JP5016527B2 - Thermal infrared image sensor - Google Patents

Thermal infrared image sensor Download PDF

Info

Publication number
JP5016527B2
JP5016527B2 JP2008069022A JP2008069022A JP5016527B2 JP 5016527 B2 JP5016527 B2 JP 5016527B2 JP 2008069022 A JP2008069022 A JP 2008069022A JP 2008069022 A JP2008069022 A JP 2008069022A JP 5016527 B2 JP5016527 B2 JP 5016527B2
Authority
JP
Japan
Prior art keywords
wiring
substrate
lower layer
infrared imaging
layer wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008069022A
Other languages
Japanese (ja)
Other versions
JP2009222633A (en
Inventor
泰浩 小笹山
大介 高室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008069022A priority Critical patent/JP5016527B2/en
Publication of JP2009222633A publication Critical patent/JP2009222633A/en
Application granted granted Critical
Publication of JP5016527B2 publication Critical patent/JP5016527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

この発明は、熱型赤外線撮像素子に関するものである。   The present invention relates to a thermal infrared imaging device.

熱型赤外線撮像素子は、赤外線吸収構造体により吸収された赤外線を熱に変換し、この熱により生ずる温度変化を何らかの方法で電気信号に変換する素子である。従来の熱型赤外線撮像素子においては、温度検知部上の配線を信号読み出し配線の薄膜配線のみとし、温度検知部の熱容量を低減する構造が提案されている(例えば特許文献1)。
さらに、温度検知部の熱容量を増加させることなく赤外線吸収効率を向上させる構造として、温度検知部と赤外線吸収構造体との間に、基板に熱的に接地された反射膜を設ける方法が提案されている(例えば特許文献2)。
A thermal infrared imaging element is an element that converts infrared rays absorbed by an infrared absorbing structure into heat and converts a temperature change caused by the heat into an electrical signal by some method. In a conventional thermal infrared imaging device, a structure has been proposed in which only the thin film wiring of the signal readout wiring is used as the wiring on the temperature detection unit to reduce the heat capacity of the temperature detection unit (for example, Patent Document 1).
Furthermore, as a structure for improving the infrared absorption efficiency without increasing the heat capacity of the temperature detection unit, a method of providing a reflective film thermally grounded on the substrate between the temperature detection unit and the infrared absorption structure is proposed. (For example, Patent Document 2).

熱型赤外線撮像素子においては、画素サイズの縮小による多画素化と温度検知部の高性能化が求められている。通常画素サイズを縮小していくと、1画素あたりの赤外線吸収面積が縮小することなどの理由で性能が劣化していく。これを防ぐ対策としては、1画素内での赤外線吸収構造の占める割合(開口率)の向上、赤外線吸収効率の向上などによる光学的方法、温度検知部の熱電変換効率を上げる方法、空隙構造である温度検知部と支持基板とを熱的に分離する支持脚の構造改善による熱的な方法などがある。
熱的な方法については、支持脚の熱コンダクタンスを小さくすることが有効である。画素サイズを縮小していくと支持脚を配置できる面積が小さくなり、従来の熱コンダクタンスを維持していくには支持脚の薄膜化、微細化が必須である。
特開2002−340685号公報 特開2005−233671号公報
In a thermal infrared imaging device, it is required to increase the number of pixels by reducing the pixel size and to improve the performance of the temperature detection unit. When the normal pixel size is reduced, the performance deteriorates because the infrared absorption area per pixel is reduced. Measures to prevent this include an optical method by improving the ratio (aperture ratio) of the infrared absorption structure within one pixel, an improvement in infrared absorption efficiency, a method for increasing the thermoelectric conversion efficiency of the temperature detection unit, and a void structure. There is a thermal method by improving the structure of a support leg that thermally separates a temperature detection unit and a support substrate.
For the thermal method, it is effective to reduce the thermal conductance of the support legs. As the pixel size is reduced, the area in which the support legs can be arranged decreases, and in order to maintain the conventional thermal conductance, it is essential to make the support legs thinner and finer.
JP 2002-340685 A JP 2005-233671 A

しかしながら、支持脚薄膜化のために支持脚部の配線を薄膜化していくと、これより上層にある読み出し配線として使用している低抵抗配線との直接接続が困難となるという問題があった。   However, if the wiring of the supporting leg portion is thinned to reduce the thickness of the supporting leg, there is a problem that it is difficult to directly connect to the low resistance wiring used as the readout wiring in the upper layer.

そこで、本発明は、支持脚部の薄膜化、微細化が可能で、赤外線吸収効率を維持しつつ小型化でき、安定した製造が可能な熱型赤外線撮像素子を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a thermal infrared imaging device that can be thinned and miniaturized in support legs, can be reduced in size while maintaining infrared absorption efficiency, and can be stably manufactured.

以上の目的を達成するために、本発明に係る熱型赤外線撮像素子は、基板と、支持脚によって基板から離れて保持された温度検知部とを備え、温度検知部が前記支持脚に設けられた第1配線によって基板上の第2配線に接続された熱型赤外線撮像素子であって、前記第2配線は基板上に形成された下層配線と該下層配線より基板から離れて上層に設けられかつ前記下層配線に接続された上層配線とを有してなり、前記第1配線と前記下層配線とは一部が絶縁体層を介して重なっており、その重なった部分で前記下層配線と前記第1配線とは前記絶縁体層に設けられたバイアホールを介して接続されている
本発明に係る他の熱型赤外線撮像素子は、基板と、支持脚によって基板から離れて保持された温度検知部とを備え、温度検知部が前記支持脚に設けられた第1配線によって基板上の第2配線に接続された熱型赤外線撮像素子であって、前記第2配線は基板上に形成された下層配線と該下層配線より基板から離れた上層に設けられかつ前記下層配線に接続された上層配線とを有してなり、前記下層配線及び前記第1配線より基板から離れた上層で、かつ前記上層配線より基板に近い下層の前記基板上に設けられた中間配線をさらに有し、前記下層配線と前記中間配線とが接続されている。
In order to achieve the above object, a thermal infrared imaging device according to the present invention includes a substrate and a temperature detection unit held away from the substrate by a support leg, and the temperature detection unit is provided on the support leg. A thermal infrared imaging device connected to the second wiring on the substrate by the first wiring, wherein the second wiring is provided in a lower layer wiring formed on the substrate and in an upper layer away from the lower layer wiring from the substrate And an upper-layer wiring connected to the lower-layer wiring, and the first wiring and the lower-layer wiring partially overlap with each other through an insulating layer, and the lower-layer wiring and the The first wiring is connected via a via hole provided in the insulator layer .
Another thermal infrared imaging device according to the present invention includes a substrate and a temperature detection unit held away from the substrate by a support leg, and the temperature detection unit is mounted on the substrate by a first wiring provided on the support leg. A thermal infrared imaging device connected to the second wiring, wherein the second wiring is provided on a lower layer wiring formed on the substrate and on an upper layer farther from the substrate than the lower layer wiring and connected to the lower layer wiring And further comprising an intermediate wiring provided on the lower layer closer to the substrate than the upper layer wiring and the lower layer closer to the substrate than the lower layer wiring and the first wiring, The lower layer wiring and the intermediate wiring are connected.

以上のように構成された本発明に係る熱型赤外線撮像素子では、前記基板上に形成された第2配線を下層配線と該下層配線より上層に設けられた上層配線とを含むように形成し、前記第1配線が下層配線に接続されているので、支持脚を加工する時の基板上の配線により生ずる段差が軽減され、微細で寸法精度の高い支持脚が形成できる。
これにより、小型かつ高感度で感度均一性の高い熱型赤外線撮像素子が得られる。
In the thermal infrared imaging device according to the present invention configured as described above, the second wiring formed on the substrate is formed so as to include a lower layer wiring and an upper layer wiring provided above the lower layer wiring. Since the first wiring is connected to the lower layer wiring, the level difference caused by the wiring on the substrate when the supporting leg is processed is reduced, and the supporting leg can be formed with fineness and high dimensional accuracy.
Thereby, a thermal infrared imaging device having a small size, high sensitivity, and high sensitivity uniformity can be obtained.

実施形態1.
以下、図面を参照しながら、本発明に係る実施形態1の熱型赤外線撮像素子について説明する。図1は、本発明に係る実施形態1の熱型赤外線撮像素子の平面図であり、図2は、図1のA-B線についての断面図である。図1の平面図においては、支持脚2上の反射膜パターン、赤外線吸収構造体12は図示していない。
Embodiment 1. FIG.
Hereinafter, the thermal infrared imaging device according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a plan view of a thermal infrared imaging device according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AB in FIG. In the plan view of FIG. 1, the reflection film pattern on the support leg 2 and the infrared absorption structure 12 are not shown.

図2に示すように、本実施形態1の熱型赤外線撮像素子では、基板3において温度検知部1の下方のトレンチ4で囲まれた部分は除去されて凹部が形成され、これにより、照射された赤外線を吸収する赤外線吸収構造体12と赤外線吸収構造体12で生じた熱が伝達されその熱を電気信号に変換する温度検知部1とは、支持脚2により支えられ基板3から離れて中空に保持されている。これにより温度検知部1は基板3から熱的に分離される。   As shown in FIG. 2, in the thermal infrared imaging device of the first embodiment, the portion surrounded by the trench 4 below the temperature detection unit 1 is removed from the substrate 3 to form a recess, which is irradiated. The infrared ray absorbing structure 12 that absorbs the infrared rays and the temperature detection unit 1 that transfers heat generated by the infrared ray absorbing structure 12 and converts the heat into an electric signal are supported by the support legs 2 and are separated from the substrate 3 and are hollow. Is held in. As a result, the temperature detector 1 is thermally separated from the substrate 3.

一方、電気的には、水平駆動配線5から供給される電気信号が温度検知部1の温度変化に応じて変化し、変化した信号が垂直信号読み出し配線6から信号読み出し回路(図示せず)へと読み出される。   On the other hand, the electrical signal supplied from the horizontal drive wiring 5 changes according to the temperature change of the temperature detection unit 1, and the changed signal is sent from the vertical signal readout wiring 6 to a signal readout circuit (not shown). Is read out.

以下、各部分の構成について詳細に説明する。
以下の説明において、主として図2の断面図を参照して説明する下層配線8、上層配線11に関して、基板3に近い層を下層といい、下層より上にあり、基板3から離れた層を上層という。また、本明細書において、同層とは、複数の層が基板3から同じ距離だけ離れて形成されていることをいう。また、主として、図1の平面図に示される水平駆動配線5、垂直信号読み出し配線6はそれぞれ、下層配線8と上層配線11が接続されてなる、回路構成面からみた名称である。すなわち、水平駆動配線5の一部は下層配線8により構成され、残りの部分は上層配線11からなり、垂直信号読み出し配線6の一部は下層配線8により構成され、残りは上層配線11により構成される。
Hereinafter, the configuration of each part will be described in detail.
In the following description, regarding the lower layer wiring 8 and the upper layer wiring 11 which will be described mainly with reference to the cross-sectional view of FIG. 2, a layer close to the substrate 3 is referred to as a lower layer, and That's it. In this specification, the same layer means that a plurality of layers are formed away from the substrate 3 by the same distance. Further, the horizontal drive wiring 5 and the vertical signal readout wiring 6 shown mainly in the plan view of FIG. 1 are names as viewed from the circuit configuration side in which the lower layer wiring 8 and the upper layer wiring 11 are connected. That is, a part of the horizontal drive wiring 5 is composed of the lower layer wiring 8, the remaining part is composed of the upper layer wiring 11, a part of the vertical signal readout wiring 6 is composed of the lower layer wiring 8, and the rest is composed of the upper layer wiring 11. Is done.

温度検知部1は、単結晶シリコン層(SOI層)に形成したPN接合ダイオード7を複数含む。薄膜配線9は、PN接合ダイオード7間、PN接合ダイオードと支持脚2の間を接続し、水平駆動配線5、垂直信号読み出し配線6の一部である下層配線8に接続している。   The temperature detection unit 1 includes a plurality of PN junction diodes 7 formed in a single crystal silicon layer (SOI layer). The thin film wiring 9 connects between the PN junction diodes 7, between the PN junction diodes and the support legs 2, and is connected to the lower layer wiring 8 which is a part of the horizontal drive wiring 5 and the vertical signal readout wiring 6.

下層配線8は、周辺回路部のトランジスタのゲート配線と共用する。支持脚2は、薄膜配線9が絶縁体によって被覆されてなり、絶縁体に埋設された薄膜配線9により温度検知部1と水平駆動配線5間及び温度検知部1と垂直信号読み出し配線6間を電気的には接続するとともに、赤外線吸収構造体12が取り付けられた温度検知部1を基板から離れた状態で保持する。また、支持脚2は、基板3と温度検知部1とを熱的に分離するために熱コンダクタンスが小さくなるように狭い幅でかつ薄く形成されることが好ましく、例えば、薄膜配線9はチタン化合物で厚さは50nm程度に形成され、支持脚2の幅は0.5μm程度に設定される。   The lower layer wiring 8 is shared with the gate wiring of the transistor in the peripheral circuit section. The support leg 2 is formed by covering the thin film wiring 9 with an insulator, and the thin film wiring 9 embedded in the insulator between the temperature detection unit 1 and the horizontal drive wiring 5 and between the temperature detection unit 1 and the vertical signal readout wiring 6. While being electrically connected, the temperature detection unit 1 to which the infrared absorbing structure 12 is attached is held in a state separated from the substrate. Further, the support leg 2 is preferably formed to be narrow and thin so that the thermal conductance is small in order to thermally separate the substrate 3 and the temperature detector 1. For example, the thin film wiring 9 is made of a titanium compound. The thickness is about 50 nm, and the width of the support leg 2 is set to about 0.5 μm.

反射膜10は、主に支持脚2の上方を覆うように形成される。
上層配線11は、この反射膜10と実質的に同じ高さに配置され(同層ともいう。)、水平駆動配線5、垂直信号読み出し配線6に繋がる下層配線8に接続される配線機能を果たすとともに、反射膜としても機能する。反射膜10としては例えばアルミニウム、チタン、クロムなどの低抵抗で赤外線反射率の高い金属を用いることが好ましく、このような金属を用いることにより、上層配線11と反射膜10とを同一材料により同じ工程で形成することができる。
The reflective film 10 is formed so as to mainly cover the upper portion of the support leg 2.
The upper layer wiring 11 is disposed at substantially the same height as the reflective film 10 (also referred to as the same layer), and fulfills a wiring function connected to the lower layer wiring 8 connected to the horizontal drive wiring 5 and the vertical signal readout wiring 6. At the same time, it functions as a reflective film. As the reflective film 10, it is preferable to use a metal having a low resistance and a high infrared reflectivity, such as aluminum, titanium, and chrome. By using such a metal, the upper wiring 11 and the reflective film 10 are made of the same material. It can be formed in a process.

赤外線吸収構造12は、図中、具体的には示していないが、赤外線を吸収する金属膜とこれを挟む絶縁体層からなり、温度検知部1とは熱的に接触し、水平駆動配線5及び垂直信号読み出し配線6の一部を含む検知構造全体を覆うように形成される。ここで、絶縁体層は、例えば、酸化シリコン等の誘電体からなる。   Although not specifically shown in the drawing, the infrared absorption structure 12 is composed of a metal film that absorbs infrared rays and an insulating layer that sandwiches the metal film. The infrared detection structure 12 is in thermal contact with the temperature detection unit 1, and the horizontal drive wiring 5. And the entire detection structure including a part of the vertical signal readout wiring 6 is formed. Here, the insulator layer is made of a dielectric such as silicon oxide, for example.

以上のように構成された実施形態1の熱型赤外線撮像素子では、以下の製造過程の説明に示すように、支持脚2を形成する前の配線は下層配線8とこれに接続される薄膜配線9の2つの層のみであり、さらに薄膜配線9は、例えば、50nm程度の厚さにできるので、低段差の面の上に支持脚2を構成するための層が形成されることになる。これにより微細でかつ寸法精度の高い支持脚を形成することが可能になる。したがって、熱コンダクタンスが小さくでき、高感度でかつ感度の均一性の高い熱型赤外線撮像素子が得られる。   In the thermal infrared imaging device according to the first embodiment configured as described above, as shown in the following description of the manufacturing process, the wiring before the support leg 2 is formed is the lower layer wiring 8 and the thin film wiring connected thereto. 9, and the thin film wiring 9 can be formed to a thickness of, for example, about 50 nm. Therefore, a layer for forming the support leg 2 is formed on the surface of the low step. As a result, it is possible to form a support leg that is fine and has high dimensional accuracy. Accordingly, a thermal infrared imaging device having a low thermal conductance, high sensitivity, and high sensitivity uniformity can be obtained.

また、水平駆動配線5、垂直信号読み出し配線6の接続を反射膜10と同層の上層配線11で作製することにより上層配線11下の段差が低減されフラットな反射膜構造が形成されることから、製造歩留まりが向上し、性能的にも安定した熱型赤外線撮像素子が得られる。   Further, since the horizontal drive wiring 5 and the vertical signal readout wiring 6 are connected by the upper wiring 11 in the same layer as the reflective film 10, the level difference under the upper wiring 11 is reduced and a flat reflective film structure is formed. Thus, a thermal infrared imaging device with improved manufacturing yield and stable performance can be obtained.

以下、本発明の実施形態1に係る熱型赤外線撮像素子の製造方法について、図3〜7を参照しながら説明する。
本製造方法では、まず、図3に示すように、Siエッチング耐性のある膜を埋め込むことにより、基板3にトレンチ4を形成する。
次に、基板3の上に、検知膜13を形成して、その検知膜13より上層に、絶縁体を介して下層配線8を形成し、さらに絶縁体を形成する。このようにして、絶縁体21aに埋設された検知膜13及び下層配線8を形成する。
Hereinafter, the manufacturing method of the thermal infrared imaging device according to Embodiment 1 of the present invention will be described with reference to FIGS.
In this manufacturing method, first, as shown in FIG. 3, a trench 4 is formed in the substrate 3 by embedding a film having resistance to Si etching.
Next, the detection film 13 is formed on the substrate 3, the lower layer wiring 8 is formed above the detection film 13 via an insulator, and an insulator is further formed. In this way, the detection film 13 and the lower layer wiring 8 embedded in the insulator 21a are formed.

下層配線8は、薄膜配線9とPN接合ダイオード7とのコンタクト抵抗を低減するために、800度以上の熱処理が必要であるため、これに耐えうる低抵抗の金属配線用材料とすることが好ましく、好ましい材料として、チタン、タングステン、ポリシリコン等が挙げられる。下層配線8は、水平駆動配線5、垂直信号読み出し配線6のうちの一部として形成され、この時点では隣接画素間は接続されない。   In order to reduce the contact resistance between the thin film wiring 9 and the PN junction diode 7, the lower layer wiring 8 needs to be heat-treated at 800 ° C. or more. Therefore, it is preferable to use a low resistance metal wiring material that can withstand this. Preferred materials include titanium, tungsten, polysilicon and the like. The lower layer wiring 8 is formed as a part of the horizontal drive wiring 5 and the vertical signal readout wiring 6, and the adjacent pixels are not connected at this time.

次に、公知のフォトリソグラフィ工程及びエッチング工程を用いて、絶縁体21aの所定の位置に下層配線8及び検知膜13に通じる貫通孔を形成して、図4に示すように薄膜配線9を形成し、下層配線8と検知膜13とを接続する。図4に示すように、温度検知膜13と薄膜配線9を含むトレンチ4で囲まれた領域は、他の配線部に比べ絶縁膜21aが薄膜化されている。この部分は後に温度検知部1、支持脚2となる部分であり、検知部1の熱容量を低減し、支持脚2の熱コンダクタンスを低減するために、薄膜化されている。   Next, using a known photolithography process and etching process, a through-hole leading to the lower layer wiring 8 and the detection film 13 is formed at a predetermined position of the insulator 21a, and the thin film wiring 9 is formed as shown in FIG. Then, the lower layer wiring 8 and the detection film 13 are connected. As shown in FIG. 4, in the region surrounded by the trench 4 including the temperature detection film 13 and the thin film wiring 9, the insulating film 21a is made thinner than the other wiring parts. This part is a part that will later become the temperature detection unit 1 and the support leg 2, and is thinned to reduce the heat capacity of the detection unit 1 and the thermal conductance of the support leg 2.

この薄膜配線9は、例えば50nm程度の膜厚のチタン合金で形成される。このように薄膜配線9は、非常に薄い膜で形成される為、薄膜配線9そのものを下層配線とすると上層の配線とのコンタクトホール形成時の加工にて薄膜配線9が除去されてしまい良好なコンタクト性能が得られない。したがって、本実施形態1では、この問題を解決する為に、上層配線11に接続される下層配線8を薄膜配線とは別に設けて、薄膜配線9の下層の下層配線8と薄膜配線9を接続することで水平駆動配線5、垂直信号読み出し配線6と温度検知部1を接続している。   The thin film wiring 9 is made of, for example, a titanium alloy having a thickness of about 50 nm. Thus, since the thin film wiring 9 is formed by a very thin film, if the thin film wiring 9 itself is a lower layer wiring, the thin film wiring 9 is removed by processing when forming a contact hole with the upper layer wiring, which is good. Contact performance cannot be obtained. Therefore, in the first embodiment, in order to solve this problem, the lower layer wiring 8 connected to the upper layer wiring 11 is provided separately from the thin film wiring, and the lower layer wiring 8 and the thin film wiring 9 below the thin film wiring 9 are connected. By doing so, the horizontal drive wiring 5, the vertical signal readout wiring 6 and the temperature detection unit 1 are connected.

薄膜配線9を形成した後、100nm程度の絶縁体層を堆積する。
通常の半導体プロセスにおいては、配線工程後はCMP(化学機械研磨法)やドライエッチングによるエッチバック法などの公知技術により平坦化処理が行われる。しかしながら、本発明の熱型赤外線撮像素子においては、図2の薄膜配線9上の絶縁体層の膜厚は薄い方が好ましく、さらに高い膜厚均一性が求められる。したがって、薄膜配線8の上層は薄膜の絶縁体層の堆積のみが行われることが好ましい。
After forming the thin film wiring 9, an insulator layer of about 100 nm is deposited.
In a normal semiconductor process, a planarization process is performed after the wiring process by a known technique such as CMP (Chemical Mechanical Polishing) or an etch back method using dry etching. However, in the thermal infrared imaging device of the present invention, it is preferable that the insulator layer on the thin film wiring 9 in FIG. 2 is thin, and higher film thickness uniformity is required. Therefore, it is preferable to deposit only a thin insulator layer on the thin film wiring 8.

次に図5に示すように、支持脚2となる部分を、例えば、エッチングにより温度検知部1から分離して、支持脚2を形成する。支持脚2を形成した後に、図6に示すように、犠牲層14を形成する。犠牲層14は耐熱性のある有機系膜で形成する。次に、図6に示すように、絶縁膜を堆積して、フォトリソグラフィ技術により犠牲層14上を開口し、さらに下層配線8上の一部の絶縁体層のみ除去して開口して、反射膜10、上層配線11を同時に形成する。上層配線11は、上記開口を介して下層配線8に接続される。ここでは、犠牲層14として有機系膜をスピンコートなどの手段を用いて堆積しているのでこの反射膜構造形成の際に特別な平坦化処理をする必要がない。ここで、本実施形態1において、反射膜構造は、反射膜10と上層配線11とによって構成される。   Next, as shown in FIG. 5, a portion that becomes the support leg 2 is separated from the temperature detection unit 1 by, for example, etching to form the support leg 2. After the support legs 2 are formed, a sacrificial layer 14 is formed as shown in FIG. The sacrificial layer 14 is formed of a heat resistant organic film. Next, as shown in FIG. 6, an insulating film is deposited, and the sacrificial layer 14 is opened by photolithography, and only a part of the insulating layer on the lower wiring 8 is removed and opened to reflect. The film 10 and the upper layer wiring 11 are formed simultaneously. The upper layer wiring 11 is connected to the lower layer wiring 8 through the opening. Here, since an organic film is deposited as the sacrificial layer 14 using means such as spin coating, it is not necessary to perform a special planarization process when forming the reflective film structure. Here, in the first embodiment, the reflective film structure includes the reflective film 10 and the upper layer wiring 11.

次に反射膜10及び上層配線11の上層に絶縁体層を堆積し、その絶縁体層に犠牲層14に達する開口孔を形成する。次に、犠牲層15を絶縁体層上に形成する。これにより、絶縁体層に形成された開口孔で犠牲層14に繋がった犠牲層15が形成される。
次に、温度検知部1の中央部で犠牲層15と犠牲層14とを貫通して温度検知部1に達する貫通孔を形成して、該貫通孔を介して温度検知部1に繋がる赤外線吸収構造12を形成する。この赤外線吸収構造12は、金属層が絶縁体層にはさまれた構造となっており、例えば、厚さ5nmのクロム膜と、例えば100nmの酸化シリコンにて形成される。
Next, an insulating layer is deposited on the reflective film 10 and the upper wiring 11, and an opening reaching the sacrificial layer 14 is formed in the insulating layer. Next, a sacrificial layer 15 is formed on the insulator layer. Thereby, the sacrificial layer 15 connected to the sacrificial layer 14 through the opening hole formed in the insulator layer is formed.
Next, an infrared ray absorbing through the sacrificial layer 15 and the sacrificial layer 14 at the center of the temperature detection unit 1 and reaching the temperature detection unit 1 is formed, and the infrared ray is connected to the temperature detection unit 1 through the through hole. Structure 12 is formed. The infrared absorption structure 12 has a structure in which a metal layer is sandwiched between insulator layers, and is formed of, for example, a chromium film having a thickness of 5 nm and silicon oxide having a thickness of 100 nm, for example.

次に、基板3のうち図1のトレンチ4に囲まれた領域を二弗化キセノンなどによる等方性エッチングにて除去して凹形状を形成し、最後に犠牲層14、15が除去される。このようにして、この赤外線吸収構造12とそれに接続された温度検知部1とが、基板から分離された状態で基板に保持される。ここで、赤外線吸収構造12は、図2に示すように、温度検知部1、支持脚2、反射膜10の上方の画素全体を覆うように形成され温度検知部1のみと熱的に接続される。
以上のようにして、図2の熱型赤外線検出器が完成する。
Next, a region surrounded by the trench 4 in FIG. 1 in the substrate 3 is removed by isotropic etching with xenon difluoride to form a concave shape, and finally the sacrificial layers 14 and 15 are removed. . In this manner, the infrared absorption structure 12 and the temperature detection unit 1 connected to the infrared absorption structure 12 are held on the substrate while being separated from the substrate. Here, as shown in FIG. 2, the infrared absorption structure 12 is formed so as to cover the entire pixel above the temperature detection unit 1, the support leg 2, and the reflective film 10, and is thermally connected only to the temperature detection unit 1. The
As described above, the thermal infrared detector of FIG. 2 is completed.

実施形態2.
図8及び図9を参照しながら、本発明に係る実施形態2の熱型赤外線撮像素子について説明する。図8は、実施形態2の熱型赤外線撮像素子の平面図、図9は、図8のC-D線についての断面図である。図8の平面図においては、温度検知部1、支持脚2上の反射膜1パターン、赤外線吸収構造12は図示していない。この実施形態2の熱型赤外線撮像素子は、基本構造は実施形態1と同様であるが、下層配線8と上層配線11の間に中間配線16を有している点で、実施形態1の熱型赤外線撮像素子とは異なっている。
Embodiment 2. FIG.
A thermal infrared imaging device according to the second embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a plan view of the thermal infrared imaging device of the second embodiment, and FIG. 9 is a cross-sectional view taken along line CD in FIG. In the plan view of FIG. 8, the temperature detector 1, the reflective film 1 pattern on the support leg 2, and the infrared absorbing structure 12 are not shown. Although the basic structure of the thermal infrared imaging device of the second embodiment is the same as that of the first embodiment, the thermal wiring of the first embodiment is different in that the intermediate wiring 16 is provided between the lower layer wiring 8 and the upper layer wiring 11. This is different from the type infrared imaging device.

下層配線8は、薄膜配線9が水平駆動配線5、垂直信号読み出し配線6に繋がる接続部分のみに形成され、垂直信号読み出し配線6は中間配線16のみで構成され、水平駆動配線5は薄膜配線9の上部を除き上層配線11のみにより構成される。薄膜配線9の上部に上層配線11を形成しないようにしたのは、支持脚2を構成する層を形成前の画素周辺の段差を小さくするためである。   The lower layer wiring 8 is formed only at a connection portion where the thin film wiring 9 is connected to the horizontal drive wiring 5 and the vertical signal readout wiring 6, the vertical signal readout wiring 6 is constituted by only the intermediate wiring 16, and the horizontal driving wiring 5 is the thin film wiring 9. The upper layer wiring 11 is constituted only by the upper part of the wiring. The reason why the upper layer wiring 11 is not formed above the thin film wiring 9 is to reduce the step around the pixel before forming the layer constituting the support leg 2.

すなわち、実施形態1では支持脚加工前の配線は下層配線8と薄膜配線9の2層であったが、本実施例においては下層配線8と薄膜配線9の上層に中間配線16を追加する。この構成では、中間配線16は薄膜配線9より上層にあるため半導体材料としては比較的融点の低いアルミニウム等が使用できる。アルミニウムは非常に抵抗が低く、また半導体プロセスではよく使用される金属で加工技術も確立されており汎用性が高いという利点がある。さらに本実施例において垂直信号読み出し配線6を中間配線16、水平駆動配線5を上層配線11としてもよいことは言うまでもない。   That is, in the first embodiment, the wiring before the support leg processing is two layers of the lower layer wiring 8 and the thin film wiring 9, but in this embodiment, the intermediate wiring 16 is added to the upper layer of the lower layer wiring 8 and the thin film wiring 9. In this configuration, since the intermediate wiring 16 is above the thin film wiring 9, aluminum having a relatively low melting point can be used as the semiconductor material. Aluminum has a very low resistance, and is a metal that is often used in semiconductor processes and has an established processing technique. Further, it goes without saying that the vertical signal readout wiring 6 may be the intermediate wiring 16 and the horizontal driving wiring 5 may be the upper layer wiring 11 in this embodiment.

以上のように構成された実施形態2では、薄膜配線9を下層配線8を介して上層の垂直信号読み出し配線6あるいは水平駆動配線5を接続することにより、支持脚2が形成される前の画素内段差を従来例よりも低減することが出来、実施形態1と同様の効果が得られる。また、中間配線16を追加することにより、比較的高抵抗ななる下層配線8による配線長を実施形態1よりも短くできるので、低抵抗な配線が実現できる。これにより、配線の信頼性向上し、出力電圧分布の少ない熱型赤外線撮像素子が実現できる。   In the second embodiment configured as described above, the thin film wiring 9 is connected to the upper layer vertical signal readout wiring 6 or the horizontal driving wiring 5 through the lower layer wiring 8, so that the pixel before the support leg 2 is formed. The inner step can be reduced as compared with the conventional example, and the same effect as in the first embodiment can be obtained. Further, by adding the intermediate wiring 16, the wiring length of the lower wiring 8 having a relatively high resistance can be made shorter than that of the first embodiment, so that a low resistance wiring can be realized. Thereby, the reliability of wiring can be improved, and a thermal infrared imaging device with less output voltage distribution can be realized.

実施形態3.
以下、図10、図11を参照しながら、本発明に係る実施形態3の熱型赤外線撮像素子について説明する。図10は熱型赤外線撮像素子の平面図、図11は図10のE-F線についての断面図である。図10の平面図においては、温度検知部1、支持脚2上の反射膜パターン、赤外線吸収構造12は図示していない。この実施形態3の熱型赤外線撮像素子は、基本構造は実施形態1のものと同様であるが、本実施形態3では、下層配線8と上層配線11とを接続するためのコンタクトホールと、下層配線8と薄膜配線9とを接続するためのコンタクトホールとをほぼ同じ位置に重ねて形成した点で実施形態1とは異なっている。
Embodiment 3. FIG.
Hereinafter, the thermal infrared imaging device according to the third embodiment of the present invention will be described with reference to FIGS. 10 and 11. FIG. 10 is a plan view of the thermal infrared imaging device, and FIG. 11 is a cross-sectional view taken along the line EF of FIG. In the plan view of FIG. 10, the temperature detection unit 1, the reflection film pattern on the support leg 2, and the infrared absorption structure 12 are not shown. The thermal infrared imaging element of the third embodiment has the same basic structure as that of the first embodiment, but in the third embodiment, a contact hole for connecting the lower layer wiring 8 and the upper layer wiring 11 and a lower layer The second embodiment is different from the first embodiment in that the contact holes for connecting the wiring 8 and the thin film wiring 9 are formed to overlap each other at substantially the same position.

以上のような構成では、薄膜配線9は、下層配線及び上層配線に比較して薄膜である為、上層配線11のコンタクトホール形成する時に、そのコンタクトホール部の薄膜配線9は除去されるが、下層配線8と上層配線11が接続されるため問題ない。また、2つのコンタクトホールを同じ大きさではなく、例えば、縦横比等を変えて下層配線8と薄膜配線9のみ、下層配線8と上層配線11のみのコンタクト領域を確保することにより下層配線を介して薄膜配線9と上層配線11の良好な接続を確保することもできる。   In the above configuration, since the thin film wiring 9 is a thin film compared to the lower layer wiring and the upper layer wiring, when the contact hole of the upper layer wiring 11 is formed, the thin film wiring 9 in the contact hole portion is removed. There is no problem because the lower layer wiring 8 and the upper layer wiring 11 are connected. In addition, the two contact holes are not the same size, for example, by changing the aspect ratio, etc., and by securing the contact area of only the lower layer wiring 8 and the thin film wiring 9 and only the lower layer wiring 8 and the upper layer wiring 11, Thus, a good connection between the thin film wiring 9 and the upper layer wiring 11 can be secured.

以上のように構成された実施形態3では、下層配線8と薄膜配線9、上層配線11の接続をほぼ共通の位置とすることで画素内における薄膜配線9と垂直信号読み出し配線6、水平駆動配線5との接続に要する面積を減らすことが出来る。これにより、画素面積の縮小が可能となる。また、下層配線8は上層配線11に比べて抵抗が高いものが多く、本実施形態では下層配線8に要する面積(配線長)を減らすことができることから、垂直信号読み出し配線6、水平駆動配線5の抵抗を減らすことが可能になる。   In the third embodiment configured as described above, the connection between the lower layer wiring 8, the thin film wiring 9, and the upper layer wiring 11 is set at a substantially common position, so that the thin film wiring 9, the vertical signal readout wiring 6, and the horizontal driving wiring in the pixel. The area required for connection with 5 can be reduced. Thereby, the pixel area can be reduced. In addition, the lower layer wiring 8 often has higher resistance than the upper layer wiring 11, and in this embodiment, the area (wiring length) required for the lower layer wiring 8 can be reduced. Therefore, the vertical signal readout wiring 6 and the horizontal driving wiring 5 are reduced. It becomes possible to reduce the resistance.

実施形態4.
本実施形態4は、実施例1の熱型赤外線撮像素子複数個をアレイ状に並べた熱型赤外線撮像装置である。図12は、熱型赤外線撮像装置の平面図、図13はそのG−H線についての断面図である。以上のように構成された熱型赤外線撮像装置では、水平駆動配線5により駆動された信号は、各温度検知部1で温度変化に対応して電気信号に変換されて順次垂直信号読み出し配線6を介して読み出される。本実施形態4では、X=2、Y=2画素のアレイとしたが、X,Yはどのような組み合わせでもよい。
Embodiment 4 FIG.
The fourth embodiment is a thermal infrared imaging device in which a plurality of thermal infrared imaging devices of Example 1 are arranged in an array. FIG. 12 is a plan view of the thermal infrared imaging device, and FIG. 13 is a cross-sectional view taken along the line GH. In the thermal infrared imaging device configured as described above, the signals driven by the horizontal drive wiring 5 are converted into electrical signals in response to temperature changes in the respective temperature detection units 1 and sequentially sent to the vertical signal readout wiring 6. Read through. In the fourth embodiment, an array of X = 2 and Y = 2 pixels is used, but any combination of X and Y is possible.

本実施形態4の熱型赤外線撮像装置は、各素子部において支持脚の製造ばらつきを少なくでき、また、反射膜がフラットに形成できることから、画素間の性能ばらつきを少なくでき、高歩留まりで製造することができる。   The thermal infrared imaging device according to the fourth embodiment can reduce the manufacturing variation of the support legs in each element portion, and can form the reflection film flat, so that the performance variation between the pixels can be reduced and manufactured with a high yield. be able to.

本発明に係る実施形態1の熱型赤外線撮像素子を示す平面図である。It is a top view which shows the thermal type infrared imaging element of Embodiment 1 which concerns on this invention. 本発明に係る実施形態1の熱型赤外線撮像素子を示す断面図である。It is sectional drawing which shows the thermal type infrared imaging element of Embodiment 1 which concerns on this invention. 本発明に係る実施形態1の熱型赤外線撮像素子の製造方法の第1段階を示す断面図である。It is sectional drawing which shows the 1st step of the manufacturing method of the thermal type infrared imaging element of Embodiment 1 which concerns on this invention. 本発明に係る実施形態1の熱型赤外線撮像素子の製造方法の第2段階を示す断面図である。It is sectional drawing which shows the 2nd step of the manufacturing method of the thermal type infrared imaging element of Embodiment 1 which concerns on this invention. 本発明に係る実施形態1の熱型赤外線撮像素子の製造方法の第3段階を示す断面図である。It is sectional drawing which shows the 3rd step of the manufacturing method of the thermal type infrared imaging element of Embodiment 1 which concerns on this invention. 本発明に係る実施形態1の熱型赤外線撮像素子の製造方法の第4段階を示す断面図である。It is sectional drawing which shows the 4th step of the manufacturing method of the thermal type infrared imaging element of Embodiment 1 which concerns on this invention. 本発明に係る実施形態1の熱型赤外線撮像素子の製造方法の第5段階を示す断面図である。It is sectional drawing which shows the 5th step of the manufacturing method of the thermal type infrared imaging element of Embodiment 1 which concerns on this invention. 本発明に係る実施形態2の熱型赤外線撮像素子を示す平面図である。It is a top view which shows the thermal type infrared imaging element of Embodiment 2 which concerns on this invention. 本発明に係る実施形態2の熱型赤外線撮像素子を示す断面図である。It is sectional drawing which shows the thermal type infrared imaging element of Embodiment 2 which concerns on this invention. 本発明に係る実施形態3の熱型赤外線撮像素子を示す平面図である。It is a top view which shows the thermal type infrared imaging element of Embodiment 3 which concerns on this invention. 本発明に係る実施形態3の熱型赤外線撮像素子を示す断面図である。It is sectional drawing which shows the thermal type infrared imaging element of Embodiment 3 which concerns on this invention. 本発明に係る実施形態4の熱型赤外線撮像素子を示す平面図である。It is a top view which shows the thermal type infrared imaging element of Embodiment 4 which concerns on this invention. 本発明に係る実施形態4の熱型赤外線撮像素子を示す断面図である。It is sectional drawing which shows the thermal type infrared imaging element of Embodiment 4 which concerns on this invention.

符号の説明Explanation of symbols

1 温度検知部、2 支持脚、3 基板、4 トレンチ、5 水平駆動配線、6 垂直信号読み出し配線、7 PN接合ダイオード、8 下層配線、9 薄膜配線、10 反射膜、11 上層配線、12 赤外線吸収構造、13 温度検知膜、14 犠牲層(1層目)、15 犠牲層(2層目)、16 中間配線、21a、21b 絶縁体層。   DESCRIPTION OF SYMBOLS 1 Temperature detection part, 2 Support leg, 3 Substrate, 4 Trench, 5 Horizontal drive wiring, 6 Vertical signal readout wiring, 7 PN junction diode, 8 Lower layer wiring, 9 Thin film wiring, 10 Reflective film, 11 Upper layer wiring, 12 Infrared absorption Structure, 13 Temperature sensing film, 14 Sacrificial layer (first layer), 15 Sacrificial layer (second layer), 16 Intermediate wiring, 21a, 21b Insulator layer.

Claims (7)

基板と、支持脚によって基板から離れて保持された温度検知部とを備え、温度検知部が前記支持脚に設けられた第1配線によって基板上の第2配線に接続された熱型赤外線撮像素子であって、前記第2配線は基板上に形成された下層配線と該下層配線より基板から離れた上層に設けられかつ前記下層配線に接続された上層配線とを有してなり、
前記第1配線と前記下層配線とは一部が絶縁体層を介して重なっており、その重なった部分で前記下層配線と前記第1配線とは前記絶縁体層に設けられたバイアホールを介して接続されている熱型赤外線撮像素子。
A thermal infrared imaging device comprising a substrate and a temperature detection unit held away from the substrate by a support leg, wherein the temperature detection unit is connected to a second wiring on the substrate by a first wiring provided on the support leg The second wiring has a lower layer wiring formed on the substrate and an upper layer wiring provided in an upper layer far from the substrate than the lower layer wiring and connected to the lower layer wiring,
The first wiring and the lower layer wiring partially overlap with each other through an insulating layer, and the lower layer wiring and the first wiring overlap with each other through a via hole provided in the insulating layer. Connected thermal infrared imaging device.
前記下層配線と前記上層配線とは一部が絶縁体層を介して重なっており、その重なった部分で前記下層配線と前記上層配線とは前記絶縁体層に設けられた第2バイアホールを介して接続されている請求項1記載の熱型赤外線撮像素子。   The lower layer wiring and the upper layer wiring partially overlap with each other through an insulating layer, and the lower layer wiring and the upper layer wiring overlap with each other through a second via hole provided in the insulating layer. The thermal infrared imaging device according to claim 1, wherein the thermal infrared imaging device is connected. 前記バイアホールと前記第2バイアホールは少なくとも一部が重なって設けられている請求項記載の熱型赤外線撮像素子。 The via hole and the second via hole thermal infrared imaging device according to claim 2, wherein is provided at least partially overlap each other. 基板と、支持脚によって基板から離れて保持された温度検知部とを備え、温度検知部が前記支持脚に設けられた第1配線によって基板上の第2配線に接続された熱型赤外線撮像素子であって、前記第2配線は基板上に形成された下層配線と該下層配線より基板から離れた上層に設けられかつ前記下層配線に接続された上層配線とを有してなり、
前記下層配線及び前記第1配線より基板から離れた上層で、かつ前記上層配線より基板に近い下層の前記基板上に設けられた中間配線をさらに有し、前記下層配線と前記中間配線とが接続されている熱型赤外線撮像素子。
A thermal infrared imaging device comprising a substrate and a temperature detection unit held away from the substrate by a support leg, wherein the temperature detection unit is connected to a second wiring on the substrate by a first wiring provided on the support leg The second wiring has a lower layer wiring formed on the substrate and an upper layer wiring provided in an upper layer far from the substrate than the lower layer wiring and connected to the lower layer wiring,
The lower wiring and the first wiring further include an intermediate wiring provided on the lower substrate closer to the substrate than the upper wiring, and the lower wiring and the intermediate wiring are connected to each other. thermal infrared imaging device being.
前記第1配線と前記下層配線とは一部が絶縁体層を介して重なっており、その重なった部分で前記下層配線と前記第1配線とは前記絶縁体層に設けられたバイアホールを介して接続されている請求項4記載の熱型赤外線撮像素子。 The first wiring and the lower layer wiring partially overlap with each other through an insulating layer, and the lower layer wiring and the first wiring overlap with each other through a via hole provided in the insulating layer. The thermal infrared imaging device according to claim 4, which is connected to each other . 前記下層配線と前記上層配線とは一部が絶縁体層を介して重なっており、その重なった部分で前記下層配線と前記上層配線とは前記絶縁体層に設けられた第2バイアホールを介して接続されている請求項5記載の熱型赤外線撮像素子。 The lower layer wiring and the upper layer wiring partially overlap with each other through an insulating layer, and the lower layer wiring and the upper layer wiring overlap with each other through a second via hole provided in the insulating layer. The thermal infrared imaging device according to claim 5, which is connected to each other . 請求項1〜のうちのいずれか1つに記載の熱型赤外線検出素子がアレイ状に配列された熱型赤外線検出装置。 Thermal type infrared sensing device thermal infrared detecting elements are arranged in an array according to any one of claims 1-6.
JP2008069022A 2008-03-18 2008-03-18 Thermal infrared image sensor Active JP5016527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008069022A JP5016527B2 (en) 2008-03-18 2008-03-18 Thermal infrared image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008069022A JP5016527B2 (en) 2008-03-18 2008-03-18 Thermal infrared image sensor

Publications (2)

Publication Number Publication Date
JP2009222633A JP2009222633A (en) 2009-10-01
JP5016527B2 true JP5016527B2 (en) 2012-09-05

Family

ID=41239568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008069022A Active JP5016527B2 (en) 2008-03-18 2008-03-18 Thermal infrared image sensor

Country Status (1)

Country Link
JP (1) JP5016527B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257382A (en) * 2000-03-13 2001-09-21 Toshiba Corp Thermal semiconductor infrared image pickup element
JP2002107224A (en) * 2000-09-29 2002-04-10 Toshiba Corp Infrared sensor and its manufacturing method
JP3681113B2 (en) * 2001-05-18 2005-08-10 三菱電機株式会社 Thermal infrared detector array
JP4028441B2 (en) * 2003-06-18 2007-12-26 株式会社東芝 Infrared solid-state imaging device and manufacturing method thereof
JP3961457B2 (en) * 2003-06-30 2007-08-22 株式会社東芝 Thermal infrared imaging device and manufacturing method thereof
JP4315832B2 (en) * 2004-02-17 2009-08-19 三菱電機株式会社 Thermal infrared sensor element and thermal infrared sensor array
JP2006297502A (en) * 2005-04-15 2006-11-02 Toshiba Corp Semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JP2009222633A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
US6031231A (en) Infrared focal plane array
US6541298B2 (en) Method of making infrared sensor with a thermoelectric converting portion
JP3921320B2 (en) Thermal infrared detector and method for manufacturing the same
US8734010B2 (en) Thermal detector, thermal detection device, electronic instrument, and thermal detector manufacturing method
US20110175145A1 (en) Infrared Sensor
US8569698B2 (en) Thermal detector, thermal detection device, and electronic instrument
JP5645240B2 (en) Infrared array sensor
US20010028035A1 (en) Infrared sensor and manufacturing method thereof
US20110175100A1 (en) Infrared sensor
US7825379B2 (en) Thermal-type infrared image sensing device and method of producing the same
WO2010114001A1 (en) Infrared array sensor
KR20180123638A (en) Method For Producing A Bolometric Detector
JP2005043381A (en) Thermal type infrared detector and its manufacturing method
JP3672516B2 (en) Infrared sensor device and manufacturing method thereof
JP3574368B2 (en) Infrared solid-state imaging device
JP2006297502A (en) Semiconductor device and its manufacturing method
JP2008039570A (en) Thermal-type infrared solid-state imaging device and infrared camera
JP5016527B2 (en) Thermal infrared image sensor
JP5691502B2 (en) THERMAL TYPE PHOTODETECTOR, THERMAL TYPE PHOTODETECTOR, ELECTRONIC DEVICE, AND THERMAL TYPE OPTICAL DETECTOR
JP5707930B2 (en) THERMAL TYPE PHOTODETECTOR, THERMAL TYPE PHOTODETECTOR, ELECTRONIC DEVICE, AND METHOD FOR PRODUCING THERMAL TYPE OPTICAL DETECTOR
JP5008580B2 (en) Infrared imaging device manufacturing method and infrared imaging device
JP5655556B2 (en) THERMAL TYPE PHOTODETECTOR, THERMAL TYPE PHOTODETECTOR, ELECTRONIC DEVICE, AND METHOD FOR PRODUCING THERMAL TYPE OPTICAL DETECTOR
JP2012154685A (en) Thermal photodetector, thermal photodetection device, electronic instrument, and method of manufacturing thermal photodetector
JP5669654B2 (en) Infrared imaging device manufacturing method and infrared imaging device
JP2010249779A (en) Infrared sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5016527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250