JP5013535B2 - Rotation angle detector - Google Patents

Rotation angle detector Download PDF

Info

Publication number
JP5013535B2
JP5013535B2 JP2008170757A JP2008170757A JP5013535B2 JP 5013535 B2 JP5013535 B2 JP 5013535B2 JP 2008170757 A JP2008170757 A JP 2008170757A JP 2008170757 A JP2008170757 A JP 2008170757A JP 5013535 B2 JP5013535 B2 JP 5013535B2
Authority
JP
Japan
Prior art keywords
rotation angle
driven gear
detection device
screw receiver
angle detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008170757A
Other languages
Japanese (ja)
Other versions
JP2010008353A (en
Inventor
真二 畑中
武田  憲司
深谷  繁利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2008170757A priority Critical patent/JP5013535B2/en
Publication of JP2010008353A publication Critical patent/JP2010008353A/en
Application granted granted Critical
Publication of JP5013535B2 publication Critical patent/JP5013535B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/20Detecting rotary movement
    • G01D2205/22Detecting rotary movement by converting the rotary movement into a linear movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/20Detecting rotary movement
    • G01D2205/26Details of encoders or position sensors specially adapted to detect rotation beyond a full turn of 360°, e.g. multi-rotation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/20Detecting rotary movement
    • G01D2205/28The target being driven in rotation by additional gears

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

本発明は、回転軸の回転による磁束方向の回転を検出することにより、回転軸の回転角を検出する回転角検出装置の改良に関する。本発明はたとえば、車両用操舵角検出装置に採用されることができる。   The present invention relates to an improvement in a rotation angle detection device that detects a rotation angle of a rotation shaft by detecting rotation in a magnetic flux direction due to rotation of the rotation shaft. The present invention can be employed in, for example, a vehicle steering angle detection device.

磁石(着磁体を含む)の回転角変化を磁気検出素子により検出する回転角検出装置を用いた操舵角検出装置が知られている。この回転角検出装置において、被検出回転軸の360度を超える回転角を検出する装置(以下、360度超回転角検出装置とも言う)が特許文献1に知られている。この特許文献1の360度超回転角検出装置は、回転角を検出すべき一つの被検出回転軸にそれぞれ独立に噛合する二つの磁石軸の回転角をそれぞれ磁気検出部により検出し、これら二つの磁気検出部から互いに位相角が異なる出力を発生させ、信号処理部によりこれら二つの出力の位相角の差から360度超の回転角を演算することを提案している。   A steering angle detection device using a rotation angle detection device that detects a change in rotation angle of a magnet (including a magnetized body) by a magnetic detection element is known. In this rotation angle detection device, a device that detects a rotation angle exceeding 360 degrees of a rotation axis to be detected (hereinafter also referred to as a 360-degree super rotation angle detection device) is known in Patent Document 1. The 360-degree super-rotation angle detection device of Patent Document 1 detects the rotation angles of two magnet shafts that mesh independently with one detected rotation shaft whose rotation angle is to be detected, by means of a magnetic detection unit. It has been proposed that two magnetic detectors generate outputs having different phase angles, and a signal processor calculates a rotation angle of more than 360 degrees from the difference in phase angle between these two outputs.

また、本発明者の発明になる下記の特許文献2は、被検出回転軸に設けられた第1歯車に対して噛合しつつ磁気検出素子の周囲を回転する第2歯車の刃先に雄ねじ部を設けた回転角検出装置を提案している。この雄ねじ部は、第2歯車の外周に接する部分円筒状のねじ受けに設けられた雌ねじ部に螺合し、第2歯車は回動とともにねじ受けにより付勢されて軸方向に進退する。第2歯車の内部に設けられた着磁体は、第2歯車の軸方向へ連続的に変化する磁束密度を形成する。第2歯車の軸心上に設けられた磁気検出素子が検出する磁束密度は、第2歯車の回動角に応じて連続的に変化する。その結果として、磁気検出素子から出力される二つの出力の位相角の差と強度とから360度超の回転角を演算することが可能となっている。更なる説明については、下記の特許文献2を参照されたい。
特開2005−3625号公報 特開2007−256250号公報
Further, in the following Patent Document 2 which is the invention of the present inventor, a male screw portion is provided at a blade edge of a second gear that rotates around a magnetic detection element while meshing with a first gear provided on a detected rotation shaft. A rotation angle detector provided is proposed. The male screw portion is screwed into a female screw portion provided on a partially cylindrical screw receiver that is in contact with the outer periphery of the second gear, and the second gear is urged by the screw receiver as it rotates and advances and retreats in the axial direction. The magnetized body provided inside the second gear forms a magnetic flux density that continuously changes in the axial direction of the second gear. The magnetic flux density detected by the magnetic detection element provided on the axis of the second gear continuously changes according to the rotation angle of the second gear. As a result, it is possible to calculate a rotation angle of more than 360 degrees from the difference between the phase angle of the two outputs output from the magnetic detection element and the intensity. For further explanation, see Patent Document 2 below.
JP 2005-3625 A JP 2007-256250 A

上記した特許文献1の回転角検出装置は、360度超の回転角を検出できるものの、歯車機構と磁石と磁気検出部とのセットを2組、被検出回転軸の周囲に配置せねばならず、部品点数及び装置体格が増大し、製造コストも増大するという問題があった。   Although the rotation angle detection device of Patent Document 1 described above can detect a rotation angle exceeding 360 degrees, two sets of a gear mechanism, a magnet, and a magnetic detection unit must be arranged around the detected rotation shaft. However, there are problems that the number of parts and the size of the apparatus increase and the manufacturing cost also increases.

上記特許文献2の回転角検出装置において、第1歯車とねじ受けとは互いに螺合してねじ機構を構成するが、第1歯車(ドライブギヤ)と磁気検出素子との位置合わせのみならず、これら第1歯車及び磁気検出素子に対してねじ受けを高精度に位置合わせするねじ受け取り付けのための熟練作業が必要となった。また、ねじ受けはハウジングに固定されるが、量産されるハウジングの寸法ばらつきによるがたにより、検出精度が低下するという問題もあった。   In the rotation angle detection device of Patent Document 2, the first gear and the screw receiver are screwed together to form a screw mechanism. In addition to the alignment of the first gear (drive gear) and the magnetic detection element, Skilled work is required for attaching the screw receiver to the first gear and the magnetic detection element with high accuracy. Further, although the screw receiver is fixed to the housing, there is a problem that the detection accuracy is lowered due to the variation in the dimensions of the mass-produced housing.

本発明は上記問題点に鑑みなされたものであり、製造工程の複雑化を回避しつつ検出精度に優れた360度超検出可能な回転角検出装置を提供することをその目的としている。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a rotation angle detection device capable of detecting more than 360 degrees with excellent detection accuracy while avoiding complicated manufacturing processes.

上記課題を解決する本発明の回転角検出装置は、ハウジングに回動自在に支持される被検出回転軸と、前記被検出回転軸に固定されたドライブギヤに噛合するドリブンギヤと、永久磁石を有するとともに前記ドリブンギヤの内部に固定されて前記ドリブンギヤの軸心位置に磁界を形成する磁界形成部と、前記ハウジングに支持されて前記ドリブンギヤに螺合するねじ受けと、前記ドリブンギヤの軸心上に位置して前記ハウジングに固定される磁気検出部と、前記磁気検出部の出力信号を処理して前記被検出回転軸の回転角を検出する信号処理部とを備え、前記ドリブンギヤは、前記ドライブギヤにより回動されるとともに前記ねじ受けに付勢されて軸方向に進退し、前記信号処理部は、前記磁界形成部の回動による軸直交磁界方向の変化並びに前記ドリブンギヤの軸方向進退による磁界強度の変化に基づいて前記被検出回動軸の360度超の回動角を検出する回転角検出装置に適用される。   A rotation angle detection device of the present invention that solves the above-described problems includes a detected rotation shaft that is rotatably supported by a housing, a driven gear that meshes with a drive gear fixed to the detected rotation shaft, and a permanent magnet. And a magnetic field forming portion that is fixed inside the driven gear and forms a magnetic field at the axial center position of the driven gear, a screw receiver that is supported by the housing and is screwed into the driven gear, and an axial center of the driven gear. A magnetic detection unit fixed to the housing, and a signal processing unit for processing an output signal of the magnetic detection unit to detect a rotation angle of the detected rotation shaft, and the driven gear is rotated by the drive gear. The signal processing unit is moved and moved forward and backward in the axial direction by being biased by the screw receiver, and the signal processing unit is arranged to change in the direction perpendicular to the magnetic field due to the rotation of the magnetic field forming unit. It applied to the rotation angle detector for detecting more than 360 degrees of rotation angle of the object to be detected rotation axis based on changes in magnetic field strength due to the axial advance and retreat of the driven gear.

すなわち、この回転角検出装置は、磁石内蔵の磁界形成部が固定されたドリブンギヤが、被検出回転軸のドライブギヤと噛合し、ねじ受けの雌ねじ面と螺合する。これにより、被検出回転軸が回動すると、ドリブンギヤは回動するとともに軸方向に進退する。磁界形成部は、ドリブンギヤの軸心上に所定の軸直角方向に磁束を形成しており、ドリブンギヤ及び磁界形成部の回動とともに磁気検出部に作用する磁束の方向が変化する。この磁界方向の変化により信号処理部は回動角を検出する。更に、ドリブンギヤの軸方向進退とともに、磁界形成部が磁気検出部に与える磁界強度が連続的に変化する。これにより、被検出回転軸の360度超の回動を判定することができる。   That is, in this rotation angle detection device, the driven gear, to which the magnetic field forming part with a built-in magnet is fixed, meshes with the drive gear of the detected rotation shaft and is screwed with the female thread surface of the screw receiver. Thus, when the detected rotation shaft rotates, the driven gear rotates and advances and retracts in the axial direction. The magnetic field forming unit forms a magnetic flux in a direction perpendicular to the predetermined axis on the axis of the driven gear, and the direction of the magnetic flux acting on the magnetic detection unit changes as the driven gear and the magnetic field forming unit rotate. The signal processing unit detects the rotation angle based on the change in the magnetic field direction. Further, as the driven gear advances and retreats in the axial direction, the magnetic field strength that the magnetic field forming unit applies to the magnetic detection unit continuously changes. Thereby, it is possible to determine the rotation of the detected rotation shaft exceeding 360 degrees.

上記構成は、既述した特許文献2の装置と本質的に同じである。   The above-described configuration is essentially the same as the device disclosed in Patent Document 2 described above.

本発明の回転角検出装置は更に、ハウジングに固定されて信号処理部が実装される回路基板を有し、磁気検出部が回路基板に支持される支持部材に固定され、ねじ受けが回路基板に固定されていることを、その特徴としている。このようにすると、本発明者が認識した特許文献2の回転角検出装置における下記の問題点を良好に解決することができる。   The rotation angle detection device of the present invention further includes a circuit board that is fixed to the housing and on which the signal processing unit is mounted, the magnetic detection unit is fixed to a support member supported by the circuit board, and a screw receiver is attached to the circuit board. It is characterized by being fixed. If it does in this way, the following problem in the rotation angle detector of patent documents 2 which this inventor recognized can be solved satisfactorily.

すなわち、この発明では、磁気検出部とねじ受けとをハウジングを経由することなく回路基板を通じて予め位置合わせしておくことが可能であるため、回路基板を第1歯車(ドライブギヤ)と位置合わせすることにより、磁気検出部及びねじ受けの両方を第1歯車に対して一挙に位置合わせすることができる。また、磁気検出部と第1歯車の位置合わせにより磁気検出部とねじ受けとの位置がずれることもない。また、磁気検出部及びねじ受けを回路基板に固定する作業を予め行うことが容易であり、組み付け作業の容易化を実現でき、その自動化も容易である。更に、ねじ受けがハウジングを介することなく磁気検出部に対して位置合わせされるため、ハウジングの寸法ばらつきの影響を受けることがない。結局、本発明の回転角検出装置は、熟練作業を減らすことができるにもかかわらず高精度の360度超検出可能な回転角検出が可能となる。   That is, in the present invention, since the magnetic detection unit and the screw receiver can be aligned in advance through the circuit board without going through the housing, the circuit board is aligned with the first gear (drive gear). Accordingly, both the magnetic detection unit and the screw receiver can be aligned at a stroke with respect to the first gear. In addition, the position of the magnetic detection unit and the screw receiver does not shift due to the alignment of the magnetic detection unit and the first gear. In addition, it is easy to perform the work of fixing the magnetic detection unit and the screw receiver to the circuit board in advance, the assembly work can be facilitated, and the automation thereof is also easy. Further, since the screw receiver is positioned with respect to the magnetic detection unit without passing through the housing, it is not affected by the dimensional variation of the housing. As a result, the rotation angle detection device of the present invention can detect rotation angles with a high accuracy exceeding 360 degrees in spite of being able to reduce skilled work.

好適な態様において、回路基板はドリブンギヤの軸心と直角方向へ延在する。これにより、組み付け作業が容易となり、検出精度を向上することができる。   In a preferred embodiment, the circuit board extends in a direction perpendicular to the axis of the driven gear. As a result, the assembly work is facilitated, and the detection accuracy can be improved.

好適な態様において、ねじ受けは、軸直交断面が円弧形状の雌ねじ面を有する部分円筒体からなり、ドリブンギヤの歯の径方向外端面に形成された雄ねじ面は、ねじ受けの径方向内側の表面に形成された雌ねじ面に螺合し、ねじ受けの周方向中心点とドリブンギヤの軸心とドライブギヤの軸心とは、一直線に配置されている。これにより、検出精度を向上することができる。   In a preferred embodiment, the screw receiver is formed of a partial cylindrical body having a female screw surface having an arc-shaped cross section perpendicular to the axis, and the male screw surface formed on the radially outer end surface of the tooth of the driven gear is a radially inner surface of the screw receiver. The circumferential center point of the screw receiver, the axis of the driven gear, and the axis of the drive gear are arranged in a straight line. Thereby, detection accuracy can be improved.

好適な態様において、ねじ受けは、回路基板の支持孔に嵌入される固定用突起を有する。これにより、容易な実装作業により精度良くねじ受けを回路基板に固定することができる。   In a preferred embodiment, the screw receiver has a fixing protrusion that is fitted into the support hole of the circuit board. Accordingly, the screw receiver can be fixed to the circuit board with high accuracy by an easy mounting operation.

好適な態様において、回路基板に立設される支持突起を有し、支持突起は、ねじ受けに凹設された支持穴に嵌入される。これにより、容易な実装作業により精度良くねじ受けを回路基板に固定することができる。   In a preferred aspect, the circuit board has a support protrusion standing on the circuit board, and the support protrusion is fitted into a support hole recessed in the screw receiver. Accordingly, the screw receiver can be fixed to the circuit board with high accuracy by an easy mounting operation.

好適な態様において、被検出回動軸は、車両の操舵軸からなる。これにより、高精度で製造が容易な車両用操舵角検出装置を実現することができる。   In a preferred embodiment, the detected rotation shaft is a vehicle steering shaft. As a result, it is possible to realize a vehicle steering angle detection device that is highly accurate and easy to manufacture.

本発明の回転角検出装置を用いた操舵角検出装置の好適実施形態を以下に説明する。ただし、本発明は、下記の実施形態に限定解釈されるものではなく、他の技術を組み合わせて本発明の技術思想を実現してもよい。   A preferred embodiment of a steering angle detection device using the rotation angle detection device of the present invention will be described below. However, the present invention is not limited to the following embodiments, and the technical idea of the present invention may be realized by combining other techniques.

(実施形態1)
(基本構造)
実施形態1の操舵角検出装置を、図1を参照して説明する。図1は装置の軸方向模式断面図、図2は装置の要部平面図である。
(Embodiment 1)
(Basic structure)
The steering angle detection apparatus of Embodiment 1 is demonstrated with reference to FIG. FIG. 1 is a schematic cross-sectional view in the axial direction of the apparatus, and FIG. 2 is a plan view of the main part of the apparatus.

この操舵角検出装置は、操舵軸(被検出回転軸)の回転角を検出するための装置であって、ハウジング1に回動自在に支持される被検出回転軸2と、被検出回転軸2に固定されたドライブギヤ3と、ドライブギヤ3に噛合するドリブンギヤ4と、ドリブンギヤ4の内周面に固定された永久磁石(磁界形成部)5及びヨーク(磁界形成部)6と、ドリブンギヤ4に螺合するねじ受け7と、ドリブンギヤ4の軸心上に配置される磁気検出素子(磁気検出部)8と、磁気検出素子8の出力信号を処理して被検出回転軸2の回転角を検出する信号処理部9とを有し、信号処理部9は基板(本発明で言う回路基板)10に実装されている。   This steering angle detection device is a device for detecting a rotation angle of a steering shaft (a detected rotation shaft), and a detected rotation shaft 2 that is rotatably supported by the housing 1 and a detected rotation shaft 2. Drive gear 3 fixed to drive gear 3, driven gear 4 meshing with drive gear 3, permanent magnet (magnetic field forming portion) 5 and yoke (magnetic field forming portion) 6 fixed to the inner peripheral surface of driven gear 4, and driven gear 4 A screw receiver 7 to be screwed, a magnetic detection element (magnetic detection unit) 8 disposed on the axis of the driven gear 4, and an output signal of the magnetic detection element 8 are processed to detect the rotation angle of the detected rotating shaft 2. The signal processing unit 9 is mounted on a substrate (a circuit board in the present invention) 10.

ハウジング1は、台座部11と、台座部11に被せられて台座部11に締結される上蓋部12とからなり、樹脂成形又はアルミダイキャスト又は軟鋼板のプレス成形などにより製造されている。上蓋部12はその全周にわたって側枠をもち、この側枠の先端面が台座部11の上面に密着して内部に密閉空間を形成している。ただし、台座部11及び上蓋部12には、被検出回転軸2が貫通する孔13、14を有している。   The housing 1 includes a pedestal portion 11 and an upper lid portion 12 that is put on the pedestal portion 11 and fastened to the pedestal portion 11, and is manufactured by resin molding, aluminum die casting, or mild steel plate press molding. The upper lid portion 12 has a side frame over its entire circumference, and the front end surface of the side frame is in close contact with the upper surface of the pedestal portion 11 to form a sealed space inside. However, the base portion 11 and the upper lid portion 12 have holes 13 and 14 through which the detected rotation shaft 2 passes.

基板10はプリント基板であって、信号処理部9をなすマイコンなどの回路素子が実装されている。基板10は、台座部11の上面に設けられた支持突起15に締結されている。もちろん、支持突起15は信号処理部9などの実装に支障が無い位置に形成される。Mはドリブンギヤ4の軸心であり、被検出回転軸2の軸心と平行に配置されている。   The substrate 10 is a printed circuit board on which circuit elements such as a microcomputer constituting the signal processing unit 9 are mounted. The substrate 10 is fastened to a support protrusion 15 provided on the upper surface of the base portion 11. Of course, the support protrusion 15 is formed at a position where there is no problem in mounting the signal processing unit 9 and the like. M is the axis of the driven gear 4 and is arranged in parallel with the axis of the detected rotating shaft 2.

磁気検出素子8は、基板10からドリブンギヤ4の軸心Mに沿いつつ立設された支持突起80の先端に固定されている。すなわち、磁気検出素子8が固定された支持突起(本発明で言う支持部材)80を基板10に実装することにより、台座部11に対する磁気検出素子8の位置が設定される。ハウジング1の台座部11は、図略の車体構造に固定される。被検出回転軸2を支持するこの車体構造に対する被検出回転軸2の位置は、被検出回転軸2を回転自在に支持する図略の軸受け構造などにより設定される。結局、基板10は、台座部11及びそれを支持する車体構造を通じて被検出回転軸2に対して位置決めされる。   The magnetic detection element 8 is fixed to the tip of a support projection 80 that is erected from the substrate 10 along the axis M of the driven gear 4. That is, the position of the magnetic detection element 8 with respect to the pedestal portion 11 is set by mounting the support protrusion (supporting member in the present invention) 80 to which the magnetic detection element 8 is fixed on the substrate 10. The pedestal 11 of the housing 1 is fixed to a vehicle body structure not shown. The position of the detected rotating shaft 2 with respect to the vehicle body structure that supports the detected rotating shaft 2 is set by a bearing structure (not shown) that rotatably supports the detected rotating shaft 2. Eventually, the substrate 10 is positioned with respect to the detected rotation shaft 2 through the pedestal portion 11 and the vehicle body structure that supports the base portion 11.

同じく、ねじ受け7の下端部も基板10に固定され、ねじ受け7は、台座部11から上方へ向けて立設されている。これにより、ねじ受け7は、基板10を通じて磁気検出素子8に対して位置合わせされることになる。ねじ受け7は、円筒の一部を軸方向に切断除去した部分円筒形状をもち、その内周面には雌ねじ面が形成されている。この雌ねじ面は、後述するように、ドリブンギヤ4の各歯の径方向外端面に形成された雄ねじ面に螺合している。   Similarly, the lower end portion of the screw receiver 7 is also fixed to the substrate 10, and the screw receiver 7 is erected upward from the base portion 11. As a result, the screw receiver 7 is aligned with the magnetic detection element 8 through the substrate 10. The screw receiver 7 has a partial cylindrical shape in which a part of the cylinder is cut and removed in the axial direction, and an internal thread surface is formed on the inner peripheral surface thereof. As will be described later, this female thread surface is screwed into a male thread surface formed on the radially outer end surface of each tooth of the driven gear 4.

永久磁石5は、円筒状に形成されたフェライト磁石であって、ドリブンギヤ4の軸心Mの周囲に回転対称に配置されて円筒状のヨーク6の内周面に固定されている。軟磁性のヨーク6は、ドリブンギヤ4の内周面に嵌入、固定されている。永久磁石5の内周面は、図1に示すように軸方向に変位するにつれて連続的に径小となる円錐面となっている。永久磁石5は図1において、左右方向(すなわちX方向)へ着磁されている。ヨーク6は一対の永久磁石5間を流れる磁束の戻り磁路をなすとともに、磁気シールド機能を奏する。   The permanent magnet 5 is a ferrite magnet formed in a cylindrical shape, and is rotationally symmetrical around the axis M of the driven gear 4 and is fixed to the inner peripheral surface of the cylindrical yoke 6. The soft magnetic yoke 6 is fitted and fixed to the inner peripheral surface of the driven gear 4. As shown in FIG. 1, the inner peripheral surface of the permanent magnet 5 is a conical surface that continuously decreases in diameter as it is displaced in the axial direction. The permanent magnet 5 is magnetized in the left-right direction (that is, the X direction) in FIG. The yoke 6 forms a return magnetic path for the magnetic flux flowing between the pair of permanent magnets 5 and has a magnetic shielding function.

これにより、永久磁石5内の空間には軸心Mと直交する所定方向へ流れる直流磁束が形成される。この直流磁束の方向はドリブンギヤ4の回転とともに回転する。軸心M上に配置された磁気検出素子8は、互いに直交し、かつ、それぞれ軸心Mと直交する磁束密度成分を別々に検出する2つのホール素子を有する。以下、第1のホール素子の検出磁束密度方向をX、第2のホール素子の検出磁束密度方向をYとする。したがって、第1のホール素子は軸心M上に形成される磁束密度BのX方向成分Bxを検出し、第2のホール素子は軸心M上に形成される磁束密度BのY方向成分Byを検出する。更に、軸心M上の磁束密度Bは、永久磁石5内の空隙が下方へ向けて連続的に増大しているため、下方へ移動するにつれて連続的に減少する。基板10上に固定された信号処理部9は、磁気検出素子8から入力されるX方向磁束密度成分Bx及びY方向磁束密度成分Byに比例する信号電圧Vx、Vyを処理して、被検出回転軸2の回転角を算出する。なお、図2において、41はドリブンギヤ4の歯、31はドライブギヤ3の歯である。   Thereby, a DC magnetic flux that flows in a predetermined direction orthogonal to the axis M is formed in the space in the permanent magnet 5. The direction of the DC magnetic flux rotates with the rotation of the driven gear 4. The magnetic detection element 8 disposed on the axis M has two Hall elements that detect the magnetic flux density components that are orthogonal to each other and orthogonal to the axis M, respectively. Hereinafter, the detected magnetic flux density direction of the first Hall element is X, and the detected magnetic flux density direction of the second Hall element is Y. Therefore, the first Hall element detects the X direction component Bx of the magnetic flux density B formed on the axis M, and the second Hall element detects the Y direction component By of the magnetic flux density B formed on the axis M. Is detected. Further, the magnetic flux density B on the axis M is continuously decreased as the gap in the permanent magnet 5 continuously increases downward, and moves downward. The signal processing unit 9 fixed on the substrate 10 processes the signal voltages Vx and Vy that are proportional to the X-direction magnetic flux density component Bx and the Y-direction magnetic flux density component By input from the magnetic detection element 8 to detect rotation. The rotation angle of the shaft 2 is calculated. In FIG. 2, 41 is a tooth of the driven gear 4, and 31 is a tooth of the drive gear 3.

(動作)
次に、この装置の動作を以下に説明する。
(Operation)
Next, the operation of this apparatus will be described below.

被検出回転軸2とともにドライブギヤ3が回転すると、ドライブギヤ3と噛合するドリブンギヤ4が回転し、ドリブンギヤ4の回転により、ドリブンギヤ4と螺合するねじ受け7により付勢されてドリブンギヤ4は永久磁石5及びヨーク6とともに軸方向へ(上下に)進退する。その結果、たとえば永久磁石5が図1中、下方へ変位すると、磁気検出素子8が検出する磁束密度が減少し、信号処理部9に入力する信号電圧Vx、Vyの振幅がそれぞれ減少する。逆に、永久磁石5が図1中、上方へ変位すると、磁気検出素子8が検出する磁束密度が増大し、信号処理部9に入力する信号電圧Vx、Vyの振幅がそれぞれ増大する。したがって、軸心M上に固定された永久磁石5のX方向を基準として回転角度をθとする時、X方向磁束密度成分BxとY方向磁束密度成分Byとは、
Bx = f (θ)・cosθ
By = f (θ)・sinθ
となる。なお、f (θ)は、永久磁石5の軸方向変位により磁気検出素子8の位置における磁束密度Bのベクトル長の変化を示す関数値である。 f (θ ) は磁石やヨークの形状、材質等で決まる値である。ただし、この実施形態では、軸心Mの軸方向一方側(この実施形態では図1における上方)への変位において単調増加し、軸心Mの軸方向一方側への変位において単調減少するように設定されているが、これに限定されるものではない。信号処理部9は、磁束密度Bのベクトル長を示す関数値f (θ)とドリブンギヤ4の回転回数との関係を記憶している。
When the drive gear 3 rotates together with the rotation shaft 2 to be detected, the driven gear 4 that meshes with the drive gear 3 rotates, and the driven gear 4 is urged by the screw receiver 7 that engages with the driven gear 4 by the rotation of the driven gear 4. 5 and the yoke 6 move forward and backward in the axial direction (up and down). As a result, for example, when the permanent magnet 5 is displaced downward in FIG. 1, the magnetic flux density detected by the magnetic detection element 8 decreases, and the amplitudes of the signal voltages Vx and Vy input to the signal processing unit 9 decrease. Conversely, when the permanent magnet 5 is displaced upward in FIG. 1, the magnetic flux density detected by the magnetic detection element 8 increases, and the amplitudes of the signal voltages Vx and Vy input to the signal processing unit 9 increase. Therefore, when the rotation angle is θ with respect to the X direction of the permanent magnet 5 fixed on the axis M, the X direction magnetic flux density component Bx and the Y direction magnetic flux density component By are
Bx = f (θ) · cos θ
By = f (θ) · sinθ
It becomes. Note that f (θ) is a function value indicating a change in the vector length of the magnetic flux density B at the position of the magnetic detection element 8 due to the axial displacement of the permanent magnet 5. f (θ) is a value determined by the shape and material of the magnet and yoke. However, in this embodiment, the displacement increases monotonously when the shaft center M is displaced in one axial direction (in this embodiment, upward in FIG. 1), and decreases monotonically when the shaft center M is displaced toward one axial direction. Although set, it is not limited to this. The signal processing unit 9 stores the relationship between the function value f (θ) indicating the vector length of the magnetic flux density B and the number of rotations of the driven gear 4.

信号処理部9は、磁気検出素子8から入力されるX方向磁束密度成分BxとY方向磁束密度成分Byとを逆正接演算する機能をもつ。この逆正接演算により、
θ = arctan (By/Bx)
が算出され、磁気検出素子8の回転角θにより永久磁石5の360度内の角度情報を得ることができる。更に、信号処理部9は、X方向磁束密度成分BxとY方向磁束密度成分Byとの二乗和の平方根を演算する機能をもつ。この演算により、f (θ ) としてBxの二乗値+Byの二乗値の平方根、すなわち磁束密度Bのベクトル長が算出され、この磁束密度Bのベクトル長を示す関数値 f (θ)と、記憶する上記関係とから、磁石回転軸の回転回数が算出される。
The signal processing unit 9 has a function of calculating an arctangent of the X direction magnetic flux density component Bx and the Y direction magnetic flux density component By input from the magnetic detection element 8. By this arc tangent calculation,
θ = arctan (By / Bx)
And the angle information within 360 degrees of the permanent magnet 5 can be obtained from the rotation angle θ of the magnetic detection element 8. Further, the signal processing unit 9 has a function of calculating the square root of the square sum of the X-direction magnetic flux density component Bx and the Y-direction magnetic flux density component By. By this calculation, the square root of the square value of Bx + By, that is, the vector length of the magnetic flux density B, is calculated as f (θ), and the function value f (θ) indicating the vector length of the magnetic flux density B is stored. From the above relationship, the number of rotations of the magnet rotation shaft is calculated.

結局、この実施形態では、f (θ)の大きさから所定の軸方向基準位置からの何回転目の回転かを演算し、arctan(By/Bx)から現在の永久磁石5の回転角θを演算し、これらから360度以上の回転角θ’を算出する。たとえば現在2回目の回転であり、θが55度であれば、最終回転角θ’は415度が算出されて出力される。被検出回転軸2の回転角φ及びドリブンギヤ4の回転角θと、X方向磁束密度成分Bx及びY方向磁束密度成分Byとの関係を図3に示す。   After all, in this embodiment, the rotation number θ of rotation from a predetermined axial reference position is calculated from the magnitude of f (θ), and the current rotation angle θ of the permanent magnet 5 is calculated from arctan (By / Bx). By calculating, a rotation angle θ ′ of 360 degrees or more is calculated from these. For example, if the current rotation is the second rotation and θ is 55 degrees, the final rotation angle θ ′ is calculated and output as 415 degrees. FIG. 3 shows the relationship between the rotation angle φ of the detected rotation shaft 2 and the rotation angle θ of the driven gear 4 and the X-direction magnetic flux density component Bx and the Y-direction magnetic flux density component By.

以上説明したこの実施形態の360度超回転角検出方式は、既述した特許文献2のそれと同じである。   The 360-degree super-rotation angle detection method of this embodiment described above is the same as that of Patent Document 2 described above.

(ねじ受け7の固定方法)
次に、ねじ受け7を基板10に固定する各種形態について図面を参照して説明する。なお、下記の各図において、断面ハッチングは省略される。
(Fixing method of screw receiver 7)
Next, various forms for fixing the screw receiver 7 to the substrate 10 will be described with reference to the drawings. In each of the following drawings, cross-sectional hatching is omitted.

図4は、ねじ受け7を基板10の上面に接着により固定した実施形態を示す。基板10上には、基板10の面平行方向(以下、単に面平行方向と言う)への変位を規制する図略のストッパ部材が予め固定されており、このため、ねじ受け7の面平行方向への変位は防止される。基板10の上面は、軸心Mに対して直角に配置されるため、これによりねじ受け7を高精度に基板10に固定することができる。   FIG. 4 shows an embodiment in which the screw receiver 7 is fixed to the upper surface of the substrate 10 by adhesion. An unillustrated stopper member for restricting displacement of the substrate 10 in the plane parallel direction (hereinafter simply referred to as plane parallel direction) is fixed in advance on the substrate 10. Displacement to is prevented. Since the upper surface of the substrate 10 is disposed at a right angle to the axis M, the screw receiver 7 can be fixed to the substrate 10 with high accuracy.

図5は、基板10に貫通孔を設け、ねじ受け7の下端面にねじ孔を設けたものである。ねじ20を基板10の下面側からねじ受け7のねじ孔に締結することにより精度良く、ねじ受け7を基板10に固定することができる。なお、ねじのかわりにリベットやピンでもよい。ピンとする場合、このピンは基板10に圧入するのが好適である。その他、ピンを樹脂製とする場合には、熱かしめを行うことも好適である。なお、ピンは複数箇所に設けることが位置決め精度確保の点で好適である。   In FIG. 5, a through hole is provided in the substrate 10, and a screw hole is provided in the lower end surface of the screw receiver 7. The screw receiver 7 can be fixed to the substrate 10 with high accuracy by fastening the screw 20 to the screw hole of the screw receiver 7 from the lower surface side of the substrate 10. A rivet or a pin may be used instead of the screw. In the case of a pin, it is preferable to press-fit the pin into the substrate 10. In addition, when the pins are made of resin, it is also preferable to perform heat caulking. Note that it is preferable to provide the pins at a plurality of locations from the viewpoint of securing positioning accuracy.

図6は、樹脂製又はアルミ製のねじ受け7の下端面から下方へ支持突起30を突設したものである。この支持突起30は、基板10の貫通孔を通じて下方へ突出する。支持突起30の先端部をつぶしたり、はんだ付けしたり、接着することにより、支持突起30は基板10に良好に固定される。   FIG. 6 shows a support protrusion 30 projecting downward from the lower end surface of a resin or aluminum screw receiver 7. The support protrusion 30 protrudes downward through the through hole of the substrate 10. The support protrusion 30 can be satisfactorily fixed to the substrate 10 by crushing, soldering, or bonding the tip of the support protrusion 30.

図7は、ねじ受け7の下部70を円筒状に形成したものである。これにより、ねじ受け7の剛性を向上することができる。この完全円筒状のねじ受け7の下部70の周面にネジ面を設けて、回路基板側に固定されたねじ部材と螺合してもよい。   In FIG. 7, the lower part 70 of the screw receiver 7 is formed in a cylindrical shape. Thereby, the rigidity of the screw receiver 7 can be improved. A screw surface may be provided on the peripheral surface of the lower portion 70 of the complete cylindrical screw receiver 7 and screwed with a screw member fixed to the circuit board side.

図8は、図7のねじ受け7の上部72も円筒状に形成したものである。これにより、ねじ受け7の剛性を更に向上することができる。   In FIG. 8, the upper part 72 of the screw receiver 7 of FIG. 7 is also formed in a cylindrical shape. Thereby, the rigidity of the screw receiver 7 can be further improved.

図9は、図7のねじ受け7の下部70の内周面を、ドライブギヤ3やドリブンギヤ4と干渉しないように異形としたものである。   FIG. 9 is an example in which the inner peripheral surface of the lower portion 70 of the screw receiver 7 in FIG. 7 is modified so as not to interfere with the drive gear 3 and the driven gear 4.

図10は、内部に部分円筒状の金属板部材75をインサート成形した樹脂成形品により製造したねじ受け7を示す。これにより、ねじ受け7の剛性を向上することができる。   FIG. 10 shows a screw receiver 7 manufactured by a resin molded product in which a partially cylindrical metal plate member 75 is insert-molded. Thereby, the rigidity of the screw receiver 7 can be improved.

図11は、図7に示すねじ受け7において、インサート成型される金属板部材75の下部を円筒形状としたものである。これにより、ねじ受け7の剛性を向上することができる。金属板部材75は、軟磁性金属材料により構成すれば、磁気シールド効果も期待することができる。   FIG. 11 shows a cylindrical shape of the lower part of the metal plate member 75 to be insert-molded in the screw receiver 7 shown in FIG. Thereby, the rigidity of the screw receiver 7 can be improved. If the metal plate member 75 is made of a soft magnetic metal material, a magnetic shielding effect can be expected.

図12は、図10と同様に部分円筒状の金属板部材75をインサート成形した樹脂成形品により製造したねじ受け7を示す。ただし、この実施形態では、ねじ受け7から露出する金属板部材の内周面には雌ねじ面が形成される。   FIG. 12 shows a screw receiver 7 manufactured by a resin molded product in which a partially cylindrical metal plate member 75 is insert-molded as in FIG. However, in this embodiment, a female screw surface is formed on the inner peripheral surface of the metal plate member exposed from the screw receiver 7.

結局、ねじ受け7の使用材料、製造方法及び基板10への固定方法としては、従来公知の製造技術を種々選択して採用できることがわかる。ねじ受け7を基板10に固定した段階にてねじ受け7と基板10との位置合わせの良否を検査し、その後、検査に合格したサブアセンブリをハウジングに組み付けることができるため、最終製品の不良確率を低減することもできる利点もある。   As a result, it can be seen that various known manufacturing techniques can be selected and used as the material used for the screw receiver 7, the manufacturing method, and the fixing method to the substrate 10. When the screw receiver 7 is fixed to the substrate 10, the alignment of the screw receiver 7 and the substrate 10 is inspected, and then a sub-assembly that has passed the inspection can be assembled to the housing. There is also an advantage that can be reduced.

(実施例効果)
上記説明したように、この実施形態では、ドリブンギヤ4及び磁気検出素子8を基板10に固定する構造を有するので、製造作業を簡素とすることができるにもかかわらず高い検出精度を実現することができる。
(Example effect)
As described above, in this embodiment, since the driven gear 4 and the magnetic detection element 8 are fixed to the substrate 10, it is possible to achieve high detection accuracy even though the manufacturing work can be simplified. it can.

なお、ドライブギヤ3とドリブンギヤ4の歯形状は図面に記載した以外に種々選択採用できることはもちろんである。   Of course, the tooth shapes of the drive gear 3 and the driven gear 4 can be variously selected and employed other than those shown in the drawings.

実施形態1の回転角検出装置を示す模式軸方向断面図である。FIG. 3 is a schematic axial sectional view showing the rotation angle detection device of the first embodiment. 図1のドリブンギヤとドライブギヤとねじ受けとを示す模式径方向断面図である。FIG. 2 is a schematic radial sectional view showing a driven gear, a drive gear, and a screw receiver of FIG. 1. 回転角φ及びθと、X方向磁束密度成分Bx及びY方向磁束密度成分Byとの関係を示す図である。It is a figure which shows the relationship between rotation angle (phi) and (theta), X direction magnetic flux density component Bx, and Y direction magnetic flux density component By. ねじ受けを基板に接着する態様を示す模式軸方向断面図である。It is a typical axial direction sectional view showing the mode which adheres a screw receiver to a substrate. ねじ受けを基板にピン等で固定する態様を示す模式軸方向断面図である。It is a typical axial direction sectional view showing a mode which fixes a screw receiver to a substrate with a pin etc. ねじ受けを基板に圧入等により固定する態様を示す模式軸方向断面図である。It is a schematic axial direction sectional view which shows the aspect which fixes a screw receiver to a board | substrate by press injection. 下端部分が円筒状のねじ受けを採用した態様を示す模式軸方向断面図である。(A)はその模式横断面図、(B)は模式縦断面図である。It is a typical axial direction sectional view showing the mode where the lower end portion adopted the cylindrical screw support. (A) is a schematic cross-sectional view thereof, and (B) is a schematic vertical cross-sectional view thereof. 下端部分及び上端部分が円筒状のねじ受けを採用した態様を示す模式軸方向断面図である。(A)はその模式横断面図、(B)は模式縦断面図である。It is a typical axial direction sectional view showing the mode which adopted a screw holder with a lower end part and an upper end part being cylindrical. (A) is a schematic cross-sectional view thereof, and (B) is a schematic vertical cross-sectional view thereof. 下端部分の内周面が異形のねじ受けを採用した態様を示す模式軸方向断面図である。(A)はその模式横断面図、(B)は模式縦断面図である。It is a typical axial direction sectional view showing the mode where the inner peripheral surface of a lower end part adopted the unusual shape screw holder. (A) is a schematic cross-sectional view thereof, and (B) is a schematic vertical cross-sectional view thereof. 金属板部材をインサート成形した態様を示す模式軸方向断面図である。(A)はその模式横断面図、(B)は模式縦断面図である。It is a typical axial direction sectional view showing the mode which carried out insert molding of the metal plate member. (A) is a schematic cross-sectional view thereof, and (B) is a schematic vertical cross-sectional view thereof. リング状の金属板部材をインサート成形した態様を示す模式軸方向断面図である。(A)はその模式横断面図、(B)は模式縦断面図である。It is a typical axial direction sectional view showing the mode which carried out insert molding of the ring-shaped metal plate member. (A) is a schematic cross-sectional view thereof, and (B) is a schematic vertical cross-sectional view thereof. 内周面に雌ねじ面が形成されたリング状の金属板部材をインサート成形した態様を示す模式軸方向断面図である。(A)はその模式横断面図、(B)は模式縦断面図である。It is a schematic axial direction sectional view which shows the aspect which insert-molded the ring-shaped metal plate member in which the internal thread surface was formed in the internal peripheral surface. (A) is a schematic cross-sectional view thereof, and (B) is a schematic vertical cross-sectional view thereof.

符号の説明Explanation of symbols

1 ハウジング
2 被検出回転軸
3 ドライブギヤ
4 ドリブンギヤ
5 永久磁石
6 ヨーク
7 ねじ受け
8 磁気検出素子
9 信号処理部
10 基板(回路基板)
11 台座部(ハウジング)
12 上蓋部(ハウジング)
13 孔
15 支持突起
30 支持突起
75 金属板部材
80 支持突起
DESCRIPTION OF SYMBOLS 1 Housing 2 Detected rotating shaft 3 Drive gear 4 Driven gear 5 Permanent magnet 6 Yoke 7 Screw receiver 8 Magnetic detection element 9 Signal processing unit 10 Substrate (circuit board)
11 Base (housing)
12 Upper lid (housing)
13 hole 15 support protrusion 30 support protrusion 75 metal plate member 80 support protrusion

Claims (6)

ハウジングに回動自在に支持される被検出回転軸と、前記被検出回転軸に固定されたドライブギヤに噛合するドリブンギヤと、永久磁石を有するとともに前記ドリブンギヤの内部に固定されて前記ドリブンギヤの軸心位置に磁界を形成する磁界形成部と、前記ハウジングに支持されて前記ドリブンギヤに螺合するねじ受けと、前記ドリブンギヤの軸心上に位置して前記ハウジングに固定される磁気検出部と、前記磁気検出部の出力信号を処理して前記被検出回転軸の回転角を検出する信号処理部とを備え、
前記ドリブンギヤは、前記ドライブギヤにより回動されるとともに前記ねじ受けに付勢されて軸方向に進退し、
前記信号処理部は、前記磁界形成部の回動による軸直交磁界方向の変化並びに前記ドリブンギヤの軸方向進退による磁界強度の変化に基づいて前記被検出回動軸の360度超の回動角を検出する回転角検出装置において、
前記ハウジングに固定されて前記信号処理部が実装される回路基板を有し、
前記磁気検出部は、前記回路基板に支持される支持部材に固定され、
前記ねじ受けは、前記回路基板に固定されていることを特徴とする回転角検出装置。
A detected rotation shaft that is rotatably supported by a housing, a driven gear that meshes with a drive gear fixed to the detected rotation shaft, a permanent magnet, and a fixed gear shaft that is fixed inside the driven gear. A magnetic field forming unit that forms a magnetic field at a position; a screw receiver that is supported by the housing and screwed into the driven gear; a magnetic detection unit that is positioned on an axis of the driven gear and is fixed to the housing; and A signal processing unit that processes an output signal of the detection unit and detects a rotation angle of the detected rotation shaft;
The driven gear is rotated by the drive gear and is urged by the screw receiver to advance and retreat in the axial direction.
The signal processing unit sets a rotation angle of more than 360 degrees of the detected rotation shaft based on a change in the direction perpendicular to the magnetic field due to the rotation of the magnetic field forming unit and a change in the magnetic field strength due to the advance / retreat of the driven gear in the axial direction. In the rotation angle detection device to detect,
A circuit board that is fixed to the housing and on which the signal processing unit is mounted;
The magnetic detection unit is fixed to a support member supported by the circuit board,
The rotation angle detecting device, wherein the screw receiver is fixed to the circuit board.
請求項1記載の回転角検出装置において、
前記回路基板は、前記ドリブンギヤの軸心と直角方向へ延在する回転角検出装置。
The rotation angle detection device according to claim 1,
The circuit board is a rotation angle detection device extending in a direction perpendicular to the axis of the driven gear.
請求項2記載の回転角検出装置において、
前記ねじ受けは、軸直交断面が円弧形状の雌ねじ面を有する部分円筒体からなり、
前記ドリブンギヤの歯の径方向外端面に形成された雄ねじ面は、前記ねじ受けの径方向内側の表面に形成された雌ねじ面に螺合し、
前記ねじ受けの周方向中心点と前記ドリブンギヤの軸心と前記ドライブギヤの軸心とは、一直線に配置されている回転角検出装置。
The rotation angle detection device according to claim 2,
The screw receiver is composed of a partial cylindrical body having a female thread surface with an arc-shaped cross section perpendicular to the axis,
The male thread surface formed on the radially outer end surface of the tooth of the driven gear is screwed to the female thread surface formed on the radially inner surface of the screw receiver,
A rotation angle detection device in which a circumferential center point of the screw bearing, an axis of the driven gear, and an axis of the drive gear are arranged in a straight line.
請求項3記載の回転角検出装置において、
前記ねじ受けは、前記回路基板の支持孔に嵌入される固定用突起を有する回転角検出装置。
In the rotation angle detection device according to claim 3,
The rotation angle detecting device, wherein the screw receiver has a fixing protrusion to be inserted into a support hole of the circuit board.
請求項3記載の回転角検出装置において、
前記回路基板に立設される支持突起を有し、
前記支持突起は、前記ねじ受けに凹設された支持穴に嵌入される回転角検出装置。
In the rotation angle detection device according to claim 3,
Having a support protrusion standing on the circuit board;
The rotation angle detection device, wherein the support protrusion is inserted into a support hole recessed in the screw receiver.
請求項1又は2記載の回転角検出装置において、
前記被検出回動軸は、車両の操舵軸からなる回転角検出装置。
In the rotation angle detection device according to claim 1 or 2,
The detected rotation shaft is a rotation angle detection device including a steering shaft of a vehicle.
JP2008170757A 2008-06-30 2008-06-30 Rotation angle detector Expired - Fee Related JP5013535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008170757A JP5013535B2 (en) 2008-06-30 2008-06-30 Rotation angle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008170757A JP5013535B2 (en) 2008-06-30 2008-06-30 Rotation angle detector

Publications (2)

Publication Number Publication Date
JP2010008353A JP2010008353A (en) 2010-01-14
JP5013535B2 true JP5013535B2 (en) 2012-08-29

Family

ID=41589029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008170757A Expired - Fee Related JP5013535B2 (en) 2008-06-30 2008-06-30 Rotation angle detector

Country Status (1)

Country Link
JP (1) JP5013535B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2964190B1 (en) * 2010-08-24 2013-02-08 Moving Magnet Tech MAGNETIC DETECTION DEVICE WITH ABSOLUTE MULTITOUR POSITION
CN106949855B (en) * 2017-03-03 2023-08-15 四川大学 Rotating shaft angular displacement measuring device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899821B2 (en) * 2001-01-23 2007-03-28 松下電器産業株式会社 Rotation angle detector
JP2005003625A (en) * 2003-06-16 2005-01-06 Matsushita Electric Ind Co Ltd Rotation angle detecting device
JP4607049B2 (en) * 2006-02-23 2011-01-05 株式会社デンソー Rotation angle detector

Also Published As

Publication number Publication date
JP2010008353A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP4819889B2 (en) Sensor unit for detecting the difference angle
US8314607B2 (en) Rotation angle detector
JP4941847B2 (en) Rotation angle detector
US20090146650A1 (en) Rotation angle sensor and scissors gear suitable therefor
JP2013093983A (en) Structure for fixing stator
JP6726593B2 (en) Torque sensor
JP2008151628A (en) Rotation sensor
KR20130105341A (en) Angle detecting apparatus and torque detecting apparatus using the same
JP4607211B2 (en) Rotation angle detector
JP2011191159A (en) Rotary angle and rotary torque sensing device
JP5013535B2 (en) Rotation angle detector
JP2010038765A (en) Rotation detector
JP2014149180A (en) Torque sensor
JP2010032357A (en) Rotation sensor device
JP6713269B2 (en) Bearing with rotation detector
JP4578159B2 (en) Position sensor
JP2011112441A (en) Encoder, method for mounting encoder, and motor device
JP4456163B2 (en) Rotation angle detector
JP2022157689A (en) absolute encoder
JP5031672B2 (en) Torque sensor assembly method
JP2009162742A (en) Rotation angle detecting device and scissors gear suitable for the same
JP2005257471A (en) Rotation angle detection device
JP2014211434A (en) Rotation angle sensor magnet and rotation angle sensor
JP5479695B2 (en) Rotation detector
JP2018059741A (en) Torque sensor manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5013535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees