JP5017196B2 - Triangular heating pattern, heating path generation system and method - Google Patents

Triangular heating pattern, heating path generation system and method Download PDF

Info

Publication number
JP5017196B2
JP5017196B2 JP2008178553A JP2008178553A JP5017196B2 JP 5017196 B2 JP5017196 B2 JP 5017196B2 JP 2008178553 A JP2008178553 A JP 2008178553A JP 2008178553 A JP2008178553 A JP 2008178553A JP 5017196 B2 JP5017196 B2 JP 5017196B2
Authority
JP
Japan
Prior art keywords
heating
heat source
line segment
calculating
triangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008178553A
Other languages
Japanese (ja)
Other versions
JP2010017730A (en
Inventor
忠旻 玄
永七 都
大經 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Heavy Industries Co Ltd
Original Assignee
Samsung Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Heavy Industries Co Ltd filed Critical Samsung Heavy Industries Co Ltd
Priority to JP2008178553A priority Critical patent/JP5017196B2/en
Publication of JP2010017730A publication Critical patent/JP2010017730A/en
Application granted granted Critical
Publication of JP5017196B2 publication Critical patent/JP5017196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)
  • General Induction Heating (AREA)

Description

本発明は三角加熱の加熱パターン及び加熱経路の生成システム並びにその方法に関し、さらに詳しくは、船体外板の曲面形状を熱間加工する際の三角加熱の加熱パターン及び加熱経路の生成を数値化してアルゴリズム化することによって、三角加熱を自動化できる三角加熱の加熱パターン及び加熱経路の生成システム並びにその方法に関する。   The present invention relates to a triangular heating pattern and heating path generation system and method, and more specifically, the triangular heating pattern and heating path generation when hot-working the curved surface shape of a hull outer plate are quantified. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a triangular heating pattern, a heating path generation system, and a method thereof that can automate triangular heating by making an algorithm.

一般的に、船舶の外板、特に曲面外板は、流体力学、構造力学、振動などのエンジニアリング技術に基づいて設計される3次元曲面であり、所定の厚さの鉄板を加工して製作される。曲面外板の加工精度は、船舶全体の性能を左右する。船舶外板の3次元形状の加工は、大きく、プレスやローラなどを用いる機械的な冷間加工と、鉄板にガストーチなどで熱を加えることによる残留熱弾塑性変形を用いる熱間加工とに分けられる。機械的な冷間加工は、制御の便宜性のため、一方向にのみ一定の曲率を有するなだらかで単純な外板の曲面加工や、二重曲面外板の1次加工に主に用いられる。熱間加工は、仕上げ作業、二重曲面外板の2次加工、溶接変形除去などの作業に主に用いられ、10年以上の熟練者が主に行う難しい作業である。   Generally, the outer skin of a ship, especially the curved outer skin, is a three-dimensional curved surface designed based on engineering techniques such as fluid dynamics, structural dynamics, and vibration, and is manufactured by processing an iron plate of a predetermined thickness. The The processing accuracy of the curved skin affects the overall performance of the ship. The processing of the three-dimensional shape of a ship's outer plate is broadly divided into mechanical cold processing using a press or roller, and hot processing using residual thermal elastic-plastic deformation by applying heat to a steel plate with a gas torch. It is done. For the convenience of control, mechanical cold working is mainly used for the curved surface processing of a gentle and simple outer plate having a certain curvature only in one direction and the primary processing of a double curved outer plate. Hot working is mainly used for finishing work, secondary working of double-curved outer plates, removal of welding deformation, and the like, and is a difficult work mainly performed by experts over 10 years.

船舶の曲面外板は、曲面のガウス曲率によって大きくコンケーブ型(ガウス曲率>0)、サドル型(ガウス曲率<0)、シリンダ型(ガウス曲率=0)とに分けられる。また、コンケーブ型は、純粋なコンケーブ型とツイスト(歪み)型とに区分され、大部分の造船業界ではこのような曲面形状に応じて熱間加工方法を異ならせて作業者による手動加熱により最終形状を製作している。   The curved outer plate of a ship is roughly classified into a concave type (Gauss curvature> 0), a saddle type (Gauss curvature <0), and a cylinder type (Gauss curvature = 0) according to the Gaussian curvature of the curved surface. In addition, the concave type is divided into a pure concave type and a twist (distortion) type, and in most shipbuilding industries, the hot working method is changed according to such curved surface shape, and the final is done by manual heating by the operator. The shape is produced.

このような従来の熱間加工方法は、大きく、線状加熱法と三角加熱法とに分けられる。   Such a conventional hot working method is roughly divided into a linear heating method and a triangular heating method.

線状加熱法は、船体の外板加工に適用する際に、鋼板の表面に対してガスを主な熱源として直線又は任意の曲線状で加熱し、その後冷却することで、板に曲げを発生させる方法である。線状加熱法による曲げを発生させる原理は以下の通りである。   When the linear heating method is applied to the processing of the outer skin of a hull, the surface of the steel sheet is heated in a straight line or an arbitrary curved line with gas as the main heat source, and then cooled, generating bending in the plate. It is a method to make it. The principle of generating bending by the linear heating method is as follows.

図1に示すように、局部的に加熱された部分は、温度が上昇するにつれて膨脹し、金属材料の内部に熱応力が発生する。発生した熱応力の分布は、加熱される部分で最も大きく、加熱部から遠くなるほど減少する。一方、熱源は特定の速度で直線移動し、加熱部から両側周辺への熱伝導は不十分であるため、加熱部の両側周辺は比較的低い温度状態を維持する。従って、加熱部の左右及び下部の膨脹変形は拘束され、上部にのみ膨脹して圧縮塑性変形が発生するようになる。このとき、材料の厚さの変化は殆どないと仮定する。熱源が加熱部から遠く離れて、冷却過程に入ると、発生した圧縮塑性変形のために収縮力が発生し、その収縮力により角変形が起こる。このように線状加熱法は、単純な直線形態の加熱位置さえ決定されれば、作業者による手動加熱、及び自動化装置による自動加熱を容易に行うことができる。   As shown in FIG. 1, the locally heated portion expands as the temperature rises, and thermal stress is generated inside the metal material. The distribution of the generated thermal stress is the largest in the heated part and decreases as the distance from the heating part increases. On the other hand, the heat source moves linearly at a specific speed, and heat conduction from the heating part to the periphery of both sides is insufficient, so that the periphery of both sides of the heating part maintains a relatively low temperature state. Therefore, the expansion deformation of the left and right and lower portions of the heating unit is restricted, and only the upper portion expands to generate compressive plastic deformation. At this time, it is assumed that there is almost no change in the thickness of the material. When the heat source is far away from the heating part and enters the cooling process, a contraction force is generated due to the generated compressive plastic deformation, and an angular deformation occurs due to the contraction force. As described above, the linear heating method can easily perform manual heating by an operator and automatic heating by an automation device as long as a simple linear heating position is determined.

一方、三角加熱法、別名、部分加熱法は、鋼板の縁部を局部的に加熱し、その後冷却することで収縮を誘発させる方法である。この方法では、冷却させることで、熱が他の部位に伝達されるのを防ぎ、局部的な面内の収縮を誘導する。加熱表面が三角形に近いことから、三角加熱法と呼ばれる。三角加熱法による収縮変形の原理は以下の通りである。   On the other hand, the triangular heating method, also known as the partial heating method, is a method of inducing shrinkage by locally heating the edge of the steel sheet and then cooling it. In this method, by cooling, heat is prevented from being transferred to other parts, and local in-plane contraction is induced. This is called the triangular heating method because the heating surface is close to a triangle. The principle of contraction deformation by the triangular heating method is as follows.

熱源の移動を非常に遅くする、又は、小さな円を描く形態で加熱すれば、板の厚さ方向に熱が浸透して厚さ方向の温度差が小さくなる。その結果、線状加熱法とは異なり、図2に示すように、表面と裏面の両方が外部へ膨脹する。膨脹部分は、冷却過程で塑性変形が起こるため、元の状態には戻らなくなるが、その他の部分では板の幅方向に収縮が発生する。   If the movement of the heat source is made very slow or if it is heated in the form of drawing a small circle, heat penetrates in the thickness direction of the plate and the temperature difference in the thickness direction becomes small. As a result, unlike the linear heating method, as shown in FIG. 2, both the front surface and the back surface expand outward. The expanded portion does not return to its original state because plastic deformation occurs during the cooling process, but contraction occurs in the width direction of the plate in other portions.

このように、三角加熱法の場合は、収縮の目的で鋼材の一定領域及び厚さ方向に多くの熱量を十分に浸透、伝達されなければならない。そのため、もし、熱源の投入量の調節に失敗すると、表面の溶融現象が発生し得る難しい作業であり、現場作業者の手動での加熱に関するノウハウ以外は全く知られていない。   Thus, in the case of the triangular heating method, a large amount of heat must be sufficiently permeated and transmitted in a certain region and thickness direction of the steel material for the purpose of shrinkage. Therefore, if the adjustment of the input amount of the heat source fails, it is a difficult work that can cause a melting phenomenon of the surface, and nothing other than know-how related to manual heating by the field worker is known at all.

現場作業者が手動で行う三角加熱は、図3に示すようなa、b、cの形状である。このような形状で加熱して収縮を誘発するためは、図4に示すようなA、B、Cの加熱パターン及び加熱経路を有するようになり、大半が十分な熱量の投入が容易なCの方法でウィービング効果を伴う三角加熱を手動で行う。   The triangular heating manually performed by the field worker has the shapes of a, b, and c as shown in FIG. In order to induce shrinkage by heating in such a shape, it has a heating pattern and a heating path of A, B, and C as shown in FIG. 4, and most of C has a sufficient amount of heat input. Triangular heating with a weaving effect is performed manually.

しかしながら、前述したような三角加熱は、加熱作業が複雑であり、その特性の把握が難しい。そのため、関連研究は全く進められておらず、さらに三角加熱作業の自動化システムのための加熱パターン並びに加熱経路生成の数値化方法及びアルゴリズムの開発は試みられたこともない。   However, the triangular heating as described above has a complicated heating operation, and it is difficult to grasp its characteristics. For this reason, no related research has been carried out, and furthermore, no attempt has been made to develop a numerical method and algorithm for generating a heating pattern and a heating path for an automatic system for triangular heating work.

本発明は上記事情に鑑みてなされたものであって、その目的は、船体外板の曲面形状を熱間加工する際の三角加熱の加熱パターン及び加熱経路の生成を数値化してアルゴリズム化することで、三角加熱を自動化できる三角加熱の加熱パターン及び加熱経路の生成システム並びにその方法を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to digitize and generate a triangular heating pattern and heating path generation pattern when hot-working the curved shape of the hull skin. Therefore, it is an object of the present invention to provide a heating pattern and a heating path generation system for triangular heating, and a method thereof.

前記目的を達成するための本発明は、三角加熱の加熱パターン及び加熱経路の生成方法であって、熱源中心の移動座標を計算して格納装置のメモリに格納する段階と、前記格納装置のメモリに格納されている座標値を用いて加熱順序を決定する段階と、熱源別にデータベース化された熱源特性情報に応じて熱源の回転加熱を設定する段階とを含む方法を提供する。   In order to achieve the above object, the present invention provides a heating pattern and heating path generation method for triangular heating, the step of calculating the movement coordinates of the center of the heat source and storing it in the memory of the storage device, and the memory of the storage device The method includes a step of determining a heating order using the coordinate values stored in, and a step of setting rotational heating of the heat source according to heat source characteristic information stored in a database for each heat source.

本発明に係る三角加熱の加熱パターン及び加熱経路の生成システム並びにその方法によれば、船体外板の曲面形状を熱間加工する際に、三角加熱を自動化できるという効果を奏する。   According to the triangular heating pattern and heating path generation system and method therefor according to the present invention, it is possible to automate triangular heating when hot-working the curved surface shape of the hull outer plate.

以下、添付の図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図5は、本発明の好適な一実施形態による三角加熱の加熱パターン及び加熱経路の生成システムの構成図である。   FIG. 5 is a configuration diagram of a triangular heating pattern and a heating path generation system according to a preferred embodiment of the present invention.

図5に示すように、本発明の三角加熱の加熱パターン及び加熱経路の生成システムは、三角加熱の形状及びその位置を決定するために三角形状に該当する座標が入力される入力装置100と、熱源半径、回転速度及び回転回数などの熱源特性の情報がデータベース化された熱源特性DB200と、開発されたアルゴリズムをプログラム化して演算を行う演算装置300と、計算された加熱パターンと加熱経路のデータを開発者により定義されたファイル形式で格納する格納装置(メモリ)400と、出力してディスプレイする出力装置部700とを備える。出力装置部700には、プリンタとLCDなどが備えられる。また、格納装置400には、制御システム500及び自動化加熱装置600がネットワークを介して連結されている。制御システム500は、自動化加熱装置600を制御して三角加熱を行う。   As shown in FIG. 5, the heating system and the heating path generation system for triangular heating according to the present invention include an input device 100 to which coordinates corresponding to a triangular shape are input in order to determine a triangular heating shape and its position, A heat source characteristic DB 200 in which information on heat source characteristics such as a heat source radius, a rotation speed, and the number of rotations is made into a database, an arithmetic device 300 that performs calculation by programming the developed algorithm, and calculated heating pattern and heating path data Are stored in a file format defined by the developer, and an output device unit 700 that outputs and displays them. The output device unit 700 includes a printer and an LCD. In addition, a control system 500 and an automatic heating device 600 are connected to the storage device 400 via a network. The control system 500 controls the automated heating device 600 to perform triangular heating.

演算装置300は、入力装置100及び熱源特性DB200からそれぞれ提供された入力値と熱源特性の情報に基づいて演算を行い、加熱パターン及び加熱経路の生成を数値化し、加熱座標の自動化装置制御変数を自動化加熱装置600に提供する。   The arithmetic device 300 performs an arithmetic operation based on the input value and the heat source characteristic information provided from the input device 100 and the heat source characteristic DB 200, respectively, quantifies the heating pattern and the generation of the heating path, and sets the heating coordinate automation device control variable. Provided to the automated heating device 600.

図6は、本発明の三角加熱の加熱パターン及び加熱経路の生成方法を説明するためのフロー図である。   FIG. 6 is a flowchart for explaining the method of generating the heating pattern and the heating path of the triangular heating according to the present invention.

図6に示すように、本発明の三角加熱の加熱パターン及び加熱経路の生成方法は、熱源中心の移動座標を計算する段階S100と、加熱順序を決定する段階S200と、熱源の回転を設定する段階S300とを含む。   As shown in FIG. 6, the heating pattern and heating path generation method of the triangular heating according to the present invention sets a step S100 for calculating the movement coordinates of the center of the heat source, a step S200 for determining the heating order, and the rotation of the heat source. And step S300.

熱源中心の移動座標を計算する段階S100について説明する。   The step S100 for calculating the movement coordinates of the heat source center will be described.

まず、決定された加熱位置及び三角形状に応じて三角形の3つの頂点にX、Y、Zの座標値が提供される(S110)。   First, coordinate values of X, Y, and Z are provided to the three vertices of the triangle according to the determined heating position and the triangular shape (S110).

続いて、図7に示すように、各頂点間の線分の中点(Xa、Ya、Za)〜(Xc、Yc、Zc)を計算する(S120)。そして、図8に示すように、計算された前記中点のそれぞれを結ぶ線分を1:(N−1)等分する内分点(X1c、Y1c、Z1c)〜(X3a、Y3a、Z3a)を計算して、内部に新しい三角形状を構成する(S130)。Nの値は頂点と中点の距離をEL(EL:加工に用いられる熱源の有効距離又は熱源の半径)で割った商である。ELは熱源に応じて適切に調節される。   Subsequently, as shown in FIG. 7, midpoints (Xa, Ya, Za) to (Xc, Yc, Zc) of line segments between the vertices are calculated (S120). Then, as shown in FIG. 8, internal dividing points (X1c, Y1c, Z1c) to (X3a, Y3a, Z3a) that divide the line segments connecting the calculated midpoints into 1: (N-1) equal parts. And a new triangular shape is formed inside (S130). The value of N is a quotient obtained by dividing the distance between the apex and the midpoint by EL (EL: effective distance of heat source used for processing or radius of heat source). EL is appropriately adjusted according to the heat source.

次に、計算された前記内分点(X1c、Y1c、Z1c)〜(X3a、Y3a、Z3a)を用いて、(X1c、Y1c、Z1c)〜(X2b、Y2b、Z2b)の間のN1と、(X1c、Y1c、Z1c)〜(X3a、Y3a、Z3a)の間のN2と、(X2b、Y2b、Z2b)〜(X3a、Y3a、Z3a)の間のN3を計算する(S140)。N1〜N3は、前記新しい三角形の頂点間の距離をELで割った商である。   Next, using the calculated internal dividing points (X1c, Y1c, Z1c) to (X3a, Y3a, Z3a), N1 between (X1c, Y1c, Z1c) to (X2b, Y2b, Z2b), N2 between (X1c, Y1c, Z1c) to (X3a, Y3a, Z3a) and N3 between (X2b, Y2b, Z2b) to (X3a, Y3a, Z3a) are calculated (S140). N1 to N3 are quotients obtained by dividing the distance between the vertices of the new triangle by EL.

そして、N1とN2のうち、大きい値で(X1c、Y1c、Z1c)〜(X2b、Y2b、Z2b)と(X1c、Y1c、Z1c)〜(X3a、Y3a、Z3a)をN等分し、(X2b、Y2b、Z2b)〜(X3a、Y3a、Z3a)はN3でN等分する(S150)。   Then, (X1c, Y1c, Z1c) to (X2b, Y2b, Z2b) and (X1c, Y1c, Z1c) to (X3a, Y3a, Z3a) are equally divided into N equal to N1 and N2, and (X2b , Y2b, Z2b) to (X3a, Y3a, Z3a) are divided into N equal parts by N3 (S150).

次に、加熱経路の生成時に加熱方向及び加熱順序を決定し易くするように、図9に示すように、各辺の等分点をRM1とRMe、BM(下辺)に区分する(S160)。Mは、2、3、4、5など順次増加する。   Next, in order to make it easier to determine the heating direction and the heating order when generating the heating path, as shown in FIG. 9, the dividing points of each side are divided into RM1, RMe, and BM (lower side) (S160). M sequentially increases such as 2, 3, 4, 5, and so on.

続いて、図10に示すように、下辺を除いた2つの辺に生成された等分点RM1とRMeを結ぶ線分のN等分点を計算する(S170)。Nは、RM1とRMeを結ぶ距離をELで割った商である。   Subsequently, as shown in FIG. 10, N equal dividing points of line segments connecting the equal dividing points RM1 and RMe generated on the two sides excluding the lower side are calculated (S170). N is a quotient obtained by dividing the distance connecting RM1 and RMe by EL.

最後に、計算された各RM1とRMeの等分点にインデックスを付与し、上述した計算段階で生成された等分点のX、Y、Z座標値を配列を用いて格納装置400のメモリに、図11に示すように、格納する(S180)。   Finally, an index is assigned to each of the calculated RM1 and RMe halves, and the X, Y, and Z coordinate values of the halves generated in the above-described calculation stage are stored in the memory of the storage device 400 using an array. As shown in FIG. 11, it is stored (S180).

段階S100に続く、加熱順序を決定する段階S200では、前記格納装置400のメモリに格納されている座標値を配列順に(1、1)→(2、1)→(2、2)→(3、1)→に加熱順序の提供を受ける。加熱方向を変更したい場合は、配列の順序を並び替えて用いる。   In step S200 for determining the heating order following step S100, the coordinate values stored in the memory of the storage device 400 are arranged in the order of arrangement (1, 1) → (2, 1) → (2, 2) → (3. 1) Receive the order of heating at →. When it is desired to change the heating direction, the arrangement order is rearranged.

段階S200に続く、熱源の回転を設定する段階S300では、熱源特性DB200から提供された情報に応じて熱源の回転を設定する。段階S100で生成された各座標の位置は熱源中心が移動すべき座標に該当するので、熱源が各座標に移動したとき、ウィービング効果を実現するために熱源の回転が行われる。   In step S300 of setting the rotation of the heat source subsequent to step S200, the rotation of the heat source is set according to the information provided from the heat source characteristic DB 200. Since the position of each coordinate generated in step S100 corresponds to the coordinate to which the heat source center should move, when the heat source moves to each coordinate, the heat source is rotated to realize the weaving effect.

図12に示すように、回転速度及び回転回数によって、鋼材に加えられる熱量を制御することが可能になる。従って、鋼材に過度な熱量が加えられて、鋼材の表面で溶融現象が発生することを防止できる。また、熱源の移動中心点を基準にする熱源半径を、熱源の大きさに応じて変更することができる。前記熱源半径は、熱源特性DB200にデータベース化しておく。   As shown in FIG. 12, the amount of heat applied to the steel material can be controlled by the rotation speed and the number of rotations. Accordingly, it is possible to prevent an excessive amount of heat from being applied to the steel material and a melting phenomenon to occur on the surface of the steel material. Moreover, the heat source radius based on the movement center point of the heat source can be changed according to the size of the heat source. The heat source radius is stored in the heat source characteristic DB 200 in a database.

一方、加熱効率の面でも、各熱源の移動座標の生成時に熱源の重畳加熱効果を実現するために、図13に示すような熱源半径を考慮した等分方法が選択される。この等分方法は、回転加熱と組み合わされて、収縮変形が十分に発生し得る熱量の投入を可能にし、実際の作業者の手作業による方法と同じ加熱効果を実現できる。   On the other hand, in terms of the heating efficiency, an equalizing method is selected in consideration of the heat source radius as shown in FIG. 13 in order to realize the superimposed heating effect of the heat source when generating the movement coordinates of each heat source. This equalization method can be combined with rotational heating to allow the input of heat that can sufficiently cause shrinkage deformation, and can achieve the same heating effect as a method by an actual worker's manual operation.

本発明の三角加熱の加熱パターン及び加熱経路の生成システム並びにその方法によって生成された熱源の移動座標と回転加熱を用いると、目的とする位置及び形状に対する三角加熱作業を自動的に行うことが可能になる。   With the triangular heating pattern and heating path generation system of the present invention and the heat source movement coordinates and rotational heating generated by the method, it is possible to automatically perform the triangular heating operation for the target position and shape. become.

本発明に係るシステム及方法を実際に適用した例を説明する。図14は、本発明の三角加熱の加熱パターン及び加熱経路の生成システムを用いて生成した、400*500*29mm(横*縦*厚さ)の鋼板を、258*254mm(下辺*高さ)の大きさで三角加熱するための加熱パターン及び加熱経路を示している。このとき、熱源特性DB200は高周波誘導加熱の熱源の情報を使用し、熱源の直径は50mmに設定して加熱パターン及び加熱経路を自動で算出した。図14における各円は、高周波誘導加熱によって加熱される領域を示し、各円の中心点は、本発明の三角加熱の加熱パターン及び加熱経路の生成システムで求められた熱源中心の移動座標である。全体的に重なる加熱領域が多くなるように、熱源特性DB200を活用して、29mmの鋼材の厚さを考慮して回転回数を決定した。   An example in which the system and method according to the present invention are actually applied will be described. FIG. 14 shows a steel plate of 400 * 500 * 29 mm (horizontal * vertical * thickness) generated using the heating pattern and heating path generation system of the triangular heating of the present invention, 258 * 254 mm (bottom side * height). The heating pattern and the heating path for triangular heating with the size of are shown. At this time, the heat source characteristic DB 200 used information on the heat source of the high frequency induction heating, the diameter of the heat source was set to 50 mm, and the heating pattern and the heating path were automatically calculated. Each circle in FIG. 14 indicates a region heated by high-frequency induction heating, and the center point of each circle is a movement coordinate of the center of the heat source determined by the triangular heating pattern and heating path generation system of the present invention. . The number of rotations was determined in consideration of the thickness of the steel material of 29 mm by utilizing the heat source characteristic DB 200 so that the overall heating region overlapped.

下記表1には生成された熱源の各位置における移動座標値を示し、図15は、このような表1の座標値を用いて格納装置400に格納される三角加熱制御システム用制御ファイルの実際のデータの一例を示す。   Table 1 below shows the movement coordinate values at each position of the generated heat source, and FIG. 15 shows the actual control file for the triangular heating control system stored in the storage device 400 using the coordinate values of Table 1 described above. An example of the data is shown.

Figure 0005017196
Figure 0005017196

以上のように、本発明による三角加熱の加熱パターン及び加熱経路の生成システム並びに方法は、熱源の特性をDB化することができ、ガス熱源だけでなく、今後使用が予想される高周波誘導加熱の熱源の特性などを把握して加熱パターンと加熱経路の生成に活用するように実験と有限要素解析を通じてDB化して適用することができる。このような特徴は図14から確認できるように、加熱される対象物の端部から外れた一部の領域をも加熱領域となるように加熱パターンを生成している。これは高周波誘導加熱の熱源の特性を正確に反映して、目的とする三角加熱形状の通りに加熱が行われるように本発明のアルゴリズムを構成したためである。   As described above, the triangular heating pattern and heating path generation system and method according to the present invention can convert the characteristics of the heat source into a DB, and not only a gas heat source but also high-frequency induction heating that is expected to be used in the future. It can be applied as a DB through experiments and finite element analysis so that the characteristics of the heat source and the like can be grasped and used to generate a heating pattern and a heating path. As can be confirmed from FIG. 14, such a feature generates a heating pattern so that a part of the region deviated from the end of the object to be heated also becomes a heating region. This is because the algorithm of the present invention is configured to accurately reflect the characteristics of the heat source of the high frequency induction heating so that the heating is performed according to the target triangular heating shape.

本発明は、その応用を通じて三角加熱の多様なパターンを実現できる。即ち、上述した計算過程で適正なEL値を用いた熱源移動座標値の変更、格納装置400のメモリに配列形態で格納された熱源移動座標値の順序の変更などを通じた加熱順序の変化、各座標における回転加熱以外の形態の座標間移動設定などによって、様々な形態の三角加熱パターン及び加熱経路を生成することができる。その結果、自動化熱間加工システムで用いられる熱源及び加熱パターンに応じて様々な加熱パターンと加熱経路の実現が可能になる。例えば、図4のAの加熱パターンは、EL値を小さくして熱源移動座標を生成し、生成された熱源移動座標を特定順序に従って加熱作業を行い、単純移動することによって実現することができる。また、図4のBの加熱パターンは、EL値を小さくして熱源移動座標を生成し、配列形態で格納されている座標の順序を三角形の頂点から下辺の方向に設定することによって実現することができる。また、図4のCの加熱パターンは、上述した実際の適用事例によって実現することができる。   The present invention can realize various patterns of triangular heating through its application. That is, the change of the heat source movement coordinate value using an appropriate EL value in the above-described calculation process, the change of the heating order through the change of the order of the heat source movement coordinate value stored in the array form in the memory of the storage device 400, Various forms of triangular heating patterns and heating paths can be generated by setting movement between coordinates in a form other than rotational heating in coordinates. As a result, various heating patterns and heating paths can be realized according to the heat source and heating pattern used in the automated hot working system. For example, the heating pattern of FIG. 4A can be realized by generating heat source movement coordinates by reducing the EL value, performing the heating operation on the generated heat source movement coordinates according to a specific order, and simply moving. Also, the heating pattern B in FIG. 4 is realized by reducing the EL value to generate the heat source movement coordinates and setting the order of the coordinates stored in the array form from the apex of the triangle to the lower side. Can do. Further, the heating pattern C in FIG. 4 can be realized by the actual application example described above.

さらに他の例として、図16に示すような任意の形状の三角形の加熱パターンを生成することもできる。   As yet another example, a triangular heating pattern having an arbitrary shape as shown in FIG. 16 can be generated.

以上、本発明による三角加熱の加熱パターン及び加熱経路の生成システム並びに方法を実施するための一実施形態を説明したが、本発明は前記実施形態に限定されず、本発明による技術的思想の範囲から逸脱しない範囲内で様々な変更が可能であり、それらも本発明の技術的範囲に属する。   In the above, one embodiment for carrying out the heating pattern and heating path generation system and method of triangular heating according to the present invention has been described. However, the present invention is not limited to the above embodiment, and the scope of the technical idea of the present invention. Various modifications can be made without departing from the scope of the present invention, and they also belong to the technical scope of the present invention.

線状加熱時の曲げ変形の過程を示す図である。It is a figure which shows the process of the bending deformation at the time of linear heating. 三角加熱時の収縮変形の過程を示す図である。It is a figure which shows the process of the shrink deformation at the time of triangular heating. 三角加熱の加熱形状の例示図である。It is an illustration figure of the heating shape of triangular heating. 三角加熱パターン及び加熱経路の例示図である。It is an illustration figure of a triangular heating pattern and a heating path. 本発明の好適な一実施形態による三角加熱の加熱パターン及び加熱経路の生成システムの構成図である。1 is a configuration diagram of a heating system for triangular heating and a system for generating a heating path according to a preferred embodiment of the present invention. 本発明のシステムの加熱パターン及び加熱経路の生成方法を説明するためのフロー図である。It is a flowchart for demonstrating the production | generation method of the heating pattern and heating path | route of the system of this invention. 3つの辺の中点計算を説明する図解図である。It is an illustration figure explaining the midpoint calculation of three sides. 頂点と対応辺の1:(N−1)等分点の計算を説明する図解図である。It is an illustration figure explaining calculation of a 1: (N-1) equally dividing point of a vertex and a corresponding edge. 新しく定義された辺のN等分点の計算を説明する図解図である。It is an illustration figure explaining calculation of the N equally dividing point of the newly defined edge. 熱源中心の移動座標で最終生成された等分点を説明する図解図である。It is an illustration figure explaining the equally-divided point finally produced | generated by the movement coordinate of the heat source center. 生成された熱源中心の移動座標の配列格納図である。It is the arrangement | sequence storage figure of the movement coordinate of the produced | generated heat source center. 熱源の回転加熱によるウィービング効果を示す図である。It is a figure which shows the weaving effect by the rotation heating of a heat source. 加熱領域の重畳を示す図である。It is a figure which shows the superimposition of a heating area | region. 本発明のシステムを実際に適用した加熱パターン及び加熱経路を示す図である。It is a figure which shows the heating pattern and heating path which actually applied the system of this invention. 本発明のシステムで計算されて格納された三角加熱の加熱経路ファイルデータを示す図である。It is a figure which shows the heating path file data of the triangular heating calculated and stored by the system of this invention. 本発明のシステムによって生成した任意の形状の三角形の加熱パターンを出力した出力画面である。It is the output screen which output the heating pattern of the triangle of the arbitrary shape produced | generated by the system of this invention.

符号の説明Explanation of symbols

100 入力装置
200 熱源特性DB
300 演算装置
400 格納装置
500 制御システム
600 自動化加熱装置
700 出力装置
100 input device 200 heat source characteristic DB
300 arithmetic device 400 storage device 500 control system 600 automated heating device 700 output device

Claims (5)

三角加熱の加熱パターン及び加熱経路の生成方法であって、
熱源中心の移動座標を計算して格納装置のメモリに格納する段階と、
前記格納装置のメモリに格納されている座標値を用いて加熱順序を決定する段階と、
熱源別にデータベース化された熱源特性情報に応じて熱源の回転加熱を設定する段階と
を含み、
前記熱源中心の移動座標を計算/格納する段階は、
決定された加熱位置及び三角形状に応じて三角形の3つの頂点に3次元の座標値を提供する段階と、
前記三角形の各辺の中点Ma、Mb、Mcを計算する段階と、
各頂点間の線分の中点Ma、Mb、Mcを計算する段階と、
加工に用いられる熱源の有効距離又は熱源の半径ELを熱源に応じて適切に調節するために、前記三角形の各頂点とその対辺の中点とを結ぶ線分を1:(N−1)等分する内分点c1、b2、a3の座標を計算する段階であって、Nは前記各頂点とその対辺の中点とを結ぶ線分の長さを前記熱源の半径ELで割った商である、該段階と
計算された内分点c1、b2、a3を用いて、各内分点間の距離を前記熱源の半径ELで割った商として、c1とb2の間のN1と、c1とa3の間のN2と、b2とa3の間のN3とを計算する段階と、
c1とb2とを結ぶ線分と、c1とa3とを結ぶ線分を、それぞれN1とN2のうちの大きい値で等分し、b2とa3とを結ぶ線分をN3で等分して、各等分点の座標を計算する段階と、
加熱経路の生成時に加熱方向及び加熱順序を決定するために、c1とb2とを結ぶ線分の複数の等分点及びc1とa3とを結ぶ線分の複数の等分点をそれぞれ、Mを最小値2でc1から近いほうから順次増加する整数として、RM1及びRMeとインデックスを付与し、b2とa3とを結ぶ線分の複数の等分点をそれぞれ、Mを最小値2でb3に近いほうから順次増加する整数として、BMとインデックスを付与する段階と、
c1とb2とを結ぶ線分の前記複数の等分点RM1、及びc1とa3とを結ぶ線分の前記複数の等分点RMeのMの値が等しいもの同士を結ぶ線分のそれぞれについて、それらの各線分の長さを前記熱源の半径ELで割った商をKとしたときの、K等分点の各座標を計算する段階と、
計算された各RM1とRMeのMの値が等しいもの同士を結ぶ線分のK等分点のそれぞれにインデックスを付与し、生成された前記K等分点の3次元座標値を前記格納装置のメモリに配列形態で格納する段階と
を含むことを特徴とする方法。
A method of generating a heating pattern and a heating path of triangular heating,
Calculating the moving coordinates of the center of the heat source and storing them in the memory of the storage device;
Determining a heating sequence using coordinate values stored in a memory of the storage device;
Look including a step of setting the rotation heating of the heat source in accordance with the database has been heat source characteristic information by a heat source,
Calculating / storing the moving coordinates of the heat source center;
Providing three-dimensional coordinate values for the three vertices of the triangle according to the determined heating position and the triangle shape;
Calculating midpoints Ma, Mb, Mc of each side of the triangle;
Calculating midpoints Ma, Mb, Mc of line segments between vertices;
In order to appropriately adjust the effective distance of the heat source used for processing or the radius EL of the heat source according to the heat source, a line segment connecting each vertex of the triangle and the midpoint of the opposite side is 1: (N-1) or the like. In the step of calculating the coordinates of the internal dividing points c1, b2, and a3 to be divided, N is a quotient obtained by dividing the length of the line segment connecting each vertex and the midpoint of the opposite side by the radius EL of the heat source. And that stage
Using the calculated internal dividing points c1, b2, and a3, N1 between c1 and b2 and N2 between c1 and a3 are obtained by dividing the distance between the internal dividing points by the radius EL of the heat source. And calculating N3 between b2 and a3;
The line segment connecting c1 and b2 and the line segment connecting c1 and a3 are equally divided by a larger value of N1 and N2, respectively, and the line segment connecting b2 and a3 is equally divided by N3. Calculating the coordinates of each equivalence point;
In order to determine the heating direction and the heating order when generating the heating path, M is defined as a plurality of equal dividing points connecting the lines c1 and b2 and a plurality of dividing points connecting the lines c1 and a3. RM1 and RMe are indexed as integers that increase sequentially from the nearest from c1 with a minimum value of 2, and a plurality of equal dividing points connecting b2 and a3 are respectively set, and M is close to b3 with a minimum value of 2. Assigning BM and index as integers increasing sequentially from
For each of the line segments connecting the equal segment points RM1 of the line segment connecting c1 and b2 and the line segments connecting the equal segment points RMe of the line segment connecting c1 and a3 are equal to each other. Calculating the coordinates of the K equivalence points, where K is the quotient obtained by dividing the length of each line segment by the radius EL of the heat source;
Each of the calculated RM1 and RMe having the same value of M is assigned an index to each of the K bisectors connecting the line segments, and the generated three-dimensional coordinate values of the K bisectors are stored in the storage device. Storing in memory in array form;
A method comprising the steps of :
請求項1に記載の方法であって、
各熱源の移動座標の生成時に熱源の重畳加熱効果を実現するために熱源半径を考慮した等分方法を選択することを特徴とする方法。
The method of claim 1, comprising:
A method of selecting an equalizing method in consideration of a heat source radius in order to realize a superimposed heating effect of the heat source when generating the movement coordinates of each heat source.
請求項1に記載の方法であって、
前記熱源中心の移動座標を計算/格納する段階と加熱順序決定段階で熱源特性情報の熱源に応じて加工対象物の端部まで加熱作業が行なわれるように座標を計算し、加熱経路を決定することを特徴とする方法。
The method of claim 1, comprising:
In the step of calculating / storing the movement coordinates of the center of the heat source and the heating sequence determination step, the coordinates are calculated so that the heating operation is performed up to the end of the workpiece according to the heat source of the heat source characteristic information, and the heating path is determined. A method characterized by that.
三角加熱の加熱パターン及び加熱経路の生成システムであって、
三角加熱の形状及びその位置を決定するために三角形状に該当する座標の入力を受ける入力装置と、
熱源半径、回転速度及び回転回数などの熱源特性情報が熱源別にデータベース化された熱源特性DBと、
三角加熱の加熱パターン及び経路のデータを生成する演算装置と、
前記データを予め設定されたファイル形式で格納する格納装置と、
三角加熱を行う自動化加熱装置と、
上記格納装置に格納されたデータに基づいて前記自動化加熱装置が三角加熱を行うように制御する制御システムと
を備え
前記演算装置は、
決定された加熱位置及び三角形状に応じて三角形の3つの頂点に3次元の座標値を提供する手段と、
前記三角形の各辺の中点Ma、Mb、Mcを計算する手段と、
各頂点間の線分の中点Ma、Mb、Mcを計算する手段と、
加工に用いられる熱源の有効距離又は熱源の半径ELを熱源に応じて適切に調節するために、前記三角形の各頂点とその対辺の中点とを結ぶ線分を1:(N−1)等分する内分点c1、b2、a3の座標を計算する手段であって、Nは前記各頂点とその対辺の中点とを結ぶ線分の長さを前記熱源の半径ELで割った商である、該手段と、
計算された内分点c1、b2、a3を用いて、各内分点間の距離を前記熱源の半径ELで割った商として、c1とb2の間のN1と、c1とa3の間のN2と、b2とa3の間のN3とを計算する手段と、
c1とb2とを結ぶ線分とc1とa3とを結ぶ線分を、それぞれN1とN2のうちの大きい値で等分し、b2とa3とを結ぶ線分をN3で等分して、各等分点の座標を計算する手段と、
加熱経路の生成時に加熱方向及び加熱順序を決定するために、c1とb2とを結ぶ線分の複数の等分点及びc1とa3とを結ぶ線分の複数の等分点をそれぞれ、Mを最小値2でc1から近いほうから順次増加する整数として、RM1及びRMeとインデックスを付与し、b2とa3とを結ぶ線分の複数の等分点をそれぞれ、Mを最小値2でb3に近いほうから順次増加する整数として、BMとインデックスを付与する手段と、
c1とb2とを結ぶ線分の前記複数の等分点RM1、及びc1とa3とを結ぶ線分の前記複数の等分点RMeのMの値が等しいもの同士を結ぶ線分のそれぞれについて、それらの各線分の長さを前記熱源の半径ELで割った商をKとしたときの、K等分点の各座標を計算する手段と、
計算された各RM1とRMeのMの値が等しいもの同士を結ぶ線分のK等分点のそれぞれにインデックスを付与し、生成された前記K等分点の3次元座標値を前記格納装置のメモリに配列形態で格納する手段とを有し、
これによって前記入力装置と前記熱源特性DBからそれぞれ提供された入力値と熱源特性情報に基づいて演算を行い加熱パターン及び加熱経路の生成を数値化して、生成された加熱座標を含む自動化制御変数を前記自動化加熱装置に提供するようにしたことを特徴とする生成システム。
A heating system and a heating path generation system for triangular heating,
An input device for receiving input of coordinates corresponding to a triangular shape in order to determine the shape and position of the triangular heating;
A heat source characteristic DB in which heat source characteristic information such as a heat source radius, a rotation speed, and the number of rotations is databased for each heat source;
An arithmetic unit for generating triangular heating pattern and path data;
A storage device for storing the data in a preset file format;
An automated heating device that performs triangular heating;
A control system for controlling the automated heating device to perform triangular heating based on data stored in the storage device ,
The arithmetic unit is
Means for providing three-dimensional coordinate values to the three vertices of the triangle according to the determined heating position and the triangle shape;
Means for calculating midpoints Ma, Mb, Mc of each side of the triangle;
Means for calculating midpoints Ma, Mb, Mc of line segments between the vertices;
In order to appropriately adjust the effective distance of the heat source used for processing or the radius EL of the heat source according to the heat source, a line segment connecting each vertex of the triangle and the midpoint of the opposite side is 1: (N-1) or the like. N is a quotient obtained by dividing the length of a line segment connecting each vertex and the midpoint of the opposite side by the radius EL of the heat source. The means,
Using the calculated internal dividing points c1, b2, and a3, N1 between c1 and b2 and N2 between c1 and a3 are obtained by dividing the distance between the internal dividing points by the radius EL of the heat source. And means for calculating N3 between b2 and a3;
A line segment connecting c1 and b2 and a line segment connecting c1 and a3 are equally divided by a larger value of N1 and N2, respectively, and a line segment connecting b2 and a3 is equally divided by N3, Means for calculating the coordinates of the equivalence points;
In order to determine the heating direction and the heating order when generating the heating path, M is defined as a plurality of equal dividing points connecting the lines c1 and b2 and a plurality of dividing points connecting the lines c1 and a3. RM1 and RMe are indexed as integers that increase sequentially from the nearest from c1 with a minimum value of 2, and a plurality of equal dividing points connecting b2 and a3 are respectively set, and M is close to b3 with a minimum value of 2. Means for assigning BM and index as integers increasing sequentially from
For each of the line segments connecting the equal segment points RM1 of the line segment connecting c1 and b2 and the line segments connecting the equal segment points RMe of the line segment connecting c1 and a3 are equal to each other. Means for calculating each coordinate of the K equivalence point, where K is a quotient obtained by dividing the length of each line segment by the radius EL of the heat source;
Each of the calculated RM1 and RMe having the same value of M is assigned an index to each of the K bisectors connecting the line segments, and the generated three-dimensional coordinate values of the K bisectors are stored in the storage device. Means for storing in an array form in a memory,
Thereby, the calculation based on the input value and the heat source characteristic information respectively provided from the input device and the heat source characteristic DB is performed, the generation of the heating pattern and the heating path is quantified, and the automation control variable including the generated heating coordinates is obtained. A generation system characterized by being provided to the automated heating device .
請求項に記載の生成システムであって、
前記熱源は、高周波誘導加熱の熱源であることを特徴とする生成システム。
The generation system according to claim 4 ,
The generation system, wherein the heat source is a heat source for high frequency induction heating.
JP2008178553A 2008-07-09 2008-07-09 Triangular heating pattern, heating path generation system and method Active JP5017196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008178553A JP5017196B2 (en) 2008-07-09 2008-07-09 Triangular heating pattern, heating path generation system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008178553A JP5017196B2 (en) 2008-07-09 2008-07-09 Triangular heating pattern, heating path generation system and method

Publications (2)

Publication Number Publication Date
JP2010017730A JP2010017730A (en) 2010-01-28
JP5017196B2 true JP5017196B2 (en) 2012-09-05

Family

ID=41703117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008178553A Active JP5017196B2 (en) 2008-07-09 2008-07-09 Triangular heating pattern, heating path generation system and method

Country Status (1)

Country Link
JP (1) JP5017196B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155459A (en) * 1995-12-01 1997-06-17 Nkk Corp Method for automatic heating bend-working of hull shell
JP4795700B2 (en) * 2005-02-22 2011-10-19 三菱重工業株式会社 Bending method, metal plate, heating position determination program, and heating position determination device

Also Published As

Publication number Publication date
JP2010017730A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
KR100903897B1 (en) Triangularity Heating Pattern and Path Generation System and Method thereof
CN108022236B (en) The welding stress deformation prediction technique and system of fitting are extracted based on weld image
CN103246774B (en) The method of numerical simulation P92 steel-pipe welding heat-affected zone width
JP4795700B2 (en) Bending method, metal plate, heating position determination program, and heating position determination device
Zhang et al. Influence of wire-arc additive manufacturing path planning strategy on the residual stress status in one single buildup layer
Shin et al. User-friendly, advanced line heating automation for accurate plate forming
KR20080105522A (en) Formation system for curved plates in ship and method therof
KR101246065B1 (en) Determination system of heating shape and position for triangle heating and method thereof
He et al. High-accuracy and high-performance WAAM propeller manufacture by cylindrical surface slicing method
Park et al. Automated thermal forming of curved plates in shipbuilding: system development and validation
KR102203916B1 (en) A Hot Forming Method for plate
Bae et al. Derivation of simplified formulas to predict deformations of plate in steel forming process with induction heating
WO2022191301A1 (en) Calculation method for heating plan, program, recording medium, device, deformation method, plate deformation device, and production method for deformed plate
Shen et al. Laser forming of doubly curved plates using minimum energy principle and comprehensive strain control
JP5017196B2 (en) Triangular heating pattern, heating path generation system and method
Seong et al. Geometrical approach for flame forming of single curved ship hull plate
CN109885946B (en) Method for determining energy distribution of composite heat source and welding simulation method
JP2626496B2 (en) Method of bending metal plate by linear heating
JP2666685B2 (en) Method of bending metal plate by linear heating
JP2666674B2 (en) Method of bending metal plate by linear heating
Chen et al. Thermo-mechanical analysis of the effects of weld parameters in ship plates during welding process
KR100961105B1 (en) Hybrid Forming Method of Induction heating and Multi-Press for Hull Outside Plates
KR102204503B1 (en) Auto formation apparatus and method for curved plates in ship
Mendizabal et al. Improved accuracy of the inherent shrinkage method for fast and more reliable welding distortion calculations
CN101633005B (en) Triangular heating mode path generating system and method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5017196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250