。洗浄時間を約220分までおこないRAC数の変化を追った。その結果、処理後約50分で効果が判定できた。細胞数が半減する濃度は、約0.1mg/Lであり、軸足の短縮についてのLE50(0.08mg/L)とほぼ同等の感度を得た。図2はその結果を示し、横軸は、接触開始後からの時間、縦軸は細胞数(相対値)を示す。
Example 3
The effect of HgCl 2 on RAC was investigated using the device of the present invention. The test water, 10% brackish (control) of HgCl 2 free, the 0.1 mg / L containing 10% brackish HgCl 2, the HgCl 2 with 1 mg / L containing 10% brackish. About 800 ul of each test sample was brought into contact with RAC and each test sample. The contact was performed for about 30 minutes, and then washed with 10% brackish water (flow rate 1 mm / sec, flow rate 1.5 ml / min). The cleaning time was up to about 220 minutes and the change in the number of RACs was followed. As a result, the effect could be determined about 50 minutes after the treatment. The concentration at which the number of cells is halved is about 0.1 mg / L, and sensitivity almost equivalent to LE50 (0.08 mg / L) for shortening the axial leg was obtained. FIG. 2 shows the results. The horizontal axis represents the time after the start of contact, and the vertical axis represents the number of cells (relative value).

本発明の水質検査装置および毒性物質検知方法は、浄水場、排水処理施設等における水質検査等、環境監視分野における広範な適用が期待される。   The water quality inspection apparatus and toxic substance detection method of the present invention are expected to be widely applied in the field of environmental monitoring, such as water quality inspection in water purification plants, wastewater treatment facilities, and the like.

装置の概略Outline of the device 測定結果Measurement result

Claims (5)

検水を流通させて検出槽に導く給水工程と、前記検出槽中に汽水条件下において保持されるハリタイヨウチュウと前記検水を接触保持させる接触工程と、洗浄によるハリタイヨウ チュウの遊離度を指標として検水中への汚染物質の混入を検知する検知工程とを有することを特徴とする水質検査方法。Indicators and water supply steps leading to the detection chamber by flowing test water, a contact step of contacting holding the test water and Hari sun Chu held in brackish conditions in the detection bath, the free degree of Haritaiyou chew by washing A water quality inspection method comprising: a detection step of detecting contamination of the test water as a contaminant. 前記検出槽を15℃〜25℃に保持する請求項1の水質検査方法。The water quality inspection method according to claim 1 , wherein the detection tank is held at 15 ° C. to 25 ° C. 検出槽中に保持されるハリタイヨウチュウが、検査前30分以上前に検出槽に導入され底面への付着が安定している請求項1又は2に記載の水質検査方法。The water quality inspection method according to claim 1 or 2 , wherein the halibut is held in the detection tank and introduced into the detection tank at least 30 minutes before the inspection, and adhesion to the bottom surface is stable. 検水が、自然水、上水、下水、土壌の流水である請求項1〜3の何れか一に記載の水質検査方法。The water quality inspection method according to any one of claims 1 to 3 , wherein the test water is natural water, clean water, sewage, or running soil water. 汚染物質が、クロロホルム、ホルムアルデヒド、ジクロロメタン、ベンゼン、砒素イオン、水銀イオン、カドミウムイオン、鉛イオン、銅イオン、亜鉛イオンである請求項1〜4何れか一に記載の水質検査方法。The water quality inspection method according to any one of claims 1 to 4 , wherein the pollutant is chloroform, formaldehyde, dichloromethane, benzene, arsenic ions, mercury ions, cadmium ions, lead ions, copper ions, or zinc ions.
JP2007050428A 2007-02-28 2007-02-28 Water quality inspection apparatus and method Active JP5017647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007050428A JP5017647B2 (en) 2007-02-28 2007-02-28 Water quality inspection apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007050428A JP5017647B2 (en) 2007-02-28 2007-02-28 Water quality inspection apparatus and method

Publications (2)

Publication Number Publication Date
JP2008215885A JP2008215885A (en) 2008-09-18
JP5017647B2 true JP5017647B2 (en) 2012-09-05

Family

ID=39836107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007050428A Active JP5017647B2 (en) 2007-02-28 2007-02-28 Water quality inspection apparatus and method

Country Status (1)

Country Link
JP (1) JP5017647B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113009098B (en) * 2021-03-01 2023-01-17 阜阳泽明眼科医院 Method for detecting environmental toxic substances by combined biological method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691410B2 (en) * 2005-08-09 2011-06-01 中国電力株式会社 Bioassay device

Also Published As

Publication number Publication date
JP2008215885A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
Martin et al. Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus
JP5337480B2 (en) Water monitoring system
Cao et al. Evaluation of wastewater reclamation technologies based on in vitro and in vivo bioassays
Moss et al. Characterization of organic particles associated with rapid growth in juvenile white shrimp, Penaeus vannamei Boone, reared under intensive culture conditions
Chen et al. Endocrine disrupting effects of domestic wastewater on reproduction, sexual behavior, and gene expression in the brackish medaka Oryzias melastigma
Yu et al. Behavior toxicity to Caenorhabditis elegans transferred to the progeny after exposure to sulfamethoxazole at environmentally relevant concentrations
JPH06510666A (en) liquid monitoring device
KR100414784B1 (en) Automatic Water Toxicity Measuring Apparatus
US20030104353A1 (en) System and method for health monitoring of aquatic species
Michels et al. Effect of sublethal doses of cadmium on the phototactic behavior of Daphnia magna
Däwlätşina et al. Microworms swallow the nanobait: the use of nanocoated microbial cells for the direct delivery of nanoparticles into Caenorhabditis elegans
WO2011124945A1 (en) Detector for detecting contaminants in water or aqueous solutions
JP5017647B2 (en) Water quality inspection apparatus and method
CN103008276B (en) Pond water quality monitoring sensor automatic cleaning device and cleaning, offer water sample method
CN109321451B (en) Zebra fish embryo acute toxicity detection kit for multiple groups of experiments
JP2003066029A (en) Water quality inspection device and method
EP3655771B1 (en) Method for detecting the presence of a contaminant in a liquid
Irwin et al. Measurement of temperature and salinity effects on oxygen consumption of Artemia franciscana K., measured using fibre-optic oxygen microsensors
Wall et al. Fish bioturbation of cadmium‐contaminated sediments: Factors affecting Cd availability to Daphnia magna
JP2002311016A (en) Method and device for monitoring water quality, and method and device for monitoring gas quality
EP1318398A1 (en) System and method for health monitoring of aquatic species
CN103940789B (en) The specification of photobacteria Fluorescence behaviour and numeric value analysis in water toxicity detection
JP5709038B2 (en) BOD sensor, BOD measuring method and BOD measuring device
CN110988279A (en) Exposure device, exposure system and method for evaluating biological effectiveness of drug on test organism
Kolawole et al. The effect of domestic effluent on growth and haematological parameters of Clarias gariepinus (Burchell, 1822)(Pisces; Clariidae)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150